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Motivation
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quantitatively by computer algorithm

—=> Data Assimilation
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Data Assimilation

Methodology to combine model with real data

= QOptimal estimation of system state:

* initial conditions (for weather/ocean forecasts, ...)
* state trajectory (temperature, concentrations, ...)
e parameters (ice strength, plankton growth, ...)
e fluxes (heat, primary production, ...)
 boundary conditions and ‘forcing’ (wind stress, ...)

= More advanced: Improvement of model formulation
« Detect systematic errors (bias)

« Revise parameterizations based on parameter estimates

£
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Interdisciplinarity of Data Assimilation

Algorithms

Mathematics:
Optimization
Estimation
Inverse problems
Numerics

Data
Assimilation

[ Software ]

Computer Science:
High-performance computing
Big data

Machine learning
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Applications ]

Earth Sciences,
Physics,
Biology,

Cognitive science,

QA



Outline

Ensemble Data Assimilation

Algorithms / Methodology

 Efficient methods for high-dimensional nonlinear systems

Applications

« Examples of what one can expect to achieve

Software
 Make ensemble data assimilation easily usable

« Parallel Data Assimilation Framework (PDAF)
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Methodology

*
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Data Assimilation — a general view

Consider some physical system (ocean, atmosphere, land, ...)

time Estimate not necessarily Two main approaches:
between model and obs.
l due to model dynamics Variational assimilation
state

!

Sequential assimilation
model

@ observaton = NN

4
/

‘ O
truth Assimilation

estimate
Goal: Obtain optimal estimate of system

constrained by model dynamics and observations

£
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Needed for Data assimilation

1. Model

e with some skKill

2. Observations

« with finite errors

* related to model fields

3. Data assimilation method

#*
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Models

Simulate dynamics, e.g. the ocean

= Numerical formulation of relevant ¥
terms i

= Discretization with finite resolution in
time and space

» “forced” by external sources
(atmosphere, river inflows)

:..&\W >

,’} "'"f/n

\

= Uncertainties

Resolution [km]

* initial model fields

« external forcing

* in prediqtions due to model Variable-resolution mesh
formulation (ocean model FESOM)

*
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Observations

Measure different fields ... for example in the Ocean
* Remote sensing

= E.g. surface temperature, salinity, sea surface height,
ocean color, sea ice concentrations & thickness

* |n situ (ships, autonomous vehicles, ...)

= Argo, CTD, Gliders, ...

» Data is sparse: some fields, data gaps
» Uncertainties
= Measurement errors

= Representation errors:
Model and data do not represent exactly the same
(e.g. cause by finite model resolution)
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Example: Physical Data in North & Baltic Seas

Satellite surface temperature Avalable T and S profiles during July 2008
(12-hour composite) P . f f
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Example: Chlorophyll-a observations (SeaWiFS)

Daily gridded SeaWiFS chlorophyll data

» gaps: satellite track, clouds, polar nights

» On model grid: ~13,000-18,000 data points daily
(of 41,000 wet grid points)

» irregular data availability

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237 @ AN I



Observation Error Estimates

If observation errors available:
* they are typically usable

« usually do not account for
representation errors
(might be too low)

logarithmic data errors provided with
satelllte chIorophyII data (OC- CCI)
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Pradhan et al, JGR 2019

If no observation errors available:

* need to estimate them

data errors from comparison with 2186
collocatlon pomts of in situ data (SeaW|FS)

30 60 90 120 150 180-150-120 -30 -60 -30 0O 30

Nerger & Gregg, JMS 2007
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Data Assimilation Methods

Combine observations and model state estimate

Account for uncertainty in observations
Account for uncertainty in model state estimate

Account for relations (correlations) between
observed part of the model state and unobserved parts
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Ensemble Data Assimilation

Estimate uncertainty

£
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Ensemble Kalman Filters

First formulated by G. Evensen (EnKF, J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean
and covariance matrix

EnKF: Use ensembles to represent
probability distributions

[

state
estimate

There are
many
possible
choices!

