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Malignant germ cell tumors (GCT) are the most common malignant tumors in young men between 18 and 40 years. The correct
identification of histological subtypes, in difficult cases supported by immunohistochemistry, is essential for therapeutic
management. Furthermore, biomarkers may help to understand pathophysiological processes in these tumor types. Two GCT
cell lines, TCam-2 with seminoma-like characteristics, and NTERA-2, an embryonal carcinoma-like cell line, were compared by
a quantitative proteomic approach using high-resolution mass spectrometry (MS) in combination with stable isotope labelling
by amino acid in cell culture (SILAC). We were able to identify 4856 proteins and quantify the expression of 3936. 347 were
significantly differentially expressed between the two cell lines. For further validation, CD81, CBX-3, PHF6, and ENSA were
analyzed by western blot analysis. The results confirmed the MS results. Immunohistochemical analysis on 59 formalin-fixed
and paraffin-embedded (FFPE) normal and GCT tissue samples (normal testis, GCNIS, seminomas, and embryonal carcinomas)
of these proteins demonstrated the ability to distinguish different GCT subtypes, especially seminomas and embryonal
carcinomas. In addition, siRNA-mediated knockdown of these proteins resulted in an antiproliferative effect in TCam-2,
NTERA-2, and an additional embryonal carcinoma-like cell line, NCCIT. In summary, this study represents a proteomic
resource for the discrimination of malignant germ cell tumor subtypes and the observed antiproliferative effect after knockdown
of selected proteins paves the way for the identification of new potential drug targets.
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1. Introduction

Germ cell tumors (GCT) are the most common malignancies
in men between 15 and 40 years of age, and the incidence has
constantly increased over the last four decades [1]. Germ cell
tumors are histologically and clinically divided into semino-
mas and nonseminomas. Nonseminomas can be further
subdivided into embryonal carcinomas, yolk sac tumors,
chorionic carcinomas, and teratomas [2]. Seminomas and
nonseminomas have a common precursor called germ cell
neoplasia in situ (GCNIS) [3]. The International Germ
Cell Cancer Collaborative Group (IGCCCG) developed a
prognostic classification system, which divided patients
with germ cell tumors into good-, intermediate, and
poor-risk groups. It is based besides on several points such
as the primary site of the GCT, metastatic sites of involve-
ment, and levels of serum tumor markers in particular
upon the histology of the tumors (seminoma versus non-
seminoma). Because the treatment of these tumors is dif-
ferent, it is important to differentiate between seminomas
and nonseminomas [4]. Patients even with metastasized
disease can be cured in about 80% of cases by cisplatin-
based chemotherapy [5, 6].

Several cell lines are available as models for the different
types of GCT. NTERA-2 and NCCIT display embryonal
carcinoma characteristics; meanwhile, TCam-2 is considered
a model for seminoma [7, 8]. In this study, we set out to
establish new biomarkers for the differentiation of GCT cell
lines and formalin-fixed and paraffin-embedded (FFPE) tis-
sue samples and to identify new potential drug targets to
improve the therapeutic options especially of patients with
embryonal carcinoma.

van der Zwan et al. performed a comprehensive study to
identify epigenetic footprints in TCam-2 and NCCIT cell
lines. They investigated interactions between gene expres-
sion, DNA CpG methylation, and posttranslational histone
modifications to elucidate their role in the pathophysiology
and etiology of germ cell tumors [9]. However, as the corre-
lation between genetic alterations, RNA expression, and pro-
tein expression is highly influenced by transcriptional,
translational, and posttranscriptional regulations [10], we
aimed for a global, unbiased, and quantitative analysis of
the two cell lines TCam-2 and NTERA-2 on the protein level.

With markers such as SALL4, OCT3/4, SOX-2, or SOX-
17, numerous good and reliable diagnostic markers are avail-
able to differentiate between the different GCT subtypes [2,
11]. Regardless of this, it is of great importance to detect dif-
ferences in tumor biology in order to gain a better under-
standing of the pathological processes of germ cell tumors.
We reasoned that a proteomic approach, rather than geno-
mic and transcriptomic studies, can identify biological differ-
ences and may also provide new potential targets for a
molecular targeted therapy. For this purpose, we employed
high-resolution mass spectrometric analysis combined with
stable isotope labelling with amino acids in cell culture
(SILAC) to visualize them in human testis and human germ
cell tumor tissue [12]. This strategy can help to minimize var-
iation occurring as a result of sample handling, because the
labelling occurs in a very early stage of the experiment [13].

