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Abstract
Subpopulation identification, usually via some form of unsupervised clustering,
is a fundamental step in the analysis of many single-cell RNA-seq data sets.
This has motivated the development and application of a broad range of
clustering methods, based on various underlying algorithms. Here, we provide
a systematic and extensible performance evaluation of 14 clustering algorithms
implemented in R, including both methods developed explicitly for scRNA-seq
data and more general-purpose methods. The methods were evaluated using
nine publicly available scRNA-seq data sets as well as three simulations with
varying degree of cluster separability. The same feature selection approaches
were used for all methods, allowing us to focus on the investigation of the
performance of the clustering algorithms themselves.
We evaluated the ability of recovering known subpopulations, the stability and
the run time and scalability of the methods. Additionally, we investigated
whether the performance could be improved by generating consensus
partitions from multiple individual clustering methods. We found substantial
differences in the performance, run time and stability between the methods,
with SC3 and Seurat showing the most favorable results. Additionally, we found
that consensus clustering typically did not improve the performance compared
to the best of the combined methods, but that several of the top-performing
methods already perform some type of consensus clustering.
All the code used for the evaluation is available on GitHub (

). Inhttps://github.com/markrobinsonuzh/scRNAseq_clustering_comparison
addition, an R package providing access to data and clustering results, thereby
facilitating inclusion of new methods and data sets, is available from
Bioconductor ( ).https://bioconductor.org/packages/DuoClustering2018
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            Amendments from Version 1

We thank the reviewers for their constructive comments. In 
response, we have made the following modifications to the 
manuscript:
-   Clarified the rationale for including the selected data sets and 

methods

-   Included two additional clustering methods; RaceID2 and 
monocle

-   Exchanged the Venn diagrams in Supplementary Figure 2 for 
UpSet plots

-   Investigated the scalability of each method by subsampling of 
the largest data set

-   Clarified the use of random seeds by the different methods

-  Increased the size of Figure 5B

In addition, the text has been clarified in several places. Detailed 
responses to all points raised by the reviewers are available 
below. 

To provide easy access to the data and clustering results from 
our study, and thereby simplify inclusion of additional clustering 
methods and data sets in the comparison, we now provide an 
R package (available from https://bioconductor.org/packages/
DuoClustering2018 and leveraging the ExperimentHub framework 
from Bioconductor) including accessor functions to retrieve all 
necessary data and result objects, as well as plotting functions to 
generate various types of plots illustrating the performance of the 
methods.

 See referee reports

REVISED

Introduction
Recent advances in single-cell RNA-seq (scRNA-seq) technolo-
gies have enabled the simultaneous measurement of expression 
levels of thousands of genes across hundreds to thousands of  
individual cells1–8. This opens up new possibilities for decon-
volution of expression patterns seen in bulk samples, detection  
of previously unknown cell populations and deeper charac-
terization of known ones. However, computational analyses are  
complicated by the high variability, low capture efficiency and 
high dropout rates of scRNA-seq assays9–11, as well as by strong 
batch effects that are often confounded by the experimental factor 
of interest12.

Given a collection of single cells, a common analysis task  
involves identification and characterization of subpopula-
tions, e.g., cell types or cell states. With lower-dimensional 
single-cell assays such as flow cytometry, cell type detec-
tion is often done manually, by visual inspection of a series of  
two-dimensional scatter plots of marker pairs (“gating”) and 
subsequent identification of clusters of cells with specific  
abundance patterns. With large numbers of markers, such  
strategies quickly become unfeasible, and they are also likely 
to miss previously uncharacterized cell populations. Instead,  
subpopulation detection in higher-dimensional single-cell  
experiments such as mass cytometry (CyTOF) and scRNA-seq 
is often done automatically, via some form of clustering. As a  
consequence, a large number of clustering approaches  
specifically designed for or adapted to these types of assays are  
available in the literature13.

While extensive evaluations of clustering methods have been  
performed for flow and mass cytometry data14,15, there are to date  
fewer such studies available for scRNA-seq. The latter is  
complicated by the large number of different data generation  
protocols available for scRNA-seq, which in turn has a big 
effect on the data characteristics. Menon16 specifically evaluated  
three methods (Seurat17, WGCNA18 and BackSPIN19), illus-
trating their different behavior in low and high read depth data. 
A recent paper20 compared 12 clustering tools on scRNA-seq 
data sets from the 10x Genomics platform, showing that differ-
ent methods generally produced clusterings with little overlap. 
An overview of several different types of clustering algorithms  
for scRNA-seq data is given by Andrews and Hemberg21.

Here, we extend these initial studies to a broader range of data 
sets with different characteristics and additionally consider  
simulated data with different degrees of cluster separability. 
We evaluate 14 clustering algorithms, including both methods  
specifically developed for scRNA-seq data, methods developed 
for other types of single-cell data, and more general approaches, 
on a total of 12 different data sets. In order to focus on the  
performance of the clustering algorithms themselves, we use 
the same preprocessing approach (specifically cell and gene  
filtering) for all methods, and investigate the impact of the  
preprocessing separately. In addition to investigating how well 
the clustering methods are able to recover the true partition if 
the number of subpopulations is known, we evaluate whether 
they are able to correctly determine the number of clusters.  
Further, we study the stability and run time of the methods and 
investigate whether performance can be improved by generating 
a consensus partition based on results from multiple individual  
clustering methods, and the impact of the choice of methods to 
include in such an aggregation.

We observed large differences in the clustering results as well 
as in the run times of the different methods. SC3 and Seurat  
generally performed favorably, with Seurat being several orders 
of magnitude faster. In addition, Seurat typically achieved 
the best agreement with the true partition when the number of  
clusters was the same, while other methods, like FlowSOM, 
achieved a better agreement with the truth if the number of  
clusters was higher than the true number. Finally, we show that 
generally, combining two methods into an ensemble did not 
improve the performance compared to the best of the individual  
methods.

Given the high level of activity in methods research for pre-
processing, clustering and visualization of scRNA-seq data, it is  
expected that many new algorithms (or new flavors of existing 
ones) will be proposed. In order to facilitate re-assessment as new  
innovations emerge and to provide extensibility to new methods 
and data sets, all (filtered and unfiltered) data sets as well as all 
clustering results are accessible via an R/Bioconductor package, 
leveraging the Bioconductor ExperimentHub framework (https://
bioconductor.org/packages/DuoClustering2018). In addition, 
the complete code used to run all analyses is available on https://
github.com/markrobinsonuzh/scRNAseq_clustering_compari-
son. The current system uses a Makefile to run a set of R scripts  
for clustering, summarization and visualization of the results.
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Table 1. Overview of the data sets used in the study.

