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Pure hydroxyapatite as a substitute for enamel in erosion experiments  
 

Abstract 

 

Objectives: 

The study evaluated the suitability of pure crystalline hydroxyapatite (HA) as a substitute for 

human (H) and bovine (B) enamel in erosion experiments.  

Methods:  

Human and bovine enamel and hydroxyapatite specimens (n = 18 each) were submitted to 

demineralisation by HCl at pH values of 3.0, 2.6 and 2.0 (1.0, 2.5, and 10 mmol/l 

concentration). Specimens were eroded in a superfusion chamber for 7 min (flow rate: 1 

µl/s). Multiple fluid samples were taken per specimen throughout the exposure period. The 

dissolved calcium content was measured using a colorimetric assay with Arsenazo III 

reagent, to serve as surrogate for erosive substance loss. Additionally, erosive tissue loss was 

quantified by profilometry. Differences in erosive substance loss were assessed by the 

Kruskal-Wallis and Conover’s posthoc test.  

Results:  

Good agreement in erosive substance loss between HA and human specimens was found at 

pH 2.6, as no statistically significant difference and considerable overlap of their respective 

interquartile ranges was observed. At pH 2.0 and 3.0, a statistically significant difference 

between HA and human and bovine enamel was determined. HA consistently tended to have 

lower mean dissolution rates, with a maximum deviation from human enamel of -16% at pH 

3. It displayed lower specimen variability with an average coefficient of variation of 17%, 

compared to 25% (H) and 25% (B), respectively.  

Conclusions: 

Crystalline hydroxyapatite may not be suitable for full substitution of biologic enamel in 

erosion experiments focusing on absolute measurement values, but is useful for establishing 

consistent relative trends between erosive agents due to biosimilar erosion behavior and 

lower experimental variability. This is especially true for preliminary studies where approval 

for use of biological samples is restricted. 

Clinical significance:  

Crystalline hydroxyapatite is a useful substitute of human or bovine enamel in experiments 

studying chemical aspects of dental erosion.  
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Introduction 

Dental erosion is defined as the irreversible loss of dental hard tissue due to chemical 

dissolution by acids without bacterial involvement [1]. Dental erosion is used in cases of 

surface loss caused solely by extended exposure to acids (chemical process). Erosive tooth 

wear is the outcome of chemical-mechanical forces where the softened surface will be 

removed by abrasive forces, and presents a condition of growing concern with a high 

prevalence [2]. At least 10% of adolescents and adults in developed countries present with 

erosive tooth wear, with some sub-populations having prevalence rates of 80-100% [3].  

The occurrence and severity of erosive tooth wear is influenced by lifestyle factors, such as of 

consumption of acidic beverages like soft drinks [4], and diseases resulting in dental exposure 

to intrinsic acid (e.g. bulimia, gastroesophageal reflux) [5]. The prevalence of erosive tooth 

wear has increased over the last decades [6], while the penetration of intrinsic acid disorders 

is at a high level: in European populations, gastroesophageal reflux disease (GERD) 

prevalence stands at >17% [7], and female bulimia prevalence has been stable at 1-4% [8, 9]. 

This highlights the importance of research into causation and prevention of this relevant 

health issue. On the causation side, factors influencing erosive tooth wear are being 

extensively studied both in vitro and in vivo [10]. In the context of prevention, approaches 

such as protective gels, mousses and dentifrices have been investigated [11–13]. 

The majority of studies apply in vivo research due to higher controllability of experimental 

conditions, as well as financial and ethical considerations incurred by in vivo studies. 

Furthermore, collecting and preparing human enamel specimens for in vitro studies can be 

challenging. Procurement of teeth in suitable numbers and quality, as well as preparing 

smaller specimens from them without damage takes up time and effort. Therefore, bovine 

enamel has been considered as a suitable substitute, as it is considered to have relatively 

similar characteristics in erosion studies [14]. However, not all research institutions have 

access to bovine material; the preparation, while slightly simpler than with human specimens, 

is still time-intensive. Finally, standardization of specimens of any biological origin is made 

difficult by natural variation. This natural variation can be caused by sampling from different 

tooth types or different regions of the same tooth, and of course individual variation between 

the original biological donors. 