2. Material and Methods

2.1. Culture of TGCT Cell Lines. In the present study, the
human GCT cell lines NTERA-2 (representing an embryonal
carcinoma, CRL 1973; from American Type Culture Collec-
tion, Manassas, VA, USA), NCCIT (representing an embryo-
nal carcinoma, CRL 2073; from American Type Culture
Collection, Manassas, VA, USA), and TCam-2 (representing
a seminoma; generously provided by the Department of
Developmental Pathology, University of Bonn Medical
School, Germany) were cultured in HEPES-buffered RPMI-
1640 (Biochrom, Berlin, Germany) supplemented with fetal
calf serum (FCS, 10%; CC Pro, Neustadt, Germany), penicil-
lin (100 IU/ml; Sigma-Aldrich, Munich, Germany), strepto-
mycin (100 μg/ml; Sigma-Aldrich), and L-glutamine
(2mM; Biochrom, Berlin, Germany). The incubation
temperature was 37°C in a humid atmosphere with 5%
carbon dioxide in the air.

2.2. Proteomic Analysis. Stable isotope labeling with amino
acids in cell culture (SILAC) and quantitative mass spec-
trometry were performed as described before [14–16].
TCam-2 and N-Tera2 cells were cultured in RPMI 1640
medium lacking arginine and lysine (Pierce) supplemented
with 10% dialyzed FCS (Invitrogen), 4mM glutamine, and
antibiotics. “Heavy” and “light” media were distinguished
by adding 0.115mM 13C6

14N4 L-arginine and 0.275mM L-
lysine-4,4,5,5-D4 (Eurisotop) or equimolar levels of the
corresponding nonlabeled (light) amino acids (Merck Milli-
pore), respectively. For cell lysis, 0.5% Nonidet P-40 buffer
containing 50mM Tris/HCl, pH7.8, 150mM NaCl, 1mM
Na3VO4, 1mM NaF, 0.2% lauryl maltoside, and protease
inhibitors (Complete, Roche) was used. Protein concentra-
tion was determined with DC Protein Assay (Bio-Rad) fol-
lowing the manufacturer’s instructions. Equal amounts of
protein of light-labeled TCam-2 were mixed with heavy-
labeled NTERA-2 and vice versa. Proteins were separated
by 1D-PAGE (4 to 12% NuPAGE Bis-Tris Gel, Invitrogen).
After Coomassie brilliant blue staining, the gel was divided
in 23 slices. Encompassing proteins were reduced with
10mM DTT for 55min at 56°C, alkylated with 55mM IAA
for 20min at 26°C, and gel-digested with modified trypsin
(Promega) overnight at 37°C.

Resulting peptides were separated by a C18 precolumn
(2.5 cm, 360 μm o.d., 100μm i.d., Reprosil-Pur 120Å, 5μm,
C18-AQ, Dr. Maisch GmbH) at a flow rate of 10μl/min
and a C18 capillary column (20 cm, 360μm o.d., 75μm i.d.,
Reprosil-Pur 120Å, 3μm, C18-AQ, Dr. Maisch GmbH) at
a flow rate of 300nl/min, with a gradient of acetonitrile rang-
ing from 5 to 35% in 0.1% formic acid for 90min using an
Proxeon nano LC coupled to an Q Exactive mass spectrome-
ter (Thermo Electron). MS conditions were as follows: spray
voltage, 1.8 kV; heated capillary temperature, 270°C; and
normalized collision-energy (NCE), 28. An underfill ratio
of 1.2% and intensity threshold of 4.0 e4 were used. The mass
spectrometer automatically switched between MS and
MS/MS acquisitions (data-dependent mode). Survey MS
spectra were acquired in the Orbitrap (m/z 350–1600) with
the resolution set to 70 000 at m/z 200 and automatic gain
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control target at 2 × e5. The 15 most intense ions were
sequentially isolated for HCD MS/MS fragmentation and
detection. Raw data were analyzed with MaxQuant (version
1.3.0.5) using Uniprot human (version 27.08.2012 with
86725 entries) as a sequence database. Up to two missed
cleavages of trypsin were allowed. Oxidized methionine was
searched as variable modification and cysteine carbamido-
methylation as fixed modification. The modifications corre-
sponding to arginine and lysine labeled with heavy stable
isotopes were handled as fixed modifications. The false posi-
tive rate was set to 1% at the peptide level, the false discovery
rate was set to 1% at the protein level, and the minimum
required peptide length was set to six amino acids.

2.3. Selection of Proteins for Further Investigations. To see
if the proteins detected in the SILAC assays are also
expressed in human testis tumor tissue, we compared
the significantly expressed proteins of our results with
the data in the online database The Human Protein Atlas
(https://www.proteinatlas.org/) [17]. In the selection, we
exemplarily opted for proteins that were expressed in
tumor-free testicular tissue, with the consideration that
these proteins could possibly be of particular importance
in testicular tumors.

