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TNFR2 induced priming of the inflammasome
leads to a RIPK1-dependent cell death in the
absence of XIAP
Janin Knop1, Lisanne M. Spilgies1, Stefanie Rufli1, Ramona Reinhart2, Lazaros Vasilikos1, Monica Yabal3, Erika Owsley4,
Philipp J. Jost 3, Rebecca A. Marsh4, Harald Wajant5, Mark D. Robinson6, Thomas Kaufmann 2 and
W. Wei-Lynn Wong 1

Abstract
The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting
with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients
display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous
inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a
TNFR2/TNF/TNFR1 mediated loop in xiap−/− macrophages. Yet, the direct role TNFR2-specific activation plays in the
absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap−/− myeloid cells,
particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1
cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven
transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and
upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS
production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release
of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce
IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.

Introduction
Full length tumor necrosis factor (TNF) is a membrane

bound protein, where the extracellular domain can be
cleaved by TNF converting enzyme (TACE) to release a
soluble form1. Soluble and membrane TNF can bind and
activate TNF receptor 1 (TNFR1) while only the mem-
brane bound form triggers TNFR2 activation2. The out-
come of TNF/TNFR1 signaling can range from production
of other cytokines, proliferation, survival and differentia-
tion. While activation of TNFR1 does not normally lead to

cell death, the capacity for TNFR1 to induce apoptosis or
necroptosis is swayed by the ubiquitylation and phos-
phorylation of RIPK1 and the activation of pro-survival
signals mediated by NF-κB and MAPK pathways3–5.
Activation of complex II is blocked by cFLIP, which is
transcribed upon TNF/TNFR1 activation, preventing
caspase-8 activity. In the absence or inhibition of caspase-8
activity, necroptosis ensues through RIPK1 kinase activity,
RIPK3 and MLKL necrosome activity6,7. Phosphorylation
of MLKL causes a conformational change, allowing for
pore formation and the release of intracellular compo-
nents, as well as damage-associated molecular patterns
(DAMPs)8.
The expression of TNFR2 on cells of the immune sys-

tem and endothelial cells is highly regulated. Upon
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binding of membrane-bound TNF to TNFR29 a complex
is formed that consists of TRAF2, cIAP1, cIAP2 and
TRAF310. The activation leads to the degradation of
cIAP1 and TRAF2, and signals through the non-
canonical NF-κB pathway11. Due to the absence of a
death domain, TNFR2 is considered to be mainly
involved in survival and maturation of immune cells. Yet,
previous data suggest that in some tumor cell lines,
TNFR2 can regulate cell death by the loss of cIAP1 and
TRAF2, causing production of TNF and thereby TNFR1
activation12. In addition, immortalized macrophages died
in response to TNFR2 via necroptosis when caspase
activity was inhibited13,14.
In response to toll-like receptor (TLR) activation, XIAP

deficient myeloid cells undergo TNF-dependent cell
death, resulting in the activation of the inflammasome
through RIPK3/caspase-8/caspase-115–17. The stimulation
of TLRs upregulate inflammasome components such as
NLRP3, thus priming the cell18,19. A secondary stimulus is
required to activate the inflammasome in vitro. When
caspase-1 is cleaved and activated, downstream targets IL-
1β and gasdermin D are cleaved. Cleaved gasdermin D
forms a pore like structure that facilitates the release of
cleaved IL-1β, IL-18 and the osmotic lysis of the cell20,21.
In response to TLR stimulation, xiap−/− macrophages
showed increased inflammasome activation compared to
wildtype through the activation of TNFR2 and subsequent
degradation of cIAP1/TRAF222.
We sought to understand what function TNFR2

played in the absence of XIAP when normally it would
not be expected to cause cell death in primary macro-
phages. Specific TNFR2 stimulation alone in XIAP
deficient macrophages resulted in cell death due to the
lack of E3 ligase activity. RIPK1 kinase activity was
required for both the TNF production from
TNFR2 stimulation, as well as the TNFR1 mediated cell
death. Surprisingly, neither necroptosis nor apoptosis
occurred in comparison to previously published
results13,22. Instead, we found that TNFR2 activation
acts as a signal 1 for priming the inflammasome in
primary macrophages independent of genotype, and the
combination of XIAP loss and TNFR1 activation plays a
role as signal 2 for activation. Interestingly, cell death
was blocked by RIPK1 kinase inhibitor as well as reac-
tive oxygen species (ROS) scavengers, and while many of
the pro-inflammatory cytokines returned to baseline, IL-
18 required genetic mutation of RIPK1 kinase to reduce
to baseline levels. Thus, our work separates a key
cytokine implicated in the etiology of XIAP deficient
patients (X linked lymphoproliferative disease 2; XLP-2)
from cell death. Taken together, we discovered a novel
role of XIAP to inhibit TNFR2 induced inflammatory
pyroptosis, adding additional complexity to treat XLP-2
patients.

