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ARTICLE

A brain-wide functional map of the serotonergic
responses to acute stress and fluoxetine
Joanes Grandjean 1,2,3, Alberto Corcoba4, Martin C. Kahn 5,6, A. Louise Upton6,7, Evan S. Deneris8,

Erich Seifritz2,5, Fritjof Helmchen2,9, Edward O. Mann 6,7, Markus Rudin2,3,10 & Bechara J. Saab2,5,11

Central serotonin (5-HT) orchestrates myriad cognitive processes and lies at the core of

many stress-related psychiatric illnesses. However, the basic relationship between its brain-

wide axonal projections and functional dynamics is not known. Here we combine optoge-

netics and fMRI to produce a brain-wide 5-HT evoked functional map. We find that DRN

photostimulation leads to an increase in the hemodynamic response in the DRN itself, while

projection areas predominately exhibit a reduction of cerebral blood volume mirrored by

suppression of cortical delta oscillations. We find that the regional distribution of post-

synaptically expressed 5-HT receptors better correlates with DRN 5-HT functional con-

nectivity than anatomical projections. Our work suggests that neuroarchitecture is not the

primary determinant of function for the DRN 5-HT. With respect to two 5-HT elevating

stimuli, we find that acute stress leads to circuit-wide blunting of the DRN output, while the

SSRI fluoxetine noticeably enhances DRN functional connectivity. These data provide fun-

damental insight into the brain-wide functional dynamics of the 5-HT projection system.
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The central nervous system (CNS)’s expansive serotonergic
(5-HT) circuit is amongst the most versatile and important
neurotransmitter systems for emotional and cognitive

processing. Primarily originating within the phylogenetically
ancient dorsal raphe nucleus (DRN), a small brainstem nuclei
that projects promiscuously throughout the brain, the CNS 5-HT
circuit influences mood, memory, circadian rhythm, feeding,
feeling of reward and stress coping, and is strongly implicated in
the aetiology and treatment of many prevalent neurological dis-
orders, especially those related to stress1–4. However, much
remains unknown about its basic character, particularly with
respect to its functional connectivity. For example, are the neural
correlates of hemodynamic responses from 5-HT signalling the
same as those for glutamatergic signalling? Does the anatomical
architecture of the 5-HT circuit correlate with its functional
connectivity? How do separate stimuli that lead to elevated
synaptic 5-HT, e.g. selective serotonin reuptake inhibitor (SSRI)
and acute stress, affect the elicited circuits?

To address these outstanding questions, we used optogenetic
combined with functional magnetic resonance imaging (ofMRI)5

to establish a whole-brain visualisation of the central 5-HT
functional circuit in the live mouse. We find the functional map
to be indicative of bidirectional circuit regulation, and its func-
tional connectivity to better match regional expression of certain
5-HT receptor subtypes than 5-HT neuron projection density. In
addition, we find that delta oscillations, more so than gamma
oscillations or multi-unit activity (MUA), best mirror hemody-
namic changes associated with optogenetically evoked 5-HT
release across the cortex. When examining the circuit following
either acute stress or administration of fluoxetine, we observe
opposite effects on DRN 5-HT functional connectivity, providing
an elegant explanation at the circuit level for the behavioural
divergence of these stimuli. Our observations underscore the
power of ofMRI for characterizing large brain networks origi-
nating from subcortical nuclei, as well for analysing effects of
acute stimuli on neuromodulatory systems.

Results
A whole-brain functional map of the DRN 5-HT circuit. To
identify and control the activity of midbrain neurons expressing
Pet-1, a gene critical for 5-HT neuron development and function,
we injected a Cre-inducible viral construct encoding
Channelrhodopsin-2 fused to enhanced yellow fluorescent pro-
tein (ChR2-eYFP) into the DRN of ePet-Cre+/− mice (Fig. 1a). In
these ePetDRN::ChR2-eYFP mice, 96.1 ± 0.8% (mean ± 1 standard
deviation) of ChR2-expressing DRN neurons co-stained for 5-
HT, demonstrating highly specific targeting of serotonergic
neurons, with 75.4 ± 5.4% of 5-HT-immunopositive neurons
coexpressing ChR2-eYFP (n= 3 mice; Fig. 1b, c, Supplementary
Figure 1). While no ChR2-eYFP-positive cell bodies were found
outside the DRN (Fig. 1b, c), axons co-expressing ChR2-eYFP
and 5-HT were found terminating in the neocortex (Supple-
mentary Figure 2), thalamus (Supplementary Figure 3), amygdala
(Fig. 1d; Supplementary Figure 4), dorsal hippocampus (Fig. 1e;
Supplementary Figure 5) and striatum (Supplementary Figure 6).
Consistent with earlier reports, these data highlight the structural
substrate by which midbrain-derived serotonin neurons could
modulate nearby and distant brain regions2. To ascertain the
efficacy of the opsin, we performed electrical recordings during
blue light illumination in vitro and found neurons stimulated
with a 5 ms pulse remained faithful to a 20 s, 20 Hz stimulus train,
even in the presence of anaesthetic (Fig. 1f–i, Supplementary
Figure 7). This paradigm was found to maximise spiking recorded
within the DRN while minimizing duty cycle. Block lengths was
optimized for ofMRI detection to correspond to 10 volumes in

our acquisitions. Importantly, the paradigm was selected to
induce contrasting level of activity relative to baseline and may
not reflect DRN physiological activity.