Data set Sequencing 
protocol

# 
cells

# 
features

Median total 
counts per 
cell

Median # 
features 
per cell

# 
subpopulations

Description Ref.

Koh SMARTer 531 48,981 1,390,268 14,277 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

24

KohTCC SMARTer 531 811,938 1,391,012 66,086 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

24

Kumar SMARTer 246 45,159 1,687,810 26,146 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

23

KumarTCC SMARTer 263 803,405 717,438 63,566 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

23

SimKumar4easy - 500 43,606 1,769,155 29,979 4
Simulation using different 
proportions of differentially 
expressed genes

29

SimKumar4hard - 499 43,638 1,766,843 30,094 4
Simulation using different 
proportions of differentially 
expressed genes

29

SimKumar8hard - 499 43,601 1,769,174 30,068 8
Simulation using different 
proportions of differentially 
expressed genes

29

Trapnell SMARTer 222 41,111 1,925,259 13,809 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

25

TrapnellTCC SMARTer 227 684,953 1,819,294 66,864 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

25

Zhengmix4eq 
10xGenomics 
GemCode

3,994 15,568 1,215 487 4
Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix4uneq 
10xGenomics 
GemCode

6,498 16,443 1,145 485 4
Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix8eq 
10xGenomics 
GemCode

3,994 15,716 1,298 523 8
Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Methods
Real data sets
Three real scRNA-seq data sets were downloaded from  
conquer22 and used for our evaluations: GSE60749-GPL13112 
(here denoted Kumar23), SRP073808 (Koh24) and GSE52529-
GPL16791 (Trapnell25). These data sets were chosen to  
represent different degrees of “difficulty” in the clustering task. In 
particular, the Trapnell data set was not generated with the aim 
of detecting subpopulations, but rather to investigate a continu-
ous developmental trajectory. Nevertheless, it was included in our  
evaluation as an example of a data set where the phenotype  
designated as the “true” cluster labels (see below) may not 
represent the strongest signal present in the data. Table 1 and  
Supplementary Figure 1 give an overview of all data sets used in 
this study. For each of the data sets from conquer, the gene-level 
length-scaled TPM values (below referred to as “counts” since 

they are on the same scale as the raw read counts) and the  
phenotype were extracted from the MultiAssayExperiment26 
object provided by conquer and used to create a SingleCellEx-
periment object. We also estimated transcript compatibility 
counts (TCCs) for each of these data sets using kallisto27,28  
v0.44, and used these as an alternative to the gene-level count 
matrix as input to the clustering algorithms.

The selected cell phenotype was used to define the “true”  
partition of cells when evaluating the clustering methods. For the 
Kumar data set, we grouped the cells by the genetic perturbation 
and the medium in which they were grown. For the Trapnell data 
set we used the time point (after the switch of growth medium) 
at which the cells were captured, and for the Koh data set we  
used the cell type annotated by the data collectors (obtained  
through FACS sorting). We note that the definition of the ground 
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truth constitutes an intrinsic difficulty in the evaluation of  
clustering methods, since it is plausible that there are several  
different, but still biologically interpretable, ways of partitioning 
cells in a given data set, several of which can represent equally  
strong signals. Many public droplet-based data sets contain cell 
type labels, but these are typically inferred by clustering the cells 
using the scRNA-seq data, and thus any evaluation based on 
these labels risks being biased in favor of methods similar to the  
one used to derive the labels in the first place. By using ground 
truths that are defined independently of the scRNA-seq assay, we 
thus avoid artificial inflation of the signal that could result if the 
truth was derived from the scRNA-seq data itself.

In addition to the data sets from conquer, we obtained UMI 
counts from the Zheng data set5, generated by the 10x Genomics  
GemCode protocol, from https://support.10xgenomics.com/ 
single-cell-gene-expression/datasets. We downloaded counts for 
eight pre-sorted cell types (B-cells, naive cytotoxic T-cells,  
CD14 monocytes, regulatory T-cells, CD56 NK cells, memory  
T-cells, CD4 T-helper cells and naive T-cells) and combined  
them into three data sets, with a mix of well-separated (e.g.,  
B-cells vs T-cells) and similar cell types (e.g., different types 
of T-cells) and uniform and non-uniform cluster sizes. For the  
data set denoted Zhengmix4eq, we combined randomly selected 
B-cells, CD14 monocytes, naive cytotoxic T-cells and regulatory 
T-cells in equal proportions (1,000 cells per subpopulation). 
For the Zhengmix4uneq data set, we combined the same four 
cell types, but in unequal proportions (1,000 B-cells, 500 naive 
cytotoxic T-cells, 2,000 CD14 monocytes and 3,000 regulatory  
T-cells). For the Zhengmix8eq data set, we combined cells 
from all eight populations, in approximately equal proportions  
(400–600 cells per population). For these data sets, we used the 
annotated cell type (obtained by pre-sorting of the cells) as the  
true cell label.

Simulated data sets
Using one subpopulation of the Kumar data set as input, we 
simulated scRNA-seq data with known group structure, using 
the splatter package29 v1.2.0. We generated three data sets, 
each consisting of 500 cells, with varying degree of cluster  
separability. For the SimKumar4easy data set, we generated  
4 subpopulations with relative abundances 0.1, 0.15, 0.5 and 
0.25, and probabilities of differential expression set to 0.05, 0.1, 
0.2 and 0.4 for the four subpopulations, respectively. The Sim-
Kumar4hard data set consists of 4 subpopulations with relative 
abundances 0.2, 0.15, 0.4 and 0.25, and probabilities of differential 
expression 0.01, 0.05, 0.05 and 0.08. Finally, the SimKumar8hard 
data set consists of 8 subpopulations with relative abundances  
0.13, 0.07, 0.1, 0.05, 0.4, 0.1, 0.1 and 0.05, and probabilites  
of differential expression equal to 0.03, 0.03, 0.03, 0.05, 
0.05, 0.07, 0.08 and 0.1, respectively. The GitHub repository  
(https://github.com/markrobinsonuzh/scRNAseq_cluster-
ing_comparison) contains a link to a countsimQC report30, 
comparing the main characteristics of the simulated data sets to  
those of the underlying Kumar data set.

