
Optimized Collision Search for STARK-Friendly
Hash Challenge Candidates ?

Aleksei Udovenko

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
aleksei@affine.group

Abstract. In this note, we report several solutions to the STARK-
Friendly Hash Challenge: a competition with the goal of finding colli-
sions for several hash functions designed specifically for zero-knowledge
proofs (ZKP) and multiparty computations (MPC). We managed to find
collisions for 3 instances of 91-bit hash functions. The method used is the
classic parallel collision search with distinguished points from van Oor-
shot and Wiener (1994). As this is a general attack on hash functions, it
does not exhibit any particular weakness of the chosen hash functions.
The crucial part is to optimize the implementations to make the attack
cost realistic, and we describe several arithmetic tricks.

Keywords: Symmetric Cryptography · Cryptanalysis · Hash functions
· Multiparty Computation

1 Introduction

Recently, StarkWare organized a cryptanalysis competition [12] in order to evalu-
ate the security of several hash functions. These candidates are designed to be ef-
ficient specifically in recent multiparty computation schemes and zero-knowledge
proof systems. In contract to classic hash functions, these hash functions utilize
prime or binary finite fields of sizes ranging from about 232 to 2256.

The goal of the challenge is find a concrete collision pair for one of the
proposed hash instances. The challenge covers four families of recently proposed
hash functions:

1. HadesMiMC: Starkad and Poseidon [9],
2. MARVELlous: Vision and Rescue [3],
3. GMiMC [2],
4. MiMCHash-2q/p [1].

All considered families are based on the Sponge [6, 7] construction for hash-
functions. The only differences are in the underlying permutation f , in the rate
r and the capacity c parameters.

? This work was supported by the Luxembourg National Research Fund (FNR) project
FinCrypt (C17/IS/11684537). The experiments presented in this work were carried
out using the HPC facilities of the University of Luxembourg [13] – see https:

//hpc.uni.lu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/287734435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hpc.uni.lu
https://hpc.uni.lu

Fig. 1. The Sponge construction (credits: [10])

Under the assumption of “secure” permutation f , a sponge-based hash-
function is provably secure up to c/2 bits. According to this bound, the challenge
organizers proposed multiple concrete instances of hash functions with expected
security of 45 bits, 80 bits, 128 bits, and 256 bits.

1.1 Low Security Instances

One could expect that 45 bits can be broken very fast. Indeed, the 56-bit DES
key space can be exhaustively checked by a single modern GPU in under a
month. There is a caveat: the security is measured in evaluations of the attacked
function. 45-bit security therefore means that about 245 such evaluations are
required to attack the primitive. In order to mount a generic attack as fast as
possible, the attacker has to optimize the implementation of the primitive itself.

The target hash functions are designed to be efficient in the ZKP/MPC
settings, meaning that they are mainly optimized to have a small number of
operations (especially multiplications) in the chosen finite field. The primitives
use binary or prime fields, with size ranging from 64 to 256 bits. Arithmetics
in these fields are not natural for common architectures, and thus are quite
inefficient on practice.

1.2 Medium+ Security Instances

With 80+ bits of security, generic attacks are infeasible: a novel practical crypt-
analytic attack has to be developed. Is it realistic to expect it? Note that the
competition lasts less than a year.

On one hand, symmetric cryptography based on arithmetics over large finite
fields (especially prime fields) is a rather new direction and is not well studied.
Indeed, a new cryptanalytic technique might be discovered for such primitives.
Furthermore, the primitives themselves are rather recent.

On the other hand, there are several arguments against such attacks.

2

The first argument is that the proposed targets use full numbers of rounds,
which are quite large by design in order to protect against interpolation/algebraic
attacks.

The second argument is the use of the sponge construction. The sponge
significantly limits the attack surface:

– The SHA-3 standard (Keccak) pessimistically uses a permutation with 24
rounds, while after some effort at most 8 rounds are attacked by completely
infeasible attacks. The designers proposed a hash function using the same
permutation reduced to 12 rounds [5], and there were even proposals to
reduce it to 10 rounds [4].

– Recently, another competition on practical cryptanalysis of a sponge-based
hash function held: Troika Challenge. Various rewards were proposed for
practical collision or preimage attacks for amounts of rounds varying from
1 to 12 (while the primitive itself uses 24). After a year, only the 3-round
version was broken with a collision attack and the 2-round version was broken
with a preimage attack.

