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Abstract 
 
Human methylmalonyl-CoA epimerase (MCEE) catalyzes the interconversion of D-

methylmalonyl-CoA and L-methylmalonyl-CoA in propionate catabolism. Autosomal 

recessive mutations in MCEE reportedly cause methylmalonic aciduria (MMAuria) in eleven 

patients. We investigated a cohort of 150 individuals suffering from MMAuria of unknown 

origin, identifying ten new patients with mutations in MCEE. Nine patients were homozygous 

for the known nonsense mutation p.Arg47* (c.139C>T), and one for the novel missense 

mutation p.Ile53Arg (c.158T>G). To understand better the molecular basis of MCEE 

deficiency, we mapped p.Ile53Arg, and two previously described patient mutations 

p.Lys60Gln and p.Arg143Cys, onto our 1.8 Å structure of wild-type (wt) human MCEE. This 

revealed potential dimeric assembly disruption by p.Ile53Arg, but no clear defects from 

p.Lys60Gln or p.Arg143Cys. Functional analysis of MCEE-Ile53Arg expressed in a bacterial 

recombinant system as well as patient-derived fibroblasts revealed nearly undetectable 

soluble protein levels, defective globular protein behavior, and using a newly developed 

assay, lack of enzymatic activity - consistent with misfolded protein. By contrast, soluble 

protein levels, unfolding characteristics and activity of MCEE-Lys60Gln were comparable to 

wt, leaving unclear how this mutation may cause disease. MCEE-Arg143Cys was detectable 

at comparable levels to wt MCEE, but had slightly altered unfolding kinetics and greatly 

reduced activity. We solved the structure of MCEE-Arg143Cys to 1.9 Å and found significant 

disruption of two important loop structures, potentially impacting surface features as well as 

the active-site pocket. These studies reveal ten new patients with MCEE deficiency and 

rationalize misfolding and loss of activity as molecular defects in MCEE-type MMAuria. 
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Introduction 
 
Propionyl-CoA is the common degradation product from branched-chain amino acids, odd-

chain fatty acids, and the side chain of cholesterol. The propionate catabolic pathway serves 

to funnel propionyl-CoA into the tricarboxylic acid (TCA) cycle for use as cellular energy 

sources through oxidative phosphorylation. Located at the centre of this pathway, 

methylmalonyl CoA epimerase (MCEE) catalyzes the epimerization of D-methylmalonyl-CoA, 

generated from propionyl-CoA by propionyl-CoA carboxylase (PCC), to form L-

methylmalonyl-CoA, subsequently converted into succinyl-CoA by methylmalonyl-CoA 

mutase (MUT) for entry into the TCA cycle. 

Isolated methylmalonic aciduria (MMAuria), an inborn error of organic acid metabolism, is 

typically caused by deficiency of MUT or by a defect in the transport or processing of its 

organometallic cofactor, adenosylcobalamin. However, mutations in the human MCEE gene 

(OMIM #251120) have been identified in eleven cases of atypical MMAuria (1-6). For two 

patients, coincidental mutations in the SPR gene causing sepiapterin reductase deficiency 

sufficiently explained their clinical symptoms (2,4), while two others have been described as 

asymptomatic (3), leaving the clinical importance of MCEE deficiency in doubt. The majority 

of patients with MCEE deficiency (seven including those with sepiapterin reductase 

deficiency) are homozygous for the stop-gain nonsense mutation c.139C>T (p.Arg47*)(1-6); 

the missense mutations p.Lys60Gln and p.Arg143Cys (3) and a splicing mutation (c.379-

644A>G) (5) have also been identified, but the functional relevance of these missense 

mutations remains unclear.  