To determine whether the activity of serotonergic neurons
affect target structure cell activity, we combined in vivo multiunit
recordings with photostimulation in 5 ePetDRN::ChR2-eYFP mice
and 2 WTDRN::ChR2-eYFP control mice anaesthetised using an
anaesthesia regime optimised for small animal functional
magnetic resonance imaging (fMRI) (0.5% isoflurane+ 0.2 mg/
kg/h s.c. medetomidine)6. In ePetDRN::ChR2-eYFP mice, the firing
rate of DRN neurons increased in response to blue light
stimulation (Fig. 1j, k). Putative unit waveform subtypes did
not exhibit any significant differences in the probability of spiking
in response to single low-frequency light pulses (Kruskal–Wallis
= 0.76, p= 0.68) or 20 Hz pulse trains (Kruskal–Wallis= 1.51,
p= 0.47), indicating that photostimulation recruited a range of
DRN 5-HT neuron subtypes with differing intrinsic electro-
physiological properties (Supplementary Figure 8). We did
however note that putative units in the intact DRN never fired
at or close to 20 Hz in vivo (Supplementary Figure 8c), despite the
fact that patched 5-HT cells in acute midbrain slices remained
faithful to the train up to 20 Hz (Fig. 1h). While over-clustering
could lead to an underestimation of the individual unit firing
rates, even the MUA recorded at the most active electrodes in the
DRN in vivo did not achieve rates of 20 Hz during light train
stimulation. This profound contrast between in vitro and in vivo
fidelity at the single neuron level may be the result of local or
distal feedback regulation within the intact DRN 5-HT circuit.
The functional role of the different 5-HT neuron subtypes
identified, in particular how they elicit different circuit elements,
remains to be elucidated.

To measure brain-wide responses to DRN serotonergic
photoactivation, we recorded changes in cerebral blood volume
(CBV) during optogenetic stimulation (ofMRI) using a block
protocol consisting of 6 × 20 s, 20 Hz stimulus trains delivered
either every 1 min or every 3 min (Fig. 2a). The acquired images
presented minimal motion (mean frame-wise displacement 0.021
± 0.008 mm) and geometric distortions, despite the implant
(Supplementary Figure 9a–c). The method was preferred over
blood oxygenation level dependent contrast (BOLD) due to
enhanced detection power, suppression of large vessel signal and
reduced susceptibility artefact (Supplementary Figure 9a, f, g)7.
Importantly, CBV contrast leads to a seven-fold increase in
response amplitude relative to that recorded with BOLD. In both
stimulus paradigms, we found that CBV increased within the
DRN during illumination, while projection areas including the
medial prefrontal cortex predominately exhibited a tightly
stimulus-locked CBV decrease, followed by an immediate return
to baseline and rebound overshoot. Interestingly, the amplitude of
the response decreased over the course of the six stimulation
blocks in the projection areas, from 2.6% to 1.7%, but not in the
DRN, suggesting an adaptation to enhanced 5-HT release within
the DRN or projection areas. The shorter inter-block protocol
was adopted to allow the acquisition of several scans within a
single scan session. The CBV response was fitted with a general
linear model (GLM) to facilitate unbiased voxel-wise comparisons
between conditions across the entire brain. Contrast of parameter
estimates (COPEs), representing the regional response amplitude,
were estimated from every voxel using a gamma function model
(Fig. 2b, Supplementary Figure 9d). A second-level comparison
across the whole brain between ePetDRN::ChR2-eYFP (n= 10)
and ePetDRN::eYFP (n= 4) revealed the extent of the elicited
response, including a positive response confined within the DRN,
and a negative CBV response distributed among the hippocampal
formation, cortical subplate and striatum, and isocortex (Fig. 2d).
Illumination in the absence of ChR2 produced no significant
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response, ruling out the possibility of light-induced heating
artefacts (Fig. 2a, Supplementary Figure 9e). Interestingly, there
was spatial overlap regarding the distal CBV response elicited
with optogenetic stimulation with that evoked with chemogenetic
stimulation of the 5-HT DRN neurons8, though the directionality
of the response was opposed, and only optogenetically-induced
responses matched the directionality of acute pharmacological
stimulation of the DRN with a SSRI8,9. This severe discrepancy
between two recently emerged stimulation methods, often
discussed interchangeably in neuroscience research, exemplifies
the potential extreme non-linear effects induced with acute and
selective circuit manipulations10. Indeed, the activity evoked
departs from basal physiological 5-HT firing patterns, which may
explain this discrepancy. This highlights the relevance of intact
whole-circuit visualisation in support of behavioural observations
or other modalities.