– Some variants of MiMC/GMiMC block ciphers are vulnerable to birthday-
bound attacks [8], i.e. their security is effectively halved. This happens be-
cause these variants are equivalent to an Even-Mansour cipher: a key-less
permutation with a key addition only before and after the permutation.
However, in the sponge mode this is not useful: the cipher is used only as a
permutation.

1.3 Summary

To sum up, the most realistic targets are only those with 45-bit security. The
main part of this note also suggests that even for those targets the required
amount of computations is quite unreasonable.

2 Optimization of Arithmetics

All the prime-based targets (with 45-bit security) operate in the finite field Fp

with p = 291 +5 ·264 +1. It is crucial therefore to optimize arithmetic operations
over this field. The common operations used are:

– addition modulo p;
– multiplication by a constant modulo p;
– raising to a power e modulo p, typically e = 3 (cube) or e = p−2 (inversion).

To avoid much of a hassle, we used __uint128_t type as a basis, available
in many compilers. The addition is straightforward:

1 __uint128_t add(__uint128_t a, __uint128_t b) {
2 __uint128_t res = a + b;
3 return (res >= MOD) ? (res - MOD) : res;
4 }

3

https://www.cyber-crypt.com/troika-challenge/

2.1 Optimizing Modular Reduction

However, multiplication is more difficult. The product of two 91-bit numbers
can easily overflow 128-bit type. This issue can be solved by splitting one of
the operands into 32-bit chunks, multiplying them separately and summing the
result. Intermediate values then should be reduced modulo p to prevent the
overflow. Generally speaking, modulo reduction is a very heavy operation. In
our case however, the selected prime p has a special form, which allows to avoid
any integer division. This is done by performing divisions by powers of 2, which
are implemented as simple binary shifts.

We need to implement multiplication by 232 and multiplication by a 32-bit
number (with immediate reduction modulo p). Both can be implemented using
one tool: reduction of a 125-bit value a modulo p (note that values of Fp in
general require 92 bits and 232 is a 33-bit value). Let t = ba/pc and note that
t < 2125/p < 234. For some ε ≤ p

a = 291t+ 5 · 264t+ ε.

Observe that t̃ :=
⌊
a/291

⌋
is almost equal to t:

t̃ =
⌊
a/291

⌋
= t+

⌊
(5 · 264t+ ε)

291

⌋
≤ t+ 2101/291 = t+ 210.

Let us subtract t̃p from a. In order to be safe from possible extra 210 multiplies
of p, we can add 210p to the result. Let

a′ := a− t̃p+ 210p.

We know that 0 ≤ a′ ≤ 210p. Now we repeat the procedure:

t′ := ba′/pc ≤ 210, and

t̃′ :=
⌊
a′/291

⌋
= t′ +

⌊
(5 · 264t′ + ε′)

291

⌋
≤ t′ + 1.

That is, after the second step the “underflow” is at most by one p, which can be
eliminated using a single if.

The final step is to get rid of 128-bit multiplications in the computation of
a′ given by a′ = a − t̃p + 210p. Here we can split p into two 64-bit words and
compute separately the highest and the lowest word to be subtracted from a.

The whole reduction step can be implemented as follows (note that 5*t can
be further optimized as (t<<2)+t, and it seems to be done by the compiler):

1 #define EXP2(i) (E<<(i))
2 const __uint128_t E = 1;
3

4 const __uint128_t MOD = EXP2(91) + 5*EXP2(64) + 1;
5 const __uint128_t MODMASK = EXP2(91) - 1;
6 const __uint128_t MODe10 = MOD << 10;
7

8 __uint128_t reduce(__uint128_t a) {

4

9 uint64_t t = (a >> 91);
10 a &= MODMASK;
11 a += MODe10;
12 a -= ((__uint128_t)(5*t)<<64) + t;
13 uint64_t tt = (a >> 91);
14 a &= MODMASK;
15 a += MOD;
16 a -= ((__uint128_t)(5*tt)<<64) + tt;
17 if (a >= MOD) a -= MOD;
18 return a;
19 }

2.2 Optimizing Multiplication

Recall the 32-bit chunk multiplication idea. Assume we want to multiply a, b ∈
Fp. Let b0, b1, b2 < 232 be such that

b = 264b2 + 232b1 + b0.

Then
a · b = a · b0 + (232a) · b1 + (264a) · b2.

