
Learning-based Physical Layer
Communications for Multiagent Collaboration

Arsham Mostaani1, Osvaldo Simeone2, Symeon Chatzinotas1, Bjorn Ottersten1
Emails: arsham.mostaani, symeon.chatzinotas, bjorn.ottersten@uni.lu, osvaldo.simeone@kcl.ac.uk

1 SnT, University of Luxembourg, Luxembourg
2 Department of Informatics, King’s College London, UK

Abstract—Consider a collaborative task carried out by
two autonomous agents that can communicate over a noisy
channel. Each agent is only aware of its own state, while
the accomplishment of the task depends on the value of the
joint state of both agents. As an example, both agents must
simultaneously reach a certain location of the environment,
while only being aware of their own positions. Assuming the
presence of feedback in the form of a common reward to the
agents, a conventional approach would apply separately:
(i) an off-the-shelf coding and decoding scheme in order
to enhance the reliability of the communication of the
state of one agent to the other; and (ii) a standard
multiagent reinforcement learning strategy to learn how
to act in the resulting environment. In this work, it is
argued that the performance of the collaborative task can
be improved if the agents learn how to jointly communicate
and act. In particular, numerical results for a baseline grid
world example demonstrate that the jointly learned policy
carries out compression and unequal error protection by
leveraging information about the action policy.

I. INTRODUCTION

Consider the rendezvous problem illustrated in Fig.
1 and Fig. 2. Two agents, e.g., members of a SWAT
team, need to arrive at the goal point in a grid world
at precisely the same time, while starting from arbitrary
positions. Each agent only knows its own position but
is allowed to communicate with the other agent over a
noisy channel. This set-up is an example of cooperative
multiple agent problems in which each agent has par-
tial information about the environment [1], [2]. In this
scenario, communication and coordination are essential
in order to achieve the common goal [3]–[5], and it is
not optimal to design the communication and control
strategies separately [5], [6].

Assuming the presence of a delayed and sparse com-
mon feedback signal that encodes the team reward,
cooperative multiagent problems can be formulated in
the framework of multiagent reinforcement learning.
As attested by the references [1], [2], [7] mentioned
above, as well by [8], [9], this is a well-studied and
active field of research. To overview some more recent
contributions, paper [10] presents simulation results for a
distributed tabular Q-learning scheme with instantaneous
communication. Deep learning approximation methods

𝑝 𝑠𝑖
𝑒 𝑠𝑖

𝑒 , 𝑎𝑖
𝑒)

Environment

 𝑠𝑗
𝑐 = 𝑎𝑖

𝑐 ⨁ 𝑧𝑗
𝑐

Communication Channels

𝜋2𝜋1

𝑎1
𝑒

 𝑠1
𝑐 𝑠2

𝑐𝑎1
𝑐

 𝑠1
𝑒

 𝑠2
𝑒

𝑎2
𝑐

𝑎2
𝑒

Figure 1. An illustration of the cooperative multiagent system with
noisy communicaitons under study.

are applied in [11] for Q-learning and in [12] for actor-
critic methods. In [13], a method is proposed that keeps
a centralized critic in the form of a Q-function during
the learning phase and uses a counter-factual approach
to carry out credit assignment for the policy gradients.

The works mentioned above assume a noiseless com-
munication channel between agents or use noise as a
form of regularization [9]. In contrast, in this paper, we
consider the problems of simultaneously learning how
to communicate on a noisy channel and how to act,
creating a bridge between the emerging literature on ma-
chine learning for communications [14] and multiagent
reinforcement learning. A closely related work is [15],
in which, however, the focus is on the joint optimization
of scheduling and actions in a multiagent system.