Given that enamel consists of over 90 wt.% crystalline hydroxyapatite (HA) [15, 16], pure 

HA specimens of inorganic origin are worth considering as a potential substitute for enamel 

in erosion experiments. This would be attractive from two standpoints. Solid HA of >99% 
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purity in various forms is readily available from laboratory suppliers, which simplifies 

procurement. Secondly, HA disks or pills should in theory be easily standardisable, given that 

they are industrially manufactured to customisable specifications. Overall, this would 

simplify future basic research and make more reproducible benchmarking of erosion effects 

possible without requiring the procurement and preparation of a large number of biological 

specimens to overcome natural variability.  

Therefore, this study aims to investigate whether pressed pure crystalline hydroxyapatite can 

act as a substitute for enamel in erosion studies when using HCl as the erosive agent in a 

superfusion model that is designed to mimic flow of an erosive agent in vivo under transient 

exposure conditions (such as initial contact with refluxate or drinking). The null-hypothesis 

was that HA would react similar to human and bovine enamel within measurement tolerance 

but with decreased variability.  

 

 

Materials and Methods 

Specimen preparation 

Human and bovine enamel specimens (n = 18 each) were prepared for acid exposure using 

the method described by Attin et al. [20], and following approved protocols. Disks of 3 mm 

diameter and 2 mm thickness were drilled from the crown of permanent incisors using a 

water-cooled hollow-core drill, and embedded in acrylic resin blocks of 6 mm diameter. The 

surface was smoothed in a rotating grinder at 100 rpm for 40 s with a sequence of #2000- and 

#4000-grit waterproof silicon carbide paper under constant water cooling. Further, crystalline 

hydroxyapatite (HA) specimens of 99% purity and 3.1 g/cm3 density (HAD130109 Solid 

Disk; HiMed, Old Bethpage, USA) were sourced and prepared in a similar way. HA 

specimens (n = 18) with a diameter of 3 mm were drilled from 25 mm disks, were embedded 

in resin, and ground in the same manner as the human and bovine material.  

 

Controlled erosion using superfusion  

Susceptibility of the substrates to erosion under different acidity levels was measured by 

superfusion with a steady laminar flow of HCl at different pH values, succeeded by a 

colorimetric assay for calcium levels using the Arsenazo III reagent [17]. Given the typical 

range of pH levels of refluxate (which can range between pH 1-6, with typical means around 

pH 2-3 for GERD sufferers [18, 19] and the most accurate measurement range of the assay, 

pH 3.0, 2.6 and 2.0 provided a comprehensive test range.) 
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Specimens were placed in a superfusion apparatus for exposure to 1 µl/s of HCl over the 

surface for a total of 7 minutes. This apparatus was custom-built (PPK laboratory, University 

of Zurich, Switzerland) and consisted of a jig for fixing the specimens within small chambers 

of about 0.94 mm3 volume (2 mm diameter and 0.3 mm height), with two orifices of 0.2 mm 

radius through which acidic solution was pumped in and out to maintain laminar, bubble-free 

flow. Each of the chambers was connected to a single tube of a multichannel pump (IPC; 

Ismatec, Glattbrugg, Switzerland), allowing for controlled testing of multiple specimens at 

once [21]. An initial conditioning period of 2 minutes of acid flow over the specimens was 

implemented to avoid nonlinearities at the beginning of the run. Transient sources of error 

such as initial surface contamination, remaining air bubbles in the test chamber etc. were 

mitigated in this way. After this conditioning period, the acidic solution and dissolved 

calcium were captured every 30 s in rows of a collection dish. This yielded a total of ten 30 

µl sample volumes – and hence 10 data points - per specimen and pH. The dissolution 

protocol was repeated for each specimen with three solutions of ascending magnitude of 

proton activity (1.0, 2.5 and 10 mmol/l, corresponding to pH 3, 2.6, and 2).  