Results
Loss of XIAP RING domain sensitizes myeloid cells to
TNFR2 induced cell death
Similar to others, we found recombinant mouse TNF

alone caused cell death in XIAP deficient macro-
phages15,23 (Fig. 1a). To assess if specific activation of
TNFR1 or TNFR2 was responsible, we used human TNF
(TR1-TNF) to activate only TNFR1 and the published
nonameric mouse TNF fusion protein, TNC-sc(mu)
TNF80 (TNC-TNF), to specifically activate TNFR224.
Specificity of these ligands was confirmed by using tnfr1−/−

tnfr2−/−
fibroblasts with re-introduced TNFR1 or TNFR2.

Briefly, the cytoplasmic portion of human TNFR1 or
TNFR2 was replaced with Fas and activation of TNFR1 or
TNFR2, with the respective ligands led to cell death25

(Fig. S1A-B). Western blots for NF-κB signaling (activa-
tion of p-p65 or p100 cleavage) were performed on tnfr1−/−

and tnfr2−/− macrophages to confirm specificity in mac-
rophages (Fig. S1C). Bone marrow derived macrophages
(BMDMs) from wildtype, xiap−/−, ciap1−/− and ciap2−/−

mice were treated with either TR1-TNF or TNC-TNF
overnight and assayed for cell death (Fig. 1b). Interest-
ingly, xiap−/− macrophages but not ciap1−/− or ciap2−/−

macrophages were sensitive to TNFR2 induced cell death
but insensitive to TNFR1 stimulation. The same was seen
when we stimulated freshly isolated macrophages
(CD11b+F4/80+) from xiap−/− bone marrow (Fig. S1D).
To determine the kinetics of the observed cell death,
BMDMs were imaged using time-lapse photography for
the uptake of PI. Xiap−/− macrophages started to die by
8 h after TNC-TNF treatment as shown by the increase in
PI positivity compared to wildtype cells (Fig. 1c and S1E).
Using xiapΔRING macrophages26, we found the E3 ligase
activity required for resistance to TNC-TNF induced cell
death (Fig. 1d).
Various mutations in the coding region of XIAP have

been identified, contributing to immune hyper-activation
and tissue inflammation in XLP-2 patients27. To deter-
mine whether BIR/caspase binding or RING/E3 ligase
activity in identified human XIAP mutations could be
associated with TNFR2 induced cell death, we utilized the
HoxB8 progenitor system with re-introduced identified
patient mutations17. Induced HoxB8 expression retains
the cells in a myeloid progenitor-like state and removal of
HoxB8 expression results in granulocyte differentiation.
Both wildtype and xiap−/− HoxB8 progenitor cells were
insensitive to TNFR2-induced cell death similar to pre-
vious reports13 (Fig. S1F). To assess the contribution of
either the BIR or RING domain of XIAP to the observed
cell death, XIAP constructs containing mutations found
in XLP-2 patients were re-introduced into the HoxB8
progenitor cells and expression levels assessed by western
blotting17 (Fig. 1e). Differentiated xiap−/− granulocytes
were sensitive to TNFR2 induced cell death but not to
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TR1-TNF, while re-introduction of XIAP into the cells
reduced TNFR2 induced cell death (Fig. 1f). Intriguingly,
C203Y mutation in the BIR2 domain reduced the sensi-
tivity of HoxB8 granulocytes to TNC-TNF while G466X
and P482R were unable to rescue TNFR2 induced cell
death (Fig. 1f). The expression levels for L207 construct
were low and subsequently, sensitivity to TNC-TNF
induced death occurred but was not significant. These
data suggest that activation of TNFR2 in the absence of
XIAP, specifically the E3 ligase domain, results in cell
death in the myeloid compartment.

TNFR2 stimulation leads to soluble TNF production
resulting in TNFR1 mediated cell death in xiap−/−

macrophages
Our previous data and others suggested that the inhi-

bition or loss of XIAP, cIAP1, and cIAP2 leads to TNF
production which may lead to TNFR1 mediated cell
death13,23. To test if TNFR2 activation results in sub-
sequent release of TNF and TNFR1 activation, we

stimulated macrophages for 4 h with TNC-TNF and
subsequently added anti-TNFα to neutralize any TNF
being produced upon the stimulation. TNC-TNF induced
cell death was reduced significantly (~30%) (Fig. 2a). In
agreement, xiap−/−tnf−/− macrophages were resistant to
TNC-TNF induced cell death (Fig. 2b). Co-loss of TNFR1
or TNFR2 with XIAP deficient macrophages shows both
TNFR1 and TNFR2 is required for cell death mediated by
TNC-TNF (Fig. 2c). To determine if soluble TNF was
produced, supernatant transfers from wildtype and
xiap−/− macrophages treated with TNC-TNF to TNFR1-
Fas mouse fibroblast cells (TNFR1-Fas MF) showed
TNFR1 mediated cell death was induced by soluble TNF
produced by XIAP deficient macrophages (Fig. S2A).
To determine if the loss of cIAP1 or TRAF2 sensitized to