What is
optimal is part
of our
research

Different

observation choices in
PDAF

time O time 1 time 2 i
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Ensemble Covariance Matrix

* Provide uncertainty information (variances + covariances)

» Generated dynamically
by propagating ensemble of model states

Uncertainty: Standard deviation of log Chlorophyill
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Ensemble Covariance Matrix (ll)

= Also:

Provide information on error correlations
(between different locations and different fields)

= Example: Assimilation of sea surface height
(Brankart et al., Mon. Wea. Rev. 137 (2009) 1908-1927)

Assimilation increment in sea Induced change
surface height in zonal velocity

300" 302" 304" 306" 308" 310° 312° 300° 302" 304° 306" 308" 310° 312°
T i —— - — —— T R
0.00 0.01 0.02 0.03 004 005 0.06 -0.12 -0.08 -0.04 0.00 004 0.08 0.12
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Ensemble-estimated Cross-correlations

Cross correlations between total chlorophyll
and chlorophyll in phytoplankton groups

Small Phy. (13th Feb. 2009) Diatoms (13th Feb. 2009)

10.2

1-0.2

°0° 60°E  120°E 180°w 120°W  60°W 0° 'o° 60°E  120°E 180°Ww 120°W  60°W 0°

Cross-correlations are used to correct non-observed quantities
from observed ones

Pradhan et al., J. Geophy. Res. Oceans, 124 (2019) 470-490 @ MII



Ensemble-based/error-subspace Kalman filters

Alittle “zoo” (not complete): Filter instability
(Nerger 2015)

Which filter should one use? EnKF(2003)

MLEF
EnKF(2004)
RRSQRT ‘ ‘ SPKF
EAKF
ROEK ESSE
| EnKF(94/98) | | EnSRF |
‘ SEEK ‘ DEnKF i
Efficiency of SEIK & anamorphosis
(Nerger et al. 2005) SEIK ETKF
S New filter
formulation

ESTKF |
L. Nerger et al., Tellus 57A (2005) 715-735 ‘ (Nerger et al. 2012)
L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345

L. Nerger, Monthly Weather Review 143 (2015) 1554-1567 @* AN I
S. Vetra-Carvalho et al., Tellus A 70 (2018) 1445364




Assessing Ensemble Kalman Filters

Mathematical assessment of ensemble Kalman filters limited by
« optimality only proven for Gaussian error distributions
* convergence properties only clear for large ensemble limit

but
* models are nonlinear -> non-Gaussian distributions
« only small ensemble feasible to run for high-dimensional models

A practical approach
« compare and characterize behavior of different methods
« reach general conclusions from analyzing differences mathematically

Further: Ensemble Kalman filters don’t work in ‘pure’ form
* Need adaptions (‘fixes’)

Lars Nerger — Ensemble Data Assimilation @ AN/



Essential “Fixes” for Ensemble Filters

Covariance Inflation

Localization

£
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Covariance inflation

= True variance is always underestimated
= small ensemble size
= sampling errors (unknown structure of P)
= model errors

=> can lead to filter divergence

= Simple remedy

= Increase error estimate before analysis

= |nflation
* |ncrease ensemble spread by constant factor

= Some filters allow multiplication of a small matrix
(“forgetting factor” <1; computationally very efficient)

= Needs to be experimentally tuned

(Mathematically, this is a regularization)

Lars Nerger — Ensemble Data Assimilation @ ANI



Localization: Why and how?

. . : Example: Sampling error and localization
» Combination of observations and | 4 | |
model state based on ensemble estimates ;  campled

of error covariance matrices | - - -localized

» Finite ensemble size leads to
significant sampling errors

covariance

e errors in variance estimates

» usually too small

distance

 errors in correlation estimates
» wrong size if correlation exists
» spurious correlations when true correlation is zero

» Assume: long-distance correlations are small in reality

» Localization: damp or remove estimated long-range correlations
(Houtekamer & Mitchell, 1998, 2001)

It
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Observation Localization

Local Analysis:

» Update small regions

. . . D // \\
(like single vertical columns) L L N
allows to define distance / si | ol )

» Use only observations within some \\\ //
distance around this region T — =

» State update and ensemble
transformation fully local S: Analysis region
D: Corresponding data region

Observation localization:

» Down-weight observations
with increasing distance

£
Lars Nerger — Ensemble Data Assimilation @ Ml



Impact of inflation and localization

forgetting factor

Experiments with Lorenz96 model

Global filter Localized, ensemble size 10
1 1
0.8 1 0.8
0.6 0.6
0.5 0.5
0.4 0.98 0.4
0.3 _ 0.3
0.25 g 0.25
0.24 0.245
0.23 "g 0.96 0.24
8'33 2 0.235
: = 0.23
0.205 2 0.94 0.225
0.2 5 0.22
0.195 = 0.215
0.19 0.92 0.21
0.185 0.205
0.18 0.2
0.175 0.9 0.195
0.17 0.19
10 20 30 40 2 6 10 14 18 22 26 30 34
ensemble size support radius

 smaller ensemble usable with localization

 optimal combination of forgetting factor and support radius
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Adaptive localization radius in global ocean model

» Localization radius is usually hand-tuned

* Numerical analysis in small models shows:
errors minimal when localization radius chosen such that

local sum of observation weights = ensemble size
* Application with FESOM (Finite Element Sea-ice Ocean Model):

* Fixed 1000km radius leads to increasing errors in 2nd half of year
* Lower RMS error in sea surface height than fixed 500km radius

Error-reductlon of sea surface height Localization radius [meter]
0.62

— flxed IOOOkm
0.6F —+— fixed 500km |
—+— variable

10 12 x10°

50 100 150 200 250 300 350 400
day
Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175 @ANI



Current developements

*
Lars Nerger — Ensemble Data Assimilation @ MI



Current developements

Ensemble Kalman filters (and standard variational methods) are
current ‘work horses’

« With various ‘fixes’ like localization
Aim: Better account for nonlinearity

Fully nonlinear: Particle filters

- still no established method for high-dim.
Hybrid methods

« Hybrid ensemble-variational

« Hybrid ensemble Kalman — particle filters
lterative filters

£
Lars Nerger — Ensemble Data Assimilation @ Ml



Linear and Nonlinear Ensemble Filters

- Represent state and its error by ensemble X of [Vstates

» Forecast:
* Integrate ensemble with numerical model

* Analysis:

- update ensemble mean x¢ =% + X''w
- update ensemble perturbations X'* = X'TW

(both can be combined in a single step)

« Ensemble Kalman & nonlinear filters: Different definitions of
- weight vector w

« Transform matrix W

Lars Nerger — Ensemble Data Assimilation @ Ml



ETKF (Bishop et al., 2001)

« Ensemble Transform Kalman filter
 Assume Gaussian distributions
 Transform matrix

A7l = (N- DI+ B HXNHTRHX"
 Mean update weight vector
w = A(HX)TR™! (y _ HF)

(depends linearly on y)

* Transformation of ensemble perturbations
W= (N-1)A"12A
(depends only on R, not y)

£
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NETF (Todter & Ahrens, 2015)

* Nonlinear Ensemble Transform Filter
» Mean update from Particle Filter weights: for all particles i

W' ~ exp (—O.5(y —Hx)TR Yy — HX,{))

(Nonlinear function of observations y)

» Ensemble update

« Transform ensemble to fulfill analysis covariance
(like ETKF, but not assuming Gaussianity)

* Derivation gives

W = /N [diag(W) — ww’]"/?

A

( A mean-preserving random matrix; useful for stability)

s

Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367 @ MII



ETKF-NETF - Hybrid Filter Variants

1-step update (HSync)
a _f
Hsyne = X' + (1 =v)AXNETF + YAXETKF

« AX: assimilation increment of a filter
« y: hybrid weight (between 0 and 1; 1 for fully ETKF)

2-step updates
Variant 1 (HNK): NETF followed by ETKF
vk = X&prp X, (1—7)R™]

vk = XorrrX4ng, YR
« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF

£
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Choosing hybrid weight y

« Hybrid weight shifts filter behavior
« How to choose it?

Possibilities:
* Fixed value
« Adaptive
« According to which condition?