 

Calcium dissolution measurement 

For the colorimetric measurement of calcium content, a protocol as described by Attin et al. 

[17] was followed. 10 µl of each of the 30 µl samples of acidic solution were pipetted from 

the superfusion collection dish into a clear 96-well microplate and mixed with 100 µl of the 

indicator reagent solution consisting of 100 mmol/l Imidazol buffer (pH 6.5) and 0.12 mmol/l 

Arsenazo III (Fluitest Ca-A-II; Analyticon, Lichtenfels, Germany). The indicator changed 

colour in the presence of calcium, thereby shifting the absorption spectrum of the sample at 

the photometry wavelength of 650 nm in proportion to calcium mass. Standard solutions of 

known calcium concentration were prepared by geometrically decreasing dilution. Finally, 

absorption of the standard and experimental samples was measured in a microplate reader 

(Spectramax; Bucher Biotec, Basel, Switzerland). The standard measurements yielded a 

calibration curve for calcium concentration, from which the calcium content of the erosion 

solution samples was derived. 

 

Additional calibration measurements 

While calcium measurement was the main test metric, the phosphate concentrations were 

measured for a subset of samples (n = 7) so as to ascertain a consistent release ratio of 

calcium and phosphate. Phosphate concentration was measured using colorimetry with 
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malachite green as the complexing agent. In order to create the reagent as described in 

Hannig et al. [22] 0.045 mg Malachite green was dissolved in 100 ml H20, admixed to 12.69 g 

of ammonium molybdate dissolved in 300 ml HCl (4 mol/l), and then stirred for 30 minutes 

and passed through 0.22 µm pore filtration. Colorimetry measurements then proceeded in 

similar fashion to the calcium assay via a microplate reader and a separately calculated 

standard absorption curve at 650 nm wavelength.  

 

Profilometry 

The profiles of sample HA disks after acid exposure were qualitatively compared to those of 

human enamel specimens to check for any gross difference in physical erosion behaviour. A 

stylus profilometer (Perthometer S2; Mahr, Göttingen, Germany) was used to determine the 

depth of the eroded region of individual specimens (n = 2 per type) to compare the surface 

characteristics of pure HA specimens with those of biological enamel. The automated stylus 

recorded the profile of the 3 mm specimens along 12 tracks over the surface at an upper-limit 

resolution of 10 nm. An approximate estimate of volume lost could be made by taking 

average erosive lesion depth over the surfaces for separate validation of the calcium 

dissolution measurement. 

 

Statistics 

The statistical software R was used for all data analyses [23]. The calcium release 

measurements were plotted and descriptive statistics calculated. The mean coefficient of 

variation (%) was computed to determine material variability. Due to violations of ANOVA 

assumptions (e.g. heteroscedasticity) a non-parametric approach was employed to compare 

the central tendency between the materials. At each pH level, the Kruskal-Wallis rank sum 

test, followed by pair-wise comparisons using Conover’s test [24], were used to test for 

significant differences of calcium release between HA, bovine and human specimens. The 

significance level α was set to 0.05. 

 

 

Results 

Calcium dissolution measurements 

The calcium dissolution rate was constant over time, indicating a linear progression of 

erosion in all specimen groups. The average slope of the time-dissolution curve was close to 

zero, i.e. approximately the same amount of calcium was dissolved every 30 s. A graphical 
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comparison of calcium dissolution rates at all three pH levels is shown for overview in Figure 

1.  

Table 1 summarizes the mean calcium release values, which were similar within the tested 

pH for all three specimen types. Pairwise statistical comparisons revealed no significant 

difference between HA or bovine specimens and human specimens, except for HA at pH 3 

and pH 2 (p<0.05). The mean coefficient of variation was lowest for the HA specimens with 

only 17%, while human and bovine specimens presented with values of 25% and 25% (Table 

1). Table 2 lists the distribution of calcium release values for a numerical comparison of the 

quartile ranges. 