TNFR1 mediated cell death as previously shown22, we
assayed for degradation of TRAF2 in response to TNC-
TNF over time in wildtype and xiap−/− macrophages.
Degradation of TRAF2 occurred by 4 h in both wildtype
and xiap−/− macrophages (Fig. 2d). We subsequently
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Fig. 1 Loss of XIAP results in TNFR2-mediated cell death in myeloid cells. a, b, d, f Cell death was measured by the uptake of propidium iodide
(PI) and analyzed by flow cytometry. a BMDMs from wildtype (WT) and xiap−/− were stimulated with Birinapant (Biri, 500 nM) and recombinant
mouse TNF (100 ng/ml) overnight. b BMDMs from WT, xiap−/−, ciap1−/− and ciap2−/− mice were treated overnight with TR1-TNF (100 ng/ml) or
TNC-TNF (100 ng/ml). c Representative phase-contrast images merged with PI positive images at 0, 8 and 18 h after TNC-TNF stimulation (3
independent experiments performed). d BMDMs from WT, xiap−/− and xiapΔ−/− mice were treated overnight with TR1-TNF or TNC-TNF. e Basal
expression levels of XIAP in HoxB8 progenitors were assessed by western blot. Blot is a representative of three independent experiments. f Xiap−/−

HoxB8 granulocytes were transfected with WT, XIAP or XIAP mutated constructs and stimulated with TR1-TNF or TNC-TNF for 24 h. a, b, d Data
shown are mean ± SEM including n= 3–5 biological replicates. Experiments were repeated at least three times independently or f a minimum of
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Student t-test with **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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treated wildtype, xiap−/−, xiap−/−ciap1LysMcre (xiap−/−

ciap1LC) or ciap1LysMcreciap2−/− (ciap1LCciap2−/−) mac-
rophages with TR1-TNF and/or TNC-TNF. Interestingly,
despite sufficient loss of cIAP1 in ciap1LCciap2−/− and
xiap−/−ciap1LC macrophages (Fig. 2e), neither genotypes
were sensitive to TR1-TNF specific cell death. Pre-
incubation with TNC-TNF for 4 h and subsequent stimu-
lation with TR1-TNF did not sensitize wildtype cells to cell
death nor did it trigger or enhance cell death in ciap1LC-

ciap2−/− and xiap−/−ciap1LC macrophages, respectively

(Fig. 2f). These results suggest that TNFR2 specific activa-
tion initiates a cell death via TNF/TNFR1 in the absence of
XIAP but the reduction of cIAP1/TRAF2 is not sufficient to
trigger TNF/TNFR1 mediated cell death.

TNFR2 mediated cell death in XIAP deficient macrophages
is RIPK1 kinase activity-dependent but independent of
downstream necroptotic machinery or apoptosis
To determine the activity of caspases in TNFR2 mediated

cell death, macrophages were treated with TNC-TNF and

A B C

0

20

40

60

80

100

%
 o

f d
ea

d 
ce

lls
 (P

I+ )

- TR1-TNF TNC-TNF

WT
xiap-/-

xiap-/-tnf-/-

****

+-
+
+

+- -
-TNC-TNF:

%
 o

f d
ea

d 
ce

lls
 (P

I+ )

WT
xiap-/-

α-TNF addback: 
after 4h  

**

0

20

40

60

80

100

D

F

E

0

20

40

60

80

100 WT
xiap-/-

xiap-/-tnfr2-/-
xiap-/-tnfr1-/-

- TR1-TNF TNC-TNF

***
**

%
 o

f d
ea

d 
ce

lls
 (P

I+ )

0

20

40

60

80

100

%
 o

f d
ea

d 
ce

lls
 (P

I+ )

WT
xiap-/-
xiap-/-ciap1LC
ciap1LCciap2-/-

+-
+
+

+- -
-TR1-TNF:

TNC-TNF:
TR1-TNF addback:

after 4h  

+
-

--- - +

** ns

Fig. 2 TNFR2-induced cell death in xiap−/− macrophages requires soluble TNF and TNFR1 activation. a BMDMs from WT and xiap−/− were
treated with TNC-TNF and/or anti-TNFα (100 ng/ml) after 4 h of stimulation, and after 24 h cell death was measured via PI uptake by flow cytometry.
b, c BMDMs from WT, xiap−/−, xiap−/− tnf−/−, xiap−/− tnfr1−/− and xiap+ nfr2−/− were treated with either TR1-TNF or TNC-TNF. d Representative
western blot shows that TRAF2 degrades in both WT and xiap−/− BMDMs treated with TNC-TNF. e Representative western blot shows loss of cIAP1
and XIAP in macrophage-specific (LC) genotypes. Blots are representative of three independent experiments. f WT, xiap−/−, xiap−/−ciap1LC and
ciap1LCciap2−/− BMDMs were treated with TR1-TNF, TNC-TNF, either a combination of TR1- and TNC-TNF or an initial stimulation with TNC-TNF for
4 h and subsequent TR1-TNF stimulation. Data shown are mean ± SEM including n= 3–5 biological replicates. Experiments were repeated at least
three times independently. Statistical significance was calculated using two-way ANOVA with **p < 0.01, ***p < 0.001 and ****p < 0.0001.