In the human genome, MCEE is one of six proteins belonging to the vicinal oxygen chelate 

(VOC) superfamily, which include also glyoxalase I (GLO1 gene, GLOD1 protein), 4-

hydroxyphenylpyruvic acid dioxygenase (HPD, GLOD3), 4-hydroxyphenylpyruvic acid 

dioxygenase-like (HPDL, GLOXD1), and glyoxalase domain-containing 4 (GLOD4) and 5 

(GLOD5). VOC members are metalloenzymes highly divergent in sequence and biological 

functions, but universally share the use of the βαβββ structural motif (also known as the 

glyoxylase fold) to build a divalent metal-containing active site (7,8). VOC enzymes catalyze 

a range of chemical reactions including isomerization, epimerization, oxidative C-C bond 

cleavage and nucleophilic substitution (9). The active-site divalent metal is used to bind the 

reaction substrate, intermediates or transition states in a bidentate fashion (8). To date, only 

structures from bacterial MCEE orthologues (Propionibacterium shermanii and 

Thermoanaerobacter tengcongensis) have been reported (10,11). 

In this article, we conducted an in depth investigation of MCEE deficiency at the gene and 

protein levels. From a cohort of 150 patients with MMAuria of unknown etiology, we identified 

ten new patients with mutations on the MCEE gene including a novel missense mutation. We 
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determined the crystal structure of human MCEE of the wild-type as well as p.Arg143Cys 

variant proteins. We further characterized protein expression and enzyme activity for the 

three known MCEE missense mutations associated with disease. Our study provides a 

molecular explanation for the biochemical defects associated with the missense mutations. 

 

Results & Discussion 
 
 
Identification of ten new MCEE patients with methylmalonic aciduria 

Thus far, 11 cases of MMAuria have been identified due to mutations in the MCEE gene (1-

6). We screened fibroblast cell lines taken from 150 patients with mild but clear MMAuria who 

could not be assigned to a cobalamin class of defect. From this cohort, we identified ten 

patients from nine families with mutations in MCEE (Table 1). All patients are homozygous 

for their respective mutations, of which nine out of ten harbour the previously described 

c.139C>T (p.Arg47*) nonsense mutation. This remains by far the most common mutation 

identified in MCEE deficiency, with 16 out of 21 patients homozygous for this allele. One 

patient in our cohort harboured c.158T>G (p.Ile53Arg), a novel missense mutation that is not 

found in the ExAC database (>120,000 alleles) (12). We did not observe either c.178A<C 

(p.Lys60Gln), previously found in one patient in the homozygous state, or c.427C>T 

(p.Arg143Cys), previously found in two patients in the heterozygous state without an 

apparent second mutation (3). 

In our cohort, disease onset ranged from 1 month old to 2.5 years of age, while from two 

patients we had no information. Clinical symptoms were variable but usually mild, and no 

patient was responsive to vitamin B12 treatment. At least three patients presented following 

an intercurrent illness, while three presented with metabolic acidosis and/or hypoglycemia. In 

addition, elevated levels of other metabolites typical for a block in the propionate degradation 

pathway, such as 2-methylcitrate, propionylcarnitine and 3-hydroxypropionate, were 

documented in most patients. Investigation in patient fibroblasts revealed mildly decreased 

propionate incorporation (Table 1), which did not increase upon addition of 

hydroxocobalamin.  

 

Structural features of human MCEE  

We performed structural biology studies to establish the molecular basis of disease-causing 

mutations on the human MCEE protein (hMCEE). As a first step, we determined the crystal 

structure of wild-type (wt) protein (hMCEEWT) to 1.8 Å resolution (Table 2), as part of a wider 

effort that also generated crystal structures of three other human VOCs, namely hHPD (PDB: 

3ISQ), hGLOD4 (PDB 3ZI1) and hGLOD5 (PDB 3ZW5). Most VOC members are structurally 

made up of four glyoxylase (GLOD) motifs of βαβββ topology. As exemplified in 
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Supplemental Fig. S1, the human VOCs display versatility in the way that four GLOD motifs 

are assembled, at the gene or protein level, to give rise to a minimal functional unit 

harbouring two metal-binding active sites.  

In the case of hMCEE, two βαβββ motifs pack side-by-side to form an 8-stranded sheet that 

completes the active site for one protomer (Fig. 1A). Crystallographic (supplemental Fig. S1) 

and solution data (supplemental Fig. S2) show that hMCEE is dimeric, in agreement with 

bacterial orthologs (10,11). The VOC members are so called because a divalent metal per 

active site can bind the substrate, intermediates or transition states in a bidentate fashion (8). 