 

Phosphate dissolution measurements 

The measurements of phosphate dissolution in the calibration subset yielded mean calcium to 

phosphate release ratios of 1.57 (H), 1.47 (B), and 1.60 (HA), which were consistent across 

all three pH levels with a variance below 10% for each specimen type.  

The level of proton consumption in the acidic superfusion solution - as reflected by the 

difference in pH of the solution exposed to the sample compared to the original source 

solution pH - was consistently under 20% even at the lowest pH level tested. 

 

Profilometry 

The profiles of the HA specimens after acid exposure were qualitatively compared to those of 

human enamel specimens in order to check for any gross difference in physical erosion 

behaviour. In both human enamel and HA inclines in the direction of the acid flow could be 

observed. HA specimens, however, displayed larger discontinuities on the order of 1-10 µm 

in the curved erosion profile. This is illustrated by isolated mini-peaks, as can be seen in the 

sample profilometric difference curve (Figure 2). 

 

 

 

Discussion 

Assessing the amount of calcium released from enamel as a surrogate measurement of dental 

enamel dissolution is an accepted research method [10]. Given that it has been demonstrated 

that the dissolution of calcium through a fully dissociating acid like HCl proceeds at an 

approximately linear rate over time [22], each measurement can be seen to reflect the overall 

dissolution rate and therefore the susceptibility to erosion of the materials.  
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Factors for a functional comparison of HA and human enamel 

When evaluating HA as a potential substitute for natural enamel specimens in erosion studies, 

four factors need to be considered, which are listed roughly in descending order of 

importance:  

- consistency  

- similar chemical behaviour to enamel in the experimental context 

- comparative ease of preparation and standardization 

- optimally – but also optionally – similar physical characteristics and biological 

interactions 

 

Consistency 

Commercially available HA specimens should behave consistently between experiments, and 

ideally between manufacturers – otherwise erosion studies performed with HA specimens 

may not replicate. As shown in Table 1, consistency within a specimen range is indeed the 

case. An average variability of 17% was observed with the HA specimens at different pH 

levels - lower than for both biological specimen types. Furthermore, the HA erosion 

proceeded linearly over the experimental time range, just like for specimens of biologic 

origin. 

 

Chemical similarity 

Similarity of surface chemistry narrowly refers to the response of the smooth material surface 

to acidic pH in this study. Many studies on erosion restrict themselves to this domain of 

specimen response. Hence simple surface erosion response is a good proxy for a large range 

of studies that enamel specimens are used for.  

One can see in Figure 1 and Table 2 that the interquartile range of measured calcium 

dissolution of the HA specimens overlaps well with the range of the human and bovine 

specimens at pH 2.0 and pH 2.6, whereas the pH 3.0 measurement range undershoots that of 

human and bovine enamel specimens. The median dissolution rate of HA is about 16% less 

than compared to human material at this pH. Table 1 shows that statistical significant 

differences between the HA and human series were detectable at pH 2.0 and 3.0. This 

matches experiences from a past study by Shellis et al [25] which also found a lower 

dissolution tendency of HA in comparison to human dental tissues. While the cited study 

applied a different methodology using a pH-stat system to study the kinetics of dissolution of 
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HA, human enamel and human dentin over a longer period of time (30 min), our study 

focused on the differences between human enamel in comparison to bovine enamel or 

synthetic HA discs applying a superfusion model, which should mimic the transient flow of 

an erosive agent over the specimen's surfaces in a shorter period of time (7 min). 

