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The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies,
which ensures the coexistence of a variety of devices within a system. In this paper, we assume several multicasting (MC) groups
comprising three types of heterogeneous users including Information Decoding (ID), Energy Harvesting (EH) and both ID and EH.
We present a novel framework to investigate the multi-group (MG) - MC precoder designs for three different scenarios, namely,
Separate Multicast and Energy Precoding Design (SMEP), Joint Multicast and Energy Precoding Design (JMEP), and Per-User
Information and/or Energy Precoding Design (PIEP). In the considered system, a multi-antenna source transmits the relevant
information and/or energy to the groups of corresponding receivers using more than one MC streams. The data processing users
employ the conventional ID receiver architectures, the EH users make use of a non-linear EH module for energy acquisition, while
the users capable of performing both ID and EH utilize the separated architecture with disparate ID and non-linear EH units. Our
contribution is threefold. Firstly, we propose an optimization framework to i) minimize the total transmit power and ii) to maximize
the sum harvested energy, the two key performance metrics of MG-MC systems. The proposed framework allows the analysis of
the system under arbitrary given quality of service and harvested energy requirements. Secondly, to deal with the non-convexity of
the formulated problems, we transform the original problems respectively into equivalent forms, which can be effectively solved by
semi-definite relaxation (SDR) and alternating optimization. The convergence of the proposed algorithms is analytically guaranteed.
Thirdly, a comparative study between the proposed schemes is conducted via extensive numerical results, wherein the benefits of
adopting SMEP over JMEP and PIEP models are discussed.

Index Terms—Energy optimization, multi-group multicast systems, precoding, simultaneous wireless information and power
transmission (SWIPT).

[. INTRODUCTION certain, until all the customer devices have been upgraded
to the technology with the latest mobile generation. In the
context of wireless energy harvesting (EH) devices based on
radio-frequency (RF), e.g., sensors, smart devices and home
gateways all under the same wireless network, we envision that
a similar trend will be observed upon their launch. Therefore,
it is necessary to make sure that different kinds of concerned
devices such as information decoding (ID) specific, explicit to
EH, and the ones performing ID and EH simultaneously, co-
exist within the wireless networks and derive maximal gains,
which is the main focus of this paper.

A. Motivation

ECENT developments related to wireless communication

systems of current and evolving generations have ex-
posed several critical issues such as growing performance and
capacity demands, complicated hardware designs, and need for
energy-efficient architectures. Rapid battery drainage at power-
limited wireless devices also raise concerns, while addressing
the above-mentioned assertive demands. Consequently, two
promising energy optimization techniques, namely, energy
harvesting (as a recharging alternative) and minimization of
power consumption (for enhancing the battery lifetime), re-
spectively, may prove useful to address the aforementioned
challenges [1]], [2]]. Incorporation and implementation of such
methods is likely to be considered essential from the Internet-
of-Things (IoT) perspective [3]-[5]. The observed transitional
trend of customers between any consequent generations of
wireless mobile communications, i.e., NG to (N+1)G (where
N =1, ..., 4), reveals that it is almost impossible to switch
directly into an advanced and superior technology altogether
[6]. This implies that an intermediate time period is almost

B. Related Works

Traditional information processing units have been shown
to perform significantly better within a Multiple-Input Single-
Output (MISO) set-up [7], in comparison to a one-to-one
device communication scheme based on a single antenna. In
[8]], Varshney presented a framework to spark interest in the
possibility of concurrent information and energy transmission
using the RF signals. This work was later extended to multi-
user MISO case in [1f], [9]. There has been a growing research
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power transmission (SWIPT) over the past decade [10]. A
major outcome in this direction points towards the inability
of the traditional ID receivers to harvest RF energy and thus,
this calls for a change in the classical receiver architecture.
In this context, researchers have proposed several interesting
receiver designs for enabling SWIPT [11], with the four
most viable designs being time-switching (TS), power-splitting
(PS), separated architecture (SA) and integrated architecture
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(IA). The complex circuitries associated with TS, PS, and IA-
based receivers for SWIPT includes one or more additional
optimization parameter(s) in order to segregate the received
signal for carrying out either distinct or simultaneous ID and
EH operations. In this regard, the SA-based SWIPT receivers
may come in handy to reduce the architectural demands within
the transmit-receive systems.

In order to combat the aforementioned challenges, transmit
precoding is a potential technique not only for enhancing
the channel capacity and diversity, but also for mitigating
interference in the context of multi-user MISO systems [12].
The authors in [[1] presented a framework to jointly optimize
the transmit beamforming and the receive power splitting
(PS) ratio for SWIPT in MISO systems. Furthermore, energy
efficiency optimization was considered in [[13] with the same
set-up targeting the Zero-Forcing (ZF) beamforming. In [[14]],
Xu et. al., studied the maximization of harvested energy for
multi-user MISO SWIPT systems considering SA receiver
architecture with a goal to optimize the ID and EH beamform-
ing strategies. However, the above-mentioned works do not
consider the non-linear EH model for SWIPT, which is more
realistic in comparison to its counterpart linear EH model. In
[15]], the advantages of employing precoding in MISO broad-
cast channels were presented for SWIPT systems, whereas
joint multi-objective optimization for transmit precoding and
receiver TS design was proposed in [[16]] considering a similar
scenario with MISO and SWIPT systems.

Multi-group (MG) Multicasting (MC) is another promising
technique to significantly improve the system performance. In
[17], the authors proposed a framework for MG-MC beam-
former design in the context of multiple-input single-output
— orthogonal frequency division multiplexing (MISO-OFDM)
with antenna selection. The benefits of precoding in a MG-MC
scenario were demonstrated in [[18|-[20]. The authors in [21]]
considered precoding for MG-MC with a common message
to study the problem of maximization of weighted sum-rate
(WSR) for two schemes where the transmitter superimposes
common and multicast messages, and transmitter concatenates
the multicast message vector with the common message,
respectively. However, it was shown in [[12]] that an MC pre-
coding problem is NP-hard by nature, even for a single group
multicast. Several works have discussed joint information
and energy transmission in the MG-MC scenario [22]]-[24],
however, with an assumption of a linear EH module. In [25]],
the authors studied SWIPT in MISO MG-MC system where
each receiver employs the PS SWIPT receiver architecture for
investigating the joint MC beamforming and receive power
splitting problem to minimize the total transmit power under
SINR and EH constraints. A framework to investigate PS-
based SWIPT MC was presented in [26] with individual QoS
constraints to meet the demands of energy sustainable IoT
devices. It is noteworthy that these works do not consider the
coexistence of different user types in the case of MG-MC
within the MISO-SWIPT scenario.

C. Contributions

In this paper, we consider a MISO MG-MC precoding
based-system wherein a transmit source equipped with mul-

tiple antennas provides coverage to multiple users with the
help of beamforming through adequate precoder designs. We
investigate the problems of minimization of total transmit
power and maximization of sum-harvested energy (by the
intended users), respectively, in three different scenarios in-
corporating the coexistence of heterogeneous users comprising
three different types. Both problems are found to be non-
convex in nature, such that in order to achieve a feasible
(optimal or sub-optimal) solution, adequate relaxations and/or
transformations are required. In this regard, we obtain rea-
sonable solutions to the formulated problems with the help of
semidefinite relaxation (SDR) and a slack variable replacement
(SVR) technique. A comparative study between the three
proposed scenarios is provided via numerical results based
on the obtained solutions, where intensive investigation is
carried out using parameter alterations under various practical
conditions.