For a sequential two-agent reinforcement learning
problem, we formulate distributed Q-learning algorithms
that learn simultaneously what to communicate over the
inter-agent noisy channel and which actions to take in
the environment. As a numerical example, we consider
models with sequential or simultaneous communications
and actions. For the rendezvous problem illustrated in
Fig. 2, we provide numerical performance comparisons
between the proposed multiagent reinforcement learning
scheme and a conventional method based on the sepa-
rate optimization of action and communication policies.
While the proposed scheme jointly learns how to act
and communicate, the baseline conventional method ap-
plies separately an off-the-shelf channel coding scheme
for communication of an agent’s state and multiagent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/287734413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2. The rendezvous problem: (a) illustration of the environment state-space, Se, i.e., the location on the grid, of the environment action
space Ae, denoted by arrows, and of the goal state, marked with gray background; (b) demonstration of a sampled episode, where arrows show
the environment actions taken by the agents (empty arrows: actions of agent 1, solid arrows: actions of agent 2) and the B = 4 bits represent
the message sent by each agent. A larger reward R2 > R1 is given to both agents when they enter the goal point at the same time, as in the
example; (c) in contrast, R1 is the reward accrued by agents when only one agent enters the goal position.

reinforcement learning to adapt the action policies. The
advantages of the jointly optimized policy are seen to
result from data compression and unequal error protec-
tion mechanisms that are tailored by each agent to the
action policy.

II. PROBLEM SET-UP

As illustrated in Fig. 1 and Fig. 2, we consider a
cooperative multiagent system comprising of two agents
that communicate over noisy channels. The system op-
erates in discrete time, with agents taking actions and
communicating in each time step t = 1, 2, While the
approach can be applied to any multiagent system, in
order to fix the ideas, we focus here on the rendezvous
problem illustrated in Fig. 2. The two agents operate on
an n×n grid world and aim at arriving at the same time
at the goal point on the grid. The position of each agent
i ∈ {1, 2} on the grid determines its environment state
sei ∈ Se = [n] × [n], where [n] = {1, 2, ..., n}. Each
agent ith environment state sei ∈ Se can also be written
as the pair sei = 〈sei,x, sei,y〉, with sei,x , s

e
i,y ∈ [n] being

respectively the horizontal and vertical coordinates. Each
episode terminates as soon as an agent or both visit
the goal point which is denoted as SeT = {seT }. At
time t = 1, the initial position sei,t=1, is randomly and
uniformly selected amongst the non-goal states. Note
that, throughout, we use Roman font to indicate random
variables and the corresponding standard font for their
realizations.

At any time step t = 1, 2, ... each agent i has
information about its position, or environment state,
sei,t and about the signal sci,t received from the other
agent j 6= i at the previous time step t − 1.
Based on this information, agent i selects its envi-
ronment action aei = 〈aei,x, aei,y〉 from the set Ae =
{〈1, 0〉, 〈−1, 0〉, 〈0, 0〉, 〈0, 1〉, 〈0,−1〉}, where aei,x and
aei,y represent the horizontal and vertical move of agent i
on the grid. Furthermore, it chooses the communication
message to send to the other agent by selecting a
communication action aci ∈ Ac = {0, 1}B of B bits.

The environment state transition probability for agent i
can be described by the equation sei,t+1 = sei,t+aei,t , with
the caveat that, if an agent on an edge of the grid world
selects an action that transfers it out, the environment
keeps the agent at its current location.

Agents communicate over interference-free channels
using binary signaling, and the channels between the
two agents are independent Binary Symmetric Channels
(BSCs), such that the received signal is given as

scj,t+1 = aci,t ⊕ zcj,t, (1)

where the XOR operation ⊕ is applied element-wise,
and zcj,t has independent identically distributed (i.i.d.)
Bernoulli entries with bit flipping probability q ≤ 0.5.
Extensions to other channels are conceptually straight
forward.

We first consider a scenario with simultaneous com-
munication and actions. Accordingly, agent i follows a
policy πi that maps the observations si = 〈sei , sci 〉 of
the agent into its actions ai = 〈aei , aci 〉. The policy is
generally stochastic, and we write it as the conditional
probability πi(ai|si) of taking action ai while in state
si. We assume the joint policy πi to select both the
environment action aei and transmitted signal aci based
on the overall state si. The overall joint policy π is given
by the product π = π1×π2. It is noted that the assumed
memoryless stationary policies are sub-optimal under
partial individual observability of environment state [1].
A model that assumes sequential communications and
actions will be covered in Sec. III. B.