Data processing
The scater package31 v1.6.3 was used to perform quality  
control of the data sets. Features with zero counts across all cells, 

as well as all cells with total count or total number of detected  
features more than 3 median absolute deviations (MADs) below 
the median across all cells (on the log scale), were excluded. 
Depending on the availability of manual annotation, we  
filtered out cells that were classified as doublets or debris. The  
scater package was also used to normalize the count values, 
based on normalization factors calculated by the deconvolu-
tion method from the scran package32 v1.6.2, and to perform  
dimension reduction using PCA33 and t-SNE34. Either the 
raw feature counts or the log-transformed normalized counts 
were used as input to the clustering algorithms, following the  
recommendations by the authors (see Figure 4 for a summary of  
the input values used for each method).

Gene filtering
We evaluated three methods for reducing the number of genes 
provided as input to the clustering methods. For each filtering  
method, we retained 10% of the original number of genes (with 
a non-zero count in at least one cell) in the respective data sets.  
First, we retained only the genes with the highest average  
expression (log-normalized count) value across all cells (denoted 
Expr below). Second, we used Seurat17 to estimate the vari-
ability of the features and retained only the most highly variable 
ones (HVG). Finally, we used M3Drop35 to model the drop-
out rate of the genes as a function of the mean expression level 
using the Michaelis-Menten equation (M3Drop). The gene-wise  
Michaelis-Menten constants are computed and log-transformed, 
and the genes are then ranked by their p-value from a Z-test  
comparing the gene-wise constants to a global constant obtained 
by combining all the genes. After filtering, we used scran to  
renormalize each data set, excluding cells with negative size  
factors. Supplementary Figure 2 shows the overlap between the 
retained genes with the different filtering methods, for each of the 
12 data sets, and Supplementary Table 1 provides the number of 
cells retained after each type of filtering.

Clustering methods
Fourteen clustering methods, publicly available as R pack-
ages or scripts, were evaluated in this study (see Table 2 for an  
overview). We included general-purpose clustering methods, 
such as hierarchical clustering and K-means, as well as methods  
developed specifically for scRNA-seq data, such as Seurat 
and SC3, and methods developed for other types of high- 
throughput single-cell data (FlowSOM). The collection of 
methods include representatives for most types of algorithms  
commonly used to cluster scRNA-seq data. The type of the  
underlying clustering algorithm for the different methods is  
shown in Figure 4.

All methods except Seurat allow explicit specification of 
the desired number of clusters (k). Seurat instead requires a  
resolution parameter, which indirectly controls the number of  
clusters. For each data set, we ran each method with a range of 
k values (from 2 to either 10 or 15, depending on the true number 
of subpopulations in the data set). We ran Seurat with a range 
of resolution parameter values, yielding approximately the range 
of k values evaluated for the other methods. A subset of the  
methods provide an estimate of the true number of clusters; 
we record this estimate for comparison with the true number of  
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Table 2. Clustering methods.

Method Description Reference

ascend (v0.5.0) PCA dimension reduction (dim=30) and iterative hierarchical clustering 36

CIDR (v0.1.5) PCA dimension reduction based on zero-imputed similarities, followed by hierarchical clustering 37

FlowSOM (v1.12.0) PCA dimension reduction (dim=30) followed by self-organizing maps (5x5, 8x8 or 15x15 grid, 
depending on the number of cells in the data set) and hierarchical consensus meta-clustering to 
merge clusters

38

monocle (v2.8.0) t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3) followed by density-based clustering 25,39

PCAHC PCA dimension reduction (dim=30) and hierarchical clustering with Ward.D2 linkage 33,40

PCAKmeans PCA dimension reduction (dim=30) and K-means clustering with 25 random starts 33,41

pcaReduce (v1.0) PCA dimension reduction (dim=30) and k-means clustering through an iterative process. 
Stepwise merging of clusters by joint probabilities and reducing the number of dimensions by PC 
with lowest variance. Repeated 100 times followed consensus clustering using the clue package

42

RaceID2 (March 3, 
2017 version)

K-medoids clustering based on Pearson correlation dissimilarities 43

RtsneKmeans t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3, perplexity=30) and K-means 
clustering with 25 random starts

34,41,44

SAFE (v2.1.0) Ensemble clustering using SC3, CIDR, Seurat and t-SNE + Kmeans 45

SC3 (v1.8.0) PCA dimension reduction or Laplacian graph. K-means clustering on different dimensions. 
Hierarchical clustering on consensus matrix obtained by K-means

46

SC3svm (v1.8.0) Using SC3 to derive the clusters for half of the cells, then using a support vector machine (SVM) 
to classify the rest

46,47

Seurat (v2.3.1) Dimension reduction by PCA (dim=30) followed by nearest neighbor graph clustering 17

TSCAN (v1.18.0) PCA dimension reduction followed by model-based clustering 48

subpopulations. For each choice of k (or resolution), we ran 
each method five times, allowing us to investigate the intrinsic  
stability of the obtained partitions. Note that the data is the 
same for all five instances, and thus only the stochasticity of the  
clustering method affects our stability evaluation. All parameter 
values except for the number of clusters were set to reasonable 
values following the authors’ recommendations or the respective  
manuals (Table 2). Gene and cell filtering within the clustering 
methods were disabled whenever possible, since these steps were 
performed in a uniform way during the preprocessing and gene 
selection steps.

Evaluation criteria
In order to evaluate how well the inferred clusters recovered the 
true subpopulations, we used the Hubert-Arabie Adjusted Rand  
Index (ARI) for comparing two partitions49. The metric is  
adjusted for chance, such that independent clusterings have 
an expected index of zero and identical partitions have an ARI 
equal to 1, and was calculated using the implementation in the  
mclust R package v5.4. We also used the ARI to evaluate the 
stability of the clusters, by comparing the partitions from each  
pair of the five independent runs for each method with a given 
number of clusters.