This work builds on the authors’ previous publication
[27], where the problem of transmit power minimization was
addressed considering the three above-mentioned scenarios.
As an extension, an alternate form of problem considering
the maximization of sum-harvested energy is proposed here
to address the concerns related to practical limitations of
the prior problem (more details are provided in Section IV).
Specifically, the main contributions and novelty of this work
are listed below

1) We consider a novel MG-MC precoding framework
which deals with the co-existence of three types of users
capable of information decoding, energy harvesting, and
joint information and energy extraction, respectively. In
this context, it is important to mention that most of
the existing works in the literature do not consider co-
existence of multiple user types for analysis.

2) In order to introduce tractability in the minimization
of the total transmit power, we provide adequate trans-
formation to simplify the non-linear EH constraint to
a linear form. Without loss of generality, this transfor-
mation may come in handy to solve similar problems
with non-linear EH constraints. With the help of SDR,
the problem is further alleviated to an easily solvable
convex-form. In comparison to other works, this paper
provides more practically oriented problem formulation
for the minimization of total transmit power with the
consideration of non-linear EH constraint.

3) Taking into consideration the practical implementation
concerns of preceding problem, we formulate a sum-
harvested energy maximization problem with a non-
linear objective and transmit power limitation, in ad-
dition to other necessary constraints introduced earlier.
In this context, we propose a slack variable replacement
(SVR) technique (in conjunction with well-known SDR
method) to make the problem tractable, which is then
solved efficiently using an iterative algorithm. On the
other hand, a simpler problem with linear EH objective
and constraint is considered in most of the existing
works that analyze the MG-MC framework.

4) Considering the existing works in the literature, it is
noteworthy that an investigative comparison between
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Fig. 1. System model for Separate Multicast and Energy Precoding Design
(SMEP). Herein, the intended EH users are served using the corresponding
MC beam (blue) as well as a dedicated power beam (green).
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Fig. 2. In Joint Multicast and Energy Precoding Design (JMEP), the EH users
are categorized within the stipulated MC groups and all the users are served by
their corresponding MC beam (blue). Note that there is/are no separate power
beam(s) (green) as such, however, we have depicted the same for convenience
to distinguish between the three types of wireless users.

the three proposed scenarios with heterogeneous users
(including EH users with non-linear EH modules) has
not been presented so far (to the best of authors’ knowl-
edge). Herein, we provide a comparative study among
the three proposed schemes with separate information
and/or energy precoder design, joint information and/or
energy precoder design, and per-user information and/or
energy precoder design. The latter scheme is considered
as the benchmark for comparison purposes. We first
draw the comparison between the systems based on a
more generalized yet practically-inspired channel mod-
eling scheme, in order to observe their corresponding be-
haviors under several test cases. Furthermore, we assume
uniform linear arrays (ULAs) at the transmitter
to test the efficacy of the proposed algorithms over a
channel that is simple and can be easily interpreted.

The rest of the paper is organized as follows. Section
provides an insight into the system model. The total transmit
power minimization problem and its corresponding solution
are presented in Section [T, while the sum-harvested energy
maximization problem and its (proposed) solution with an
iterative algorithm are conferred in Section Numerical
results are shown in Section [V] followed by concluding
remarks in Section [VIl
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Fig. 3. The system model for Per-User Information and/or Energy Precoding
Design (PIEP) consists of dedicated precoders for each user. It is noteworthy
that multiple transmissions of common message may occur while serving the
set of users within the corresponding MC group.

II. SYSTEM MODEL

We consider a multi-group multicasting (MG-MC) system
where a transmit source equipped with M antennas serves
K single-antenna users (Ui,...,Ugk). Each user may be
classified within one of the several possible groups, and is
expected to perform either of the following operations, namely,
information decoding (ID), energy harvesting (EH), or both
ID and EH. In case a user performs both ID and EH, it is
assumed to be equipped with disparate RF chains responsible
for carrying out the desired operations. Such kind of receiver
design is often referred to as the separated architecture (SA)
in the literature for enabling joint information processing and
energy harvesting [11]|. In this work, we specifically categorize
the ID users among Z multicasting (MC) groups while we
assume that all the EH users are classified under the (Z +1)®
group. Note that the users in (Z + 1) group may or may
not be a part of any other pre-categorized Z MC groups
of ID users. In the considered system, a user requesting
joint ID and EH operations would participate in any one
of the Z MC groups and also in (Z + 1)% group. With
regard to the categorization of users within the groups, several
methods may be implemented. In this regard, channel co-
linearity and orthogonality based user grouping is considered
in [29] where initially (Z + 1) users (same as number of
groups) with most orthogonal channels are considered as
different groups. Further, the unallocated users are assigned
to the groups based on co-linearity with the existing users
in the groups. In [30]], the authors consider message based
user grouping where it is proved that ad-hoc user grouping
is optimal for massive MIMO systems under max-min SINR
design criterion. Regarding the categorization of users within
specific groups in this work, naturally the users requesting
the same (common) information will be a part of same group
and thus, distinct groups may be formed and such groups
may be assumed to be already known as considered herein.
Therefore, for analytical convenience, we assume that all the
users are already categorized among various groups and such
arrangements are known [22], [23]].

We propose and analyze three different precoding design
methods for energy optimization, which are discussed below

1) Separate Multicast and Energy Precoding Design
(SMEP): In this case, we assume Z multicast infor-
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mation groups and an additional group devoted to EH
specific users. Thus, we target design of at least (Z+2")
precoders, where we intend to have Z' = 1. However,
the value of Z' may vary according to the technique
used for designing criteria, which will be justified in the
later sections.

2) Joint Multicast and Energy Precoding Design (JMEP):
Herein, no exclusive precoder is present for EH specific
users. In particular, we target the design of Z multicast
precoders taking into account the information and/or
energy demands of the corresponding user

3) Per-User Information and/or Energy Precoding Design
(PIEP): We assume in this case that each user is served
by single dedicated precoder. Therefore, we target the
design of K precoders (equal to the number of users).
This case is very unlikely in practice but is considered
as a baseline for comparison purposes.

For illustration purpose, we consider an example with K =
14 users, where 6 users are ID specific, 3 users only harvest
energy, and 5 users have joint ID and EH capabilities, M
transmit antennas (with M > K for PIEP to be feasible), and
Z =5 MC groups. Correspondingly, the system set-up for the
aforementioned three scenarios (SMEP, JMEP, and PIEP) are
depicted in Fig. [I] Fig. P| and Fig. 3] respectively. Let Zj
denote the k™ multicast users’ group. Let us also define the
following variable to assist the precoding design metrics (i.e.,
number of precoders) in three cases interchangeably

Z+ 7' : SMEP.
U= A JMEP. (1)
K :  PIEP.

Each ID or joint ID and EH user belongs to only the MC
group, i.e., Zy N Z; = &, Vk, £ = {1,..., ¥} and k # ¢;
whereas in case of EH, the user harvests energy using all the
possible multicast signalﬂ

The antenna array at the transmitter emits the signal x(t) =
Z,\f:l wiag(t), where wy is the related M x 1 complex
precoding weight vector for the users in group Z, and a(t) is
the corresponding information and/or energy signal. Addition-
ally, we assume that the information and/or energy signals for
each group {ay(t)}}_, are mutually uncorrelated to each other
with zero mean and unit variance, o> . = L. The corresponding
ID and/or EH signals may be separately designed according
to the framework proposed in [31f]. Distinct ID and EH
signal forms motivate the use of SA-based devices. The total

. : v H
transmitted power can thus be given by >, | Wi’ wy.