At each time t, given states 〈s1, s2〉 and actions
〈a1, a2〉, both agents receive a single team reward

rt =

R1, if sei 6= sej ∈ SeT
R2, if sei = sej ∈ SeT ,
0, otherwise,

(2)

where R1 < R2. Accordingly, when only one agent
arrives at the target point seT , a smaller reward R1 is
obtained at the end of the episode, while the larger
reward R2 is attained when both agents visit the goal

point at the same time. Note that this reward signal
encourages coordination between agents which in turn
can benefit from inter-agent communications.

The goal of the multiagent system is to find a joint
policy π that maximizes the expected return. For given
initial states, (s1,t=1, s2,t=1), this amounts to solving the
problem

maximize
π

Eπ[Gt|s1,t=1 = s1,t=1, s2,t=1 = s2,t=1],

(3)
where

Gt =

∞∑
t=1

γtrt (4)

is the long-term discounted return, with γ ∈ (0, 1] being
the reward discount factor. The expected return in (3)
is calculated with respect to the probability of the trace
of states, actions, and rewards induced by the policy π
[16].

III. LEARNED COMMUNICATION

In this section we consider a strategy that jointly learns
the communication and the environment action policies
of both agents, with the aim of addressing problem (3).
To this end we adapt the distributed Q-learning algorithm
to the setup at hand [5]. Accordingly, given the received
communication signal sci and the local environment state
sei , each agent i selects its environment actions aei and
communication actions aci simultaneously by following
its policy πi. We will then also consider an alternative
scenario with sequential communications and actions.

A. Simultaneous Communications and Actions

In order to define agent ith policy πi, we introduce the
state-action value function Qei (s

e
i , s

c
i , a

e
i , a

c
i). We recall

that a state-action function Q(s, a) provides an estimate
of the expected return (4) when starting from the state
s and taking action a. As detailed, the action-value
function is trained based on its interaction with envi-
ronment. For a given action-value function, to control
the trade-off between exploitation and exploration, we
adopt the Upper Confidence Bound (UCB) method [16].
UCB selects the actions aci,t and aei,t as

〈aei,t, aci,t〉 = argmax
aei ,a

c
i

Qi(s
e
i,t, s

c
i,t, a

e
i , a

c
i)+ (5)

c

√
ln(Tt)

Ni(sei,t, s
c
i,t, a

e
i , a

c
i)
,

where c > 0 is a constant; Tt is the total number of time
steps in the episodes considered up to the current time t
in a given training epoch; and table Ni(sei,t, s

c
i,t, a

e
i , a

c
i)

counts the total number of times that the states 〈sei,t, sci,t〉
has been visited and the actions 〈aei , aci 〉 selected among
the previous Tt steps. When c is large enough, UCB

encourages the exploration of the state-action tuples that
have been experienced fewer times.

The update of the action value function based on the
available observations at time t follows the off-policy
Q-learning algorithm, i.e., [16]

Qi(s
e
i,t, s

c
i,t, a

e
i,t, a

c
i,t)← (1− α)Qi(sei,t, sci,t, aei,t, aci,t)+

αγ
(
rt + max

aei ,a
c
i

Qi(s
e
i,t+1, s

c
i,t+1, a

e
i , a

c
i)
)
, (6)

where α > 0 is a learning rate parameter. The full
algorithm is detailed in Algorithm 1. At the end of the
training process, policy πi(aei , a

c
i |sei , sci) can be obtained

by

πi(a
e
i , a

c
i |sei , sci)=δ

(
〈aei , aci 〉−argmax

〈aei ,aci 〉
Qi(s

e
i , s

c
i , a

e
i , a

c
i)
)
,

(7)
where δ(·) is the Dirac delta function.

