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a b s t r a c t

Renal cell carcinoma (RCC) has traditionally been regarded as radioresistant tumor based on preclinical
data and negative clinical trials using conventional fractionated radiotherapy. However, there is emerging
evidence that radiotherapy delivered in few fractions with high single-fraction and total doses may over-
come RCC s radioresistance. Stereotactic radiotherapy (SRT) has been successfully used in the treatment
of intra- and extracranial RCC metastases showing high local control rates accompanied by low toxicity.
Although surgery is standard of care for non-metastasized RCC, a significant number of patients is med-
ically inoperable or refuse surgery. Alternative local approaches such as radiofrequency ablation or
cryoablation are invasive and often restricted to small RCC, so that there is a need for alternative local
therapies such as stereotactic body radiotherapy (SBRT). Recently, both retrospective and prospective tri-
als demonstrated that SBRT is an attractive treatment alternative for localized RCC. Here, we present a
comprehensive review of the published data regarding SBRT for primary RCC. The radiobiological ratio-
nale to use higher radiation doses in few fractions is discussed, and technical aspects enabling the safe
delivery of SBRT despite intra- and inter-fraction motion and the proximity to organs at risk are outlined.

� 2019 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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1. Introduction

Renal cell carcinoma (RCC) is the 6th most frequent malignancy
in men and the 10th in women, resulting in more than 140,000
RCC-attributed deaths per year worldwide [1]. RCC constitutes a
heterogeneous group of different histological subtypes that com-
prises more than 90% of all primary kidney malignancies [2].
Among the various subtypes, clear cell RCC is most frequent fol-
lowed by papillary RCC and chromophobe RCC [3]. RCC is more
common in elderly people (median age of about 65 years) and in
men (male-to-female-ratio of 1.65) [4,5]. Due to the increasing
use of abdominal imaging such as sonography, computer tomogra-
phy and magnetic resonance imaging, RCC incidence has increased
during the last decades [6]. The classical trias of RCC comprise flank
pain, gross haematuria and palpable abdominal mass; however,
more than half of RCC are detected incidentally [7]. Smoking, obe-
sity, hypertension, and chronic kidney disease are known to be
established risk factors for RCC [1]. Surgery including partial and
radical nephrectomy is the gold standard for non-metastatic RCC;
however, medical comorbidities may rule out surgical excision in
a significant number of patients. Although radiofrequency ablation
and cryoablation are alternative local treatment option, stereotac-
tic body radiotherapy (SBRT) may be an advantageous treatment
approach for larger, more centralized tumors with proximity to
vessels or the ureter, as invasive locally ablative techniques may
cause strictures, fistulas and bleeding [8]. Moreover, as SBRT is a
non-invasive treatment modality, SBRT may have advantages over
other alternative local treatment in frail patients and patients with
anticoagulation.

2. Current state of the art in the treatment of local RCC

Based on a systematic review analyzing several retrospective
trials and a randomized controlled trial, partial nephrectomy is
the standard of care for T1 tumors (up to 7 cm) with normal con-
tralateral kidney function and for local RCC with impaired con-
tralateral kidney function, solitary kidney or bilateral kidney
tumors without any size limitation [7,9]. Comparison of partial

and total nephrectomy revealed increased renal function and
reduced overall mortality in patients receiving partial nephrec-
tomy [10]. There are several scores such as the C-Index, PADUA
score and RENAL nephrometry score which help quantifying the
complexity of the renal mass and predicting perioperative out-
comes [11–14] (Table 1).

In elderly patients with relevant comorbidities and decreased
life expectancy presenting with small kidney tumors (up to
4 cm), active surveillance is an alternative, as most small tumors
exhibit a slow growth rate and low metastasis rate leading to a
low RCC-related mortality [7,15]. For selected patients with T1a
tumors (up to 4 cm), ablative techniques including radiofrequency
ablation and cryoablation are additional alternatives [7,15]. Albeit
randomized controlled trials are lacking, systematic reviews sug-
gest no different cancer-specific survival and metastasis rate after
radiofrequency ablation and partial nephrectomy [16]. However,
local recurrence rates appear to be higher after radiofrequency
ablation compared to partial nephrectomy [7,16]. By performing
a meta-analysis, Kunkle et al. compared radiofrequency ablation
and cryoablation for RCC and observed fewer retreatments and
improved local tumor control in the cryoablation-group [17]. Inci-
dence of metastatic progression did not differ between radiofre-
quency ablation, cryoablation and active surveillance. An
important difference between both ablative approaches is the
point that cryoablation is predominantly conducted laparoscopi-
cally, whereas radiofrequency ablation routinely is performed per-
cutaneously [17]. Prior to ablative techniques, a renal tumor core
biopsy is recommended, as a significant amount of small renal
masses is benign (about 20% for masses up to 3 cm) [18].