This is directly implemented by the following code:

1 __uint128_t multiply(__uint128_t a, __uint128_t b) {
2 __uint128_t res = 0;
3

4 res += a * (uint32_t)b;
5 b >>= 32;
6 a = reduce(a << 32);
7

8 res += a * (uint32_t)b;
9 b >>= 32;

10 a = reduce(a << 32);
11

12 res += a * (uint32_t)b;
13 return reduce(res);
14 }

2.3 Optimizing The Cube Mapping

The cube mapping is rather straightforward: a3 = (a · a) · a. However, there is a
little optimization here as well. Observe that in the multiplication we compute
reduced a, 232a, 264a. Since in the cube mapping we multiply by a two times, we
can reuse these values between the two multiplications:

1 __uint128_t cube(__uint128_t a) {
2 __uint128_t a1 = a;
3 __uint128_t a2 = reduce(a1 << 32);
4 __uint128_t a3 = reduce(a2 << 32);
5

6 __uint128_t res = 0;
7 res += a1 * (uint32_t)a; a >>= 32;
8 res += a2 * (uint32_t)a; a >>= 32;
9 res += a3 * (uint32_t)a;

10 a = reduce(res);
11

12 res = 0;
13 res += a1 * (uint32_t)a; a >>= 32;
14 res += a2 * (uint32_t)a; a >>= 32;
15 res += a3 * (uint32_t)a;
16 return reduce(res);
17 }

5

3 Parallel Collision Search

The main algorithm is the generic parallel collision search [11]. The trick to par-
allelize the search without using too much memory is to track only distinguished
points - hash values with, for example, a particular number of leftmost bits equal
to zero.

Fig. 2. Parallel collision search (credits: [11])

Each parallel thread chooses a random value and sequentially applies the hash
function, until a distinguished point is found. This point is then added to the
database, together with the starting point. Once a collision in the distinguished
points appears in the database, a collision of the hash function can be recovered
with overwhelming probability. For an example see collision of Trail 3 and Trail
4 on the figure.

The overhead is proportional to the average trail length, which is equal to
2l, where l is the number of zero bits chosen for distinguished points. For all
challenges we used l = 25. Since p is approximately 91 bits, we expect to eval-
uate the hash function

√
π291/2 ≈ 245.8 times before a collision is found. This

corresponds to 220.8 ≈ 1.9 million distinguished points. Storing such amount of
points requires small amounts of memory/storage.

The computations were performed on the HPC cluster of the University of
Luxembourg [13], using about 1000 cores. Each solved instance required about 1-
2 thousands of CPU-days of computations. In retrospect, we suppose that using
GPUs instead could save lots of computational effort.

6

4 Concrete Challenge Instances

4.1 GMiMC-erf (Small)

GMiMC-erf is a generalized Feistel Network with expanding round function. The
cube mapping is applied to one of the branches and the result is added to all
other branches. After this simple step, the branches are rotated to the left by
one position.

x3

k + ci

Fig. 3. Single Round of GMiMC-erf with 3 Branches

Remark : GMiMC is a block cipher. However, the key is not used as only a
permutation is needed.

The small instance proposed at the STARK-Friendly Hash Challenge has 3
branches taking values over Fp. The rate is 2 branches and the capacity is only
1 branch. The number of rounds is 121.

Since there is nothing special here, the optimized arithmetic described above
is probably the largest chunk of what can be optimized, so we did no further
optimizations.

With this instance we were lucky and got a collision already after 0.7M
distinguished points (out of 1.8M expected). The collision is:

1 m1 = [0x27595c22ac533626fbe205f, 0]
2 m2 = [0x27cd95ff999a21991a8d46c, 0]

4.2 GMiMC (Large)

The larger variant of GMiMC-erf differs only in the number of branches: it has 11
branches, 10 of which correspond to the rate, and 1 corresponds to the capacity.
The number of rounds is increased up to 137 rounds.

Since the increased number of branches only increases the number of addi-
tions in the field, the overhead is not very large. The cube function is still the
dominating part. Nonetheless, there is a trick to save a fraction of the time. In
fact, the trick allows to compute a round of GMiMC-erf with arbitrary amount
of branches at the same cost as for 4 branches (more precisely, with 2 additions
and 1 subtraction).

7

x3

k + ci

Fig. 4. Single Round of GMiMC-erf with 11 Branches

The idea is to note that the same value is added to all branches. This addition
can be postponed. Let us keep an extra value such that the actual correct state
is recovered from the current state by adding the extra value to each branch.
Initially, we set this value to 0 to satisfy the invariant. After the last round,
the recovery procedure is performed. Since the number of rounds is large, the
procedure cost is negligible. This leads to the equivalent structure described in
Figure 5.