The divalent metal ion in hMCEE, observed as cobalt in our structure, is coordinated by three 

residues strictly conserved among VOCs: His50 (strand β1), His122 (strand β5), and Glu172 

(strand β8) (Fig. 1B).  

 

Structural mapping of MCEE mutations 

Both the reported p.Arg143Cys and newly identified p.Ile53Arg missense mutations are 

predicted by SIFT (Damaging, score: 0.00 & 0.01) and PolyPhen2 (Probably damaging, 

score: 0.989 & 1.00) to be deleterious. By contrast, the other previously reported mutation 

p.Lys60Gln was predicted to be not deleterious (SIFT: 0.12 tolerated, PolyPhen2: 0.04 

benign). The most common mutation of MCEE, c.139C>T, causes truncation of the protein at 

p.Arg47*, within the first β-sheet (supplemental Fig. S3). Loss of almost the entire protein is 

therefore the likely cause of enzymatic dysfunction due to this mutation, assuming there is 

residual mRNA following nonsense-mediated decay.  

By contrast, the molecular dysfunction due to the missense mutations is less clear (Fig. 1C). 

In our hMCEE structure, Ile53 is located at the dimeric interface, making hydrophobic 

contacts with Gly168 and Val169 from the loop region connecting strands β7 and β8 (loopβ7-

β8) of the other subunit in the dimer, (Fig. 1D). The amino acid (aa) position of Ile53 is highly 

conserved among MCEE orthologues (85% occupied by Ile, n=150). An Ile-to-Arg at this 

position likely interferes with proper dimeric assembly, and is predicted by FoldX (13) to have 

severely reduced stability (ΔΔG 9.53 kcal/mol). By contrast, Lys60 and Arg143 occupy amino 

acid positions that are more variable. Position 60 is only occupied by lysine in 15% of MCEE 

homologs while position 143 is 60% occupied by arginine. Both residues are surface 

exposed and not directly involved in the dimeric interface and active-sites of both subunits 

(Fig. 1D), consistent with a FoldX prediction of no effect for p.Lys60Gln (ΔΔG 0.3 kcal/mol), 

and moderately reduced stability for p.Arg143Cys (ΔΔG 2.26 kcal/mol).  

 

Characterization of MCEE mutations in recombinant and patient cells 

To validate our structural interpretation of mutations, we performed expression studies in E. 

coli and human cells. When expressed in E. coli (Fig. 2A), hMCEE wt, p.Lys60Gln and 
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p.Arg143Cys proteins were highly soluble, while the p.Ile53Arg variant showed a massive 

decrease in protein solubility, consistent with a poorly folded protein. All wt and variant 

hMCEE molecules eluted at similar volumes by size exclusion chromatography 

(supplemental Fig. S4). Thermal unfolding (Fig. 2B) of purified hMCEE p.Ile53Arg by nano-

differential scanning fluorimetry revealed a melting curve of multiple transitions, indicative of 

heterogenous protein states. By contrast, purified wt and p.Lys60Gln proteins showed 

globular protein behaviour reflected by a cooperative sigmoidal melting pattern, indicating a 

single unfolding/folding transition. p.Arg143Cys also behaved similarly to wt and p.Lys60Gln, 

however late stage unfolding/folding intermediates deviate from sigmoidal melting. Together 

our data indicate reduced thermostability for the p.Ile53Arg variant protein and a potential 

slight alteration in that of p.Arg143Cys.   

These results were validated by over-expression of hMCEE in patient fibroblasts 

homozygous for the MCEE null mutation (c.139C>T; p.Arg47*). For this experiment, flag-

tagged wt and mutant hMCEE proteins were over-expressed with visualization of the flag-tag 

by Western blot analysis (Fig. 3A). Expression of each construct performed at least 3 times 

revealed wt protein to be well expressed, while hMCEE containing p.Lys60Gln and 

p.Arg143Cys were detectable at only slightly lower levels (63 ± 17% and 74 ± 26% of wt, 

respectively) (Fig. 3B). However, hMCEE containing p.Ile53Arg had very low levels of 

detectable protein (6 ± 1% of wt), similar to empty vector (4 ± 2% of wt) (Fig. 3B). Thus, 

consistent with recombinant studies, it appears that p.Ile53Arg causes an inability to fold 

correctly. 