Both the current ESMO and NCCN guidelines state that there is
no evidence for the utilization of radiotherapy as neoadjuvant or
adjuvant treatment in RCC [7,15]. There are several scores access-
ing the risk for progression to metastatic RCC after nephrectomy
(Table 2). Randomized studies investigating the effects of adjuvant
systematic treatment in high-risk RCC after complete resection
failed to detect an overall survival benefit for interleukin-2,
interferon-a, sunitinib, sorafenib and pazobanib [19–22]. Only
the S-TRAC trial regarding adjuvant sunitinib therapy showed a
superior disease-free survival compared to the placebo-group lead-
ing to FDA (United States Food and Drug Administration) but not
EMA (European Medicines Agency) approval of adjuvant sunitinib

Table 1
RENAL nephrometry score for describing renal tumor anatomy. Adapted from [11].

RENAL nephrometry scoring system

Score

Radius (maximal
diameter)

�4 cm 1
4–7 cm 2
�7 cm 3

Exophytic/endophytic �50% exophytic 1
<50% exophytic 2
completely endophytic 3

Nearness to collecting
system/renal sinus

�7 mm 1
4–7 mm 2
�4 mm 3

Anterior/posterior
location

No points given. a, p or x as descriptor for
mass location

Location relative to
the polar lines

Entirely below lower polar or above upper
polar line

1

Mass crosses polar line 2
50% of mass is across polar line or mass is
entirely between polar lines or mass crosses
axial midline

3

Scores Group
4–6 Low complexity
7–9 Moderate complexity
10–12 High complexity

Table 2
Scoring algorithm accessing the risk for progression to metastatic RCC after
nephrectomy. Adapted from [103].

Score

T category of primary tumor (based
on TNM 2002)

pT1a 0
pT1b 2
pT2 3
pT3a-4 4

Lymph node status (based on TNM
2002)

pNx or pN0 0
pN1 or pN2 2

Tumor size <10 cm 0
�10 cm 1

Nuclear grade 1–2 0
3 1
4 3

Histological tumor necrosis No 0
Yes 1

Scores Group 5-year metastasis-
free survival

0–2 Low risk 97.1%
3–5 Intermediate

risk
73.8%

�6 High risk 31.2%
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treatment [7,23]. Concerning these negative study results, observa-
tion is the standard of care after nephrectomy.

3. Radiobiology of RCC

Traditionally, RCC is assumed to be a radioresistant tumor
demonstrated both by in vitro and in vivo studies. Comparison of
various cell lines in vitro indicated that RCC was amongst the most
radioresistant cell lines [24]. As RCC cells are known to exhibit a
low a/b-ratio, higher treatment doses which are delivered in
hypofractionated radiotherapy or SBRT may overcome the intrinsic
radioresistance of RCC. Performing clonogenic survival assays, the
RCC cell lines Caki-1 and A498 exhibited a/b-ratios of 6.9 and
2.6, respectively [25]. Using higher radiation doses, alternative cell
death mechanisms such as ceramide-induced apoptosis become
more relevant in RCC cells [26]. Endothelial cell apoptosis based
on the ceramide-pathway is believed to be an important mecha-
nism how radiotherapy with high radiation doses acts in highly
vascularized tumors such as RCC [26]. Molecularly, a secretory
form of acid sphingomyelinase is translocated to the extracellular
leaflet of the cell membrane and transforms sphingomyelin into
the pro-apoptotic protein ceramide via enzymatic hydrolysis
[27]. The fact that acid sphingomyelinase, especially its secretory
form, is predominantly expressed in endothelial cells explains
the high sensitivity of endothelium to ceramide-induced apoptosis
[28]. In vivo studies comparing sphingomyelinase-knockout mice
with wildtype mice demonstrated that sphingomyelinase-
knockout mice exhibited an increased threshold to irradiation-
induced endothelial apoptosis and were resistant to single-dose
radiotherapy with 20 Gy [29]. The importance of sphingomyelinase
activity regarding tumor response after SBRT was further under-
lined by the study of Sathishkumar and coworkers [30]: 75% of
the patients with partial or complete tumor response after SBRT
exhibited significantly increased both serum ceramide and serum
sphingomyelinase levels, whereas none of the non-responders
had increased levels of these proteins.