DRN photoactivation suppresses cortical neuronal activity. For
fMRI responses in the monkey visual cortex elicited by rotating
polar-transformed chequerboard patterns, a cognitive process

mediated by glutamatergic and GABAergic signalling amongst
networks of pyramidal neurons and interneurons, local field
potentials (LFPs) were found to better estimate the BOLD
response compared to MUA11. This finding suggested that fMRI
hemodynamic signals reflect the input to, and intracortical pro-
cessing within, a specific area rather than its spiking output11.
However, it remains unclear whether this observation can be
generalised to other forms of neuronal communication such as 5-
HT mediated signalling. We therefore performed intracranial
recordings from a variety of cortical regions and compared LFP
and spiking behaviour with the hemodynamic response to tran-
sient photoactivation of DRN 5-HT neurons (Fig. 3a).

Similarly to the glutamatergic response to a behavioural
stimulus11, the 5-HT response to photoactivation represents
synaptic signal integration. Specifically, synchronous with photo-
activation of DRN 5-HT neurons, cells in the frontal, somato-
sensory, motor and anterior cingulate cortex exhibited stimulus-
evoked decreases in both MUA and LFP power that rapidly
returned to baseline upon stimulus termination (Fig. 3b). Wavelet
analysis revealed that delta bands were most affected, gradually
declining in power upon optogenetically-triggered 5-HT release
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in the cortex and returning to baseline upon termination of the
stimulus train (Fig. 3c, d). Changes to LFP power occurred
following a post-stimulus delay of about 5 s. We also observed
that the fractional cortical delta power (Fig. 3e) and the fractional
change in burst frequency (Fig. 3f) were both inversely correlated
with between-subject and regional variance in response amplitude
measured in the same group of animals during ofMRI. The
convolved LFP-derived band power correlated markedly with the
CBV response evoked by 5-HT release (rdelta= 0.75 ± 0.16,
rgamma= 0.24 ± 0.6, Supplementary Figure 10), while no discern-
ible correlations could be established between convolved MUA
signal and CBV (rMUA= -0.1 ± 0.34) for animal- and region of
interest (ROI)-matched recordings.

ofMRI response is independent of projection density. We next
investigated cellular and molecular factors determining functional

connectivity of the DRN 5-HT circuit by comparing the whole-
brain DRN/5-HT hemodynamic maps derived from ofMRI with
the DRN/5-HT neuron projection density maps from the Allen
Institute for Brain Science (AIBS). Prior to this comparison, we
removed white matter structures from the projection maps to
ensure that our analysis focused on 5-HT terminals rather than
fibre tracts (Supplementary Figure 11). Surprisingly, we did not find
significant correlations (Fig. 2d, Supplementary Figure 12a) indi-
cating that the anatomical architecture of the central 5-HT circuitry
as such does not determine the functional consequences of its
activation. These results are consistent with the finding that func-
tional connectivity originating from photoactivated dopamine
neurons of the ventral tegmental area (VTA) does not correlate well
with VTA dopaminergic neuron projection density12, but are in
stark contrast to recent resting-state fMRI observations that indicate
intracortical functional connectivity relationships at a macroscopic
level correlate with intracortical structural connectivity13–15.
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We therefore examined another possible determinant for
regional-variance of hemodynamic responses elicited by DRN
5-HT photostimulation, namely the specific expression patterns
of 5-HT receptors. The 5-HT receptor family is comprised of
both metabotropic and ionotropic sub-types that can be either
excitatory or inhibitory, depending on downstream signalling
cascades and cellular localisation1, and may strongly influence the
net effect of 5-HT release on functional connectivity. We explored
this possibility using a series of additional brain-wide voxel
correlation maps from the best available 5-HT receptor subtype
expression data currently available from the AIBS. Of the 14 5-
HT receptor subtypes listed in the database, we judged 5
expression maps to be sufficiently robust for our analysis
(Supplementary Figure 11); the remaining AIBS maps either
containing strong artefacts or no signal. Significant correlations
emerged between the patterns of 5-HT1F, 5-HT2A and 5-HT2C

receptor density and the hemodynamic response, while

distribution of 5-HT1A and 5-HT1B receptors did not match the
ofMRI response pattern, similar to the comparison with DRN 5-
HT projections (Fig. 2e, Supplementary Figure 12b–f). Since we
were unable to assess all 5-HT receptor subtypes, we cannot
conclude whether these first three receptor subtypes determine
functional connectivity of the DRN 5-HT circuit; nevertheless, 5-
HT1F/2A/2C explain 52.6%, 21.2% and 30.8% of the variance in the
hemodynamic response elicited by DRN 5-HT photostimulation,
respectively. Interestingly, 5-HT1A and 5-HT1B receptors are
autoreceptors expressed either somatodendritically on 5-HT
neurons of the DRN or presynaptically within axon terminals
of DRN 5-HT neurons16,17, while 5-HT1F, 5-HT2A and 5-HT2C

receptors are all expressed post-synaptically18,19. We therefore
conclude that post-synaptic receptor density, compared to
neuroarchitecture, is the rather surprising dominant factor
underlying DRN 5-HT functional connectivity following our
photoactivation protocol. All remaining variance is likely
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governed by indirect poly-synaptic connections, an expected
contribution given other recent fMRI findings15. This finding
may hold for other neuromodulatory systems including dopa-
mine and neuropeptides as well, for which projection density can
be surprisingly sparse in regions that exhibit high levels of
receptor expression. Ultimately, the emerging data depict a
potential level of macro plasticity in neuromodulatory circuits
that could not be attained if neuroarchitecture dominated
neuroconnectivitiy, as has previously been assumed20.