 

Structure of human MCEE p.Arg143Cys variant 

We determined the crystal structure of the p.Arg143Cys variant protein (hMCEER143C) to 1.9 

Å resolution (Table 2), to directly inspect the atomic environment of the substitution (Fig. 4). 

While hMCEER143C superimposes well overall with hMCEEWT (Cα-RMSD 0.278 Å), significant 

main-chain displacement was clearly observed in the loop region connecting helix α3 and β6 

(loopα3-β6) that harbours the site of mutation at aa 143, as well as the nearby loopβ7-β8 (Fig. 4, 

inset). These loop regions connect several β-strands that make up the protomer active site. 

In the hMCEER143C structure, the substituted Cys143 residue generated more mobility and 

disorder within the loopα3-β6. As a result, the main-chain atoms of aa 142-146 are displaced 

by ~2.5-4.7 Å compared to hMCEEWT. The increased mobility in loopα3-β6 impacts on the 

nearby loopβ7-β8 that packs against it, resulting in 2.0-4.8 Å main-chain displacement at the 

first half of loopβ7-β8 (aa 164-167). The second half of loopβ7-β8, involved in the aforementioned 

dimeric interface, was not affected by any displacement. Together, these local structural 

changes have the potential to impact on the surface features of the homodimer, as well as 

the active site pocket.  
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Biochemical characterization of MCEE mutations 

We developed a radioactive HPLC-based assay to assess MCEE activity of wt and variants. 

This assay follows the production and separation of [14C]-methylmalonic acid and [14C]-

succinic acid from [14C]-propionic acid following addition of [14C]-propionyl-CoA to fibroblast 

cell lysates, as depicted in Fig. 5A. Using UV detection, we were able to detect separated 

propionic acid, methylmalonic acid and succinic acid following HPLC analysis (supplemental 

Fig. S5). In cell lysates from control fibroblasts, we identified high levels of [14C]-

methylmalonic acid but only very little [14C]-succinic acid (Fig. 5B; supplemental Fig. S6A). To 

determine if MUT or MCEE was rate-limiting for succinate production, we expressed each 

individually, or together (Fig. 5B; supplemental Fig. S6B-C). While over-expressed MUT-

alone only marginally increased detectable [14C]-succinic acid, MCEE expression alone, and 

especially co-expression with MUT, provided a marked increase in [14C]-succinic acid (Fig. 

5B; supplemental Fig. 6D). Therefore, MCEE appears to be the rate-limiting step in this 

pathway. This same basic pattern could be seen in MCEE null fibroblasts (Fig. 5C).  

We further examined the effect of the mutant MCEE proteins in the presence of over-

expressed MUT in MCEE null fibroblast lysates (Fig. 5D). Over-expression of MCEE 

harbouring p.Ile53Arg resulted in very little detectable [14C]-succinate. This is consistent with 

an inability to convert D-methylmalonyl-CoA to L-methylmalonyl-CoA due to a lack of 

correctly folded protein, as was demonstrated by Western blot analysis. By contrast, over-

expressed MCEE harbouring p.Lys60Gln produced similar levels of detectable succinate as 

wt protein. Finally, despite being well expressed, MCEE harbouring p.Arg143Cys had 

markedly reduced [14C]-succinic acid production, agreeing with the significantly altered local 

environment in the hMCEER143C structure. This conformational change could impair 

enzymatic activity of p.Arg143Cys either by direct structural interference with the active site, 

or indirectly e.g. via loss of essential interactions with other proteins in the succinyl-CoA 

production pathway.  