Knop et al. Cell Death and Disease          (2019) 10:700 Page 4 of 14

Official journal of the Cell Death Differentiation Association



pancaspase inhibitors, QVD or ZVAD-fmk. TNFR2
induced cell death in xiap−/− macrophages was slightly
enhanced in the presence of QVD, suggesting cells swit-
ched from apoptosis to necroptosis, but no sensitization of
wildtype cells to TNFR2 mediated cell death was seen. By
contrast, use of ZVAD-fmk sensitized wildtype macro-
phages to TNFR2 mediated cell death as previously
reported13 (Fig. 3a). These results suggest the type of cell
death mediated in the absence of XIAP is mechanistically
different to combined use of ZVAD and TNC-TNF13. In
agreement, no caspase-3 activity upon TNC-TNF stimu-
lation was detected (Fig. S3A)23. To genetically confirm if
necroptosis occurs, xiap−/−ripk3−/− and xiap−/−mlkl−/−

macrophages were treated with TNC-TNF and imaged
over time (Fig. 3b and Fig. 3SB). Loss of RIPK3 or MLKL in
XIAP deficient cells did not rescue macrophages from
TNFR2 mediated cell death. Furthermore, co-incubation
with QVD did not rescue xiap−/−ripk3−/− or xiap−/−

mlkl−/− from TNFR2 mediated cell death, suggesting no
switch from apoptosis to necroptosis or vice versa when
one pathway is blocked (Fig. 3c). However, co-incubation
with RIPK1 kinase inhibitor (Necrostatin-1s, Nec-1s)
entirely rescued TNC-TNF induced cell death. Even after
4 h of pre-stimulation with TNC-TNF, the inhibitor sig-
nificantly rescued cell death (Fig. 3d). We further con-
firmed our findings using macrophages from xiap−/−

ripk1K45A/K45A (xiap−/−ripk1KD/KD), a kinase inactive
mutant28. Consistent with Necrostatin-1s, macrophages
from xiap−/−ripk1KD/KD mice were insensitive to TNC-
TNF induced cell death (Fig. 3e). Similarly, HoxB8 granu-
locytes were resistant to TNC-TNF in the presence of Nec-
1s (Fig. 3f). Using transmission electron microscopy, we
identified cell membrane loss and limited membrane
blebbing in xiap−/− macrophages treated with TNC-TNF
suggesting that the cells were dying in a lytic fashion. Taken
together, TNFR2 induced cell death in the absence of XIAP
is dependent on RIPK1 kinase activity in myeloid cells.

TNFR2 acts as a signal 1 in inflammasome activation
To determine if XIAP influences downstream signaling

of TNFR2, we probed for changes in NF-κB and MAPK
pathways. In xiap−/− macrophages, phosphorylation of
p65 (p-p65) was prolonged compared to wildtype mac-
rophages. Prolonged phosphorylation of p65 was also
detected in xiap−/−tnfr1−/− treated with TNC-TNF
while xiap−/−tnfr2−/− macrophages did not show any
activation of NF-κB and MAPK pathways, further con-
firming the specificity of TNC-TNF for TNFR2 and that
the signaling changes are independent of TNFR1
(Fig. 4a). To determine if the sustained p65 signaling
altered transcription in a XIAP specific manner, we
profiled wildtype, xiap−/− and xiap−/−tnfr1−/− macro-
phages treated with TNC-TNF for 2 h. Comparison of the

untreated samples of each genotype showed the gene
expression was surprisingly similar (Fig. 4b and Supp
Table 1). Upon TNC-TNF stimulation, there were 88
genes uniquely regulated by the loss of XIAP, 47 in
wildtype and 32 genes in xiap−/−tnfr1−/− macrophages.
Only 15 genes were differentially regulated and over-
lapping between xiap−/− and xiap−/−tnfr1−/− macro-
phages when treated with TNC-TNF, suggesting changes
in this set of genes was not influenced by TNFR1.
Gene ontology analysis showed an enrichment of genes

involved in inflammation and cell death processes in a
similar expression pattern independent of genotype (Fig.
S4A). Surprisingly, gene set enrichment analysis showed
that the differentially regulated genes upon
TNFR2 stimulation were alike to those associated with
TNF/TNFR1, particularly genes requiring NF-kB (Fig. 4c
and Supp Table 2). Genes upregulated or downregulated
in LPS gene signatures and KEGG NOD-like receptor
signaling were also significantly enriched in our gene sets
showing the cross over of pathways linking LPS and TNF
induction (Supp Table 2). These data surprisingly show
that XIAP loss was a minor influence in TNFR2-induced
transcriptional changes but that TNFR2 itself is a driver
for inflammation in macrophages.
Consistent with others14, we also found, tnfaip3 (A20)

and traf1 upregulated by TNC-TNF in our RNAseq
analysis (Fig. 4d and Supp Table 1). The anti-apoptotic
response of cflar (c-FLIP) and birc3 (cIAP2) is consistent
in xiap−/− and xiap−/−tnfr1−/− macrophages (Fig. 4d).
The log fold change plots show that while tnf, cxcl1, cxcl2,
and ccl3 are differentially regulated at the RNA level in all
genotypes, there is a slight increase in RNA levels in the
absence of XIAP or co-loss with TNFR1 (Fig. 4d, coded in
black). Ccl4 and il-1β were exclusively upregulated in
xiap−/− macrophages (Fig. 4d, coded in gray). These data
suggest that while TNFR2 directly stimulates the expres-
sion of key cytokines and chemokines, the cytokine net-
work is further enhanced by the absence of XIAP and the
stimulation of TNFR1. Interestingly, our analysis showed
that in all wildtype, xiap−/− and xiap−/−tnfr1−/− macro-
phages, TNFR2 stimulation induced inflammasome rela-
ted components such as NLRP3 and caspase-11 (casp4).
These results suggest that TNFR2 activation not only acts
as a signal 1 for inflammasome priming but also induces
the expression of cytokines and chemokines similar
to TNFR1.
To confirm the involvement of the pyroptotic compo-