The received signal at the i user is given by y;(t) =
gfx(t) + ng.i(t), where g, is the M x 1 conjugated chan-
nel vector for the corresponding receiver and np,(t) is the
additive white Gaussian noise at the corresponding i user’s
receiving antenna equipment with zero mean and variance

Tn JMEP, it is clear that for the EH users without ID request, classifications
are performed within the Z MC groups. Regarding categorization of the EH
users within the Z groups, certain methods e.g., distance from the nearest
transmit antenna, distance from the nearest beam, etc., may be applied. This,
however, involves rigorous analysis and is out of the scope of this work.

2The other MCs are primarily taken into consideration due to interference
causing side-lobes other than the desired MC, which is beneficial for EH.
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Fig. 4. Comparison between the energy extraction capabilities of linear and
non-linear energy harvesting models.

0% ;. The source signals are assumed to be uncorrelated with
ng,i(t). The signal received at the information decoding unit
of the " receiver equipment is expressed as

yp,i(t) = (87x(t) + ngri(t)) +np,i(t), (2

where np ;(t) is the additional zero-mean Gaussian noise with
a variance of U%,i incurred due to the circuitry and other
relevant operations at the ID block of the i receiver. For i
receiver belonging to the k™ multicast group Zj, the signal-
to-interference-and-noise ratio (SINR) is given by

|wngi|2

T, = 3)
> Iwieil? + U?{,i + U%,i
7k
The signal dedicated for EH block of the i receiver is
yei(t) = gl x(t) + ng(t). “)

Therefore, the energy extracted by the EH unit of i receiver
is given as, &8 = G(Xp_, [wlg|? + 0% ;) Where 0 <
(; <1 is the energy conversion efficiency of the EH unit at
the corresponding receiver [32]. Note that £F is theoretically
valid in order to represent a linear EH operation, however its
practical implementation is questionable. Thus, this calls for
the adoption of a non-linear EH model. In this regard, we
define the energy harvested at the receiver as follows [33]]

" & 1

& = 1—¢ ' 1 4+ e(—a(ioy Wi g ) +aB) o) ©
where ¢ 2 m, the constant £’ is obtained by deter-
mining the maximum harvested energy on the saturation of
the EH circuit, and « and § are specific for the capacitor and
diode turn-on voltage metrics at the EH circuit. Practically, a
standard curve-fitting tool based on analytical data may be
used to decide the appropriate values of &', a, and 5. A

comparison between the linear and non-linear EH models is
depicted in Fig. 4, where (; = 0.75 (for linear EH module),
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&' =2.8 ml, a = 1500, and 8 = 0.0022 (for the non-linear
EH module) [33]], [34]]. The non-linearity introduced due to the
diode and capacitor elements is observed at lower input power
at the EH module while a constant EH operation is seen for
higher values of input power which implies the saturation at
diode element of the EH module. On the other hand, the linear
EH model increases constantly based on the increasing input
power at the EH moduleﬂ without considering the saturation
points of the circuit elements (such as diode) [33]. We assume
normalized time slots to use the terms power and energy
interchangeably.

In the following sections, we formulate the optimization
problems corresponding to various precoder designs for mini-
mization of the total transmit power and maximization of sum-
harvested energy at the intended users, respectively, for the
three scenarios, viz-a-viz., SMEP, IMEP and PIEP. Feasible
solutions are obtained by employing suitable transformations
and simplifications.

III. TRANSMIT POWER MINIMIZATION

In this section, we minimize the overall transmitted power
subjected to minimum SINR and EH constraints at the corre-
sponding users/groups.

A. Problem Formulation

The overall optimization problem for precoder design (en-
capsulating three aforementioned scenarios) to minimize the
total transmit power can be written in its analytical form as

N4
E wlljwk

(P1): min (6)
wehis, 4
wHG,wy,
st. (C1): k >
() ek W Giwe 0% 0 k
SMEP: Vi€ 2, Vke{l,...,Z},
Vee{l,...,Z +1},
IMEP: Vi€ 2, Vke{1,....2}, (]
vee{l,...,Z},
PIEP: Vi,Vk,Vle{l,... K}, i=k,
(C2): &N > ¢,¥j € 2741, (8)

where 7; is the SINR threshold at the i user, &; is the
harvested energy demand at j™ user (where i can be equal
to j for some cases, in general), and G; = g;g’. It is
clear that the formulated problem (P1) is not convex due to
constraints (C1) and (C2). Moreover, the feasibility of (P1)
is dependent on ~; and &;, corresponding to (C1) and (C2),
respectively, which is additionally constrained by the rank of
G; [35]]. On the other hand, it is interesting to note the hidden
linearity aspect within the non-linear EH expression in (3,
which can be useful in converting a non-linear EH constraint
to a linear form, without loss of generality. The corresponding
transformation is provided in of Appendix A. To proceed,
we define w = [w] wl ...wl]T and W), = w,wi. With the

3This is due to the assumption of a constant energy conversion efficiency
at the EH module.

5

help of these notations, (P1) can be reformulated into a semi-
definite programming (SDP) problem as follows

> Tr{W,}

(P2) : {Wril}l’%1=1 2 9
st (C1): Tr{G; Wi} — i Y Tr{G;W,}
0k
> ’Yi(U}%z,i + UzD,i)a
SMEP: Vi€ 2, Vke {1,...,2},
Vee{l,...,Z+1},
JMEP: Vi€ Z,, Vke {1,...,Z}, (10)
veed{l,...,7},
PIEP: Vi Vk, Ve {l,..., K} i=F,
4 /
(€2): > T {G;Wy} > 2 — 0%,
k=1 G
Vi€ Zz41, (11)
(C3) : Wy = 0. (12)

The SDP transforms the non-convex (P1) into a convex
problem as in (P2), which can be solved using the well-known
methods of convex optimization, cf. [36]]. For our numerical
evaluations, we employ the convex programming tool CVX,
wherein we make use of the semi-definite relaxation (SDR)
method to simplify (P2) further [37], [38]. It is worth men-
tioning that in the context of SDR, the well-known procedure
is to drop the non-convex constraint of rank(Wj) = 1. Let
W~ denote the solution of the relaxed problem in (P2). Then,
W* is considered the optimal solution iff rank(W%) = 1 [39].
In this regard, technique like the eigen value decomposition
(EVD) [40] or Gaussian randomization [12]] may be employed
to obtain a unit rank approximation of the precoder metrics.

B. Analysis of Computation Complexity and Motivation for
an Alternative Problem Formulation

Assume that the CVX solver encounters the computation
complexities of v(¥, M,~;,&;) orders for yielding a solution
corresponding to (P2). Therefore, the computational com-
plexities for SMEP, JMEP, and PIEP are respectively given
by O((N3 - (N — 1)? - K*)V(Z+LMy80)  O((N — 1)° -
K4)V(Z,Mm,£i)), and @((Kﬁ (N — 1)3)v(K7Mm,£i)), More
discussion is provided in the numerical results section.

The results propound a strong motivation for the practical
implementation of proposed framework. However, the possi-
bility of a real-life application (from an indoor-environment
perspective) is still doubtful. This is due to the presence of
a very hard constraint on harvested energy, i.e., (II) and no
limitation on the transmit power. Intuitively, the transmit power
has to increase for higher demands of harvested energies. As a
result, the total transmit power may not always be guaranteed
to respect the Federal Communications Commission (FCC)
regulations [41] in general. Therefore, this calls for an alterna-
tive formulation focusing on the maximization of the harvested
energies of the intended users with a limitation on maximum
transmit power, in addition to other necessary constraints. Such
kind of problem is more suitable from application view-point
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as it is both safe and efficient for the users. In this vein, the
relevant developments are outlined in the subsequent section.