 

Conclusions 

The identification of an additional ten patients with MCEE deficiency adds more information 

toward the debate of whether deficiency of this protein does indeed cause disease and not 

just elevated methylmalonic acid levels, and confirms that complete MCEE deficiency, 

despite low penetrance, may lead to an acute clinical phenotype with metabolic crisis 

resembling classical organic acidurias, similar to e.g. 3-methylcrotonyl-CoA carboxylase 

deficiency (14). Our combined structural, biophysical and enzymatic assessment of MCEE 

defects confirm the importance of this protein within the propionate degradation pathway. 
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While protein-destabilizing mutations (e.g. p.Ile53Arg) explains enzymatic defects more 

readily, mutations away from the active-site (e.g. p.Arg143Cys) could still cause a loss of 

activity, although the underlying mechanism needs further clarification. In regards to 

p.Lys60Gln, however, we could identify no defect conferred to the protein, leaving the 

molecular mechanism and its potential to cause disease in doubt.  
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Materials and Methods 

Reagents 
Unless otherwise noted, all compounds were obtained from Sigma-Aldrich (Buchs SG, 
Switzerland) and were reagent grade or better. 
 
Purification, crystallization and structure determination of hMCEE 
hMCEE was cloned, expressed and purified as previously described (15). Briefly, wt and 
variant proteins were expressed in Escherichia coli BL21(DE3)R3-Rosetta cells from 3-6 L of 
Terrific Broth culture. Cell pellets were lysed by high pressure homogenizer and centrifuged 
at 35,000 xg. The clarified cell extract was incubated with 2.5 ml of Ni-NTA resin pre-
equilibrated with lysis buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 10 mM Imidazole, 5% 

Glycerol, 0.5 mM TCEP). The column was washed with 100 ml Binding Buffer (50 mM HEPES 

pH 7.5, 500 mM NaCl, 5% glycerol, 10 mM Imidazole, 0.5 mM TCEP), 50 ml Wash Buffer (50 

mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 40 mM Imidazole, 0.5 mM TCEP) and eluted 
with 15 ml of Elution Buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 250 mM 

Imidazole, 0.5 mM TCEP). The eluant fractions were concentrated to 5 ml and applied to a 
Superdex 200 16/60 column pre-equilibrated in GF Buffer (10 mM HEPES pH 7.5, 500 mM 

NaCl, 0.5 mM TCEP, 5% glycerol). Eluted protein fractions were incubated with 1:20 mol:mol 
TEV protease overnight at 4°C. The next day sample was passed through 0.5 ml Ni-NTA 
pre-equilibrated with GF Buffer and washed 1 ml of GF Buffer. Flow-through and wash were 
pooled and concentrated to 10-15 mg/ml.  

Crystals of hMCEEWT were grown by vapour diffusion in sitting drop at 20°C. A sitting drop 
consisting of 75 nl protein and 75 nl well solution was equilibrated against well solution 
containing 30% (v/v) low molecular weight PEG smear (16) and 0.1 M Tris pH 8.5. Crystals 
were mounted in the presence of 25% (v/v) ethylene glycol and flash-cooled in liquid 
nitrogen. Crystals of hMCEER143C were grown by vapour diffusion in sitting drop at 20°C. A 
sitting drop consisting of 50 nl protein and 100 nl well solution was equilibrated against well 
solution containing 20% PEG4000, 10% 2-propanol and 0.1M HEPES pH 7.5. Crystals were 
mounted in the presence of 25% (v/v) ethylene glycol and flash-cooled in liquid nitrogen. 
Crystallization and diffraction data are given in Table 2. The structure of hMCEEWT was 
solved by molecular replacement using PHASER (17), with P. shermanii MCEE structure 
(PDB 1JC5) as search model. The structure of hMCEER143C was solved by molecular 
replacement with hMCEE wt as search model. Iterative cycles of refinement and manual 
model building using COOT (18), REFMAC5 (19) and phenix.refine (20) (PMID: 22505256). 
  
Size Exclusion Chromatography 
Size exclusion chromatography was performed as described in (21). 
 
Nano-Differential Scanning Fluorimetry 
Melting curves for the wt protein and mutants were obtained via detection of changes in light 
scattering using the Prometheus NT.48. Protein concentration was kept at 100 µM in 50 mM 
HEPES pH 7.5, 500 mM NaCl, 0.5 mM TCEP, 5% glycerol and a melt gradient of 1 degree 
per minute 20°C to 95°C was used. 