We used a normalized Shannon entropy50 to evaluate whether 
the methods preferentially partitioned the cells into clusters of  
equal size, or whether they preferred to generate some large 

and some small clusters. Given proportions p
1
, . . . , p

N
 of cells  

assigned to each of N clusters, the normalized Shannon entropy  
is defined by

	 	
2

1 2

.
=

= −∑
N

i
i

imax

H log pp
H log N 			 																	

(1)

Since the true degree of equality of the cluster sizes varies  
between data sets, we subtracted the normalized entropy calculated 
from the true partition to obtain the final performance index.

To evaluate the similarities between the partitions obtained 
by different methods, we first calculated a consensus partition  
from the five independent runs for each method, using the 
clue R package51 v0.3-55. Next, for each data set and each 
imposed number of clusters, we calculated the ARI between the  
partitions for each pair of methods, and used hierarchical  
clustering based on the median of these ARI values across all 
data sets to generate a dendrogram representing the similarity 
among the clusters obtained by different methods. To investigate  
how representative this dendrogram is, we also clustered the  
methods based on each data set separately, and calculated the 
fraction of such dendrograms in which each subcluster in the  
overall dendrogram appeared.

Finally, we investigated whether clustering performance was 
improved by combining two methods into an ensemble. For  
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each data set, and with the true number of clusters imposed, we 
calculated a consensus partition for each pair of methods using 
the clue R package, and used the ARI to evaluate the agree-
ment with the true cell labels. We then compared the ensemble  
performance to the performances of the two individual methods 
used to construct the ensemble.

Results
Large differences in performance across data sets and 
methods
The 14 methods were tested on real data sets as well as simula-
tions with a varying degree of complexity (Table 1) and across a  
range of the number of subpopulations. Focusing on the agree-
ment between the true partitions and the clusterings obtained  
by imposing the true number of clusters showed a large difference  
between data sets as well as between methods (Figure 1; a  
summary across different numbers of clusters can be found  
in Supplementary Figure 3).

As expected, excellent performances were achieved for the  
well-separated data sets with a strong difference between the  
groups of cells (Kumar, KumarTCC and SimKumar4easy). 
When filtering by expression or variability, close to all methods 
achieved a correct partitioning of the cells in these data sets, 
while the M3Drop filtering led to a poorer performance for the  
simulated data set. All methods failed to recover the partition  
of the cells by time point in the Trapnell data sets, where the 
ARIs were consistently below 0.5. This indicates that there 
are other, stronger, signals in this data set that dominate the  
clustering.

We note that the M3Drop filtering consistently led to a worse  
performance for the simulated data sets, while the performance  
was more similar to the other filterings for the real data sets, which 
may indicate that the simulated dropout pattern is not consist-
ent with the one being modeled by the M3Drop package. Due 

to negative size factor estimates, a larger number of cells had to 
be excluded in the Zhengmix data sets after the M3Drop filter-
ing compared to the expression or HVG filtering (Supplementary  
Table 1). At most just over 20% of the cells in the expression 
and HVG filtering and up to approximately 40% of the cells 
for the M3Drop filtering were excluded, making a direct com-
parison between the filterings difficult. Furthermore, the genes  
retained in the M3Drop and expression filterings showed a 
low degree of overlap in many of the data sets (Supplementary  
Figure 2). Overall, only small differences were seen between 
the results for the data sets containing gene abundances and  
those containing transcript compatibility counts (TCCs).

While none of the methods consistently outperformed the  
others over the full range of the imposed numbers of clusters in 
all data sets, SC3 and Seurat often showed the best perform-
ance. These methods were also the only ones that achieved a 
good separation of the cell types in the droplet-based Zhengmix  
data sets, which have a much higher degree of sparsity and a  
larger number of cells than the other data sets. This is consist-
ent with a previous study16 showing that Seurat performed  
better than other types of algorithms on data with low read depth.  
Generally, the performance of Seurat was also not strongly 
affected by the gene filtering approach (except for the simulated 
data sets), while other methods, like SAFE, were more sensi-
tive to the choice of input genes for some data sets. FlowSOM 
showed a poor performance for the true number of clusters (see  
Supplementary Figure 4 for an illustration, together with a selec-
tion of other data set/method combinations with poor ARI  
values). However, if the number of clusters was increased, the  
performance of FlowSOM improved considerably, and if the  
methods instead were compared at the number of clusters that gave 
the optimal performance for each method, FlowSOM showed a 
better performance (Supplementary Figure 5). RtsneKmeans, 
a general-purpose method, showed a higher average performance  
across the data sets and filterings than many of the clustering  

Figure 1. Median ARI scores, representing the agreement between the true partition and the one obtained by each method, when the 
number of clusters is fixed to the true number. Each row corresponds to a different data set, each panel to a different gene filtering method, 
and each column to a different clustering method. The methods and the data sets are ordered by their mean ARI across the filterings and data 
sets. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares).
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algorithms specifically developed for scRNA-seq data. Compared 
to SC3 and Seurat, RtsneKmeans showed poorer perform-
ance for the SimKumar8hard and Zhengmix4uneq data sets. 
The subpopulations in these data sets are nested in the t-SNE 
space, explaining the difficulty in clustering for the K-means  
algorithm (Supplementary Figure 1).

We also investigated whether the number of detected features 
per cell differed between the clusters, using a Kruskal-Wallis  
test52. No strong association was found for the simulated data sets 
(Supplementary Figure 6), indicating that there is low inherent 
bias in the clustering algorithms. For most of the real data sets,  
we found highly significant differences in the number of  
detected features between cells in different clusters. However, it is 
unclear whether this represents a technical effect or a biological  
difference between the cell populations.

Run times vary widely between methods
We measured the elapsed time for each run, using a single core 
and excluding the time to estimate the number of clusters if this 
was done via a separate function. Since the run times are strongly 
dependent on the number of features and cells in a data set, we 
represent them as normalized run times, by dividing with the time 
required for RtsneKmeans for the same data set (Figure 2A). 
Seurat was the fastest method, while pcaReduce, SAFE 
and SC3 were the slowest, sometimes by a large margin. Clus-
tering only half of the cells with SC3 and predicting the class 
of the others with a Support Vector Machine (SC3svm) gave 
slightly shorter run times than applying the SC3 clustering to 
all cells. The method could potentially be accelerated by using a  
lower proportion of cells as a training subset. A detailed overview 
of the run time and the dependence on the number of clusters is  
given in Supplementary Figure 7 and Supplementary Figure 8. 
Apart from SC3 and SC3svm, the imposed number of clusters  
did not affect the run time.