As a baseline, we also consider a conventional scheme
that optimizes communications and actions separately.
For communication, each agent i sends its environment
state sei to the other agent by using a channel code for
the given noisy channel. Note that compression is not
possible, since all states are a priori equally likely. Agent
j obtains an estimate ŝei of the environment state of i by
using a channel decoder based on the received signal.
This estimate is used as if it were the correct position
of the other agent to define the environment state-action
value function Qej(s

e
j , ŝ

e
i , a

e
j). This function is updated

using Q-learning and the UCB policy in a manner similar
to Algorithm 1.

Algorithm 1 Learned Simultaneous Communications
and Actions

1: Input: γ, α, and c
2: Initialize all-zero Q-table Qi(s

e
i , s

c
i , a

e
i , a

c
i) and table

Ni(s
e
i , s

c
i , a

e
i , a

c
i), for i = 1, 2

3: for each episode m = 1 :M do
4: Randomly initialize 〈se1,t=1, s

e
2,t=1〉 /∈ Se

T

5: Randomly initialize 〈sc1,t=1, s
c
2,t=1〉

6: set tm = 1
7: while 〈se1,t, se2,t〉 /∈ Se

T do
8: Jointly select aei,t = aei ∈ Ae

i and aci,t = aci ∈ Ac
i

9: by solving (5), for i = 1, 2

10: Increment Ni(s
e
i,t, s

c
i,t, a

e
i,t, a

c
i,t), for i = 1, 2

11: Obtain message sci,t+1, for i = 1, 2

12: Obtain reward rt and move to sei,t+1, for i = 1, 2

13: for i = 1, 2 do
14: Update Qi(s

e
i,t, s

c
i,t, a

e
i,t, a

c
i,t) by following (6)

end
15: tm = tm + 1
16: end
17: Compute

∑tm−1
t=1 γtrt for the mth episode

18: end
19: Output: πi(a

e
i , a

c
i |sei , sci) by following (7) for i = 1, 2

B. Sequential Communications and Actions

In the problem formulation considered so far, agents
select both environment and communication actions si-
multaneously, which inherently leads to a delay in the
inter-agent communication. In fact, information embed-
ded by agent i in its communication action aci,t cannot
be used earlier than in time step t + 1 by the other
agent j 6= i. As we have seen in Sec. II, this model
can be formalized using the standard Markov Decision
Process formulation. We now study an alternative set-up,
in which communication is followed by the selection of
an environment action at each time instant t. A similar
model was considered in [17].

To elaborate, at each time t, each agent i first observes
its environment state sei,t and then selects a communi-
cation action aci,t by following a policy πci (a

c
i |sei). In

the second phase of time step t, agent i receives the
communication message sci,t over the channel. Finally,
agent i selects its environment action aei,t by following its
policy πei (a

e
i |sei , sci). Both conventional communication

and jointly learned communication schemes can be easily
adapted to this communication model. We provide details
for learned communication in Appendix.

IV. RESULTS AND DISCUSSIONS

In this section, we provide numerical results for the
rendezvous problem described in Sec. II. As in Fig. 2, the
grid world is of size 4×4, i.e. n = 4, and it contains one
goal point at the right-top position. Environment states
are numbered row-wise starting from the left-bottom as
shown in Fig. 2(a). All the algorithms are run for 50
independent epochs. For each agent i the initial state
sei,t=1 /∈ SeT in each episode is drawn uniformly from
all non-terminal states.

We compare the conventional communication and
the learned communication schemes reviewed in the
previous section. Conventional communication transmits
the position of an agent on the grid as the 4-bit binary
version of the indices in Fig. 2(a) after encoding via a
binary cyclic (B,4) code, with the generator polynomial
1+X2+X3. The received message is then decoded by
syndrome decoding.

In order to reduce the dimensions of the state-action
space for learned simultaneous communications and ac-
tions, in our experiments, we use disjoint policies πei and
πci to separately select environment and communication
actions. Accordingly, given the received communication
signal sci and the local environment state sei , each agent i
selects its environment actions aei by following a policy
πei based on a state-action value function Qei (s

e
i , s

c
i , a

e
i),

while it chooses its communication action aci by follow-
ing a second policy πci , based on a state-action function
Qci (s

e
i , a

c
i).