  
Patient Characterization (genotyping, propionate incorporation) 
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Skin fibroblasts were taken from patients with biochemical and clinical evidence of 
methylmalonic aciduria, referred to our institution for diagnostic purposes. The study has 
been approved by the ethics commission of the Canton of Zurich, Switzerland (application 
no. 2014-0211). Genomic DNA and RNA extraction, as well as sequencing and propionate 
incorporation were performed as previously described (21). The nomenclature of the 
mutations is based on the cDNA sequence NM_032601.3. Nucleotide numbering uses +1 as 
the A of the ATG translation initiation codon in the reference sequence, with the initiation 
codon as codon 1. 
 
Transfection, Immunoblotting and Enzymatic Assay 
A DNA fragment encompassing the entire coding sequence of wild-type MCEE was cloned 
into pcDNA3-CT10HF-LIC using LIC cloning. The sequence was as given by NM_032601.3, 
except for c.311T>G (p.Lue104Arg), whereby c.311G is the more common allele, (12). Site-
directed mutagenesis was carried out on this construct using the QuikChange site-directed 
mutagenesis kit (Stratagene, La Jolla, CA) as described in the manufacturer’s instructions, 
using forward and reverse primers (Microsynth, Balgach, Switzerland) and confirmed by 
Sanger sequencing. Control (BJ, CRL-2522, ATCC) or patient (carrying homozygous MCEE 
mutation c.139C>T, p.Arg47*) fibroblasts were transiently transfected with 10 µg wild-type or 
mutant MCEE constructs, with or without 10 µg MUT in pTracer (22) for the enzymatic assay, 
using electroporation (23). Cells were grown in Dulbecco’s Modified Eagle Medium (Gibco) 
supplemented with 10% fetal bovine serum (Gibco) and antibiotics (GE Healthcare), as 
previously described (24) and harvested by trypsinization 48 hr after electroporation, washed 
twice with HBSS (Gibco) and either frozen at −20°C or processed directly. 

Western Blot analysis was performed on fresh or frozen cell pellets essentially as described 
in (22), with the exception that monoclonal anti-flagM2 (1:4,000; Sigma–Aldrich) and anti-β-
Actin (at 1:5,000; Sigma–Aldrich) were used. 

For the enzymatic assay, fresh or frozen cell pellet was lysed in buffer including 12 mM Tris-
HCl, pH 8.0 and 1mM DTT with sonication twice at amplitude 1.5 for 15 seconds using the 
microprobe of an XL-2000 sonicator (Microson, Qsonica Newtown, CT). Following lysis, 
protein concentration was determined by the Lowry method. The incubation mixture 
contained 300-500 µg cell protein, reaction buffer (100 mM Tris-HCl, pH 8.0; 6 mM MgCl2; 
3.15 mM ATP; 100 mM KCl; 3 mM DTT), 1 mM propionyl-CoA mix (1 mM propionyl-CoA and 
7 µM [14C]-propionyl-CoA at 55 mCi/mmol, Anawa, Switzerland) and 50 uM 
adenosylcobalamin and reaction time was 60 minutes at 37°C. The reaction was stopped by 
adding 0.5M KOH, samples were then re-incubated for 15 minutes at 37°C to hydrolyze CoA 
derivatives, neutralized by adding 0.5 N perchloric acid (Merck), and spiked with 0.05% 
succinic acid, 0.018% methylmalonic acid and 0.018% propionic acid in order to visualize 
peaks during HPLC separation. Samples were centrifuged to remove precipitate, and 
supernatant was injected into an Aminex HPX-87H Ion Exclusion column (300 × 7.8 mm2; H-
form, 9 μm, Bio-Rad), and organic acids separated by elution with 0.5 mM H2SO4 at 30°C 
using a flow rate of 0.4 ml/min. Retention times were 13-15 minutes for methylmalonic acid, 
17-19 minutes for succinic acid, and 26-28 minutes for propionic acid (supplemental Fig. S5 
and 6), visualized at 210 nm using a UV detector. Fractions covering the methylmalonic acid 
and succinic acid peaks were collected and [14C]-methylmalonic acid and [14C]-succinic acid 
quantified in a Tri-Carb C1 900TR scintillation spectrometer (PerkinElmer,Waltham, MA, 
USA) with OptiphaseHiSafe 2 counting cocktail (PerkinElmer).  
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Table 1. List of ten newly identified MCEE patients with relevant genetic, biochemical and clinical data. 