nents in TNFR2 induced cell death, we treated WT,
xiap−/−, xiap−/−tnfr1−/− and xiap−/−tnfr2−/− macro-
phages with TNC-TNF overnight and assayed the super-
natant as well as the lysate for inflammasome activation.
We found that indeed upon TNC-TNF stimulation,
NLRP3 and caspase-11 were upregulated (Fig. 4e).
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However, the activation of caspase-1 and cleavage of
gasdermin D was only observed in XIAP deficient cells.
The increase in gasdermin D, caspase-1 and NLRP3 by

TNC-TNF was independent of TNFR1. These results
suggest TNFR2 activation alone can act as a signal 1 in
inflammasome activation.

Fig. 4 TNFR2 primes inflammasome components. a BMDMs were treated with TNC-TNF for the indicated time points and expression levels of
proteins of the NF-κB and MAPK signaling pathway were analysed by western blotting. Blots are representative of three independent repeats.
b Upset plot representing the detected changes in expression between untreated and TNC-TNF treated for each of the genotypes, including up- and
downregulated genes. c Gene set analysis of Tian TNF signalling via NF-κB or not via NF-κB (number of genes in the gene set are given in
parentheses). The distributions of differential expression t-statistics (computed by voom) are shown for the genes within the gene set and not within
the gene set for each genotype. d Comparison of differentially regulated genes in WT, xiap−/− and xiap−/−tnfr1−/− macrophages after TNC-TNF
treatment. Black dots represent genes that are differential at FDR < 0.05 in all three genotypes, and grey dots represent genes that are differential at
FDR < 0.05 in two genotypes. e Representative western blot showing TNC-TNF treatment leads to upregulation of NLRP3, caspase-11 and pro-
caspase-1, but only in xiap−/− macrophages is caspase-1 cleavage detected. Blots are representative of three independent experiments.
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Pro-inflammatory cytokines induced by TNFR2 are
dependent on TNF and RIPK1 kinase activity
Since the RNAseq showed an increased enrichment of

inflammation, we screened for cytokine and chemokine
production. From this assay, we found several cytokines
and chemokines further upregulated in xiap−/− macro-
phages compared to wildtype when treated with TNC-
TNF for 24 h (Fig. S4A). The key cytokines, IL-1β, IL-18,
and IL-6, implicated in symptoms of XLP-2 patients were
identified as increased compared to treated wildtype
macrophages29. Using xiap−/−tnf−/−, xiap−/−tnfr1−/−,
and xiap−/−tnfr2−/− macrophages, we determined IL-1β,
IL-18, and IL-6 were dependent on TNF production and
required both TNFR1 and TNFR2 present for the pro-
duction of these cytokines (Fig. 5a).
Because cell death and inflammation are closely inter-

wined, we asked whether inhibition of RIPK1 kinase
activity would also reduce inflammation. The loss of
RIPK1 kinase activity resulted in a reduction of TNF
mRNA but only in the absence of XIAP (Fig. 5b). Protein
levels of IL-1β and IL-6 were easily reduced in response to
RIPK1 kinase activity inhibition. However, pre-incubation
and high dose of Nec-1s was required to reduce IL-18
(Fig. 5c). Using xiap−/−ripk1KD/KD macrophages, IL-1β,
IL-6, and IL-18 production were completely reduced
when treated with TNC-TNF (Fig. 6d). Similar to previous
data with LPS stimulation15,30, we found RIPK3 loss
reduced IL-1β but not IL-6 in xiap−/−ripk3−/− and xiap−/−

mlkl−/− macrophages in response to TNC-TNF (Fig.
S4B). These results imply direct TNFR2 activation in the
absence of XIAP leads to increased pro-inflammatory IL-
1β, IL-18, and IL-6 in a RIPK1 kinase-dependent manner.
Interestingly, the loss of RIPK1 kinase activity resulted

in a slight decrease in gasdermin D and caspase-11 pro-
tein levels, as well as cleavage of gasdermin D suggesting
the predominant role of RIPK1 kinase activity is to reduce
the production of TNF in response to TNFR2 stimulation
(Fig. 5e).