Plotting the run time versus the ARI for a subset of the data 
sets (excluding the ones with the strongest signal, where all  
methods found the correct clusters, and the TCC data sets)  
(Figure 2B) further illustrated the variability between the  
methods. Interestingly, Seurat was generally the fastest  
method, especially for the droplet-based data sets, but at the  
same time provided among the best partitionings of the data.

The scalability of the methods was investigated by subsampling 
the largest data set (Zhengmix4uneq) and plotting the run  
time as a function of the number of cells (Supplementary  
Figure 9). The majority of the methods showed a linear increase 
in run time as a function of the number of cells, while CIDR 
and RaceID2 scaled worse. The run time of SC3 and SC3svm, 
and to some extent SAFE, showed more complex patterns since  
these methods reduce the number of random starts of the Kmeans 
algorithm drastically if the number of cells exceeds 2,000.

High stability between clustering runs
Figure 1 illustrated the average performance of each method  
across the five runs on each data set, for the true number of  
clusters. By comparing the partitions obtained in the individual  
runs, we could also obtain a measure of the stability of each  
method (Figure 3A).

CIDR, monocle, RaceID2, PCAHC, TSCAN, ascend 
and Seurat returned the same clusters in all five instances 
for all data sets, while the stability of the other methods 
depended on the data set. TSCAN and monocle set the  
random seed to a fixed value internally, which explains the high  
stability of these methods. Seurat, SC3 and RaceID2 allow  
the user to set the random seed via an input argument, and we 
explicitly set this to different values in the five independent  
runs. Again, the stability was lower for the simulated data sets 
after gene filtering by M3Drop (note that the same genes were 

Figure 2. (A) Normalized run times, using RtsneKmeans as the reference method, across all data set instances and number of clusters.  
(B) Run time versus performance (ARI) for a subset of data sets and filterings, for the true number of clusters.
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Figure 3. (A) Median stability (ARI across different runs on the same data set) for the methods, with the annotated number of clusters 
imposed. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares). 
(B) The difference between the normalized entropy of the obtained clusterings and that of the true partitions, across all data sets and for 
the annotated number of clusters. (C) The difference between the number of clusters giving the maximal ARI and the annotated number of 
clusters, across all data sets.

used in all five runs), indicating that the selection of genes may be  
suboptimal.

A summary of the variability both within and between the  
different filterings is shown in Supplementary Figure 10. It is 
worth noting that comparing the performances between the  
different filtering approaches is difficult for two reasons: first, the  
variability of the clustering runs for a given filtering might  
exceed the variation between the filterings, and second, filter-
ing with M3Drop led to the exclusion of a large number of 
cells in the Zhengmix data sets, and these cells can not be used 
for the comparison. For the stable methods CIDR, TSCAN, 
ascend and PCAHC, the type of filtering had a relatively large 
impact on the clustering solutions, and often filtering on the mean  
gene expression and the gene variability gave more similar  
clusters than filtering with M3Drop. The stochastic methods 

showed both a high variability between the individual runs for a 
given filtering and between runs with different filterings.

Qualitative differences between cluster characteristics
By computing the Shannon entropy for the various partitions, 
we obtained a measure of the equality of the sizes of the clusters  
(Figure 3B). Since the true degree of cluster size uniformity as 
well as the number of clusters are different between data sets, we 
compared the normalized Shannon entropy of the clusterings to  
that of the true partitions. Thus, a positive value of this  
statistic indicates that a method tends to produce more equally 
sized clusters than the true ones, and a negative value instead  
indicates that the method tends to return more unequal clus-
ter sizes, e.g., one large cluster and a few small ones. Most  
methods gave cluster sizes that were compatible with the true 
sizes for most data sets (a statistic close to 0), while especially  
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FlowSOM was more variable, and often tended to group the 
cells into one large cluster and a few very small ones (see  
Supplementary Figure 4 for an example). One consequence of 
this was that FlowSOM often showed higher ARI values for a 
larger number of clusters, while the performance of many of 
the other methods decreased with increasing k (Supplementary  
Figure 3). These methods tended to have more equally sized  
clusters for larger numbers of clusters than the true number, 
leading to a higher disagreement between the true classification  
and the clusterings (the entropy across the range of k is shown in 
Supplementary Figure 11).

The optimal number of clusters can differ from the ”true” 
one
Above, we investigated the performance and stability of the 
methods when the true number of clusters (the number of differ-
ent labels in the partitioning considered as the ground truth) was  
imposed. Whether this number of clusters actually provided 
the highest ARI value (i.e., the best agreement with the ground 
truth) mainly depended on the difficulty of the clustering task  
(Figure 3C), and the choice of method. No method achieved 
the best performance at the annotated number of clusters in 
all the data sets, although generally, the methods reached their  
maximum performance at or near the annotated number of  
clusters. The notable exception was FlowSOM, which required 
a relatively large number of clusters to reach its maximal  
performance.

SC3, CIDR, ascend, SAFE and TSCAN all have built-in 
functionality for estimating the optimal number of clusters. In 
most cases, the estimated number was close to the true one;  
however, ascend and CIDR had a tendency to underestimate 
the number of clusters, while SC3 and TSCAN instead tended to  
overestimate the number (Supplementary Figure 12). The tendency 
of SC3 to overestimate the cluster number is consistent with a 
previous publication16. The agreement with the true partition 

at the estimated number of clusters is shown in Supplementary  
Figure 13. SC3 is still the best-performing method in this  
situation.

Inconsistent degree of similarity between methods
The similarity between each pair of methods was quantified 
by means of the ARIs for each pair of consensus clusterings 
(across the five runs of each method for each data set and number 
of clusters). Figure 4 shows a dendrogram of the methods  
obtained by hierarchical clustering based on the average ARI 
values across all data sets for the true number of clusters. The  
numbers shown at the internal nodes indicate the stability of the 
subclusters, that is, the fraction of the corresponding dendro-
grams from the individual data sets where a particular subcluster  
could be found. In general, the groupings of the methods shown 
in the dendrogram were unstable across data sets, indicated by 
the low stability fractions of all subclusters. This is consistent 
with previous studies showing generally poor concordance  
that varied across data sets20,45. Even SC3 and SC3svm had  
surprisingly different clusterings; in less than a third of the 
data sets, these two methods showed the most similar cluster-
ings. In addition, no apparent association between the similarity 
of the clusterings and the type of input or the dimension  
reduction or underlying type of clustering algorithm was seen  
(Figure 4).