+ Base on effective sample size N ;s = Z 1/(w*)?

set
Yadap = 1 — Neyp/N

(close to 1if N.;, small, i.e. small contribution of NETF)

£
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Test with Lorenz-96 Model (ensemble size N=50)

Ensemble size N=50

RMSE: LETKF N_=50 - Obs. error=Gauss RMSE: LNETF N_=50 - Obs. error=Gauss
1.9 1.9
1
1.8 1.8
0.95 1.7 17
é 0.9 16 :O: 1.6
8 15 8 09 15
Poss 2
= 1.4 = 1.4
GEJ’ 08 09-’,0 .85
e - 1.3 ..9 1.3
0.75 1.2 1.2
11 1.1
0.7
1 1
4 5 6 7 8 9 10 12 234567809
min=1.357 support radius min=1.497 support radlus
RMSE: hybrid HSync N_=50 - adaptive v RMSE: hybrid HNK N_=50 - adaptive v RMSE: hybrid HKN N,=50 - adaptive v
1.9 .
1.8 .
0.95 1.7 0.95 0.95 .
S 09 65 009 S 09 :
[&] [&] (&)
& 15 8 R .
2085 20.85 2085
@ 1.4 E’ § .
§ 0.8 13 § 0.8 § 0.8 '
0.75 1.2 0.75 0.75 .
1.1 .
0.7 0.7 0.7
1
4 5 6 7 8 9 10 12 14 16 4 5 6 7 8 9 10 12 14 16 4 5 6 7 8 9
min=1.302 support radius min=1.141 support radius min=1.342 support radlus
4% improvement 16% improvement 1% improvement
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Test with Lorenz-96 Model (ensemble size N=50)

Ensemble size N=50 All hybrid variants improve estimates
RMSE: LETKF N_=50 - Obs. error=Gauss Compared to LETKF & NETF

Dependence on forgetting factor &
localization radius like LETKF

-
-
o

[ J

o
©
a

o
©

Similar optimal localization radius

forgetting factor
o o
o &

-
w
[ J

Largest improvement for variant HNK
N (NETF before LETKF)

I
N
3

0.7
1 . .
4 56 7 8 9 10 12 14 16 °
A8 O T B N Currently testing in a larger model ...
RMSE: hybrid HSync N_=50 - adaptive v RMSE: hybrid HNK N_=50 - adaptive v RMSE: hybrid HKN N,=50 - adaptive v
1.9
1 1
1.8
0.95 1.7 0.95
§ 0.9 1.6 § 0.9
[&] [&]
B 15 8
20.85 20.85
% 1.4 ':g
S o8 s 508
0.75 1.2 0.75
1.1
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4 5 6 7 8 9 10 12 14 16 ! 4 5 6 7 8 9 10 12 14 16 4 5 6 7 8 9 10 12 14 16
min=1.302 support radius min=1.141 support radius min=1.342 support radius
. o/ ; o/
4% improvement 16% improvement 1% improvement
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Applications

*
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Assimilation effect on Temperature (September 2012)

RMS (root-mean-square) deviation
Assimilation (analysis) Assimilate surface
TR temperature each 12 h

, Compare assimilated

. estimate with assimilated
surface temperature data
(monthly average)

T e we e e e e = Raduce RMS deviation and
Mean deviation (observation — model) _ :
L . mean deviation (bias)
Free run Assimilation (analysis)

TR N®

]

= necessary effect
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Improving forecasts DeMarine‘:D

Impact of Assimilation for temperature forecasts
(North & Baltic Seas)

RMS error evolution
1 ‘

Model without DA
LSEIK forecas t

— — — LSEIK analysis
s 120h LSEIK forecast]

0.9

0.8
0.7

O
5

0.6

JA N

Il Il Il Il Il
16/10/07 17/10/07 18/10/07 19/10/07 20/10/07 21/10/07 22/10/07
date

« Very stable 5-days forecasts

« At some point the improvement might break down due to dynamics

S. Losa et al., J. Mar. Syst. 105-108 (2012) 152-162 @ NV/



Longe-range effect

Example: Assimilate satellite sea
surface height data (DOT)

Reduce difference to assimilated Improve also temperature
data (necessary) at 2000m depth

1.00
0.75
0.50
0.25
0.00
-0.25
—-0.50
-0.75
—1.00

s s - i
0° 60°E 120°E 180° 120°W 60°W

‘-

T 60°W

0° 60°F 120°E  180° 120°W

DOT Difference (Altimetry - ASSIM-F)