Patient 
No. 

Age at 
onset Mutationa Clinical  presentation, laboratory data Urinary MMA 

Propionate  incorporationb 
nmol/16h/mg 

homozygous for all 
patients 

mmol/mol creat. - OHCbl + OHCbl 

Ref. 0.3 – 1.1 Ref. 3.5 – 24.4 Ref. 4.3 – 28.9 

1 4 mo c.139C>T; p. Arg47* Cardiomyopathy. Sibling with similar biochemical profile but 
no symptoms 441  1.9 (1.8 – 2.0) 1.9 (1.8 – 2.1)  

2 2 yr c.139C>T; p. Arg47* 
Severe metabolic acidosis and hypoglycemia following 
gastroenteritis, elevated propionyl-carnitine; 3-OH propionate 
& methyl-citrate in urine 

458 1.9 (1.8 - 2.1) 2.0 (1.8 – 2.1)  

3 2.5 yr c.139C>T; p. Arg47* Severe metabolic acidosis, elevated propionyl-carnitine; 3-
OH propionate & methyl-citrate   elevated 1.4 (1.2 - 1.5)  1.4 (1.2 – 1.6)  

4 1.5 yr c.139C>T; p. Arg47* Severe metabolic acidosis and hypoglycemia following 
intercurrent illness 594  2.0 (1.8 - 2.3)  1.9 (1.5 – 2.4)  

5c - c.139C>T; p. Arg47* No data; enzyme assays performed at 3 years of age elevated 3.0 (2.9 - 3.0) 3.0 (2.9 – 3.4)  

6c - c.139C>T; p. Arg47* No data; enzyme assays performed at 7 years of age elevated  2.7 (2.6 – 3.0) 2.7 (2.4 – 2.9)  

7 2 yr c.139C>T; p. Arg47* 
Slow motor development, hypotonia (inability to walk 
independently), spasticity of legs, eczema, episode of  
vomiting and diarrhea 

 143 2.5 (2.2 - 2.8)  2.5 (2.3 – 2.7)  

8 1 mo c.139C>T; p. Arg47* Sepsis, psychomotor retardation, seizures, elevated C3-
acylcarnitine, methyl-citrate in urine elevated 2.0 (1.8 - 2.1)  2.0 (1.9 – 2.2)  

9 6 mo c.158T>G; p.Ile53Arg 
Seizures and hypoglycemia following viral infection, elevated 
proionyl-carnitine; methyl-citrate in urine; then normal 
development  

143-184   3.0 (2.9 - 3.2) 3.0 (2.9 – 3.1)  

10 < 1 yr c.139C>T; p.Arg47* Ketoacidosis  elevated 2.4 (2.4 - 2.3) 2.4 (2.4 - 2.4) 
a According to NM_032601 and NP_1159990. Nucleotide numbering uses +1 as the A of the ATG translation initiation codon in the reference sequence, with the initiation codon as codon 1. 
b [14C]propionate incorporation: fibroblasts were grown for 3 days without (-) and with (+) 10mg of hydroxocobalamin (OH-Cbl)/ml medium. Values for patient cells represent mean and range (in brackets) 
from 3 replicate experiments. For controls (WT) the range of 33 individual fibroblast cell lines is given. 
c  Patient 5 and patient 6 are siblings. 
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Table 2. Data collection and refinement statistics for the crystal structures. Data from 
highest resolution shell shown in parenthesis. 