Acute stress occludes the ofMRI response. The DRN represents
an important element of the acute stress response21,22, exempli-
fied by activation of 5-HT neurons and an increase in the synaptic
availability of 5-HT throughout much of the brain following
forced restraint23,24. To determine how functional circuit changes
might be affected by acute stress, we subjected 7 ePetDRN::ChR2-
eYFP mice to a brief immobilisation period immediately prior to
ofMRI and compared the results to 4 ePetDRN::ChR2-eYFP stress-
free controls (Fig. 4a). We found a marked reduction in the he-
modynamic response to DRN 5-HT photoactivation in acutely-
stressed animals versus controls (Fig. 4b, c; Supplementary Figure
13). Moreover, this effect persisted throughout three successive
ofMRI scans (Fig. 4d), indicating that the consequences for DRN
5-HT function elicited by acute stress persisted throughout the
duration of the experiment.

Since the hemodynamic responses were blunted by acute stress
within DRN projection areas as well as the DRN itself, we
normalised the COPEs of projection areas to the COPE of the
DRN to determine whether the functional connectivity of the
DRN 5-HT circuit was affected. No statistical difference between

acutely restrained animals and controls was apparent (Supple-
mentary Figure 14), indicating that following acute stress,
functional connectivity per se is actually not affected.

We presume the global blunting effects of stress on photo-
activation represent a ceiling effect since stress can lead to DRN
sensitisation accompanied by sustained increases in 5-HT release
for up to 24 h25–27. Such a scenario would produce less room for
further inhibition, attenuating the hemodynamic response to
DRN 5-HT neuron photoactivation, which is what we observed
here. The change in response amplitude following restraint
highlights the potential of ofMRI for investigating neurological
implications of salient life experiences. The amplitude of
photoactivation-elicited responses may serve as a measurable
and objective proxy for stress, enabling detailed examination of
procedures that might support stress resilience, such as anxiolytic
agents and behavioural enrichment.

Circuit regulation of DRN 5-HT connectivity by fluoxetine. As
the primary source of 5-HT for the CNS, the DRN is presumed
critical for SSRIs mode of action. However, the mechanism
underlying the effect of SSRIs on the intact DRN 5-HT circuit
remains unclear beyond the knowledge that fluoxetine, like acute
stress, elevates synaptic availability of 5-HT28. We therefore used
ofMRI to study SSRIs by administering a pharmacologically
relevant dose29 of fluoxetine via tail vein infusion during ofMRI
in 9 ePetDRN::ChR2-eYFP mice and compared the results to 4
ePetDRN::ChR2-eYFP non-injected controls (Fig. 5a). Fluoxetine
administration elicited greater response amplitude in the pre-
frontal and cingulate cortex, as well as amygdala and striatum
(Fig. 5b, c, Supplementary Figure 15). The ability to monitor
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Fig. 4 Acute stress occludes photoactivation of the DRN 5-HT circuit. a Experiment schematic. b Second level analysis comparing restraint (n= 7) to
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animals non-invasively with ofMRI is thus expected to reveal the
circuit re-organisation taking place longitudinally and shed light
on currently obscure mechanisms of anti-depressant action.

Discussion
The 5-HT system constitutes the most diverse signalling network
of the CNS and major physiological elements of its circuit char-
acteristics remain unclear. Here we demonstrate the possibility to
visualise the whole circuit in the intact mammalian brain in
conjunction with psychiatric-relevant stimuli. Several surprising
findings emerged from this analysis. First, we observe that pho-
tostimulation of the DRN within ePetDRN::ChR2-eYFP mice
recruits a variety of 5-HT neuronal subtypes distinguished by
their waveforms. Second, this stimulation leads to an increase in
CBV within the DRN that coincides with decreases in CBV
throughout much of the brain, demonstrating that despite the
expression of excitatory and inhibitory 5-HT receptors, the net
effect of 5-HT release in most areas is inhibitory. Third, the
hemodynamic response to photostimulation correlates with LFP
delta oscillations and, like glutamatergic-induced hemodynamic
responses, likely corresponds to synaptic integration rather than
neuronal spiking. Fourth, functional connectivity of the DRN 5-
HT network is rather remarkably uncoupled from its underlying
neuroanatomical architecture, and instead primarily governed by
the far more plastic regional differences in the expression profiles
of post-synaptically expressed 5-HT receptors. Fifth, acute stress
shunts further activation of the DRN 5-HT circuit without
affecting absolute functional connectivity. Sixth, fluoxetine exerts
the opposite effect as acute stress by enhancing DRN 5-HT-
induced suppression of brain activity within restricted regions of
the central 5-HT circuit.