Considering the high immunogenicity of RCC, radiotherapy-
induced immunogenic cell death may cause an abscopal effect
leading to elimination of distant metastases. There are several case
reports about abscopal effects in metastatic RCC after local radio-
therapy [31–33]. In a small case series with 4 patients published
by Wersäll and coworkers, all patients who exhibited an abscopal
effect lived more than 5 years demonstrating the long-lasting
anti-tumor effect in these cases [32]. A currently recruiting phase
II study aims to investigate the safety profile and efficacy (overall
survival, time to local progression, distant progression-free sur-
vival) of SBRT and the PD-1-antibody pembrolizumab in oligome-
tastatic RCC (NCT02855203).

4. History of radiotherapy in the treatment of RCC

Both neoadjuvant and adjuvant approaches for radiotherapy
have been investigated during the last decades. Two prospective
clinical trials comparing nephrectomy alone versus neoadjuvant
radiotherapy prior to nephrectomy failed to demonstrate a survival
advantage of preoperative irradiation [34,35]. In the study by van
der Werf-Messing, 126 patients with non-metastasized RCC were
randomized to either nephrectomy alone (n = 62) or neoadjuvant
radiotherapy followed by nephrectomy (n = 64). Subgroup analy-
ses were able to identify patients who benefitted from preopera-
tive radiotherapy, namely patients in which intra- and extrarenal
veins or lymph vessels were tumor-infiltrated, leading to a better
survival at 18 months. Additionally, a lower metastasis incidence
and delayed metastasis onset were observed in patients treated
with preoperative radiotherapy. However, 5-year survival was

not superior in the radiotherapy-group so that these results did
not support neoadjuvant radiotherapy for localized RCC [34]. In
the other study conducted by Juusela and colleagues, randomiza-
tion between nephrectomy alone (n = 50) and neoadjuvant irradi-
ation prior to nephrectomy (n = 38) was performed for 88
patients. Albeit not statistically significant, 5-year survival was
inferior in patients who received preoperative radiotherapy (47%)
compared to patients with nephrectomy only (63%). Contrary to
the study by van der Werf-Messing, there were no subgroups
who had a benefit through neoadjuvant radiotherapy [35]. In com-
parison to other tumor entities, the radiation dose was quite low in
both studies (30 Gy in 15 fractions [34] and 33 Gy in 15 fractions
[35]) which may have contributed to the negative study results.

Similarly to the neoadjuvant approach, two randomized trials
investigating the role of postoperative irradiation after nephrec-
tomy in selected patients could not show a survival benefit of addi-
tional radiotherapy [36,37]. Finney and coworkers randomized 100
patients to either surgery followed by adjuvant radiotherapy
(n = 51) or surgery alone (n = 49). Neither overall survival nor local
recurrence rate were found to be improved in patients treated by
adjuvant radiotherapy. Furthermore, a significant number in the
radiotherapy-group suffered from radiotherapy-induced normal
tissue injuries such as irradiation-induced liver damage and died
from coincidental causes [36]. In the other randomized trial evalu-
ating adjuvant radiotherapy after nephrectomy for localized RCC,
65 patients with stage II and III RCC were randomly treated by sur-
gery followed by observation (n = 33) or adjuvant radiotherapy
with 50 Gy delivered in 20 fractions (n = 32). While there was no
difference regarding median survival, there was a significant num-
ber of patients in the postoperative radiotherapy-group who had
radiotherapy-related complications (44%), especially gastrointesti-
nal toxicity, and 19% of patients who received postoperative radio-
therapy died from radiotherapy-induced complications [37]. In
both studies, eligibility criteria were positive resection margins
and vena cava infiltration, while in the study of the Copenhagen
Renal Cell Cancer Study Group, positive lymph node status was
an additional criterion [36,37].

In ameta-analysis of 7 controlled trials with a total population of
735 patients, a significant reduction of locoregional failure with a
pooledodds ratio of 0.47wasdetected in patientswithhigh-risk fea-
tures (e.g. positive resectionmargins, positive lymph nodes) receiv-
ing postoperative radiotherapy; however, no difference in overall
survival and disease-free survival was observed [38]. The authors
concluded from these results that a prospective multicenter, ran-
domized, controlled trial is needed to evaluate the role of postoper-
ative radiotherapy for high-risk patients after nephrectomy.