IV. HARVESTED ENERGY MAXIMIZATION

We maximize the sum harvested energy by the intended
users subjected to predefined SINR and EH constraints at the
corresponding users/groups, and an upper limit on the total
transmit power.

A. Problem Formulation and Solution

The overall optimization problem (encapsulating the three
considered scenarios) to ensure the co-existence of the three
user types in MG-MC precoding scheme can subsequently be
written in its analytical form as follows

(P3): max Z EJN (13)
dics viézzn
. wi'g|”
st (1) Doz Wl g2+ ok, + b, =
SMEP: Vie 2, Vke{l,...,Z},
Vee{l,... . Z+1),
IMEP: Vi€ 2, Yke{l,...,2}, (14
veed{l,...,7Z},
PIEP: Vi, Vk,\Vle{l,... K},i=k,

(C2): &N > ¢, V)€ 2741, (15)
v
(C3): ZwkHwk < PMax,
k=1
where ~y; is the SINR threshold at the ™ user, & is the
harvested energy demand at ;™ user (where i can be equal
to j for some casesﬂ in general), Pyax 1s the overall available
transmit power. Since the problem in (P3) involves a non-
linear fractional program, it is non-convex and difficult to solve
directly using conventional solvers. In addition, the feasibility
of (P3) is dependent on 7; and &;, which is constrained by the
rank of G; as well [35]. Moreover, unlike the previous problem
in (P2), it is difficult to transform the objective directly into
a simpler form, even with the help of SDR. Herein, we intend
to find a possibility for an equivalent CVX-solvable problem.
In this regard, we propose to transform the fractional form
objective function into a slack-variable replacement (SVR)
form using the following proposition.
Proposition 1: The maximum achievable sum-harvested
energy, Zv;‘e Zyi t3, by the intended users can be obtained
provided that

(16)

max Z t;
Vi€Zz41
= > 6= ) W) a7)
Vi€EZz 41 Vi€EZz 11

for t; > ¢; and ij\f(f’\v) > ¢;, where

& 1
N(&) — . _
& W) = 1—¢ <1+e<“<251 Iwi'g;|2)+ap) ¢>’ (18)

4For users within an MC as well as the last group, 7 can be equal to j.

6

with t%, Vj € 2741, denoting the optimal SVR-parameters,
and w* = {w;}_, representing the set of precoders for the
respective scenarios, obtained upon the convergence i.e., when
the objective function achieves its maximum.

Proof: We first analyze the nature of the objective in (P3),
where we observe that the function is concave within the feasi-
ble regime. The corresponding proof is provided in Appendix
B. Next, we assume that (P3), i.e., [(I3)-(T6)], is a feasible
problem and based on the prior findings, it is obvious that (P3)
involves maximization of a concave function subjected to non-
linear constraints in (I3)) and (T6). However, the corresponding
constraint may be reduced to a simplified (convex) form with
the use of adequate transformation or reduction, e.g., SDR.
Thus (P3) can subsequently be pared down into a standard
convex form (after plausible transformations). Since the objec-
tive is a monotonically increasing function of the optimization
variables, an optimal (local or global) solution is guaranteed
within the feasible set of constraints. Therefore, assuming w*
as the optimal set of precoders satisfying the requirements in
(P3), the maximum achievable (optimal) objective is given by
ZVJEZZ+1 Ey({)\v*) . .

Proposition 1 provides an adequate and compulsory condi-
tion for developing the optimal resource allocation scheme. In
particular, based on the original optimization problem with a
fractional form-objective function, an equivalent optimization
problem with an objective function based on SVR (e.g.,
ZVJEZZ+1 t;, s.t. EJN > t;) can be found such that the same
solution is achieved for both optimization problems. Moreover,
it is explicit that the optimal solution is achieved with equality
in (I7), and thus we could use this equality condition to
validate the optimality of the solution. Hence, rather than
tackling the original fractional form-objective function, we
develop an alternating algorithm for the equivalent SVR -
objective function whilst meeting the conditions in Proposition
1. In this regard, we reformulate (P3) with the help of SDR
and Proposition 1, represented in its mathematical form as

(P4) : max oot (19)
(W12 )
{tj}v];ekzzlﬂ Vi€Zz+1
st (C1): Te{GWi} — v > Tr{G;W,}
£k
> ’Yi(‘7122,z‘ + 012:),1')’
SMEP: Vi€ 2, Vke{l,...,2},
Vee{l,...,Z +1},
IMEP: Vie 2, Vke{l,...,Z}, (20)
veed{l,...,2},
PIEP : Vi, Vk, V(e {1,...,K},i=k,
1
(€2): 1 + e(—a(Zio; T{G; Wi })+aB)
1- .
>1,(152) 46, Vi€ 2, @)
(C3):t; > &, Vj€ Zz41, (22)
v
(C4) ) Tr{Wi} < Py, (23)
k=1
(C5) : Wy, 3= 0, 24)
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Algorithm 1 Iterative Algorithm for Harvested Energy Maximization

AlgOI‘ithm 2 Directional Power Maximization Algorithm (DPMA)

1: Initialize: {¢;}vjcz, ,, and € as the threshold limit;
2: REPEAT

3. Given {t;}, V4, solve (T9)-@4) to obtain {Wy(n)}r—,;

4 IF (tj(n)—tj(n—l)ge)&(n>2)

5: Convergence_1 = TRUE;

6: RETURN {Wi}_) = {(Wi(n— 1)}y, t] =t;(n—1);
7 ELSE

8: Convergence_1 = FALSE;

9: END IF

10:  Given {Wx(n)}i—,, solve (T9)-(24) to get {t;(n)}viez,.,:
11: IF (tj(n)ftj(nfl)ge)&(n>2)

12: Convergence_2 = TRUE;

13: RETURN ¢t} = t;(n—1), {Wihi_; = {We(n—1)}{_1;
14: ELSE

15: tiln+1)=t;(n),Vj,and n =n + 1;

16: Convergence_2 = FALSE;

17: END IF

18: UNTIL Convergence_1 = TRUE & Convergence_2 = TRUE.

where t; denotes the introduced intermediary slack-variable
corresponding to the j™ user, Vj € 27,1, with other parame-
ters having same definitions as described previously. Note that
the non-convex constraint of rank(Wy) = 1 is dropped as a part
of standard SDR procedure. Since the objective function in
(P4) is an afﬁneE] (or concave) function and the constraint set
is also convex, the modified optimization problem in (P4) is in
the standard form of a convex programming problem that can
be solved by standard numerical methods such as the interior-
point method [42]]. It is obvious that joint optimization of
the involved parameters ({Wy}}_; and {¢;}vjcz,,,) corre-
sponding to (C2) - - - (C'4) is difficult to realize using the CVX
solver, in general. However, an iterative-based computation of
parameters is possible to seek a suitable solution. Therefore,
(P4) can be successfully solved by the proposed convex
programming based on an iterative method for maximization
of harvested energy, as summarized in Algorithm 1. The
pivotal stage for the proposed iterative method based solution
is to develop an intermediate SVR-parameter update policy
for solving the formulated problem. In order to understand
the method behind the proposed alternating algorithm for
harvested energy maximization, we subdivide it into two steps.
In the first step (lines 3-9), we compute the precoder metrics
{Wy}_, for fixed values of {¢;}vjecz,,,, where any val-
ues are permissible, respectively, provided that (P4) remains
tractable. The corresponding optimized values of {W;}¥_,
are then used in the second step of the algorithm (lines 10-
17), where joint optimization of {t;}v;cz, , is carried out.
Upon the completion of the second step, the optimized values
of {tj}vjez, ., are fed again to the first step and this iterative
process is repeated until the convergence of objective in (P4).
To proceed further, we propose the following proposition.