0 0.5 1 1.5 2 2.5 3 3.5

Number of episodes 104

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

A
ve

ra
ge

 r
et

ur
n

conventional
communication

learned communication

Figure 3. Average return for conventional communication and learned
communication when B = 7 with simultaneous actions and commu-
nications.

The performance of each scheme is evaluated in terms
of the discounted return in (4), averaged over all epochs
and smoothed using a moving average filter of memory
equal to 4,000 episodes. The rewards in (2) are selected
as R1 = 1 and R2 = 3, while the discount factor is
γ = 0.9. A constant learning rate α = 0.15 is applied,
and the exploration rate c of the UCB policy is selected
from the set {0.3, 0.4, 0.5} such that it maximizes the
average return at the end of the episodes in an epoch.

We first investigate the impact of the channel noise by
considering different values of the bit flip probability q
for simultaneous communications and actions. In Fig. 3
it is observed that conventional communication performs
well at the low bit flipping rate of q = 0.05, but at
higher rates of q learned communication outperforms
conventional communication after a sufficiently large
number of episodes. Importantly, for q = 0.2, the
performance of conventional communication degrades
through episodes due to the accumulation of noise in
the observations, while learned communication is seen
to be robust against channel noise.

In Fig. 4, we consider the case of sequential communi-
cations and actions. In this case, for q = 0 conventional
communication is optimal [1]. In contrast, for noisy
channels, learned communication provides significant
gain, e.g., 20% for q = 0.15 and q = 0.20.

We now discuss the reasons that underlie the perfor-
mance advantages of learned communication. We start
by analyzing the capability of learned communication
to compress the environment state information before
transmission. To obtain quantitative insights, we measure
the mutual information I(sei ; a

c
i) between the environ-

ment state sei and the communication action aci of an
agent i as obtained under the policy learned after 20,000
episodes for q = 0, 0.05, 0.1, 0.15, 0.2 [18]. Fig. 5
plots the mutual information as a function of the bit
flipping probability q for learned communication. For
conventional communication scheme the communication

0 2 4 6

104

0

0.5

1

1.5

2

learned communication
conventional communication

Figure 4. Average return for the conventional and for the learned
communication, when B = 7 with sequential communications and
actions.

0 0.05 0.1 0.15 0.2
1

1.5

2

2.5

3

learned
communication

conventional
communication

Figure 5. Mutual information between an agent’s environment state
sei and the communication action aci versus the bit flip probability q
for simultaneous conventional and learned communication after 20,000
episodes (B = 2, 4, 6, q = 0.05, 0.10, 0.15, 0.20).

message aci is a deterministic function of the state
sei and hence we have I(sei ; a

e
i) = H(sei), which is

independent of q and B. In the absence of channel
noise, i.e., q = 0, learned communication compresses by
almost 30% the information about the environment state
distribution sei when B = 6. This reduction becomes
even more pronounced as the channel noise increases or
when agents have a tighter bit-budget, i.e., for smaller
values of B.

We proceed by investigating how compression is car-
ried out by jointly optimizing the agent’s environment
action and communication action policies. We will also
see that learned communication carries out a form of
unequal error protection. To this end, Fig. 6 illustrates a
sample of the learned action and communication policies
πei and πci for agent i = 1 when q = 0.05 and
B = 4 after 30,000 episodes of training in the presence
of communication delays. In this figure, arrows show
the dominant environment action(s) aei selected at each
location; the bit sequences represent the communication
action aci selected at each location; and the colour of
each square shows how likely it is for the position to be
visited by agent i.

1 2 3 4

1

2

3

4

Figure 6. Illustration of a learned communication action policy when
there is no communication delay (B = 4, q = 0.05). Locations with
brighter colors are more likely to be visited. Arrows show the dominant
action selected at any location. Bit strings show the message sent at a
certain location.