It should be noted that these older randomized trials exhibit
several limitations including insufficient radiation doses, non-
conformal radiation techniques with large field sizes and
parallel-opposed anteroposterior fields and inadequately low
patient numbers, thereby limiting the value of these trials [38].

5. Role of stereotactic radiotherapy in RCC metastasis treatment

About 20%–40% of RCC patients develop metastases after
nephrectomy, and lung is the second most frequent site of RCC
metastases after liver [39]. While overall survival for nontreated
metastatic RCC is poor with a 5-year survival of 0%–18% [40], both
excellent local control and encouraging overall survival were
reported for metastasectomy of pulmonary RCC metastases
[41,42]. In patients with technically resectable metastases and
good prognostic factors such as metachronous disease with a long
disease-free interval and limited metastases number (up to 6
metastases), a 5-year survival of 52% after metastasectomy is
reported in the literature [41].
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As a significant number of patients with pulmonary RCC metas-
tases is medically or technically inoperable, alternative approaches
such as SBRT came into the focus during the last years. The promis-
ing results of SBRT in the treatment of early-stage non-small-cell
lung cancer (NSCLC) show the general feasibility and the safe tox-
icity profile of this technique in the treatment of pulmonary malig-
nancies [43–45]. In a retrospective multicenter-analysis of the
Working Group Stereotactic Radiotherapy of the German Society
for Radiation Oncology (DEGRO) including 46 RCC patients with
lung metastases, 1- and 3-year local control rates were 98.1% and
91.9% leading to 1- and 3-year overall survival rates of 84.3% and
43.8%, respectively [46]. Only 3 of 46 patients developed grade II
+ toxicity, and no treatment-related deaths were observed in this
cohort. The investigators reported a trend towards improved local
control rates using higher biologically effective doses (BED),
although statistical significance was not reached (P = 0.054). Altoos
et al. compared the effects of SBRT and conventional fractionated
radiotherapy to thoracic, abdominal, skin and soft tissue RCC
metastases analyzing 34 patients with 53 treated lesions [47].
With a radiographic local control of 93.4% at 36 months after SBRT
and no grade III+ side effects, local control was found to be excel-
lent with marginal toxicity. In a univariate analysis, BED � 100 Gy
and fraction size � 9 Gy were reported to predict local control rate.

About 10% of RCC patients develop brain metastases leading to
significant morbidity and mortality [48]. Even after the introduc-
tion of targeted therapies, overall survival after detection of RCC-
derived brain metastases remains poor with a median survival
time ranging between 6 and 12 months [49,50]. In a phase II trial
evaluating the role of sunitinib for RCC-derived brain metastases
(n = 16), no objective response in the brain metastases was
detected and overall survival was low with a median time of
6.3 months [51]. However, local therapies such as stereotactic
radiotherapy (SRT) and resection have been shown promising
results for selected patients in some studies [52,53]. In a large ret-
rospective analysis comprising 69 patients with a total of 146 RCC
brain metastases, a local control rate of 96% and a median overall
survival of 15 months was reported. Using this treatment
approach, the majority of patients (83%) died of extracranial dis-
ease progression. In another retrospective study with 29 patients
and 92 RCC brain metastases, gamma knife radiosurgery was used
[54]. Especially in patients with Recursive Partitioning Analysis
(RPA) class I, median survival of 18 months was promising. In con-
trast to these results using SRS, results of whole brain radiotherapy
(WBRT) for RCC brain metastases are rather disappointing [55].
Comparing the results of SRT for brain metastases derived from dif-
ferent tumor entities, some studies observed similar local control
rates, while others observed an enhanced radioresistance of RCC

brain metastases [56]. Consideration of SRS with or without WBRT
for good-prognosis patients with a single unresectable brain
metastasis is recommended by the current ESMO guidelines; how-
ever, the increased cognitive dysfunction after the combined ther-
apy is emphasized [7].

6. Current evidence of SBRT for primary RCC

There are several retrospective studies which analyzed the
effects of SBRT for primary RCC and demonstrated high local con-
trol rates with minimal toxicity [57–65] (Table 3). Consequently,
prospective phase I and II studies were conducted in order to
investigate the feasibility and safety of SBRT for primary RCC and
to find the optimal radiation dose and fractionation [66–71]
(Table 4). In 2012, Siva and colleagues performed a systematic
review comprising 10 studies (3 prospective and 7 retrospective
studies) with a total patient population of 126 patients [72].
Whereas local control rates ranged between 84% and 100% after
SBRT, SBRT-related toxicity was low with a grade III+ toxicity rate
of 3.8%.