Dataset hMCEEWT hMCEER143C 

Beamline Diamond Beamline I02 Diamond Beamline I04 

Wavelength (Å) 0.9763 0.9795 

Unit cell parameters (a,b,c) 53.12 Å, 66.69 Å, 76.98Å 53.16 Å, 66.99 Å, 77.13 Å  

(α, β, γ) 90.0°, 90.1°, 90.0° 90.00°, 90.02°, 90.00° 

Space group P 1 21 1 P 1 21 1 

Resolution range (Å) 36.58 – 1.80 47.77 – 1.93* 

Observed/Unique reflections 49519 19630 

Rsym (%) 0.076 (0.56) 0.13 (0.92) 

I/sig(I) 1.98 7.2 (1.2) 

Completeness (%) 99.2 (99.7) 88.9 (55.8) 

Multiplicity 3.6 (3.6) 3.3 (2.7) 

   

Rcryst (%) 0.19 0.23 

Rfree (%) 0.238 0.28 

Wilson B factor (Å2) 23.7 25 

Average total B factor (Å2) 27.59 29.46 

R.m.s.d. bond length (Å2) 0.67 0.008 

R.m.s.d. bond angle (°) 0.69 1.070 

Missing residues 1-44 1-44 

   

Clashscore 6 5.78 

Ramachadran favoured (%) 97 97 

Ramachandran disallowed (%) 1 0.2 

Rotamer outliers (%) 0 0.5 

   

* Anisotropic data truncated in staraniso using local I/sigI cut off at 1.2 results in the inclusion of data 
to 1.9 Å with outer-shell ellipsoidal completeness at 58.8% and spherical completeness at 10%. 
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Figure Legends 

Figure 1. Structure of hMCEE (PDB ID:3RMU). A. Monomeric structure coloured by 
secondary structure, whereby β-strands are green, α-helices that are part of the GLOD motif 
are red, and regions that connect GLOD motifs are yellow. B. Active-site architecture 
showing the divalent metal and metal coordinating residues. Pink sphere: cobalt. C. On the 
hMCEE monomer, residues that are mutated in disease are labeled in orange, active-site 
residues are labeled in black. D. hMCEE physiological dimer with the second subunit 
represented as grey space fill. Mutations are labeled in orange and designated as belonging 
to chain (monomer) A or B. 

Figure 2. Characterization of recombinant hMCEE wt and variant proteins. A. SDS-
PAGE analysis of hMCEE protein expression (from cell lysate: Total Lysis; and centrifuged 
supernatant fractions: Soluble) and solubility (from eluant fractions of affinity purification); B. 
nanoDSF melting curve plot of normalized light scattering intensity against temperature. 

Figure 3. Over-expression of hMCEE-flag in human fibroblasts. A. Representative 
Western blots depicting detection of wild-type (wt) or mutant hMCEE-flag following over-
expression in patient fibroblasts deficient for MCEE enzyme. Vector without insert was used 
as a control (e.v.). Loading was controlled by detection of endogenous β-actin. Numbers on 
the left correspond to molecular weights (kDa). Approximate expected molecular weights, 
hMCEE-flag: 18 kDa; β-actin: 42 kDa. B. Bar-graph depicting mean and standard deviation 
of Western blot results performed in 3 independent experiments. 

Figure 4. Structure of hMCEE p.Arg143Cys variant. Structural superposition of hMCEE 
homodimer from hMCEEWT (yellow) and hMCEER143 (cyan) proteins. Inset. Magnified view of 
the local atomic environment surrounding the Arg143/Cys143 site, where amino acid side-
chains are shown as thin lines.  

Figure 5. Biochemical analysis of hMCEE disease associated mutations. A. Schematic 
depiction of the cellular pathway leading from propionyl-CoA to succinyl-CoA and the 
enzymes involved in this process. B and C. Bar-graph showing the amount of methylmalonic 
acid (MMA) and succinate following over-expression of empty vector (e.v.), methylmalonyl-
CoA mutase (MUT) alone, MCEE alone, or both MCEE and MUT in control fibroblasts (B) 
and patient fibroblasts deficient in MCEE (C). D. Bar graph depicting production of MMA and 
succinate following over-expression of wild-type (wt) and mutant MCEE in the presence of 
over-expressed MUT in MCEE patient fibroblasts. Results shown represent the mean and 
standard deviation of 3 independent experiments. 
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