These results help understand basic principles of the DRN 5-
HT circuit, providing novel insights on the neural correlates
underlying the hemodynamic responses that follow DRN 5-HT
neuron activation. The widespread inhibition observed here
contrasts with the subtle behaviour response mediated with 5-HT
DRN photostimulation, e.g. inhibition of spontaneous locomotor
activity30, inhibition of somatosensory activity31, despite com-
parable paradigms. This apparent discrepancy between visualized
neuronal activity and behavioural outcome should be explored in
greater depth. For instance, ofMRI would provide a crucial tool to
explain behavioural variability in a population of animals.
Additionally, these results provide a potential neurophysiological
explanation for the divergent outcomes triggered by acute stress
and acute fluoxetine administration, despite the fact that both of
these acute stimuli increase 5-HT synaptic availability. The most
important discovery however may be that post-synaptic receptor
expression density, and not DRN 5-HT neuroarchitecture, is the
primary determinant of functional connectivity within the central
5-HT system. Our study therefore highlights the existence of a far
more extended functional connectome relative to what structural
connectivity of the DRN alone would indicate.

Methods
Experimental subjects. All experiments and manipulations conformed to the
guidelines set by the Animal Care Commission of Switzerland and were covered
under the authority of animal permit ZH263/14 belonging to B.J.S. and in accor-
dance with the UK Animals (Scientific Procedures) Act 1986. All possible measures
were taken to ensure minimal pain and discomfort. B6.Cg-Tg(Fev-cre)1Esd/J (ePet-
cre mice; RRID:IMSR_JAX:012712) males and females, 8–16 weeks of age, were
used in this study. ePet-cre Genotyping was complete using forward primer
AAAATTTGCCTGCATTACCG, reverse primer ATTCTCCCACCGTCACG and
an annealing temperature of 57 °C.

Short-block: 20 s, 20 Hz, 5 ms pulse, 1 min ISI
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hippocampal cortex, as well as amygdala and parts of the striatum, in the fluoxetine group. Colour scale= t-statistic (non-parametric test, p≤ 0.05, cluster
corrected), red-yellow colour bar indicating significance for fluoxetine < control comparison; see Supplementary Figure 15 for all brain slices. c COPEs
comparing fluoxetine (yellow) and control (red) confirm an augmentation of the decreased response amplitudes in CBV within regions highlighted by the
voxel-wise analysis (*p < 0.05, FDR corrected). Bound of box and centre line represent 25th, 50th, 75th percentiles, whiskers represent 1.5*inter-quartile
range

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08256-w ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:350 | https://doi.org/10.1038/s41467-018-08256-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Histology. Fluorescent imaging: Animals were anesthetized with a lethal cocktail of
ketamine (120–150 mg kg−1) and medetomidine (0.5–1.0 mg kg−1) administered i.
p. and then perfused with 10–15 ml ice-cold PBS followed by 10–15 ml ice-cold 4%
paraformaldehyde (PFA) in phosphate buffered saline (PBS). The whole brain was
then removed and stored in 4% PFA in PBS at 4 °C for at least 24 h. Brains were
sectioned on a vibratome (Leica, Germany), permeabilized with 0.1% Triton-X in
PBS for 10 min, processed according to target of interest (Supplementary Table 1)
and mounted in VectaShield medium (Vector Laboratories, CA, USA) according to
manufacturer instructions. Fluorescence was captured using a Leica DFC365FX
camera mounted on a Leica M165F6 wide-field fluorescent stereoscope (Leica,
Germany), or confocal microscope (Leica SP8, or Olympus Fluoview 1000).

Surgical procedures. Virus delivery: The surgery area and equipment were ster-
ilized with 70% ethanol, a bead sterilizer and/or autoclaving where possible. Sub-
jects were anesthetized with 3% isoflurane in an anaesthetic 12 cm3 chamber. Once
fully anesthetized, subjects were weighed and transferred to a stereotaxic apparatus
by gently fixing the head with ear bars and softly clamping the open snout on a
nose piece that provided continuous isoflurane as anaesthetic blended with oxygen
and air to a minimum of 30% oxygen. Throughout surgery, subjects overlaid a
feedback-controlled heating pad receiving information from a lubricated rectal
probe to assess core temperature (maintained between 35 and 37 °C). Subject
breathing was continually monitored and anaesthesia regulated accordingly. The
subject’s eyes were protected with Vaseline or vitamin A tear gel. Betadine oint-
ment as aseptic and lidocaine/prilocaine as a topical analgesic (EMLA cream) were
applied topically to the precise incision area on the scalp. An s.c. injection of
Meloxicam (Metacam) analgesic was given in sterile saline (0.5 mg ml−1; 5 µl g−1)
using a 30G needle. After testing for analgesia by gentle tail and/or hind paw pinch,
a sharp scalpel was used to expose the skull. All membranes were pushed aside and
the skull surface cleaned with mild hydrogen peroxide (not exceeding 10%) to
remove remaining membranes and bleach the connective tissue, enabling clear
visualization of cranial reference points. A remote, pedal-driven drill affixed to the
stereotaxic manipulator was next used to create a 400 µm diameter craniotomy at
coordinates −0.6 mm from Lamda, 1.0 mm from midline. A stainless steel 33G
infusion cannula (Plastics One, WV, USA) affixed to the manipulator and con-
nected to a 50 µl gas-tight syringe (Hamilton, Switzerland) via infusion tubing
(Plastics One, WV, USA) and loaded with AAV packaged with EF1a.DIO.hChR2
(H134R)-eYFP.WPRE.hGH (AV-1-20298P; Penn Vector Core, PA, USA) was then
lowered at 20° off the normal axis, 3.6 mm beyond the brain dura. Infusion of 1.0 µl
AAV ensued over the course of 10 min (0.1 µl min−1). An additional 5 min were
then allowed for diffusion before the infusion cannula was gradually removed.
Finally, the skin was pulled over the skull and sutured with a sterile curved needed
and non-absorbable sutures. Betadine and EMLA cream were again applied to the
now closed surgery area and the subject was removed from the apparatus, weighed
and placed in a clean and heated recovery chamber with close monitoring until
behaving normally. The subjects were then returned to their home cage (group
housed) and monitored at least once a day for 3 days. If any measure from the
postoperative monitoring sheet received a score greater than 1, an additional dose
of general analgesic (Metacam in sterile saline; 0.5 mg ml−1; 5 µl g−1; s.c.) was
administered. Non-absorbable sutures typically grew out from the skin within
2 weeks, and if not, were removed during subsequent optical cannula implant.