60°N SRS © o gl o A

1.00

e 0.75
30°N e e o RO 0.50
‘ 0.25
0 L, 0.00
-0.25
300°8 [t - —-0.50
7 -0.75
60°S x X e S Ay -1.00
60°E 120°E 180° 120°W 60°W

Androsov et al., J. Geodesy, (2019) 93:141-157 @ ANI



Bias Estimation

Example: Chlorophyll bias of a

: _ L thmic bi ,
biogeochemical model ogarithmic bias estimate

April 15, 2004

60 - 0.8

Bias = systematic errors o
0.4

* un-biased system: {0z

random fluctuation around true state
4-0.2

0.4

i 06
' 08
1

30 60 90 120 150 180-150-120 -90 -60 -30 0 30

» biased system:
systematic over- and underestimation
(common situation with real data)

» Bias estimation:
Separate random from systematic
deviations

Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102 @ NVI



Biogeochemistry: Coupled data assimilation effect

Surface oxygen mean for May 2012 (as mmol O / m3)

Free run - Assimilation Free — Assimilatio

_‘_‘\k

NP KRN S 450 Sw S
65°N " ':'\i 65°N s J:L\\ Y o }:L\\ NRERY
W \ .I ‘\\ \ " ‘\\
IR L XL o R NS o RO O
B Tk X N < :\\ Y Ry, D S0 N m\ A
5 it » AR A 400 c. . B AR
N P 5 ; ) 3 3 7e 8
60°N | [l ™
S
S
350 —
<)
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S
55°N
y, i 300
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o N \jﬁwﬁf < \w\«ﬂ'wf e TG \Am#
= H X “\N-/’f Dy .ﬁ\\ ‘ \’V/ D,
0° 5°E  10°E  15°E  20°E  25°E  30° 0 S°E  10°E  15°FE  20°E  25°E  30°F 229 0° S°E 10 15°FE 20°FE  25°F  30°F

Coupled data assimilation case: physics and biogeochemistry
« Assimilate satellite sea surface temperature observations

« Assimilation directly changes Oxygen and other biogeochemical
variables (strongly-coupled assimilation)

20

10

-10

-20

mmol O/m3

#*
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Assimilation into coupled model: AWI-CM

Atmosphere Ocean
\ OASIS3-MCT A0
X fluxes ‘ i 3
S i3 smadtatin —— mo__g
eIl C—— z
R oceanlice state -
Atmosphere Coupler library Ocean
« ECHAMG « OASIS3-MCT « FESOM
« JSBACH land * Includes seaice

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for
cross-domain assimilation (“strongly-coupled”)
saESM

b3
-- .. Advanced ) m,
A\ | /4 E?;;EEWSVS“*"‘ Modelling Lars Nerger — Ensemble Data Assimilation @



Assimilation Effect on Surface Temperature

Assimilate subsurface temperature profile data

Difference between model simulations and observations
‘ Assimilation 4/30/2016 - ssimilation

~ - =

dEETS X4 Ty QiTang @AW

-5 -4 -3 -2 -1 0 1 2 3 4
Temperature, °C

« Also subsurface temperature is improved

Current work
» Assess effect on atmosphere

« Final aim: strongly-coupled assimilation .
(e.g. assimilate oceanic observation into atmosphere) @ N\”



Software

*
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Components of an Assimilation System

Parallel

7_)? ) ] /_ Data
Assimilation

Framework

single
program Ensemble Filter
Initialization
analysis
state ensemble transformation state
time Core of PDAF observations
Mc;del Observations
initialization mesh data quality control
time integraton | [ obs. vector
post processing obs. operator
obs. error
modify parallelization
+«—— Explicit interface
<+ - - = |Indirect exchange (module/common)

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ MI/



Parallel

PDAF: A tool for data assimilation PO AL Baton

Framework

PDAF - Parallel Data Assimilation Framework

a program library for ensemble data assimilation
provide support for parallel ensemble forecasts

provide fully-implemented & parallelized filters and smoothers
(EnKF, LETKF, NETF, EWPF ... easy to add more)

easily useable with (probably) any numerical model
(applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, ...)

run from laptops to supercomputers (Fortran, MPI & OpenMP)
first public release in 2004; continuous further development