We can observe that compression is achieved by
assigning same message to different locations. In this
regard, it is interesting to note the interplay with the
learned action policy: groups of states are clustered to-
gether if states have similar distance from the goal point,
such as {〈4, 3〉, 〈3, 4〉} and {〈4, 2〉, 〈2, 4〉}; or if they
are very far from the goal point such as {〈1, 2〉, 〈1, 3〉}.
Furthermore, it is seen that the Hamming distance of
the selected messages depends on how critical it is to
distinguish between the corresponding states. This is
because it is important for an agent to realize whether
the other agent is close to the terminal point.

V. CONCLUSIONS

In this paper, we have studied the problem of de-
centralized control of agents that communicate over a
noisy channel. The results demonstrate that jointly learn-
ing communication and action policies can significantly
outperform methods based on standard channel coding
schemes and on the separation between the communi-
cation and control policies. We have illustrated that the
underlying reason for the improvement in performance
is the learned ability of the agents to carry out data
compression and unequal error protection as a function
of the action policies.

VI. ACKNOWLEDGEMENTS

The work of Arsham Mostaani, Symeon Chatzinotas
and Bjorn Ottersten is supported by European Research
Council (ERC) advanced grant 2022 (Grant agreement
ID: 742648). Arsham Mostaani and Osvaldo Simeone
have received funding from the ERC under the European
Union’s Horizon 2020 Research and Innovation Program
(Grant Agreement No. 725731).

REFERENCES

[1] D. V. Pynadath and M. Tambe, “The communicative multia-
gent team decision problem: Analyzing teamwork theories and
models,” Journal of Artificial Intelligence Research, vol. 16, pp.
389–423, Jun. 2002.

[2] G. Weiss, Multiagent systems: a modern approach to distributed
artificial intelligence, MIT press, 1999.

[3] M. Tan, “Multi-agent reinforcement learning: Independent vs.
cooperative agents,” in Proc. International Conference on Ma-
chine Learning, San Francisco, CA, USA, 1998, pp. 487–494,
Morgan Kaufmann Publishers Inc.

[4] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive
survey of multiagent reinforcement learning,” IEEE Trans.
Systems, Man, and Cybernetics, Part C, vol. 38, no. 2, pp. 156–
172, Mar. 2008.

[5] M. Lauer and M. A. Riedmiller, “An algorithm for distributed
reinforcement learning in cooperative multi-agent systems,” in
Proc. Conference on Machine Learning. 2000, pp. 535–542,
Morgan Kaufmann Publishers Inc.

[6] A. Sahai and P. Grover, “Demystifying the witsenhausen coun-
terexample [ask the experts],” IEEE Control Systems Magazine,
vol. 30, no. 6, pp. 20–24, Dec. 2010.

[7] F. Fischer, M. Rovatsos, and G. Weiss, “Hierarchical reinforce-
ment learning in communication-mediated multiagent coordina-
tion,” in Proc. IEEE Joint Conference on Autonomous Agents
and Multiagent Systems, 2004. AAMAS 2004., New York, Jul.
2004, pp. 1334–1335.

[8] S. Sukhbaatar, R. Fergus, et al., “Learning multiagent commu-
nication with backpropagation,” in Proc. Advances in Neural
Information Processing Systems, Barcelona, 2016, pp. 2244–
2252.

[9] J. Foerster, Y. Assael, N. D. Freitas, and Sh. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,”
in Proc. Advances in Neural Information Processing Systems,
Barcelona, 2016, pp. 2137–2145.

[10] Q. Huang, E. Uchibe, and K. Doya, “Emergence of communi-
cation among reinforcement learning agents under coordination
environment,” in Proc. IEEE Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), Sept. 2016,
pp. 57–58.

[11] J. Foerster, N. Nardelli, G. Farquhar, Ph. Torr, P. Kohli, and Sh.
Whiteson, “Stabilising experience replay for deep multi-agent
reinforcement learning,” arXiv preprint arXiv:1702.08887, 2017.

[12] R. Lowe, L. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments,” in Proc. Advances in Neural Information Processing
Systems, Long Beach, 2017, pp. 6382–6393.

[13] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and Sh.
Whiteson, “Counterfactual multi-agent policy gradients,” arXiv
preprint arXiv:1705.08926, 2017.