Optical implants: Implantation of fMRI-friendly optical fibre cannulae occurred
1–2 weeks post-viral infusion and at least 1 week prior to ofMRI. Preparation of the
surgery area and initial surgery steps proceeded identically to viral infusions (see
‘virus delivery’ above). Once the skull was exposed and membranes cleared, a
600 µm hole was drilled into the position for fibre implantation, directly on midline
at Lamda −0.6 mm. A 400 µm optic fibre extending 3.3 mm beyond the fibre casing
obtained from Doric Lenses (Quebec, Canada) was gently lowered until the casing
became flush with the skull. Any bleeding was cleaned away with the finely-twisted
end of a sterile cotton swab. The skull was then re-hydrated by applying PBS with a
cotton swap. After providing about 30 s for the skull to hydrate, a layer of etching
reagent (iBond Total Etch, Heraeus Kulzer, Germany) was applied to the skull
using the manufacturer’s accompanying applicator. After 30 s, another layer of
etching reagent was applied and then fixed with 15 s illumination with a 6 mW blue
LED (Elipar S10, 3M, Switzerland). Optic cannulae were then cemented in place
using light-curing dental cement (Tetric EvoFlow, Ivoclar Vivadent, NY, USA),
providing a minimum of 3 mm of unobstructed cannula above the cement layer to
enable coupling to the optic fibre. Finally, the cannula holder was raised away from
the fibre and the skin fixed to the base of the cement with veterinary tissue glue
(Surgibond, Eisenhut-Vet, Switzerland). Finally, animals were allowed to recover in
an identical manner reported above (see ‘virus delivery’).

Craniotomies for acute electrophysiological recordings in vivo: Subjects
containing optic implants targeting the DRN were anesthetized using 3% isoflurane
in a 30%-minimum oxygen/air blend, and transferred to a mouse stereotaxic frame
providing continuous circulating isoflurane at roughly 2% in the same gas vehicle
mixture as required according to the animal’s breathing. To provide access of a
recording electrode to 5-HT neurons of the DRN, dental cement was progressively
removed using a foot-powered drill on the right side of the optical cannula until the
skull was exposed. For subjects in which dual recordings were to be made, the
cement overlaying the projection ROI was also removed in an identical manner.
Craniotomies were performed by removing the skull overlaying the cortex lateral to

the DRN using the drill at low speed to gently grind off successive layers of a
circle encasing the desired region. Once the skull at the circle’s edge was completely
removed, fine tip forceps were used to lift away the remaining plate of cortex,
and the dura was punctured and removed with the same tool. Finally, anti-
coagulate sponge fully-hydrated with room temperature PBS was added over the
exposed brain. Once all craniotomies were complete, a bolus of medetomidine
(0.1 mg kg−1) was delivered s.c., and after 5 min, the concentration of isoflurane
was reduced to 0.5% and medetomidine was continuously delivered at (0.2 mg kg−1

per hour) s.c., in a manner identical to the ofMRI experiments.