Proposition 2: For a given {tj}vjez,,,, the objective
function is affine in {Wy}¥_,.

Proof: From (C2), and (C3) of (P4), it is clear that the
objective is directly related to {Wj}}_,. Therefore, each

SNote that the sum of affine functions is an affine function. Additionally,
an affine function is both convex as well as concave in nature [36]. Herein,
it may be claimed that we tackle maximization of a concave function.

1: Initialize: {t;}vjez,. . {Wk}ie1. and €
2: REPEAT
3. Given {t;}, V3, solve @3)-(B0) to obtain {p, (n)}i—1;

4 IF (tj(n) —tj(n—1)<e) & (n > 2)

5: Convergence_1 = TRUE;

6: RETURN {p; }_, = {p,(n— )}_y. £} = t5(n—1);
7 ELSE

8: Convergence_1 = FALSE;

9: END IF

10:  Given {p,(n)}i—,, solve @3)-B0) to get {t;(n)}vjez, s
11: IF (tj(n) —tj(n—1) <e) & (n > 2)

12: Convergence_2 = TRUE;

13 RETURN £ — t;(n— 1), {p}}oy = {pp(n— D}y
14: ELSE

15: tiin+1)=tj(n),Vj,andn =n + 1;

16: Convergence_2 = FALSE,;

17: END IF
18: UNTIL Convergence_1 = TRUE & Convergence_2 = TRUE.

iterative computation of {Wj}}_, corresponding to (C4)
would affect {t;}v;cz,.,. Based on the nature of (P4), it
is obvious that the objective is an increasing affine function
which attains the maximum when equality in (C4) is reached.
The proof is straightforward from this analytical reasoning. ll

To prove the convergence of the proposed SVR-based
solution, we first prove that the corresponding slack-variable
metric, {t;}vjcz,,,, increases in each iteration. Then, we
prove that if the number of iterations is large enough, then
the SVR-parameters {t;}v;cz,,, converge to the optimal
{t3}vjez, ., such that the optimality condition in Proposition
2 is satisfied, ie., D ovicz,. U] = Dvjez,,, EN(W*). Let
{Wy(n)}{_, denote the precoder metrics in the n-th iteration.
Suppose tj(n) # t; and t;(n+1) # t}, Vj € Zz41, represent
the SVR-values in the iterations n and n+ 1, respectively. It is
obvious from Proposition 2 that t;(n) > 0 and t;(n+1) >0
will hold and that > ez ti(n+1) > > ez, ti(n).
Therefore, we can show that as long as the number of iterations
is large enough, 3/, E t;(n) will eventually approach the
maximum and satisfy the optimality condition as stated in
Proposition 1. However, the global optimality of the solution
may not be guaranteed due to prior constraint relaxation
according to SDR.

B. Power-Refinement Process

We observe that the solution obtained for (P4) via CVX
yields similar outcomes like the ones attained in the previ-
ous section. The JMEP and PIEP achieve rank-1 solutions
for most of the experiments, however this outcome is not
certain in general. The solutions corresponding to SMEP are
indeed rank-1 for the MC group precoders, while multi-rank
solutions are achieved for last group (with EH users). Again,
this implicates that Z MC precoders would easily serve the
ID users and the EH users will be aided with the help
of rank(Wz,1) precoders. From a hardware implementation
perspective, such sub-optimal solution makes it difficult to
ensure the practical tractability of SMEP system. Therefore,
the Gaussian randomization technique [12]] is employed to
curtail the multi-ranked {Wz,1} into a unit rank, which
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in-turn induces additional computational complexities. In or-
der to ensure the optimality condition in Proposition 2, we
first compute the individual directions using the eigen value
decomposition (EVD) [40] or randomization technique (as
above) [12] for Z MC precoders and use the randomization
method for the precoder corresponding to {W 1 }. Then, the
vector indicating the direction of k™ precoder is given by
Wi = 72—, We reformulate (P4) and obtain the problem

lwell,

(P5), as follows

(P5) : max Z t; (25)
{Prti= ;
(st ViZza
st (C1): Wy gil%p, — v Y W' gD,
£k
> %‘(U?z,i +0123,i)a
SMEP: Vi€ 2, Vk e {1,...,Z},
vee{l,...,Z+ 1},
IMEP: Vie Z,, Vke{l,...,Z}, (20)
Vee{l,...,Z},
PIEP: Vi, Vk,Vle€ {1,...,K},i=Fk,
1
(C2):

1+ e(—a(Eiﬁl W"fgj|2pk)+045)

1 _
> 1 g,¢) + 6, Vi€ Zz1, 27)
(C3) :t; > &, Vi€ Zz41, (28)
'
(C4): > py < Py, (29)
k=1
(C5) :py >0, (30)

where p,, is the power term associated to the k™ precoder
with w;, as its direction, and other terms have the same
meaning as defined previously. In other words, the scalar p,,
is optimized in the direction of wy. Thereafter, the solution to
(P5) can be obtained directly using the CVX solver, which is
summarized in Algorithm 2. Consequently, Directional Power
Maximization Algorithm (DPMA) ensures that the optimality
condition in Proposition 2 is always satisfied with rank-
1 solutions for all precoders. Consequently, the proof of
convergence of Algorithm 2 would follow the same process
as presented in the previous section. From the programming
viewpoint, the convergence of Algorithm 1 and Algorithm 2
could be determined by setting an extremely low threshold
value (say €), such that the stopping criteria is defined by

Zwez“l ti(n+1) - Zvj‘ezzﬂ tj(n) <e

C. Computational Complexity Analysis

Suppose that the CVX solver incurs the computational com-
plexities of x1 (¥, M) orders for carrying out the operations
4:t0 9:, and ko(M) orders to process 11: to 17:, respectively,
corresponding to Algorithm 1, and linear orders for Algorithm
2. Consequently, the overall computation complexities for
SMEP, JMEP, and PIEP are respectively

@(((Ks . N3. (N — 1)2) (m(ZJrl,M)er(M)))X("ﬁu&)) ’

8

O ((K5 (N —1)5) (m(Z,M)+H2(M)))X(nv%‘éi)>, and

2) (11 (K M) 452 (M) ) ) xaig) , where

o (K7 (v -1
x(n,7i, &) denotes the factor dependent on n iterations of
algorithm(s), v; and &;, corresponding to each of the respec-
tive scenarios. We demonstrate the effectiveness of proposed
methods in the following section.

V. SIMULATION RESULTS

In this section, we present a comparative study between
SMEP, JMEP and PIEP. The three cases viz-a-viz., SMEP,
JMEP, and PIEP are implemented using MATLAB R2017a,
with optimization performed via convex programming tool
CVX [37], [38], and the solutions obtained with the help of
SEDUMI solver.