Ponsky and colleagues performed a dose-escalation study com-
paring 24, 32, 40 and 48 Gy in 4 fractions, and showed that irradi-
ation with 48 Gy in 4 fractions can be applied without dose-
limiting toxicity [67]. Partial response and stable disease were
observed in 20% and 80%, respectively [67]. Considering these
promising results, the authors have conducted an escalation study
and investigated SBRT with radiation dose up to 60 Gy in 3 frac-
tions. This escalation study is completed, and results will be shown
at the ASTRO’s Annual Meeting in 2019 (personal communication).

Single fraction radiotherapy for RCC was prospectively investi-
gated in a study by Staehler et al. [68]. In this cohort, 40 patients
with 45 surgically untreatable renal tumors (15 transitional cell
carcinoma and 30 RCC) were treated using a CyberKnife system
with 25 Gy in a single fraction to the 70% isodose. Local control rate
at 9 months after radiotherapy was 98%, and remission was
observed in 39 of 45 lesions (86.7%) with a complete remission rate
of 42.2%. Interestingly, renal function based on creatinine clearance
was found to be unaffected after single fraction radiotherapy. How-
ever, median follow-up was quite short with 28.1 months and
renal lesions larger than 4 cm were excluded from this study
thereby limiting the transfer of these results to the treatment of
larger tumors.

More recently, the International Radiosurgery Oncology Consor-
tium for Kidney (IROCK) performed a pooled, multi-institutional
analysis of 223 patients from 9 institutions after single-fraction
and multi-fraction SBRT for RCC [6]. Single-fraction radiotherapy
with a median dose of 25 Gy (median BED 87.5 Gy) was performed

Table 3
Retrospective studies about SBRT for primary RCC.

Study Dose Patient number Results Toxicity

Beitler [58] 5 � 8 Gy or
6 � 7 Gy

9 LC 100%
OS 44% (mean follow-up time 26.7 months)

33% grade I-II
No grade III+

Chang [60] 5 � 8 Gy (lowered up to 5 �
6 Gy to meet OAR constraints)

16 LC 100% (mean follow-up time 19 months) 6% grade I
13% grade IV

Gilson [63] 5 � 8 Gy (mean) 33 LC 88–94% (mean follow-up time 17 months) Not reported
Lo [65] 5 � 8 Gy 3 100% (mean follow-up time 22 months) 33% grade I

No other toxicities
Nair [61] 3 � 13 Gy 3 LC 100% (mean follow-up time 13 months) Unknown
Nomiya [64] 16 � 4.5 GyE (C12) 10 LC at 5 years 100%

PFS at 5 years 100%
OS at 5 years 74%

10% grade IV
No other toxicities

Svedman [57] 4 � 10 Gy 7 LC 86% (mean follow-up time 39 months) Not reported
Qian [62] 5 � 8 Gy 20 LC 93% (mean follow-up time 12 months) Not reported
Wersäll [59] 5 � 8 Gy or

4 � 10 Gy or
3 � 15 Gy

8 LC 90–98% (for localized RCC and RCC metastases)
Median survival >58 months

For localized RCC and RCC metastases:
20% grade I-II
19% grade III
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in 118 patients, while 105 patients received multi-fraction SBRT
with a median dose of 40 Gy delivered in 2–10 fractions (median
BED 80 Gy). At 4 years after treatment, local control rate, cancer-
specific survival and overall survival were 97.8%, 91.9% and
70.7%, respectively. 35.6% had grade I or II toxicities, and only
1.3% suffered grade III or IV adverse reactions; additionally, a slight
but significant decrease of median glomerular filtration rate (GFR)
was observed (59.9–54.4 ml/min/1.73 m2). Comparing these
results with thermal ablation, radical and partial nephrectomy,
the relative GFR decrease after SBRT is similar to them after ther-
mal ablation and partial nephrectomy; however, radical nephrec-
tomy causes a significantly more severe GFR decline [73,74].
Interestingly, 52 patients (26.5%) exhibited a higher GFR after SBRT
compared to pre-treatment levels.