 

Two compositional differences of the enamel can be identified which may play a role in 

deviation in surface dissolution rate of pure HA disks: protein content, and non-

stoichiometric apatite components in the enamel. The protein content in enamel (human 

enamel being <1% protein by weight [26]) of course is not reflected in the HA discs, which 

could play a role in the high variability of biological enamel. Non-stoichiometric substitution 

of other substances and groups such as carbonate and magnesium may be an even more 

important factor. The carbonated hydroxyapatite is known to be more soluble in acid than 

hydroxyapatite, which in turn is more soluble than fluorapatite [27, 28]. In a past experiment 

with powdered enamel [29] the presence of carbonate groups in enamel was implicated in 

increased solubility rates over those expected from stoichiometric HA.  

 

Phosphate dissolution measurements in the subset did not impact the calcium measurements: 

phosphate dissolution rate proceeded in lockstep with calcium dissolution rate and confirmed 

the trend seen in the overall test series. The calcium-to-phosphate ratios were constant across 

pH levels for each specimen type, and in line with theoretical expectations (assumed to be 

around 1.62 for enamel [29]). 

 

Previously, a literature review by Yassen et al. [30] summarised research on the use of bovine 

specimens as substitutes for human enamel and dentin. 68 studies were included, covering a 

range of research categories where human teeth can be substituted with bovine material. The 

comparisons set a precedent of testing for clinically relevant differences, and allowed for 

substitution of in erosion experiments as long as no difference was detected [31] or if the 

difference was small and could be accounted for with a conversion constant [32]. Under this 

standard, preformed pure HA disks would not be suitable for direct substitution if maximum 

accuracy of absolute values is desired - one would have to take into account downward 

deviations of up to 16%. However, due to higher self-consistency between experiments they 

may be useful if it is desired to quickly establish relative trends in dissolution that result from 

varying pH levels or experimental conditions. More expansive testing could establish 

correction factors with narrower confidence intervals at each pH level, which would allow 
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direct substitution for absolute measurements. 

 

Ease of preparation and standardization 

Ease of preparation was one of the original motivations for using HA specimens, and 

therefore worth a brief evaluation. For HA specimens these properties depend on the original 

material format. Drilling specimens from larger HA disks was substantially faster - by a 

factor of two - than from biological material of the same size, as no reorientation of the drill 

is necessary between position changes. However, performing embedding and surface 

grinding still takes the same amount of time as for biological material. While this was 

required for consistency in this experiment, it could be possible for future experiments to use 

pre-formed HA disks of suitable size, for zero preparation time. It may be an interesting 

proposition for manufacturers to vary the composition of HA disks to include additional 

chemical substitutions in an attempt to make them even more representative of organic 

enamel samples. 

 

Physical similarity and other factors 

Physical similarity refers to the characteristics of the specimen post-erosion, which can be 

measured by physical methods, e.g. X-Ray, 3D scanning or needle-based profilometry. 

Roughness of the disk, depth of erosion as well as the actual erosion pattern would fall under 

this category, and were assessed by profilometry in this case. 

In past experiments, human enamel exposed to a laminar HCl-flow has displayed a relatively 

smooth eroded surface with deviations on the order of zero to five µm, and a slanted profile 

inclined in parallel from the direction of flow. Profilometry of the HA specimens implied that 

HA disks indeed experience a similar sloping profile. A volume calculation based on the 

average depth of the erosion cavity, area of the sample, and calcium content of pure HA 

verified that the calcium measurement was in the similar order of magnitude. In terms of 

differences, however, the HA profile showed higher roughness levels over the enamel 

specimens. This can be seen in the isolated mini-peaks (µm-size deviations) in the otherwise 

smooth surface as presented in Figure 2, and may indicate larger crystallites breaking away 

from the pressed HA structure during flow than from human enamel. 

Physically, the surface of HA displays substantial differences both in terms of hardness as 

well as elasticity. Based on the experience from grinding the specimens, HA surfaces in all 

likelihood do not resist wear and tear like those from enamel, indicating that it is probably not 

a suitable candidate for the substitution or benchmarking in experiments involving 
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mechanical strain, i.e. experiments relying primarily on physically measured characteristics 

such as hardness or elastic modulus.  

