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The multiplicative order of (2 mod p)

5 7 11 13 17 19 23 29 31 37
4 3 10 12 8 18 11 28 5 36

p odd prime | 3
ord(2 mod p) | 2

41 43 47 53 59 61 67 71 73 79 83 89 97
20 14 23 52 58 60 66 35 9 39 82 11 48
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5 7 11 13 17 19 23 29 31 37
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p odd prime | 3
ord(2 mod p) | 2

41 43 47 53 59 61 67 71 73 79 83 89 97
20 14 23 52 58 60 66 35 9 39 82 11 48

ord(2 mod p) # 6 20 -1=32x7
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The multiplicative order of (2 mod p)

5 7 11 13 17 19 23 29 31 37
4 3 10 12 8 18 11 28 5 36

p odd prime | 3
ord(2 mod p) | 2

41 43 47 53 59 61 67 71 73 79 83 89 97
20 14 23 52 58 60 66 35 9 39 82 11 48

ord(2 mod p) # 6 20 -1=32x7

@ Artin’s Conjecture on primitive roots (1927): Are there
infinitely many primes p such that ord(2 mod p) = p — 1?7
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The multiplicative order of (2 mod p)

5 7 11 13 17 19 23 29 31 37
4 3 10 12 8 18 11 28 5 36

p odd prime | 3
ord(2 mod p) | 2

41 43 47 53 59 61 67 71 73 79 83 89 97
20 14 23 52 58 60 66 35 9 39 82 11 48

ord(2 mod p) # 6 20 -1=32x7
@ Artin’s Conjecture on primitive roots (1927): Are there
infinitely many primes p such that ord(2 mod p) = p — 1?7
@ The density of primes p for which ord(2 mod p) is odd is %.

@ Are there infinitely many primes p such that e.g.
ord(2 mod p) =1 mod 3 7?
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Reductions for number fields

Let K be a number field.
Let G C K* torsion-free subgroup of finite rank r.

For all but finitely many primes p of K the reduction G mod p
@ is a cyclic subgroup of k) = (Ok/pOk)*
e has a multiplicative order ord,(G) = #(G mod p)

@ satisfies
ord,(G) | #kpX =N(p)-1
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Reductions for number fields

Let K be a number field.
Let G C K* torsion-free subgroup of finite rank r.

For all but finitely many primes p of K the reduction G mod p
@ is a cyclic subgroup of k) = (Ok/pOk)*
e has a multiplicative order ord,(G) = #(G mod p)

@ satisfies

ord,(G) | #k = N(p) — 1

Questions: Are there infinitely many primes p for which
ord,(G) = amod d

for some fixed integers a, d? Does the density exist?
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Theorem

P :={p :ordy(G) = amod d}

Theorem

Assuming (GRH), the number of primes in P with norm up to x is

il u(n)c(n, t) ( X )
P(X) ~ o nt + 0| —=57 )
log x n,t>1 [K(Clcm(dt,nt)a \/6) : K] |0g3/2x

where c(n, t) € {0,1}, with c(n,t) =1 if and only if
o gcd(l+at,d) =1
e gcd(d,n) | a
o the element of Gal(Q((4:)/Q) which maps (4 to C;:“’t is the
identity on Q(Cgt) N K (Cne, V/G)

Ziegler, 2006: case of rank 1




Kummer theory for number fields

Bounded failure of maximality of Kummer degrees:

There is an integer C > 1, which depends only on K and G, such
that for all nym > 1 with n | m the ratio

nf‘

[K (G, V/G) K (Cm)]

Direct proof by Perucca, S. (2018)

divides C.
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Properties of the density

Denote the natural density of P = {p : ord,(G) = a mod d} by

p(n)c(n, t)
densk(G,amod d) = .
n,tz>1 [K(Clcm(dt,nt)a \/6) : K]

We investigate whether this density is
@ positive
@ a rational number

@ computable
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The prime power case, d = (¢

Let £ be a prime number and e > 1.

Proposition (Debry, Perucca, 2016)

Given an integer x > 0 we have that

densk({p : ve(ordp(G)) = x})

is a positive computable rational number.
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The prime power case, d = (¢

Let £ be a prime number and e > 1.

Proposition (Debry, Perucca, 2016)

Given an integer x > 0 we have that

densk({p : ve(ordp(G)) = x})

is a positive computable rational number.

v
Theorem

Assume (GRH). Suppose that {; € K if £ is odd, or that (4 € K if
£ =2. Then

densk (G, a mod ¢°)

depends on a only through its ¢-adic valuation, and it is a
computable positive rational number.
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Uniformity and positivity

Taking £ odd and ¢ | a, if p is a prime of K of degree 1 and
unramified in K((¢) and such that ord,(G) = a mod ¢¢, then it
splits completely in K((;)

1

densk (G, a mod ¢¢) = K@) Kl - densk(¢,)(G, a mod (€)
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Uniformity and positivity

Taking £ odd and ¢ | a, if p is a prime of K of degree 1 and
unramified in K((¢) and such that ord,(G) = a mod ¢¢, then it
splits completely in K((;)

1
densk (G, a mod ¢¢) = K@) Kl - densk(¢,)(G, a mod (€)

Assume (GRH). Suppose that ¢ | a if ¢ is odd, and that 4 | a (and
e >2) if £ =2. Then the density densk (G, a mod ¢¢) depends on
a only through its ¢-adic valuation, and it is a computable positive
rational number.
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Uniformity and positivity

Taking £ odd and ¢ | a, if p is a prime of K of degree 1 and
unramified in K((¢) and such that ord,(G) = a mod ¢¢, then it
splits completely in K((;)

1

densk (G, a mod ¢¢) = K@) Kl - densk(¢,)(G, a mod (€)

Assume (GRH). Suppose that ¢ | a if ¢ is odd, and that 4 | a (and
e >2) if £ =2. Then the density densk (G, a mod ¢¢) depends on
a only through its ¢-adic valuation, and it is a computable positive
rational number.

Assume (GRH). The density densk (G, a mod ¢¢) is positive. \
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The composite case

It is known unconditionally that densk(G,0 mod d) is a positive
computable rational number.
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The composite case

It is known unconditionally that densk(G,0 mod d) is a positive
computable rational number.

Theorem

Assume (GRH). Suppose that (, € K for all ¢ | d, and (4 € K if d
is even. Then for a coprime to d

densk(G, a mod d)

is a computable positive rational number which does not depend
on a.
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The composite case

It is known unconditionally that densk(G,0 mod d) is a positive
computable rational number.

Assume (GRH). Suppose that (, € K for all ¢ | d, and (4 € K if d
is even. Then for a coprime to d

densk(G, a mod d)

is a computable positive rational number which does not depend
on a.

w
Corollary

Assume (GRH). The density densk (G, a mod d) is positive
whenever a is coprime to d.
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An example

Take G = (2,3) < Q*.

amod d | densg(G,amod d) | primes up to 10°
4 mod 16 17/112 ~ 0.1518 0.1522
12 mod 16 | 17/112 ~ 0.1518 0.1508
3 mod 9 2/13 ~ 0.1538 0.1538
6 mod 9 2/13 ~ 0.1538 0.1540
9 mod 27 2/39 ~ 0.0513 0.0513
18 mod 27 2/39 ~ 0.0513 0.0513
3 mod 27 2/39 ~ 0.0513 0.0518
6 mod 27 2/39 ~ 0.0513 0.0512
15 mod 27 2/39 ~ 0.0513 0.0513
21 mod 27 2/39 ~ 0.0513 0.0507
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Thank you for your attention!