Whether SBRT is safe for patients with pre-existing renal dys-
function or single functioning kidney, was addressed in small case
series and one larger multicenter analysis [57,65,75]. In one study
including 3 patients with a GFR between 17.5 and 34.8 ml/
min/1.73 m2 and stage I RCC were treated with 40 Gy delivered
in 5 fractions using the CyberKnife system [65]. While local control
was achieved in all patients, no patient required dialysis during
follow-up. However, in 1 patient, GFR dropped from 17.5 ml/
min/1.73 m2 to 12.3 ml/min/1.73 m2 at 26 months after SBRT
thereby constituting renal failure. In another study comprising 7
patients with single functionating kidney, renal function was found
to be unaffected in 5 patients after SBRT with 10 � 3 Gy or
10 � 4 Gy, and none of the treated patients required dialysis.
Serum creatinine levels in 1 patient increased by about 30% und
remained stable until a follow-up time of 52 months, while in
another patient, serum creatine levels increased by about 20% dur-
ing 6 years of follow-up. Local recurrence was observed in 1
patient after 54 months leading to re-irradiation and local control
until to date [57]. Recently, the IROCK performed a multicenter
analysis investigating SBRT for RCC in 81 patients with a solitary
kidney [75]. Considering the local control, progression-free, cancer
specific and overall survival of 98.0%, 77.5%, 98.2% and 81.5% after
2 years, SBRT for RCC in solitary kidney patients led to an excellent
oncologic outcome. Mean GFR rate dropped from 64.6 ± 21.7 to
59.2 ± 23.9 ml/min/1.73 m2 after a median of 20.4 months, and
no patient required dialysis after SBRT. Interestingly, 26.2% of
patients exhibited even an increase in their GFR rate.

In order to further increase the evidence of SBRT for primary
RCC, the Trans-Tasman Radiation Oncology Group (TROG) together
with the Australian and New Zealand Urogenital and Prostate Can-
cer Trials Group (ANZUP) will perform a prospective, multi-
institutional phase II study aiming to recruit 70 patients with
biopsy-confirmed RCC and medical inoperability or refusal of sur-
gery [76].

One limitation of many studies investigating SBRT for RCC is the
fact that smaller RCCs were included. However, in a retrospective
analysis comprising 11 patients, SBRT for renal tumors with a med-
ian tumor diameter of 9.5 cm was well tolerated with only 5
reported grade I toxicities and 1 grade II (diarrhea) and III (nausea)
toxicity in 1 patient [77]. Based on these encouraging toxicity
results, a prospective study is underway to further investigate
SBRT for large RCC (NCT02264548).

In the vast majority of studies about radiotherapy for localized
RCC, photon irradiation was used; however, few studies reported
about the results using protons or heavy ions such as carbon ions
for primary RCC [64,78,79]. The dosimetric advantages of protons
and carbon ions compared to photon irradiation has been demon-
strated in many studies [80,81]. However, whether these advan-
tages lead to improved clinical results in localized RCC needs to
be studied in clinical trials.

In the largest cohort of RCC patients treated with carbon ion
radiotherapy (n = 19), local control rate, disease-free-survival and
overall survival at 5 years were 94.1%, 68.9% and 89.2% [78].
Patients were irradiated with several radiation doses and fraction-
ation protocols including 16 � 4 GyE, 16 � 4.5 GyE, 16 � 5 GyE and
12 � 5.5 Gy. There was 1 grade IV dermatitis, but no other grade III
+ non-renal toxicities. In the group of patients without preexisting
renal comorbidities (n = 14), no one developed chronic kidney dis-
ease, whereas 4 of 5 patients with renal comorbidities prior to
radiotherapy progressed to grade IV chronic kidney disease
(GFR < 15 ml/min/1.73 m2 or dialysis) in a mean time of 5.6 years.
The average reduction in GFR after carbon ion radiotherapy was
6.1 ml/min/1.73 m2 which is comparable to the results after SBRT.
In summary, carbon ion radiotherapy for localized RCC seems to be
a promising treatment modality regarding the favorable 5-year
local control rate and overall survival accompanied by relatively
low toxicity. In order to investigate the safety and efficacy of car-
bon ion radiotherapy in the treatment of RCC prospectively, Kasuya
and colleagues performed a phase I/II study with 8 patients [82]. 5
patients were treated with 66 GyE delivered in 12 fractions and 3
patients with 72 Gy in 12 fractions. Excellent local control and
cancer-specific survival rates (100% with a median follow-up time
of 43.1 months) were reported, although 5 patients had tumors lar-
ger than 4 cm. No grade III+ toxicities were observed, and the GFR
decreased by 10.8 ml/min/1.73 m2 during the follow-up.