XIAP restricts the activation of NLRP3 inflammasome
(signal 2) by regulating ROS production
Previous results suggest that ROS production may

influence inflammasome activation. We assayed for ROS
production and found in the absence of XIAP, an
increased amount of ROS was detected which was
reduced by the use of free radical scavengers, BHA or
NAC (Fig. 6a). Co-incubation of TNC-TNF and BHA also
reduced cell death in the xiap−/− macrophages (Fig. 6b)
and protein levels of NLRP3, gasdermin D and caspase-11
were also reduced and subsequent caspase-1 cleavage was
missing (Fig. 6c). ROS scavengers reduced IL-1β and IL-6
but IL-18 levels remained higher than baseline (Fig. 6d).
To determine the significance of caspase-1 and NLRP3

activation in the production of IL-1β and IL-18, we co-

incubated cells with caspase-1 inhibitor (VX-765 or Ac
YVAD-cmk) with TNC-TNF. The loss of caspase-1 acti-
vation resulted in reduced levels of IL-1β, IL-18, and IL-6
in the supernatant of treated xiap−/− macrophages
(Fig. 6e). Using xiap−/−nlrp3−/− macrophages with
xiap−/− on the Harlin et al. background31, we assayed for
IL-1β, IL-6, and IL-18 in response to TNC-TNF com-
pared to the matched xiap−/− strain. Surprisingly, the
xiap−/−31 did not die in response to TNC-TNF but a
decrease in IL-1β was detected and IL-18 was not detec-
ted at all (Fig. 6f).
Finally, to determine if TNFR2 activation is sufficient as

signal 1, we incubated cells with TNC-TNF and then
treated with nigericin or ATP as a second signal. Gas-
dermin D and caspase-1 cleavage were detected in wild-
type macrophages, as well as xiap−/− macrophages.
However, in xiap−/−tnfr1−/− macrophages, no cleavage
was detected (Fig. 6g). Taken together, in the absence of
XIAP, increased ROS production leads to NLRP3 induced
activation and release of IL-1β.

Discussion
TNFR2 has been shown to promote survival, differentia-

tion and induce immune suppressive functions32,33. How-
ever, our data suggest the opposite in the absence of XIAP.
Here, we provide evidence that the activation of TNFR2
primes macrophages towards inflammasome activation
with dominant expression of proinflammatory cytokines, as
well as PRR sensors. Only in the absence of the E3 ligase
activity of XIAP do myeloid cells die by pyroptotic activity
in response to direct TNFR2 stimulation.
The concept of non-death domain TNF super family

receptors (TNFSFR) involved in cell death has been pre-
viously reported in cancer cell lines for FN14, CD40,
TNFR2, and CD30, acting through a TNF/TNFR1
axis12,34,35. Our data differs from recently published
results implicating TNFR2 in LPS-induced cell death in
the absence of XIAP where necroptosis, pyroptosis and
apoptosis is implicated22. In the absence of XIAP, TNFR2
induced cell death does not appear to induce caspase
activity, nor is there switching from apoptosis to
necroptosis as xiap−/−mlkl−/− and xiap−/−ripk3−/− in
the presence of QVD does not rescue cell death in
response to TNFR2 activation. These data suggest that the
inflammation may be a separable function to the cell
death or preceding cell death activation. Caspase-8 could
serve as a scaffold for a NF-kB inducing complex that
includes RIPK1 as proposed by Henry et al. to promote
inflammation by TRAIL activation36. Our data supports
this theory as TNFR2 specific activation leads to TNF
mRNA production requiring RIPK1 kinase activity, and
priming of both pro-inflammatory cytokines and che-
mokines is present in both wildtype and XIAP deficient
cells. These data would suggest RIPK1 kinase activity can
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Fig. 5 RIPK1 kinase activity regulates cytokine production and inflammasome activation in xiap−/− macrophages. a WT, xiap−/−, xiap−/−

tnf−/−, xiap−/−tnfr1−/− and xiap−/−tnfr2−/− BMDMs were stimulated with TNC-TNF. After 12 h supernatant was taken and assayed for IL-1β, IL-18 and
IL-6. b BMDMs were treated for 2 h with TNC-TNF and/or Nec-1s and analysed for TNF RNA expression. c BMDMs were treated overnight with TNC-
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mediate inflammation, specifically TNF, in line with pre-
vious results linking the kinase activity of RIPK1 to
inflammation in the absence of IAPs23,28,37. However,
further studies would be required to determine if com-
plete inhibition of RIPK1 kinase activity would be
achievable in vivo and be effective after inflammation is in
progress.
TNFR2-specific activation mediated NOD2 and RIPK2

upregulation, suggesting that TNF may act as a primer for
the detection of intracellular pathogens. Indeed, a lack in
inflammation has been identified in XLP-2 patients in
response to MDP/NOD2 activation through loss of RIPK2
ubiquitylation by XIAP and cIAPs38–40. In response to
NOD2 stimulation, both mutations in the BIR and RING
domain led to a loss in NF-kB41. By contrast, our data
shows that TNFR2 induced cell death occurs in the
absence of E3 ligase activity of XIAP. Whether the loss of
E3 ligase activity of XIAP relates to the ROS production is
unknown. Further studies in identifying what substrate(s)
of XIAP will prevent TNFR2 induced cell death would be
beneficial in the treatment of XLP-2 patients.
Our findings are of therapeutic interest as XLP-2

patients have increased inflammasome related cytokines.
XIAP deficient patients are characterized with multi-
organ inflammation triggered by viral infections, as well as
intestinal bowel disease42,43. XLP-2 is associated with
activated macrophages and lymphocytes and over-
expression of pro-inflammatory cytokines including TNF
during an HLH episode29,44. During viral infections, the
increased TNF presence would trigger TNFR1 and
TNFR2. Our study provides evidence that inhibition of
cell death may not result in reduction of key inflamma-
some cytokines such as IL-18 in XLP-2 patients and that
there is differential regulation of IL-1β in comparison to
IL-18 as recently published45. Contrary to most situations,
targeting TNFR2 with blocking antibodies can be of
potential therapeutic interest in XIAP deficient patients to
limit inflammation.