A. Simulation Environment

We assume an ITU-R indoor model (2-floor office scenario)
[43] to generate channel realizations with the path-loss expo-
nent given by

PL (in dB) = 201og,o(F) + N log,o(D) + Pf(n) — 28, (1)

where F' is the operational frequency (in MHz), N is the
distance power loss coefficient, D is the separation distance
(in metres) between the transmitter and end-user(s) (with D
> 1m), Pr(n) = 15 + 4 (n-1) is the floor penetration loss
factor (in dB), and n is the number of floors between the
transmitter and the end-user(s) (with n > 0). Specifically, the
chosen parametric values are F' = 2.4 GHz, D is randomly
chosen between 4m and 5m (unless specified otherwise), N
= 30, and Pf(2) = 19 dB. It is noteworthy that the channel
state information (CSI) will not be affected largely, due to the
assumption of an indoor scenario . Moreover, the CSI loops
within the coherence time of the channel where the dynamic
nature in CSI may be assumed to be introduced from the
environment as well as user mobility in some way [43]. In
this context, wider beam widths could be desirable from a
signal reception point of view (due to mobility), while narrow
beams might be better to control the interference.

The transmitter is assumed to be equipped with M =
20 antennas (unless specified otherwise), while K = 10
users are distributed within (Z 4+ 1) = 5 groups as follows:
Z1 = {U1,Us, U}, Z9 = {Us,Us}, Z3 = {Us,Us}, 24 =
{Uv77 Ug,Ulo}, and Z5 = {Ul, Us, Us, Ulo}, where Z5 is the
EH group of users while the remaining (Z,..., Z4) MC
groups are comprised of ID users. We set 0122,1» =-110 dBW,
012:>,¢ =-80 dBW and (; = 0.6. Furthermore, an average of 500
random channel realizations (with random placement of end-
users in every realization) is presented for each experiment
corresponding to the transmit power minimization problem,
while an average of 100 experiments is performed to analyze
the harvested energy maximization problem. The constants
corresponding to the non-linear EH circuit are chosen as £’ =
2.8 mJ, o = 1500, and § = 0.0022 [33]], [34].
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Total Transmit Power [in dBW]

Fig. 5. Performance analysis of SMEP, JMEP and PIEP in terms of
total transmit power versus the harvested energy demands and the SINR
demands of users where D = 5m and M = 20.

B. Discussion on Optimization Solutions

Before we provide detailed discussion on the optimization
solutions, it is important to highlight the challenges related to
the adoption of considered non-linear EH model in comparison
to a linear EH scheme. Due to the introduction of a non-
linear (exponential) function to characterize the EH operation,
the traditional equations and definitions with linear form
require alteration accordingly. With regard to the optimization
problems, incorporation of the non-linear EH model leads
to intractability which requires rigorous transformations and
relaxations in comparison to the case with the linear EH
model. Moreover, several challenges are encountered while
seeking suitable solution(s) in this context. Specifically, the
problems require adequate transformations to be solved by
the convex optimization solvers (e.g., we use the CVX in
this work, which requires a particular form of input problem
formulation).

It has been shown in [44] that a solution pertaining to
rank(W3) = 2 can still be viewed as optimal. Furthermore, it
can be reduced to rank(W3) = 1 at an additional computation
cost thereby penalizing the system performance and increasing
the chance that not all constraints will be satisfied. Therefore,
we consider the rank(W;) < 2 solution as optimal. In other
cases, i.e., for rank(Wj) > 2, the solution is considered sub-
optimal with further scope of improvement.

In the context of both the energy optimization problems,
i.e., total transmit power minimization (in (P1)) and sum-
harvested energy maximization (in (P3)), it is found that the
solutions of both JMEP and PIEP are indeed rank-1 for most
of the experiments whereas such an outcome cannot be assured
to be always true, in general. The solution corresponding to
SMEP is found to be unit rank for lower values of SINR and
harvested energy demands. Further, this effect seems to vanish
with higher demands of SINR and harvested energy where
multi-rank solutions are obtained for the last group (harvested

24 ! .
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* -©-SMEP: D =7.5m
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Fig. 6. Performance analysis of SMEP, JMEP and PIEP in terms of total
transmit power versus the number of transmit antennas with variation in
distance where v; =5 dB and &; =1 puJ.

energy serving precoders). One interpretation of multi-rank
solution obtained for {W 1} corresponding to the EH group
implies that in order to serve EH specific users, more precoders
(Z " in number(s), with Z’ = rank(W Z+1)) would be required.
The ID users are served using the beams of corresponding
Z MC precoders while the EH users utilize rank(Wz41)
precoders for collecting energy, which is sub-optimal and
difficult to implement from a hardware perspective. Therefore,
the randomization technique [12] is implemented to reduce
the multi-rank solution for {Wz,1} to a unit rank thereby
introducing additional computational penalties while ensuring
tractability in terms of hardware implementation. Another
interpretation that the multi-rank solution suggests is to split
the EH group into multiple groups, so that the energy can
be better focused across the respective group channel vectors.
However, it is noteworthy that the presence of energy-specific
precoder for last group becomes redundant for very high
demands of SINR, where SMEP is found to yield similar
performance as JMEP. Regarding the realization of algorithms
in practical systems, offloading may be performed where
the computation task is carried out by a centralized node
[45], [46]. In this context, adequate signaling or feedback
mechanism may be utilized by the central controller to inform
the concerned nodes.

C. Numerical Analysis

In Fig. 5] we illustrate the effect on the total transmit power
(in dBW) with increasing demand of the harvested energy
and the SINR threshold. Performance benefits of the proposed
SMEP are seen over JMEP and PIEP, where SMEP is observed
to perform best at low SINR and/or EH demands. Apparently,
JMEP encounters a contradictory SINR-EH demand constraint
at lower values of SINR demand which makes it difficult to
attain optimal precoder designs. However, it is clear that the
performance of SMEP and JMEP would converge together at

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2019.2962077, IEEE Open

Journal of the Communications Society

> OJCOMS-00052-2019 <

x107

._.
- i

S
%

o
FS

Sum Harvested Energy [in J]
g 2

=

M, N B ™
2 / 20\
. ST )
ower . _ o 5 D?m“‘““ (’Q i
ey )/i,, 0 GINR

Fig. 7. Performance analysis of SMEP, JMEP and PIEP in terms of sum-
harvested energy versus the maximum transmit power limits and variation
in the SINR of users with &; = 10 nJ.

higher SINR demand, where the contribution from energy-
dedicated precoder in SMEP can be considered negligible.
It is needless to mention that SMEP can successfully take
care of distinct user types without any complications, while
JMEP would require additional computation to categorize the
EH users within the intended Z groups to ensure its efficient
performance. In general, the total transmit power increases
with higher demands of SINR and/or EH thresholds for all
the three cases viz-a-viz., SMEP, JMEP, and PIEP.

Fig. [ shows the variation in total transmit power (in dBW)
with increasing number of array antennas at the transmitter for
v =5 dB and & = 1 pl. Herein, we compare the proposed
SMEP with the two benchmarks JMEP and PIEP, respectively.
It is observed that the system performance for all the scenarios
improves considerably in terms of the total transmit power
with increasing number of transmit array antennas, where
SMEP is seen to perform the same as JMEP, while both SMEP
and JMEP outperforms PIEP. Furthermore, a similar trend is
observed when the distance between the transmitter and end-
users is increased with the placement in between D = 6.5m and
D =7.5m. However, an expected increase in the total transmit
power is also observed in this case. It is also noteworthy that
JMEP and SMEP are operational even with lower number of
transmit array antennas in comparison to the number of end-
users while the former (number of transmit array antennas)
should be equal or greater than the latter (number of end-
users) to ensure operability of PIEP.