So far, there is only one case report about proton radiotherapy
for primary RCC [79]. In a 47-year-old female patient with multiple
comorbidities and obesity (450 lb = 204 kg with a BMI > 90), bilat-
eral synchronous RCCs were found incidentally. She was medically
inoperable due to her multiple comorbidities including stage III
chronic kidney disease. After radiotherapy with 30 Gy delivered
in 5 fractions for both RCCs, the patient developed no significant

Table 4
Prospective trials about SBRT for localized RCC. FLP = freedom from local progression, FDP = freedom from distant progression, LC = local control, OS = overall survival.

Study Dose Patient number Results Toxicity

Kaplan [70] 3 � 7 Gy or
3 � 9.3 Gy or
3 � 10.6 Gy or
3 � 13 Gy

12 LC 91.7% (unknown follow-up time) No grade I+

Pham [69] 3 � 14 Gy or
1 � 26 Gy

20 Not reported 60% grade I-II
No grade III+

Ponsky [67] 4 � 6 Gy or
4 � 8 Gy or 4 � 10 Gy or 4 � 12 Gy

19 OS at 3 years 72% 10.6% grade II
15.8% grade IV

Siva [66] 3 � 14 Gy or
1 � 26 Gy

33 FLP at 2 years 100%
FDP at 2 years 89%
OS at 2 years 92%

78% grade I-II
3% grade III
No grade IV+

Staehler [68] 1 � 25 Gy 40 LC at 9 months 98% 13% grade I-II
Svedman [71] 4 � 8 Gy or

4 � 10 Gy or
3 � 15 Gy

5 Primary and metastatic RCC:
LC 98% (19% of lesions in patients with
a follow-up < 6 months)
OS 32 months

Primary and metastatic RCC:
54% grade I-II
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clinical toxicity, although GFR slightly decreased by
5 ml/min/1.73 m2 over 1 year.

Taken together, there are encouraging results for particle radio-
therapy, especially for carbon ion radiotherapy, in the treatment of
RCC. However, further prospective trials with a longer follow-up
and sufficient patient number are warranted to evaluate the role
of particle irradiation for RCC.

7. Comparison with other non-surgical treatment approaches

Radiofrequency ablation and cryoablation are alternative local
treatment options for small RCC with medical inoperability or refu-
sal of surgery [83]. Other local ablative techniques such as micro-
wave ablation, high-intensity focused ultrasound and laser
interstitial thermotherapy are experimentative therapies and only
investigated in small case series [84,85].

In contrast to these thermal ablation techniques in which tumor
shrinkage can be observed shortly after treatment, long-term
reduction in tumor size even years after SBRT has been reported
[86]. As ionizing radiation may cause delayed cell death through
certain mechanisms such as mitotic catastrophe, viable tumor cells
may be found shortly after SBRT so that routine post-SBRT biopsy
is not recommended [87]. This recommendation is different to rec-
ommendations for radiofrequency ablation where post-
intervention biopsy is suggested as residual RCC cells can be found
without radiographic evidence for treatment failure [88]. Contrary
to thermal ablation therapies, contrast enhancement on CT can be
found over a longer period after SBRT and thus is not a surrogate
parameter for treatment failure [87,89]. Dependence on technician
experience in terms of a learning curve is less important for SBRT
compared to thermal ablation treatments [90]. Radiofrequency
ablation and microwave ablation are generally restricted to small
RCC up to 4 cm diameter, whereas cryoablation may be an alterna-
tive for larger RCC [91]. However, both complication rate and
tumor recurrence probability after cryoablation were found to be
increased when tumor size exceeded 3.5 cm or 3 cm, respectively
[92,93].

As randomized controlled trials between thermal ablation tech-
niques and SBRT for RCC are lacking, only indirect comparisons of
retrospective and prospective series for both treatment modalities
can give further evidence. Recent studies trying to compare differ-
ent modalities for NSCLC or prostate cancer failed due to slow
accrual and illustrate the difficulty of such studies [45,94]. An
attempt to compare SBRT and radiofrequency ablation for RCC
was a trial sponsored by the University of Michigan Cancer Center
(NCT02138578) which was prematurely closed for poor accrual
and inability to follow patients. So far, neither the ESMO nor the
NCCN or German S3 guideline recommend SBRT for primary RCC
as an alternative to surgery or thermal ablation techniques
[7,15,95]. In the German S3 guideline, SBRT is described as exper-
imental treatment modality due to the significant lower number of
treated patients compared to thermal ablation techniques [95,96].
However, it is notable that the estimated 2-year local control rate
of 94% (based on the systematic analysis by Siva et al. in 2012 [72])
is comparable to the results of radiofrequency ablation or cryoab-
lation [95].