[14] Osvaldo Simeone, “A very brief introduction to machine learning
with applications to communication systems,” IEEE Transactions
on Cognitive Communications and Networking, vol. 4, no. 4, pp.
648–664, 2018.

[15] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang,
Taeyoung Lee, Kyunghwan Son, and Yung Yi, “Learning to
schedule communication in multi-agent reinforcement learning,”
arXiv preprint arXiv:1902.01554, 2019.

[16] R. Sutton and A. G. Barto, Introduction to reinforcement
learning, vol. 135, MIT Press, 2 edition, Nov. 2017.

[17] P. Xuan, V. Lesser, and Sh. Zilberstein, “Communication deci-
sions in multi-agent cooperation: Model and experiments,” in
Proc. ACM Conference on Autonomous Agents, 2001, pp. 616–
623.

[18] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and
Yann Dauphin, “On the pitfalls of measuring emergent commu-
nication,” arXiv preprint arXiv:1903.05168, 2019.

APPENDIX

Details of the sequential communications-actions pol-
icy can be found in Algorithm 2 below. At the end of the
training process, policy πei (a

e
i |sei , sci) can be obtained by

πei (a
e
i |sei , sci)=δ

(
aei − argmax

aei

Qi(s
e
i , s

c
i , a

e
i)
)
, (8)

and policy πci (a
c
i |sei) by

πci (a
c
i |sei) = δ

(
aci − argmax

aci

Qi(s
e
i , a

c
i)
)
. (9)

Algorithm 2 Learned Sequential Communications and
Actions

1: Input parameters: γ, α, and c
2: Initialize all-zero Q-tables Qe

i (s
e
i , s

c
i , a

e
i), Q

c
i (s

e
i , s

c
i , a

c
i)

and tables Ne
i (s

e
i , s

c
i , a

e
i), N

c
i (s

e
i , a

c
i) , for i = 1, 2

3: for each episode m = 1 :M do
4: Randomly initialize 〈se1,t=1, s

e
2,t=1〉 /∈ Se

T

5: Randomly initialize 〈sc1,t=0, s
c
2,t=0〉

6: t = 1
7: while 〈se1,t, se2,t〉 /∈ Se

T do
8: for i = 1, 2 do
9: Select aci,t ∈ Ac

i , by following UCB policy

10: aci,t = argmax
ac
i

Qc
i (s

c
i,t, a

c
i) + c

√
ln(

∑m
k=1

tk)

Nc
i (sci,t,a

c
i)

11: end
12: Obtain message sci,t, for i = 1, 2, from channel
13: if t ≥ 2 then
14: for i = 1, 2 do
15: Qe

i (s
e
i,t−1, s

c
i,t−1, a

e
i,t−1)←

16: (1− α)Qe
i (s

e
i,t−1, s

c
i,t−1, a

e
i,t−1)+

17: αγ
(
rt−1 + max

ae
i

Qe
i (s

e
i,t, s

c
i,t, a

e
i)
)

18: end
19: if se1,t ∈ Se

T or se2,t ∈ Se
T then break

20: end
21: for i = 1, 2 do
22: Select aei,t ∈ Ae

i by following UCB policy
23: aei,t = argmax

ae
i

Qe
i (s

e
i,t, s

c
i,t, a

e
i)+

24: c

√
ln(

∑m
k=1

tk)

Ne
i (sei,t,s

c
i,t,a

c
i)

25: end
26: Obtain reward rt and move to the next environment
27: state sei,t+1, for i = 1, 2

28: Qc
i (s

e
i,t, s

c
i,t−1, a

c
i,t)←

(1− α)Qc
i (s

e
i,t, s

c
i,t−1, a

c
i,t) + αγ

(
rt+

max
ac
i

Qc
i (s

e
i,t+1, s

c
i,t, a

c
i)
)
, for i = 1, 2

29: t = t+ 1
30: end

Compute
∑tm−1

t=1 γtrt for the mth episode
end
Output: πe

i (a
e
i |sei , sci) by following (8) for i = 1, 2

πc
i (a

c
i |sei) by following (9) for i = 1, 2