Finally, the rotations may be postponed as well. This leads to the following
C code:

1 const int NROUNDS = 137;
2 const int NWORDS = 11;
3 void permutation(F *state) {
4 F sum;
5 int k = 0;
6 for(int i = 0; i < NROUNDS; i++) {
7 state[k] = state[k] + sum;
8 sum = sum + (state[k] + CONST[i]).cube();
9 state[k] = state[k] - sum;

10 k++;
11 if (k >= NWORDS) k = 0;
12 }
13 // k rotations
14 for(; k > 0; k--) {
15 for(int j = 1; j < NWORDS; j++) {
16 swap(state[j-1], state[j]);
17 }
18 }
19 // flush sum
20 for(int j = 0; j < NWORDS; j++) {
21 state[j] = state[j] + sum;
22 }
23 return;
24 }

With this instance the collision was obtained after 1.1M distinguished points
(out of 1.8M expected). The collision is:

1 m1 = [0x762c86fa8d8df1fa8b7ef48, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2 m2 = [0x45d71aa5850359d8e302634, 0, 0, 0, 0, 0, 0, 0, 0, 0]

8

0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11

k + ci

x3

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10y11

Fig. 5. Optimized Structure of GMiMC-erf with 11 Branches

9

4.3 Poseidon (Small)

The Poseidon block cipher / permutation have a different structure: substitution-
permutation network (SPN). The S-Box is the cube function over Fp and the
linear layer is an MDS matrix over Fp. Poseidon is special in that it uses only
1 S-Box in the middle rounds. This allows to counter algebraic/interpolation
attacks using the same number of rounds as a full SPN, while making the ci-
pher much lighter. Similarly to GMiMC, at the competition the 91-bit Poseidon
comes with m = 3 and m = 11 branches.

Using the basic arithmetic optimizations and straightforward computation
of the MDS matrix multiplication, we obtained the final collision after 3.5M
distinguished points:

1 m1 = [0x3a327029e5b4c8dd7bf671c, 0]
2 m2 = [0x13502e7e69859c4f9e34d9d, 0]

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016.
pp. 191–219. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel Structures for MPC, and More. In: Sako, K.,
Schneider, S., Ryan, P.Y.A. (eds.) Computer Security – ESORICS 2019. pp. 151–
171. Springer International Publishing, Cham (2019)

3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. Cryptology
ePrint Archive, Report 2019/426 (2019), https://eprint.iacr.org/2019/426

4. Aumasson, J.P.: Too Much Crypto. Cryptology ePrint Archive, Report 2019/1492
(2019), https://eprint.iacr.org/2019/1492

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V., Viguier, B.: Kan-
garooTwelve: Fast Hashing Based on Keccak-p. In: ACNS. Lecture Notes in Com-
puter Science, vol. 10892, pp. 400–418. Springer (2018)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop (2007)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (2011), available at https://keccak.team/files/CSF-0.1.pdf

8. Bonnetain, X.: Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951 (2019), https://eprint.iacr.org/2019/951

9. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.:
Starkad and Poseidon: New Hash Functions for Zero Knowledge Proof Systems.
Cryptology ePrint Archive, Report 2019/458 (2019), https://eprint.iacr.org/
2019/458

10. Jean, J.: TikZ for Cryptographers (2016), https://www.iacr.org/authors/tikz/
11. Paul C. van Oorschot, M.J.W.: Parallel Collision Search with Cryptanalytic Ap-

plications. Journal of Cryptology volume 12, pages 1-28 (1999), https://people.
scs.carleton.ca/~paulv/papers/JoC97.pdf

12. StarkWare: STARK-Friendly Hash Challenge. https://starkware.co/

hash-challenge/ (2019)

10

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/1492
https://keccak.team/files/CSF-0.1.pdf
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://www.iacr.org/authors/tikz/
https://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://starkware.co/hash-challenge/
https://starkware.co/hash-challenge/

13. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic
hpc cluster: The ul experience. In: Proc. of the 2014 Intl. Conf. on High Perfor-
mance Computing & Simulation (HPCS 2014). pp. 959–967. IEEE, Bologna, Italy
(July 2014)

11

	 Optimized Collision Search for STARK-Friendly Hash Challenge Candidates