 

Further research 

While this experiment allows characterising the surface chemistry of HA under flow 

conditions, it would also be interesting to extend HA testing to a combination of longer-term 

acid exposure and artificial remineralisation, i.e. ‘artificial caries’ induction such as presented 

by Schmidlin et al. [33]. This type of experiment relies on transverse microradiography for 

tracking the spread of artificial carious lesions, where the uniform density of HA could allow 

for less noisy X-ray imaging – if indeed artificial caries could be induced.  

Further research should also involve a low-variance benchmarking of different acidic 

solutions and a wider range of pH values with the same experimental procedure, in order to 

establish confidence intervals for correction constants between pure HA and human enamel, 

which may eventually allow full substitution. In addition, pre-formed as opposed to drilled 

HA specimens could be employed to decrease test preparation time, and subjected to a wider 

range of chemical erosion experiments, such as static acid exposure and remineralisation. 

Future studies should also include human saliva in the experimental set-up, which constitutes 

an essential clinical factor in the development of erosions. 

 

Conclusion 

The null-hypothesis that HA would display erosion behaviour similar to that of human and 

bovine enamel specimens, at lower experimental variability, was rejected. The range of 

calcium dissolution rates of HA overlapped with human enamel at the lower two pH levels, 

however difference between means could be detected statistically at pH 2.0 and 3.0, with a 

general tendency to erode less than biologic enamel. Measurement variability was 

consistently lower. This combination of traits implies that HA may not be suitable for full 

substitution in studies focusing on absolute values of measurements, but is still useful for 

establishing consistent relative trends. 
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Tables 

 

 

Table 1 

Mean calcium release (Mean Ca [nmol/10 s]) of the three tested specimens with their mean 

coefficient of variation (%). Further, results of the pairwise statistical comparison (using 

Conover’s test posthoc to the Kruskal-Wallis test) to the human specimens are given. 

 

 Human   Bovine HA 

N (specimens) 18 18 18 

N (measurements per pH) 180 180 180 

pH 2.0 Mean Ca [nmol/10 s] 10.04 10.39 8.85 

 
Stat. sig. difference  

(compared to human series) 
- p=0.79 p<0.05 

pH 2.6 Mean Ca [nmol/10 s] 2.42 2.54 2.48 

 
Stat. sig. difference  

(compared to human series) 
- p=0.34 p=0.70 

pH 3.0 Mean Ca [nmol/10 s] 1.27 1.24 1.06 

 
Stat. sig. difference  

(compared to human series) 
- p=0.80 p<0.05 

Mean coefficient of variation 25% 25% 17% 

 

 

 

 

Table 2 

Percentiles of the calcium release [nmol/10 s] of the human and bovine enamel specimens as 

well as the hydroxyapatite specimens at the three tested pH levels.  

 

 
Ca release in nmol/10 s 
 

[Percentile]  
 

 

 

 0% 

 

 

25% 

 

 

50% 

 

 

75% 100%

pH 2.0 Human 3.70 8.87 10.56 10.96 14.06

 Bovine 5.84 9.87 10.40 10.83 14.92

 HA 5.90 7.75 8.70 10.03 11.70

     

pH 2.6 Human 1.01 1.80 2.38 2.80 3.84

 Bovine 0.76 2.10 2.59 2.80 4.28

 HA 2.00 2.25 2.50 2.58 3.80

     

pH 3.0 Human 0.73          1.19 1.29 1.41 1.61 

 Bovine 0.60          1.22 1.30 1.39 1.69

 HA 0.70          0.99 1.07 1.14 1.55
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Figures  

 

 

Figure legend 1 

Calcium release [nmol/10 s] of the human and bovine enamel specimens as well as the 

hydroxyapatite specimens at the three tested pH levels.  

 

 

 

Figure legend 2 

Above: Single-track depth profile of a HA sample pre- (black) and post-erosion (white). 

Below: Resulting difference curve of pre- and post-erosion profile. 

 

 