Electrophysiology. Patch-clamp recordings in vitro: Mice were decapitated under
isoflurane anaesthesia, and the brains removed in ice-cold oxygenated cutting
solution, containing (in mM): N-methyl d-glucamine (135), KCl (1), CaCl2 (0.5),
MgCl2 (1.5), KH2PO4 (1.2), choline bicarbonate (20), D-glucose (10), with pH
adjusted to 7.4 with HCl (resulting in a final [Cl-] of ~145 mM). Coronal slices
(350 μm) were prepared using a Vibratome VT1200S (Leica, Germany), transferred
to an interface recovery chamber filled with artificial cerebrospinal fluid (aCSF)
containing (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 1.2 MgSO4, 1 CaCl2, 26
NaHCO3 and 10 glucose, with pH 7.2–7.4 when bubbled with carbogen gas (95%
O2 and 5% CO2). The slices were maintained at 32–34 °C for at least 30 min, before
being allowed to cool to room temperature. For recordings, slices were transferred to
a submerged chamber, and superfused with carbogenated aCSF heated to 32–34 °C
at 2–4 ml min−1. Neurons were visualized under infrared oblique illumination
(Olympus, BX51WI, 40× water-immersion objective). Whole-cell current-clamp
recordings were performed with glass pipettes (5–8MΩ), pulled from standard
borosilicate glass, and filled with a pipette solution containing (in mM): 110
potassium-gluconate, 40 HEPES, 2 ATP-Mg, 0.3 GTP, 4 NaCl and 4% biocytin (wt/
vol) (pH 7.2–7.3; osmolarity 280–290 mosmol l−1). Recordings were acquired using
a Multiclamp 700B amplifier (Molecular Devices), and digitised using an ITC-18
A/D board (Instrutech). Blue light was delivered via a galvanometer-based movable
spot illumination system coupled to the epifluorecscence port of the microscope
using a single mode fibre (473 nm, 5–25 ms, UGA-40, Rapp OptoElectronic). Sti-
mulation and recordings were controlled via custom-written procedures in Igor
Pro (Wavemetrics). Isoflurane was dissolved in an air-tight container of aCSF using
conditions previously shown to induce a final concentration comparable to 1 MAC
for C57Bl/6 mice.

Multielectrode recordings and optogenetic activation in vivo: Recordings were
performed using single-shank 16 site silicon probes, with electrode spacings of
25 µm, 100 µm (Neuronexus Technologies Inc., MI, USA) or 200 µm (Cambridge
NeuroTech, UK). Recordings from the dorsal raphe were performed with 25/
100 µm spaced electrodes, with recordings from target structures performed using
100/200 µm spaced electrodes. Each shank was gently lowered progressively to the
desired coordinates (Supplementary Table 2). Recordings from multielectrode
arrays were performed using Brainware (Tucker Davis Technologies, Alachua, FL,
USA), with traces for detecting multiunit activity band-pass filtered between 0.3
and 3 kHz and digitised at 25 kHz, and traces for LFP recordings low-pass filtered
at 1.9 kHz, digitised at 25 kHz, and down-sampled by a factor of 8 for file storage.
The source of blue light was a 473 nm laser (Thorlabs, Germany; selected for ease
of transport) used to deliver 4–40 mW of power (Fig. 1I). Laser power was
controlled with the bench-top unit, and verified with a light meter (PM 160,
Thorlabs, Germany). Pulse duration, inter-stimulus and inter-train intervals were
controlled with in-house software designed in LabView (National Instruments,
Switzerland). At the end of the recording session, the animal was overdosed with
sodium pentobarbitone and perfused with 10–15 ml ice-cold PBS followed by
10–15 ml ice-cold 4% PFA in PBS.

Analysis of electrophysiological data: Data were analysed using custom-written
procedures in Igor Pro (Wavemetrics). Extracellular spikes were detected as signals
exceeding 5 standard deviations of the noise. For recordings from the dorsal raphe
using 25 µm spaced linear probes, an adapted spike sorting procedure32 was used to
explore whether neurons displaying specific spike waveforms were selectively
recruited by optogenetic stimulation. Briefly, spike metrics were converted into z
scores, over-clustered using an in-built k means algorithm, and progressively
aggregated if the intercluster distance was <2.5 and merging did not produce
violations of refractory period of 2 ms. Analysis was first performed for spikes
which could be observed on 2 channels (stereotrode data), and subsequently on the
residual single channel spikes, with auto-correlation and cross-correlation plots
used to validate the clustering procedure. As several waveform clusters appeared to
exhibit rapid adaptation during optical trains, clusters containing >50 spikes were
included for subsequent analysis. Spike metrics from the average waveform for
each cluster were used to identify different waveform types via a k means
algorithm. This clustering procedure is likely to be conservative, and underestimate
the firing rate of individual neurons, but was deemed sufficiently robust to detect
any bias in optogenetic recruitment.

Significant differences in spiking behaviour were examined with a Kruskal–
Wallis test followed by Dunn’s post-hoc comparison test. Statistics are reported for
combined analysis of stereo and single channel clusters, but the same pattern of
statistical significance was also observed for stereo clusters alone.

Functional magnetic resonance imaging. Animal preparation: Animals were
anesthetized with isoflurane (induction 3%, preparation 2%) in a 20/80% O2/air
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mixture. Animals were positioned on a MRI-compatible cradle equipped with a
face mask, rectal thermometer and adjustable warm water flowing within the
support. Animal temperature was kept at 36.5 ± 0.5 °C throughout the experiment.
A cannulae was placed in the tail vein to administer agents. A s.c. line was placed
on the animal flank to administer complementary anaesthetic (Dormitor, mede-
tomidine hydrochloride; Pfizer Pharmaceuticals, UK). After animal positioning, a
bolus of medetomidine was injected s.c. at 0.1 mg kg−1. After 5 min post-bolus,
isoflurane was reduced to 0.5% at the initiation of continuous infusion of mede-
tomidine was initiated (0.2 mg kg−1 per hour) to maintain the sedation for the
remainder of the scanning session. For CBV fMRI experiments, the paramagnetic
iron oxide nanoparticle-based intravascular contrast agent Endorem® (Laboratoire
Guerbet SA, France) was injected at a dose of 30 mg kg−1 Fe, and given 10 min to
reach steady-state prior to imaging.