~370 registered users; community contributions

Open source:
Code, documentation & tutorials at

http://pdaf.awi.de

el

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ AN/



Offline coupling — separate programs

Model Assimilation

program

Initialize Model

generate mesh @
Initialize fields
3

—><Do i=1, nsteps)—» read ensemble files

Time stepper

!
/\ analysis step generic

3
consider BC write model
Consider forcing restart files

1|

!
Post-processing

For each ensemble state » Read restart files (ensemble)
 |nitialize from restart files « Compute analysis step
* Integrate * Write new restart files

 \Write restart files

£
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Offline coupling - Efficiency

Offline-coupling is simple to implement Model Assimilation

but can be very inefficent program

Initialize Model

Example: s
Timing from atmosphere-ocean [readereembiaties |
" | analysis step |

- Ti t

ot caly maiySis step: EE] | N rme

with daily analysis step: | restart fles

— Gom

| Post-processing | @

Model startup: 95s

Integrate 1 day: 28 s>overhead
Model postprocessing: 14 s

Analysis step: 1s

Restarting this model is ~3.5 times
more expensive than integrating 1 day

=> avoid this for data assimilation

£
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Extending a Model for Data Assimilation

Parallel

7_)? ) ] /_ Data
Assimilation

Framework

Model

single or multiple
executables

revised parallelization enables

Initialize parallel.

!

Initialize parallel.

{

Initialize Model
Initialize coupler
Initialize grid & fields

Init_parallel_PDAF

v

:
—»CDo =1, nsteps)—»

Initialize Model
Initialize coupler
Initialize grid & fields

+

Time stepper
in-compartment step
coupling

Init_ PDAF

!

v
—( Do i=1, nsteps ——*
¥

{

Post-processing

ensemble forecast

Time stepper
in-compartment step
coupling

v

Assimilate_ PDAF

E 2

{

Post-processing

-

Finalize_PDAF

Lars Nerger — Ensemble Data Assimilation

Extension for
data assimilation

plus:
Possible
model-specific
adaption

QNI



Augmenting a Model for Data Assimilation

Couple PDAF (Parallel Data Assimilation Framework) with model
« Modify model to simulate ensemble of model states
* Insert correction step (analysis) to be executed at prescribed interval

 Run model as usual, but with more processors and additional options
» 4 Observation
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PDAF interface structure

Interface routines call PDAF-core routines

PDAF-core routines call case-specific routines

provided by user (included in model binding set)

User-supplied call-back routines for elementary operations:

= field transformations between model and filter

» observation-related operations

User supplied routines can be implemented
as routines of the model

(for MITgcm: Fortran-77 fixed-form source code)
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Parallel

PDAF: User-friendliness P A L o

Framework

Assumption: Users know their model
=?» let users implement assimilation system in model context

For users, model is not just a forward operator
-?» let users extend their model for data assimilation

Keep simple things simple:

» Define subroutine interfaces to separate model and assimilation
based on arrays

» No object-oriented programming
(most models don’t use it; most model developers don’t know it;
not many objects would be involved)

» Users directly implement observation-specific routines
(no indirect description of e.g. observation layout)

Lars Nerger — Ensemble Data Assimilation @ AN/



Parallel

Example: Value of Efficient Software P AL Rimiston

Framework

Adaptive Localization (Kirchgessner et al, 2012)
« Original study done with small models (Lorenz-96, shallow water)
- Paper reviewer asked to apply it with full-scale forecast model
« FESOM with PDAF was fully coded without adaptivity
» Update PDAF library (just when recompiling) } 1 day!

» Adding adaptivity routine and running experiment

Error-reduction of sea surface height Localization radius [meter]
0.62 ‘ ‘ ‘ ;

—+— fixed 1000km
0.61 —— fixed 500km |1
—— variable

0 50 100 150 200 250 300 350 400
day

£
Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175 @ ANI



Summary

Ensemble data assimilation

 Quantitative combination of model and
observational data

* Improve observed and non-observed fields,
fluxes, parameters, and predictions

PDAF simplifies the implementation and application of
data assimilation

» Get faster to the application and results

Tomorrow’s Tutorial:
* Implementation of PDAF with simple model
« Experiments with an ensemble Kalman filter
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