Considering the case where the impact on the scenarios with
respect to the number of users, it is noteworthy that the SINR
and EH demands in Fig. [5] may be synonymously translated
into the number of users. In simple terms, this duality with
more number of users would correspond to high SINR and EH
demands and vice-versa. It is observed that the total transmit
power increases or decreases with the increase or decrease
in number of users, respectively. Regarding the number of
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Fig. 8. Performance analysis of SMEP, JMEP and PIEP in terms of sum
harvested energy versus the number of transmit antennas with variation
in distance where v; = 1 dB, & = 1 nJ and Pypx = 1.5 W.

antennas, it is observed from Fig. [f] that increasing number
of antennas would facilitate the users with optimized transmit
power at the the precoders. Therefore, similar trend should be
observed as above, where more number of antennas would be
beneficial in terms of improving the system performance(s).

In Fig. [7, we present the impact on the sum-harvested en-
ergy (in Joules) with increasing SINR threshold and maximum
power limitations with & = 10 nJ. The objective increases
with rising values of maximum transmit power limitations
while it is seen to decrease with growing SINR demands for
all the three scenarios namely SMEP, JMEP and PIEP. Both
SMEP and JMEP are found to provide superior performances
over PIEP, with SMEP operating nearly same as JMEP at
lower Pyax values and higher SINR demands. However, the
efficiency of SMEP is significantly higher than JMEP at
higher values of Pyp,x and SINR demands. In addition, PIEP
is found to approach an infeasible regime at higher values
of SINR demands (for most of the experiments) and thus
the results appear to terminate at v, = 15 dB. Moreover,
it is noteworthy that the working characteristic of SMEP is
naturally viable to take care of separate information and/or
energy users more competently in comparison to JMEP and
PIEP, with a remarkable performance.

Fig. [§] depicts the variation in sum-harvested energy (in
Joules) with increasing number of transmit antenna arrays
with v; = 1 dB, & =1 nJ and Pyax = 1.5 W. It is seen
that SMEP provides better performance in comparison to
JMEP and PIEP, where the objective increases appreciably
with growing number of antennas. Similar trend is observed
when the designated users are placed randomly between D
= 6.5m and D = 7.5m, from the ULA-equipped transmitter.
As noticed previously, SMEP and JMEP are functional even
at lower number of antennas in comparison to the number of
users, while the minimum number of antennas should atleast
be same as the number of users for PIEP to be operational.
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Fig. 9. Optimized transmit power of the precoders following the total transmit power minimization problem for (a) SMEP, (b) JMEP and (c) PIEP.
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Fig. 10. Optimized transmit power of the precoders following the sum-harvested energy maximization problem for (a) SMEP, (b) JMEP and (c) PIEP.

In this direction, it is important to discuss about the system
performance with varying number of users. As mentioned
previously, the duality between the user demands and the
number of users may be assumed. In this regard, the results
from Fig. [/| indicate that for a fixed number of transmit
antennas, the sum-harvested energy would decrease or increase
with growing or depreciating number of users (synonymous
with SINR and EH demands). Whereas, the results in Fig.
[8] shows the benefits of increasing the number of antennas on
system performance under a specific transmit power limitation.
Moreover, the number of heterogeneous user types and their
placement would also affect the overall performance corre-
sponding to the maximization of sum-harvested energy by the
intended users.

Next, we set v; = 0.1 dB, & =1 uJ in Fig.[9land ; = 0.1
dB, & =1 nJ and Py = 1.5 W in Fig. and consider any
random realization of g;, to investigate the effectiveness of
the exclusive precoder in SMEP designated to serve the group
of EH users in comparison to the JMEP and PIEP scenarios,
corresponding to the two energy optimization problems in (6]
and (T3), respectively. Herein, we consider two experiments to
study the problems on energy optimization more keenly. In the
first test, we assume that the inequality in the SINR constraint
ie., (C1) of all the formulated problems (P1) (P5)
holds; which we refer to as the flexible (Flexi) form of the

problem since there is no hard boundation on the computed
SINR and each user may obtain equal to or more than the
demanded SINR threshold. Whereas in the other (second)
test, we consider that a strict equality (Str-Eq) holds in (C1)
of (P1) (P5), meaning that each user will be provided
neither more nor less, but equal to the exact SINR demand.
Before we proceed, it is important to mention that all the
prior simulation results were obtained via first experiment trial
(which is more general from practical perspective). From our
previous observations in the performance analysis of SMEP,
JMEP and PIEP, we find that the main investigation lies in the
low SINR demand regime, where the impact of the precoder
for energy group in SMEP is maximum.

Considering the total transmit power minimization problem,
we show in Fig. [9|the comparison between the three considered
schemes namely, SMEP, JMEP and PIEP. As discussed above,
we perform the evaluation over the two experiments viz.,
Flexi and Str-Eq. The significance of the exclusive precoder in
SMEP corresponding to the group of EH users is explicitly vis-
ible (with reference to Precoder Index = 5) in Fig. [0(a), when
compared with JMEP in Fig. [9(b) and PIEP in Fig. 9(c). From
the outcomes of the two experiments in all cases, we find that
the exclusive precoder in SMEP corresponding to the group of
EH users becomes more significant in terms of reducing the
complexity in power allocations at the stipulated precoders.
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Fig. 11. User placing within groups, served via ULA-equipped transmitter.
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Fig. 12. Antenna radiation beam pattern for JMEP.

Whereas the other systems (JMEP and PIEP) require more
transmit power to take care of the contradictory constraints of
low SINR and high EH demands at the corresponding users.

In Fig.[T0] we consider the problem of sum-harvested energy
to illustrate the comparison between SMEP (in Fig. [I0(a)),
JMEP (in Fig. [I0[b)) and PIEP (in Fig. [I0fc)) for a fixed
maximum transmit power limitation of Pyx = 1.5 W. The
results are obtained after the two experiments (Flexi and Str-
Eq., respectively), are performed for the aforementioned three
schemes. Herein, we observe similar outcomes like in the
above-mentioned analysis, indicating the benefits of adopting
an exclusive precoder in SMEP for the group of EH users,
over JMEP and PIEP schemes in the low SINR and high EH
demand regimes.

12
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Fig. 13. Antenna radiation beam pattern for SMEP.
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Fig. 14. SINR pattern of MC precoders in SMEP.

D. Further Investigation via Uniform Linear Arrays

In this section, we consider a more generalized line-of-sight
(LoS)-based channel model in comparison to the previous
cases, for investigating the performances of SMEP and JMEP
further. Herein, we assume a scenario similar to 802.11 frame-
works [47] (e.g., 802.11b), where the bandwidth is considered
to be 20 MHz with an operational frequency of 2.4 GHz. A
uniform linear arrays (ULAs)-based transmitter is presumed
for investigating the proposed methods in a practically moti-
vated environment. Please note that in this case, an antenna
gain of 10 dB is also taken into consideration, along with
(3I). The corresponding M x 1 complex vectors indicating
the phase shift from each element of transmit antenna array
to the receive antenna of i" user, where i € {1,..., K}, are
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Vandermonde
V(@i) — [1 elPi pI2¢i (32)

where ¢; = —2mdsin(6;)/), and j = \/—1. Herein, d denotes
the spacing between successive antenna elements, \ is the
carrier wavelength, and the angles 6; (in radians) define the
direction of the i user from the transmitter. Assume p; as the
M x 1 scalar vector indicating the path loss from M transmit
(ULA) antennas to the i user modeled according to (BT).
Then, the equivalent channel vector for the i™ user is given by
g, = v(¢;)©p;, where @ denotes the Hadamard product. Note
that the phase orientation of ULA set-up must be unaffected
due to this operation.