MRI: Functional MRI was performed on a 7 T Pharmascan scanner (Bruker
BioSpin MRI, Ettlingen, Germany), operating at 300MHz. A custom-built transmit-
receive surface coil was positioned on the head of the animal. A light fibre connected
to a laser (LuxX® 488-60, Omicron, Germany) was positioned through the coil and
attached to the zirconia fibre insert on the mouse head with a zirconia sleeve.
Images acquisition was performed with Paravision 6 software. High-resolution
anatomical images were acquired using a gradient echo FLASH sequence to serve as
references with repetition time (TR) 1500ms, echo time (TE) 1.97 ms, flip angle
(FA) 50°, matrix size (MS) 120 × 120, field of view 20 × 17.5 mm, slice thickness
0.5 mm, slice gap 0.15mm, 14 slices. CBV fMRI was acquired with multi-shot
gradient echo EPI using the same geometry as the anatomical image, 2 segments, TR
1000ms. TE 5.6 ms, FA 90°, MS 64 × 64, bandwidth 250,000 Hz, 360 or 720
repetitions for a total duration of 12 and 24 min, corresponding to the short-block
(Fig. 2a) and long-block protocol, respectively. The echo time was changed to 15ms
for BOLD fMRI. Correction for magnetic field inhomogeneity was performed with
Mapshim using an ellipsoid ROI covering the whole brain. A trigger device was used
to control laser onset with respect to the fMRI scan. Laser power was controlled via
the accompanying Omicron software. Laser stimulation was performed with
6 blocks of 20 s ON and 40 s OFF for 12 min scans (short-block protocol), and 20 s
ON and 160 s OFF for 24min scans (long-block protocol), and controlled via an in-
house LabView program (National Instruments, Switzerland). Conditions: Short
CBV scans (12min) were performed in a series of 3 per session: (a) 3 scans with
laser power set at 100%, used as a control group for the subsequent analysis, (b)
3 scans with laser power set at 100%, 66% and 33% in varying order, (c) 1 baseline
scan, i.v. administration of Fluoxetine (4.5 mg kg−1 29), 2 scans post Fluoxetine, (d)
60min pre-scan animal restrain, 3 scans post restrain.

Data processing: Data processing was performed with FSL (5.0.8, https://fsl.
fmrib.ox.ac.uk/) and AFNI (2011_12_21_1014, https://afni.nimh.nih.gov/) and
BROCCOLI (2015-09-11, https://github.com/wanderine/BROCCOLI)33.
Anatomical images from each scan session were linearly aligned with one another,
flipped and merged to generate a symmetrical reference template. Linear and non-
linear transformations were estimated between the anatomical images and the
reference template using FLIRT and FNIRT. Functional images were temporally
realigned (3dVolreg), the linear and non-linear transformations from the
anatomical images were then applied to the functional images. The temporal signal
for each region was extracted from a set of ROIs based on the reference anatomical
images. The time series were linearly detrended to account for the iron
nanoparticle clearance, normalised as percent change to baseline, and the sign
inverted. For voxel-wise analysis, the functional images were smoothed with a
0.45 mm2 kernel (3dBlurtoFWHM). A GLM first-level analysis was applied to each
scan individually using BROCCOLI. The parameters of the response to the
stimulation blocks were modelled into separate regressors using the default
hemodynamic response function convolution together with temporal derivatives
for the activity regressors and polynomial detrending regressors to account for
linear and non-linear drifts. A contrast was designed to obtain COPE at every
voxel. Visual inspection of the residuals from the analysis for each scan suggested
the model accounted fully for the response in the time series for each condition.

Statistical analysis: Second-level between-group voxel-wise statistics was carried
using non-parametric permutation testing implemented in BROCCOLI. A design
matrix modelling scan order for each condition (control, fluoxetine and restraint)
and gender as a covariate was used for the analysis. Fluoxetine versus control
comparisons were tested by using a within-session correction to account for the
inter-animal variability. Contrasts were designed so that the two scans post-drug
injection were averaged, and subtracted with the pre-drug scan and compared
against the control scans processed similarly. For the restrain versus control
comparison, within-session correction could not be applied; all 3 scans in the
sessions were averaged and compared against the control scans. The null
distributions for each comparison were estimated using 5000 permutations, and the
estimated p-values were corrected using cluster extend correction. Corrected t-
statistic maps are shown as overlay on the AMBMC template (Australian Mouse
Brain Mapping Consortium, https://www.imaging.org.au/AMBMC). Statistical
analysis across ROIs were corrected using false discovery rate (FDR). Descriptive
statistics are given as mean ± 1 standard deviation.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Study data are available in BIDS format at the https://openneuro.org/
DataRepository (Project_ID: Mouse_opto_DRN, https://doi.org/10.18112/
openneuro.ds001541.v1.1.2).
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