Ensembles often don’t improve clustering performance
Next, we investigated whether we could improve the cluster-
ing performance by combining methods into an ensemble. For 
each pair of methods, we generated a consensus clustering and 
evaluated its agreement with the true partition using the ARI.  
In general, the performance of the ensemble was worse than the  
better of the two combined methods, and better than the worse 
of the two methods (Figure 5A), suggesting that we would 
obtain a better performance by choosing a single good clustering  
method rather than combining multiple different ones. This is 

Figure 4. Clustering of the methods based on the average similarity of their partitions across data sets, for the true number of clusters. 
Numbers on internal nodes indicate the fraction of dendrograms from individual data sets where a particular subcluster was found.
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Figure 5. Comparison between individual methods and ensembles. (A) Difference between the ARI of each ensemble and the ARI of 
the best (left) and worst (right) of the two methods in the ensemble, across all data sets and for the true number of clusters. (B) Difference 
between the ARI of each ensemble and each of the components, across all data sets and for the true number of clusters. The histogram in 
row i, column j represents the differences between the ARIs of the ensemble of the methods in row i and column j and the ARI of the method 
in row i on its own.

largely consistent with a recent study evaluating the combination 
of four methods (SC3, CIDR, Seurat, tSNE+Kmeans), 
where the ensemble performance was generally on par with 
the best individual method45. It is still possible that an ensemble  
method could provide a general improvement over a given  
single method, since it is unlikely that the same method will 
be the best performing in all conceivable data sets. In fact, 
among the methods we evaluated, both SC3 and SAFE combine  
multiple individual methods to achieve the final clustering result. 
Studying individual combinations in more detail, we observed 
that combining SC3 or Seurat with almost any other method 
led to a worse performance than obtained by these methods alone 
(consistent with the observation that they were among the meth-
ods giving the best performance). On the other hand, methods 
like CIDR, FlowSOM and TSCAN could often be improved  
by combining them with another method (Figure 5B).

Discussion and conclusions
In this study, we have evaluated 14 clustering methods on both 
real and simulated scRNA-seq data. There were large differences 
in the ability of the methods to recover the annotated clusters, 

and performance was also strongly dependent on the degree of  
separation between the true classes. SC3 and Seurat, two  
clustering methods developed specifically for single-cell  
RNA-seq data, delivered the overall best performance, and were 
the only ones to properly recover the cell types in the droplet-
based data sets. There was, however, a large difference in the run 
time, with SC3 being several orders of magnitude slower than  
Seurat. Another difference between these two methods 
is that SC3 includes a method for estimating the number of  
clusters (which has a tendency towards overestimation), while 
Seurat will determine the number of clusters based on a  
resolution parameter set by the user.

The same preprocessing steps and fixed gene sets were used for 
all clustering methods. This enabled us to investigate the impact 
of the clustering algorithm itself, rather than entire pipelines or  
workflows. The selection of the filtering approach had an 
impact on the majority of the methods and resulted in different  
clustering solutions. Specifically for the more difficult data sets 
there was a higher dissimilarity. However, this did not necessarily 
affect the performances of the methods.
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The stability of clustering algorithms can be evaluated by  
generating perturbed subsamples of the data set and redoing the 
clusterings. These subsamples can be created in several ways, 
e.g., by random subsampling with or without replacement, by  
adding noise to the original data53 or by simulating technical  
replicates54. Freytag20 showed that SC3, Seurat, CIDR and 
TSCAN were stable under cell-wise perturbations. In our study, 
we evaluated the methods with respect to their sensitivity to  
random starts. Overall, the methods showed a high degree of  
stability across all data sets, except for the simulated data sets 
in combination with the M3Drop filtering, where the stochas-
tic methods showed a decrease in stability. This may be due to 
a disagreement between the mean-dropout relationship in the 
simulated data and the one assumed by M3Drop, leading to a  
suboptimal gene selection.

The evaluated methods are based on a broad spectrum of 
approaches for dimensionality reduction and clustering. We note 
that the majority of the methods use PCA or PCoA for dimension 
reduction or Euclidean distances as the distance metric (ascend  
allows for other alternatives). Thus, no clear advice on the type 
of algorithm that is best suited for clustering single-cell RNA-
seq data can be made based on our results. In fact, the two best- 
performing methods, SC3 and Seurat, rely on very different 
underlying clustering algorithms.

We investigated the impact of changing the imposed number of 
clusters for the different methods, which revealed that a subset 
of the methods, in particular FlowSOM, consistently showed 
a better agreement with the true subpopulations if the number of  
clusters was increased beyond the true number. The reason for 
this appears to be that FlowSOM tends to split off a few very  
small clusters. In addition to the number of clusters, most  
methods rely on other hyperparameters. In this study, we have 
fixed these to reasonable values. However, additional investiga-
tions into the effect of these hyperparameters on the results would  
be an interesting direction for future research.
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The authors have thoroughly addressed my comments. Based on the new revised results, I have the
following minor comment:

- The authors note that "We found substantial differences in the performance, run time and stability
between the methods, with SC3 and Seurat showing the most favorable results."

Please clarify what metric(s) you are using to assess "most favorable results" ie. "most favorable results in
terms of overall accuracy in cell-type identification", "in terms of run time", "in terms of stability", etc.
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runtime/scalability. 
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Version 1

 03 August 2018Referee Report

doi:10.5256/f1000research.17093.r36545

   Saskia Freytag
Department of Medical Biology , University of Melbourne, Parkville, Vic, Australia

Overview

The authors present comprehensive benchmarking of clustering tools in R on real and simulated
single-cell RNA-seq datasets. Their work includes performance, stability and run time analysis.
Furthermore, they also investigate whether combining results from different methods increases
performance.

Major comments
 

Throughout the entire manuscript the authors should make it clear that only clustering tools
available in R were investigated. This is important, as there are quite a number of popular python
applications for clustering of single cell RNA-seq data available.
Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and the
Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know why the
authors did not use all 10 pre-sorted cell populations available? Furthermore, how did the authors
choose which cell populations to combine for their Zhengmix4 and Zhengmix8 datasets?