The transmitter is assumed to be equipped with M = 4
antennas (unless specified otherwise) spaced d = A/2 apart,
while K = 10 users are distributed within (Z + 1) = 3 groups
as follows: 21 = {U;(—85°),U2(—80°),U3(—=75°)}, 25 =
{Us(75°),Uq(80°), U19(85°)}, 25 = {Us(—30°),Us(—20°),
Us(20°), U7(30°)}, where Z3 is the EH group of users while
the remaining (2, Z2) MC groups are comprised of ID users.
Note that U;(6;) denotes the angular placement of i™ user at
an angle 6; from the ULA. This arrangement is depicted in
Fig. for better visual understanding. Further, we perform
the numerical evaluation corresponding to the sum-harvested
maximization problem in (P3) for SMEP and JMEP, wherein
we assume Pyax = 0.1 W, 4, = 0.2 dBE], and & =1 nl.

For further analysis, the ULA radiation beam-pattern for
each precoder is obtained by using the sum of trans-
mit power via corresponding precoder in all the direc-
tions between [—m,w| radians. Specifically, the radiation
beam-pattern for k" precoder is defined as > Vs wiv(pi),
where ¢; = —2ndsin(f;)/), with 6; € [—m, 7). Sim-
ilarly, the SINR pattern for kM MC precoder is ex-

eJ(M—l)w]T7

N
pressed by > . wiv(pi)/ > 2 s wiv(p;), where ¢; =
iZk

—2ndsin(6;)/ A, with 0; € [, 7].

In Fig. [I2] the ULA radiation beam-pattern is depicted
using the SDR-based precoder solutions of the considered
sum-harvested maximization in JMEP. It is observed that the
two designated precoders fulfill the information and energy
demands of the users in distinct groups. Similarly, we depict
in Fig. [13] the ULA radiation beam-pattern for the above-
mentioned problem considering the case of SMEP. It is seen
that the precoder corresponding to the EH group of users
meets their demands via exclusively designed beams, with
slight assistance from the other two MC-specific precoders,
as expected. Such a case emphasizes on the need of sepa-
rate waveform designs for ID and EH operations for further
improvement in system efficiency [31]. Next, we show the
SINR-based beam patterns in Fig. for the same case of
SMEP. The operations of the two dedicated precoders for MC
groups are presented, wherein they provide the requested SINR
demands at the MC groups. As anticipated (with the help
of observations in prior section), SMEP is found to perform

better than JMEP, specifically with (Y .cz, €M) =

5This demand enables the provision of data speeds same or higher than 5
Mbps at each user, which is sufficient for HD quality video streaming [48].

13

54403 p) and (Yyjez,,, EN) e = 43615 pl, respec-
tively, for the presented ULA-based results.

E. Summary

The overall outcomes imply that the solutions for JMEP and
PIEP are (locally) optimal while (local) sub-optimal results
are obtained for SMEP, which are rectified with the help of
Gaussian randomization approach. From the hardware imple-
mentation perspective, this means that even with additional
precoder(s) in comparison to JMEP, SMEP is seen to provide
relatively better performance. However, both SMEP and JMEP
provide comparably similar performance at higher demands of
SINR implying that enough power could be harvested from the
corresponding SINR beams and that the last group’s energy
precoder becomes redundant in case of SMEPﬂ It is important
to highlight that the adoption of separate precoder designs for
ID and EH operations does not only reduce the complexity
at the transmit source, but also improves the overall system
performance both in terms of transmit power minimization
as well as maximization of sum-harvested energy. Besides, the
proposed JMEP method may be considered a special case or a
sub-system of SMEP. Moreover, SMEP has another advantage
where its flexibility may facilitate the adoption of different
waveform designs, for the ID and EH operations, respectively.
In this regard, recent studies, e.g., [31]], have shown that
the structure of the two waveforms can be rather different.
The operation of PIEP involves same number of precoders as
the users, which is good for individual users but it naturally
imposes an overall high power consumption, thereby imposing
large computational complexities. Moreover, PIEP may even
fail to provide the minimum (high) demands of SINR and
EH demands at relevant users due to insufficient transmit
power in case of sum-harvested energy maximization of the
corresponding users.

VI. CONCLUSION

We considered precoding in multi-group multicast system(s)
to guarantee the coexistence of three wireless user types,
respectively capable of information decoding only, energy har-
vesting only, and information decoding and/or energy harvest-
ing. In this context, two problems were formulated to minimize
the total transmit power, and to maximize the overall har-
vested energy, respectively; both subjected to the constraints
on minimum SINR and EH demands at the corresponding
users. The aforementioned problems were transformed with
the use of semidefinite relaxation technique considering three
scenarios, namely, Separate Multicast and Energy Precoding
Design (SMEP), Joint Multicast and Energy Precoding Design
(JMEP), and Per-User Information and/or Energy Precoding
Design (PIEP), respectively. Moreover, an additional slack
variable reduction method was adopted to make the harvested
energy maximization problem tractable. Suitable solutions
with considerably good performance were proposed to address
the aforementioned problems. Performance benefits of SMEP

7It is worth mentioning that the case with contradictory constraints of low
SINR and high EH demands is also difficult to realize in the JMEP scenario.
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were shown over JMEP and PIEP, in terms of handling low-
SINR user demands with no additional computational task for
categorizing the EH users, unlike its sub-system counterpart,
JMEP. This motivates the adoption of SMEP in practical cases.
This work can be extended to several interesting directions,
such as the analysis of the proposed framework with alter-
native low-complexity based techniques, investigation of the
optimization problems with optimized grouping techniques,
consideration of MIMO systems, and further analysis with
massive MIMO.

APPENDIX A
CONVERSION OF NON-LINEAR ENERGY HARVESTING
CONSTRAINT TO LINEAR CONSTRAINT

The non-linear EH constraint at the ™ user is given by
& 1
1-9 1+ e(—a(Zioy Iwfg ) +aB)

where ¢; is the harvested energy demand at the i™ user.
The expression in (33) can be re-arranged and written as

& 1
1— ¢ 14+ e(—aé'f/(i+aof?,i+o<5)

Further simplification of leads to the equivalent linear
EH constraint

o) =&, (33

ol =& (G

EF > ¢, (395)
where
N P 1 (A=9)(E &)
EE N 1“((1 = 9)E +¢a> o

From (36), it is clear that £ is an up-scaled version of &; and
that the constraints in (§) and (33) are equivalent. QED. W

APPENDIX B
PROOF OF PROPOSITION 1

Consider the following expression, synonymous to the sub-

term of (3), )

Flz) = 1+ exp(—az +b)’
It is clear that the optimization of Ejv (w) with respect to
w would affect only the sub-term of (3), as represented in
(37). Therefore, in order to understand the nature of F(x), we
express the first and second order derivative of the function
with respect to x, respectively, as follows

(37

OF(x) _ aexp(—ax + b) (38)
Oox (1 + exp(—az + b))?’
0%F(x) B —a? exp(—ax + b)(1 — (exp(—az + b))?) (39)
Ox? (1 + exp(—az + b))4 '

The parameters a and b may assume any value defined in
[33]], corresponding to the received input power (x) in the W
regime. Based on these parameter selections, it is explicit that
0 < exp(—az + b) < 1. Therefore we have,

0°F(z)
—— <0, 40
022 (40)
which implies that the F(x) is a concave function within the
specified limits of a, b and x. Hence proved. ]
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