8. Technical aspects of SBRT for primary RCC

Intra-fraction respiratory-induced motion of the kidneys is a
major challenge of renal radiotherapy. Besides intra-fraction
motion, movement between different fractions (inter-fraction
motion) especially of organs at risk such as small bowel and duo-
denum is another concern. Additionally, the anatomic adjacency
to the small bowel, duodenum and liver is another critical point

that needs to be considered. Several technical options to deal with
these challenges are discussed in the following.

8.1. ITV-concept in four-dimensional computed tomography (4D-CT)

In free-breathing patients, kidneys move between 4.5 and
13.9 mm during breathing [97]. A 4D-CT can be used to define
the internal target volume (ITV) which incorporates all tumor loca-
tions during a breathing cycle (Fig. 1). An additional margin due to
random and systematic uncertainties including setup uncertainty,
inaccuracy of the image guidance and changes in position should
be added to the ITV to generate the planning target volume
(PTV). Pham and colleagues used an ITV-PTV-margin of 5 mm in
their prospective trial [69]. Similarly, in the prospective multicen-
ter phase II clinical trial TROG 15.03 FASTRACK II, an ITV-PTV-
margin of 5 mm must be used [76].

In one study, changing in breathing amplitude compared to the
simulation 4D-CT led to 46% loss in PTV coverage [98]. In order to
reduce tumor excursion during breathing, abdominal compression,
shallow breathing coaching or dual vacuum stabilization devices
are used. Usage of a dual vacuum stabilization device decreased
kidney motion in 6 of 9 healthy volunteers with a median reduc-
tion ranging between 1.6 and 8 mm. Interestingly, in 1 participant,
vacuum stabilization led to an increase in kidney motion of 8.2 mm
[99]. In another study, average kidney motion was slightly reduced
after abdominal compression [100].

8.2. Robotic SBRT

The CyberKnife system was invented by the neurosurgeon John
Adler in the late 1980s and was initially used for the treatment of
intracranial tumors, before extracranial [101]. It contains a 6 mega-
volt (MV) linear accelerator mounted on a robotic arm with 6
degrees of freedom of movement.

Usage of the CyberKnife system for localized RCC requires the
insertion of tiny gold seeds (fiducial markers) which are placed
via image guidance. As RCC is a highly vascularized tumor, the risk
for hemorrhage during fiducial insertion may be increased,
although there were no such reports in the largest study by Staeh-
ler et al. [68]. In this study, a CyberKnife system was used to treat
patients with transitional cell cancer (11 patients) and RCC (29
patients) using 25 Gy in a single fraction which resulted in a local
control rate of 98% after 9 months. Currently, a phase II study eval-
uates the efficacy of CyberKnife-based radiotherapy for localized
primary RCC in terms of freedom from local tumor progression
(NCT01890590). The study aims to enroll 46 patients with stage I
(T1N0M0) who will be irradiated with 3–4 fractions.

8.3. MR-guided radiotherapy

In future, MR-guided radiotherapy may be used for adaptive
radiotherapy of RCC. MR-guided radiotherapy enables direct visu-
alization of the tumor and surrounding organs at risk. Due to the
superior soft tissue contrast, improved anatomic visualization is
achievable. Daily adaptive re-planning can be used to reduce toxi-
city, especially if small bowel is more adjacent to the treated RCC
compared to the initial planning scan. Alternatively, online MR
monitoring may give the opportunity to modify daily radiotherapy
dose depending on the proximity to organs at risk. Compared to
other tumor entities, usage of MR-guided radiotherapy as indicator
for early tumor response is less important, as RCC size normally is
unaffected during SBRT. So far, there are no clinical data regarding
MR-guided SBRT for localized RCC. However, the theoretical advan-
tages of MR-guided SBRT for RCC and the successful introduction of
this new technology for other tumor entities such as prostate can-
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cer are promising preconditions for clinical trials investigating MR-
guided SBRT for RCC [102].

9. Summary

Historically, RCC is considered to be a radioresistant tumor
entity based on preclinical studies and negative clinical trials using
normofractionated radiotherapy. Considering the successful uti-
lization of SBRT for the treatment of RCC metastases, SBRT has
been investigated in retrospective and prospective trials for pri-
mary RCC. High local control rates accompanied by low toxicity
rates were reported in these studies, so that SBRT for primary
RCC may be an attractive local treatment option; however, addi-
tional prospective trials are warranted to further evaluate the role
of SBRT for localized RCC.
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