Materials and methods
Mice
Xiap−/−, ciap1−/−, ciap2−/−, and ciap1LCciap2−/− mice

were a kind gift from J. Silke from WEHI and were pre-
viously described46,47. These strains were embryo trans-
ferred and maintained in an SPF facility in Zurich. Tnfr1−/−

and tnfr2−/− mice were a kind gift from A. Fontana and A.
Aguzzi, respectively48, and were crossed to xiap−/− mice to
generate xiap−/−tnfr1−/− and xiap−/−tnfr2−/− mice.
Ripk1K45A/K45A (ripk1KD/KD) mice were a gift from Glax-
oSmithKline and were crossed to xiap−/− mice to generate
xiap−/−ripk1KD/KD mice. All mice used in this study were
back-crossed to C57BL/6 mice. All animal experiments
were performed at the University of Zurich under
the ethical license 186/2015. Xiap−/− and xiap−/−

nlrp3−/− mice were a kind gift from RA Marsh31. Xiap−/−

tnf−/−, xiap−/−ripk3−/−, xiap−/−mlkl−/− and xiapΔRING

mice were a kind gift from P. Jost and housed at the
Technical University of Munich. Experiments were con-
ducted in accordance with GSK policies on the care, wel-
fare, and treatment of laboratory animals.

Generation of bone marrow derived macrophages and cell
lines
To generate bone marrow-derived macrophages

(BMDMs), bone marrow was obtained from the tibia and
femur of 6–12-week-old mice. Cells were cultured on
petri dishes for 5 days in Dulbecco’s modified Eagle
medium (DMEM, Gibco) containing 1 g/L glucose, 1%
(v/v) penicillin/streptomycin/glutamine (Gibco), 10% FBS
(SeraGlobe) and supplemented with 20% (v/v) L929
mouse fibroblast conditioned medium. On day 5, cells
were harvested and seeded at 1 × 106 cells/mL into the
desired tissue culture plates (e.g., 1 × 105 cells per 96 well).
TNFR1-Fas and TNFR2-Fas expressing mouse fibroblasts
were obtained from Anja Krippner–Heidenreich25 and
were cultured in DMEM containing 1 g/L glucose, 1%
(v/v) penicillin/streptomycin/glutamine and 10% FBS.
HoxB8 progenitor cells were cultured in RPMI 1640
media with 10% (v/v) heat-inactivated FBS, 1% (v/v)
penicillin/streptavidin, 7% (v/v) SCF from CHO/SCF
conditioned medium, and 0.1 µM 4-hydroxytamoxifen
(4-OHT, MedChemExpress)17. To differentiate granulo-
cytes from the HoxB8 progenitors, cells were washed
twice with PBS and re-suspended at a concentration of
2.5 × 104 cells/mL in media without 4-OHT and differ-
entiated for 5 days.

Ligands and inhibitors
To produce the agonistic TNFR2 ligands, pCR3 Fc-Flag-

TNFR2-specific nonameric murine TNF variant (TNC-
TNF), trimeric pCR3 Flag-TNC-TNF or pCR3 Fc-Flag
human TNFR1 (TNFR1-TNF), were transfected into 293t
cells and purified as previous described49. Endotoxin
levels were tested and removed (Pierce High Capacity
Endotoxin Removal Spin columns, ThermoScientific).
TNF variants were used at 100 ng/mL. Inhibitors were
used at the following concentrations: Birinapant (500 nM,
Chemietek), Compound A (100 nM, Tetralogics), multi-
meric TNF (mega TNF, 100 ng/mL, Adipogen)
Necrostatin-1s (1, 5 or 10 µM, MedChemExpress), Q-VD-
OPH (5, 10 or 50 µM, Adipogen), ZVAD-fmk (5, 10 or
50 µM, MedChemExpress), VX-765 (10 µM, Invivogen),
BHA (50 µM, Sigma), Nigericin (10 µM, Sigma) and ATP
(3 mM, Sigma).

Antibodies
The following antibodies were used for flow cytometry:

CD11b-PeCy7 (clone M1/70, eBioscience), F4/80 (clone
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BM8, eBioscience), and fixable viability dye (eBioscience).
The following antibodies were used for western blotting:
phospho-p65, NF-κB2, phospho-ERK, phospho-JNK,
phospho-p38, total ERK, total JNK, and total p38 from
Cell Signaling Technologies. Total p65 was purchased
from Santa Cruz. TRAF2, gasdermin D and caspase-11
were purchased from Abcam, caspase-1 from Adipogen
and IL-1β from RnD. cIAP1 was purchased from Human
Atlas. RIPK1 and XIAP was purchased from BD Bios-
ciences. Secondary antibodies for western blotting such as
donkey anti mouse/rabbit/rat IgG conjugated to HRP are
from SouthernBiotec, the donkey anti goat IgG was pur-
chased from Santa Cruz. The neutralizing antibody
against TNF (at 200 ng/mL, MP6-XT22) was purchased
from BioLegend.