Minor comments
The authors show nicely that Seurat is not very strongly affected by gene filtering. Could this be a
result of its clustering approach being based on the 500 most variable genes?
On page 7 in the paragraph “Run Times vary widely between methods” the authors use Adjusted
Rand Index instead of its already introduced abbreviation 
Could the size of Figure 5 be increased?
Why did some methods get raw and some methods log-transformed normalized counts?
Consider changing Supplementary Figure 2 to a visual representation that represents size
differences between sets, like UpSetR plots.
On page 10 the authors say: ”In addition, no apparent association between the similarity of the
clusterings and the type of input or dimension reduction or underlying type of clustering algorithm
was found.” Could the authors explain in more detail how this analysis was performed.
On page 6, the authors speculate that there are stronger signals that dominate clustering in the
Trapnell et al dataset that are not time points. What could these be? Have the authors investigated
cell cycle?

Is the work clearly and accurately presented and does it cite the current literature?
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 31 Aug 2018
, University of Zurich, SwitzerlandCharlotte Soneson

Thank you for reviewing our manuscript and for your constructive comments. Below are
point-by-point responses to the individual comments.

Throughout the entire manuscript the authors should make it clear that only clustering tools
available in R were investigated. This is important, as there are quite a number of popular python
applications for clustering of single cell RNA-seq data available.

This has been clarified in the Abstract as well as in the Methods part of the text. Some of the most
widely used clustering methods implemented in Python (e.g., scanpy) implement the same or
similar clustering methods as those evaluated in this study, and could thus be considered to be
implicitly investigated. Also, the evaluation system we provide (via the code in the GitHub
repository and the associated data package) is not strictly limited to methods implemented in R;
other methods can be included e.g. using system() calls. 

Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and the
Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know why the
authors did not use all 10 pre-sorted cell populations available? Furthermore, how did the authors
choose which cell populations to combine for their Zhengmix4 and Zhengmix8 datasets?

We agree that the Trapnell data set was not generated with the purpose of finding cell types -
however, we still find it useful to illustrate the performance of the methods in a data set where the

“true clusters” (defined as the time point at which the cells where collected) do not represent the
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“true clusters” (defined as the time point at which the cells where collected) do not represent the
main/strongest signal in the data (see e.g. the t-SNE plots in Supplementary Figure 1). We have
clarified this in the “Methods-Real data sets” section of the revised paper.

For the Zhengmix data sets, our aim was to generate data sets with a mix of well-separated (e.g.,
B-cells vs T-cells)  and similar cell types (e.g., different types of T-cells). In addition, we wanted to
investigate if the number of cell populations and/or the equality of the population sizes had an
impact on the performance. The included cell type combinations were selected to allow us to
address these questions; however, given the richness of this data set, there are certainly many
more possible combinations to explore. We have expanded the description in the “Methods-Real
data sets” section a bit to highlight these goals. 

The authors show nicely that Seurat is not very strongly affected by gene filtering. Could this be a
result of its clustering approach being based on the 500 most variable genes?

In all our investigations, we preselect the genes that are used as input for each clustering algorithm
using three different variable selection methods, and internal variable selection or filtering steps are
disabled. Specifically, for Seurat we perform the PCA using all the genes remaining after our
filtering, and the clustering is then performed in the principal component space. Thus, the stability
of Seurat should be affected in the same way as that of the other methods by the selection of
variables. 

On page 7 in the paragraph “Run Times vary widely between methods” the authors use Adjusted
Rand Index instead of its already introduced abbreviation

Thanks for noticing this, we now use the abbreviation also here.

Could the size of Figure 5 be increased?

We have increased the size of Figure 5B.

Why did some methods get raw and some methods log-transformed normalized counts?

The methods are based on different distributional assumptions and underlying models, affecting
the type of values that are most suitably used as input. We followed the recommendations of the
authors of the respective methods, and the type of input used for each method is summarized in
Figure 4.

Consider changing Supplementary Figure 2 to a visual representation that represents size
differences between sets, like UpSetR plots.

We have replaced the Venn diagrams in Supplementary Figure 2 with UpSet plots. 

On page 10 the authors say: ”In addition, no apparent association between the similarity of the
clusterings and the type of input or dimension reduction or underlying type of clustering algorithm
was found.” Could the authors explain in more detail how this analysis was performed.

This conclusion is drawn based on Figure 4, where no association between the clustering of
methods by cluster similarity and any of the method characteristics can be seen. This has been

clarified in the “Results-Inconsistent degree of similarity between methods” section of the revised
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clarified in the “Results-Inconsistent degree of similarity between methods” section of the revised
paper. 

On page 6, the authors speculate that there are stronger signals that dominate clustering in the
Trapnell et al dataset that are not time points. What could these be? Have the authors investigated
cell cycle?

We have not explicitly investigated the interpretation of the strongest signal in the Trapnell data set.
However, Supplementary Figure 1 suggests that the annotation that we used to define the “true”
clusters (the time at which the cells were collected) does not fully explain the grouping of the cells
in the t-SNE visualization (in particular, the T12 and T24 groups are intermingled). As noted above,
the main purpose of including this data set was to investigate the behaviour of the various methods

 in a data set where the clusters were less apparent.

 No competing interests were disclosed.Competing Interests:

 27 July 2018Referee Report

doi:10.5256/f1000research.17093.r36544

   Jean Fan
 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

Overview

Duo et al compare multiple single-cell RNA-seq clustering approaches on real and simulated single-cell
RNA-seq datasets. 

Major comments

- Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a few were
explored here. While an exhaustive interrogation of all single-cell RNA-seq datasets available is beyond
the scope of this paper, it would be worthwhile for the readers if the authors could comment briefly on the
appropriateness of the datasets used here in terms of their cell-type diversity or other factors that may
impact benchmarking. As the authors note, a method's performance is inherently tied to the degree to
which the tested subpopulations are truly  (or artificially) transcriptionally distinct. In particular, I am
concerned about the appropriateness of the Trapnell dataset, as it was originally intended for
pseutotime/trajectory inference and may not even contain discrete transcriptional subpopulations. The
poor performance as noted in Figure 1 for this dataset may simply arise from different methods cutting
along this continuous trajectory in different ways. Similarly, for the Zheng 10x datasets, since each
cell-type was sorted and sequenced separately, there is inevitably some degree of confounding of
cell-type specific effects with batch effects that could make clustering much easier. 

- As datasets get bigger, the scalability of each method will be an important consideration. The authors
provide a preliminary look into this via the different run time of each method in Figure 2, but how this run
time depends on the number of cells is unclear. Readers will be interested in whether some methods
scale better than others. It is worth having an additional figure of run time as a function of number of cells
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scale better than others. It is worth having an additional figure of run time as a function of number of cells
(via downsampling cells and then extrapolating to larger datasets) to fully capture the scalability of each
method. 

- With regard to the stability between cluster runs, some methods may internally set various random
seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not simply
the result of which methods uses random seeds. If a method does use an (or likely multiple) internal
random seed, the seed must be changed to accurately assess stability. 

Minor comments

- There are quite a number of single-cell RNA-seq clustering approaches and the list keeps growing
(https://github.com/seandavi/awesome-single-cell). Only a fraction is represented in this comparison.
While an exhaustive comparison of all methods is beyond the scope of this paper, the authors should
comment briefly on how these particular 12 clustering algorithms were chosen.

- While nearly all methods assessed use dimensionality reduction as a first step, it is unclear why some
were allowed to reduce to 30 dimensions while others 50. It seems that particularly as datasets get larger
with presumably more cell-types captured in each datasets, we will likely want to increase the number of
PCs to fully capture the variation present in the data. While the authors have left the investigation into the
effects of the number of PCs to future research, they should briefly note the reason for the choice of PCs
used for each method.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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Author Response 31 Aug 2018
, University of Zurich, SwitzerlandCharlotte Soneson

Thank you for reviewing our manuscript and for your constructive comments. Below are
point-by-point responses to the individual comments.

Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a few
were explored here. While an exhaustive interrogation of all single-cell RNA-seq datasets available
is beyond the scope of this paper, it would be worthwhile for the readers if the authors could
comment briefly on the appropriateness of the datasets used here in terms of their cell-type
diversity or other factors that may impact benchmarking. As the authors note, a method's
performance is inherently tied to the degree to which the tested subpopulations are truly  (or
artificially) transcriptionally distinct. In particular, I am concerned about the appropriateness of the
Trapnell dataset, as it was originally intended for pseutotime/trajectory inference and may not even
contain discrete transcriptional subpopulations. The poor performance as noted in Figure 1 for this
dataset may simply arise from different methods cutting along this continuous trajectory in different
ways. Similarly, for the Zheng 10x datasets, since each cell-type was sorted and sequenced
separately, there is inevitably some degree of confounding of cell-type specific effects with batch
effects that could make clustering much easier.

There is indeed a large (and increasing) number of public scRNA-seq data sets available,
generated with many different types of protocols. However, the main issue (especially with
droplet-based data sets) is that no independent annotation of the cells is available, which implies
that they are not suitable for unbiased benchmarking like we are doing here. Many public
droplet-based data sets do contain “cell type labels”, but these are typically inferred by clustering
the cells based on the scRNA-seq data itself, and thus any evaluation risks being biased in favor of
methods similar to the one used to derive the labels in the first place. This is the main reason
behind the selection of these data sets. We agree that the Trapnell data set was not generated with
the purpose of finding cell types - however, we still find it useful to illustrate the performance of the
methods in a data set where the “true clusters” (defined as the time point at which the cells where
collected) do not represent the main/strongest signal in the data (see e.g. the t-SNE plots in
Supplementary Figure 1). For the Zheng data set, it’s true that there could be confounding with
batch effects, and ambiguous cells may be excluded, which would also make clusters more
distinct. For our Zhengmix data sets, we therefore included both very different (e.g., B-cells and
T-cells) and more similar (e.g., different types of T-cells) cell types (Supplementary Figure 1). We
have expanded the discussion in the “Methods-Real data sets” section of the revised paper to
clarify these issues. 

As datasets get bigger, the scalability of each method will be an important consideration. The
authors provide a preliminary look into this via the different run time of each method in Figure 2, but
how this run time depends on the number of cells is unclear. Readers will be interested in whether
some methods scale better than others. It is worth having an additional figure of run time as a
function of number of cells (via downsampling cells and then extrapolating to larger datasets) to
fully capture the scalability of each method.

Thanks for pointing this out. We have included a plot illustrating the scalability, investigated by
downsampling of the largest data set, in Supplementary Figure 9. 

With regard to the stability between cluster runs, some methods may internally set various random

seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not
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seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not
simply the result of which methods uses random seeds. If a method does use an (or likely multiple)
internal random seed, the seed must be changed to accurately assess stability.

Two of the methods (TSCAN and monocle) set random seeds internally and do not allow these to
be changed by the user. Other methods (SC3, Seurat and RaceID2) set a random seed but let the
user specify it. For these methods, we explicitly set the random seed to different values in the five
runs. We have clarified this in the “Results-High stability between clustering runs” section of the
revised text. 

There are quite a number of single-cell RNA-seq clustering approaches and the list keeps growing
(https://github.com/seandavi/awesome-single-cell). Only a fraction is represented in this
comparison. While an exhaustive comparison of all methods is beyond the scope of this paper, the
authors should comment briefly on how these particular 12 clustering algorithms were chosen.

The methods were chosen to represent the most common types of algorithms used for clustering
of scRNA-seq data. We have tried to include the most widely used methods, but also to include
methods from tangential fields as well as more traditional clustering methods to serve as a
baseline. We have clarified this in the text.

While nearly all methods assessed use dimensionality reduction as a first step, it is unclear why
some were allowed to reduce to 30 dimensions while others 50. It seems that particularly as
datasets get larger with presumably more cell-types captured in each datasets, we will likely want
to increase the number of PCs to fully capture the variation present in the data. While the authors
have left the investigation into the effects of the number of PCs to future research, they should
briefly note the reason for the choice of PCs used for each method.

We extracted 50 principal components for the methods that performed an additional dimension
reduction (by t-SNE), and 30 principal components for methods where the clustering was done in
the principal component space. The only exception was FlowSOM; this was unintentional and has
been harmonized in the revised version to use the same number of PCs as the rest of the methods.

 No competing interests were disclosed.Competing Interests:
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