Cell death analysis
Cells were seeded at a density of 1 × 106 cells/mL. After

treatment, cells were trypsinized, washed once and re-
suspended in HBSS containing 1 µg/mL propidium iodide
(PI) or stained with fixable viability dye (eBioscience).
Cells were then assessed for cell death by flow cytometry
on a FACS Canto II. Data were analyzed by FlowJo soft-
ware, version 10.2. Alternatively, cells were directly
incubated in the presence of 5 µg/ml propidium iodide
and assessed for viability by acquiring both phase contrast
and red fluorescence images at 2 h intervals at ×10 mag-
nification over 24 h using the IncuCyte. Confluency and
PI fluorescence were measured and analyzed using the
IncuCyte Zoom Software (Version 2016A).

Cell sorting
To isolate primary macrophages from mouse bone

marrow, CD11b+F4/80+ cells were separated using a
FACSMelody 3 L machine.

Caspase activity assay
Cell lysates were treated and lysed in DISC lysis buffer

(20 mM Tris-HCl pH 7.5, 150mM NaCl, 10% (v/v) gly-
cerol, 1% (v/v) Triton X-100, with protease and phos-
phatase inhibitors) and incubated with 0.5 mM DEVD-
AMC. Results were normalized to the protein con-
centration, that was calculated by BCA (Pierce) according
to manufacturer’s instructions.

Multiplex cytokine analysis
Multiplex cytokine analysis (ProcartaPlex, Thermo

Scientific) was performed according to the manufacturer’s
instructions and assayed on a Bio-Rad Bioplex machine.

Western blotting
Supernatant was collected when indicated and pre-

cipitated using 4% trichloroacetic acid (TCA) before being
pelleted in acetone, boiled and run like lysates described

in the following. Cells were lysed using DISC lysis buffer
(20 mM Tris-HCl pH 7.5, 150mM NaCl, 10% (v/v) gly-
cerol, 1% (v/v) Triton X-100, with protease and phos-
phatase inhibitors). The insoluble fraction of the lysate
was pelleted by centrifugation and removed. Lysates were
boiled and run on 4–12% Bis-Tris Gel NuPAGE using
MOPS buffer (Invitrogen). Proteins were then transferred
onto PVDF-membrane (0.2 µm, Thermo Scientific) using
the Trans-Blot® Turbo™ Transfer System (Bio Rad) or the
Pierce™ Power Blotter (Thermo Scientific), both according
to the manufacturer’s instruction. After blocking with
PBST containing 5% (w/v) skim milk, membranes were
incubated with the indicated primary antibody in either
PBST containing 5% skim milk or 5% (w/v) BSA (Fraction V,
Sigma) for at least 1 h at RT or overnight at 4 °C. Protein
level expression was acquired using WesternBright ECL
(Advansta) and Amersham Hyperfilm ECL (GE
Healthcare).

qPCR
RNA was isolated using GENEzol Reagent (Geneaid)

according to the manufacturer’s instructions. cDNA was
produced using MultiScribe™ Reverse Transcriptase and
SYBR Green qPCR master mix (Thermo Fisher Scientific)
was used for running the qPCR. Melting curves showed
that single products were formed. The following primers
were used: TNF (5′: CCA CCA CGC TCT TCT GTC TA;
3′: CAC TTG GTG GTT TGC TAC GA); B2M (5′: TGG
TGC TTG TCT CAC TGA CC; 3′ CCG TTC TTC AGC
ATT TGG AT). Relative standard curve analysis was
performed using the housekeeping gene B2M and unsti-
mulated samples were used as a calibrator for fold-change.
Cells were stimulated with 100 ng/mL of TNC-TNF for

2 h and RNA was extracted using GENEzol Reagent (Gen-
eaid) and cleaned using PureLink RNA Mini Kit (Invitro-
gen) according to the manufacturer’s instructions. Libraries
were prepared and sequenced at the Functional Genomics
Center Zurich (Zurich, Switzerland). RNA-Seq data was
processed through a standard workflow (https://github.
com/csoneson/ARMOR), including read mapping against
the mouse reference genome (Ensembl_GRCm38.90) using
STAR50 and sorting/indexing with samtools51. Isoform-level
expression estimation using salmon52 and gene-level dif-
ferential expression (DE) analysis was performed using
edgeR53 with separate contrasts for each genotype (treated
with TNC-TNF vs. untreated). Differential expression
t–statistics used in the geneset analyses were computed
using limma-voom54.

Electron microscopy
Cells were fixed in 2.5% glutaraldehyde in 0.1 M caco-

dylate buffer and scraped from the plate. Transmission
electron microscopy was performed by the University of
Zurich, ZMB.
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Statistical analysis
All data is presented in mean ± SEM. Figures were

prepared in Illustrator CC 2015 (Adobe) and Prism 7
(GraphPad Software). Significance between genotypes and
treatments was assessed by Student-t test or two-way
ANOVA with *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001 using Prism 7.
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