2.4. Western Blot Analysis. Total protein lysates were
prepared using RIPA buffer with protease inhibitors (Roche,
Germany) and were quantified by the Bio-Rad DC Protein
Assay (Bio-Rad, USA). For western blotting, the following
primary antibody dilutions were used: monoclonal mouse
anti-CD81 (Tetraspanin-28) (Santa Cruz, sc-166029;
1 : 250), monoclonal mouse anti-PHF6 (PHD finger pro-
tein 6) (Santa-Cruz, sc-365237; 1 : 500), polyclonal rabbit
anti-CBX-3 (chromobox protein homolog 3) (HPA 004902,
Sigma-Aldrich; 1/250), and polyclonal rabbit anti-ENSA
(alpha-endosulfine) (HPA 051292, Sigma-Aldrich: 1/500).
Primary antibodies were detected by polyclonal immunoglo-
bulins/HRP secondary antibodies (1 : 1000, Dako, DK).Mem-
branes were developed using the ECL system (Amersham
Bioscience, Germany).

2.5. Gene Ontology and Network Analysis. Gene ontology
classification has been performed using either the Metacore
software (https://portal.genego.com/) or the R package
clusterProfiler. Differentially expressed proteins were loaded
into Metacore software, and significantly enriched biologi-
cal processes, molecular functions, and pathway networks
were extracted.

Network analyses were performed using the Metacore
(https://portal.genego.com/) software for the enrichment of
the shortest pathways inside the group of differentially
regulated proteins. The shortest path algorithm connects
the differentially expressed proteins identified in the proteo-
mic approach with additional information from the Meta-
core database along a directed path and potentially involved
pathways. Next, most significant networks were loaded into
Cytoscape software (http://www.cytoscape.org/) for further
visualization. Networks were visualized using hierarchical
layout in Cytoscape.

2.6. Tissue Samples of Primary TGCT. Formalin-fixed and
paraffin-embedded tumor tissues of orchiectomy specimens
were collected from 59 male patients from the University
Medical Centre Göttingen, Germany. Tumors were classi-
fied and staged on the basis of the WHO classification
[18]. In the present study, a number of 75 blocks have been
included. Investigated cases included normal testis adjacent
to tumor (n = 16), GCNIS (n = 18), seminomas (n = 21),
and embryonal carcinomas (n = 20). Ethical approval for
using the human material in the present study was
obtained from the Ethics Committee of the University
Medical Centre Göttingen.

2.7. Immunohistochemistry. Immunohistochemical reactions
were performed on 4μm formalin-fixed and paraffin-
embedded testis tissue sections. In heat-induced epitope
retrieval, the antigen retrieval was carried out at 98°C in
citrate buffer (low pH6; 40 minutes) or EDTA buffer (high
pH9; 20 minutes). The primary antibodies were incubated
for 30 minutes at room temperature. The following antibod-
ies and dilutions were applied: anti-CD81 (mouse, high
buffer, 1 : 200, Santa Cruz, sc-166029), anti-PHF6 (mouse,
high buffer, 1 : 200, Santa-Cruz, sc-365237), anti-CBX-3 (rab-
bit, diluted 1/200, high buffer, HPA 004902, Sigma-Aldrich),
and anti-ENSA (rabbit, diluted 1/50, low buffer, HPA
051292, Sigma-Aldrich). Afterwards, the sections were incu-
bated with a ready-to-use HRP-labeled secondary antibody
at room temperature for 25 minutes (anti-rabbit/mouse, pro-
duced in goat; Dako REAL EnVision Detection System,
DAKO). The substrate DAB+ Chromogen system produces
a brown end product and is applied to visualize the site of
the target antigen (Dako REAL DAB+ Chromogen, DAKO).
Tissue samples were counterstained with Meyer’s hematoxy-
lin (Dako) for 8 minutes and were analyzed by light
microscopy.

Two independent investigators evaluated all tissue sec-
tions stained for CD81, CBX-3, PHF-6, and ENSA using
an immunoreactivity staining score (IRS) as described pre-
viously [18, 19]. The percentage of positively stained cells
was first classified using a 0–4 scoring system: score
0= 0% positive cells, score 1 = less than 10% positive cells,
score 2=10–50% positive cells, score 3= 51–80% positive
cells, and score 4=>80% positive cells. The intensity of
staining was evaluated on a four-tiered scale (0 =negative,
1 =weak, 2 = intermediate, and 3= strong). Afterwards, the
scores of intensity and staining were multiplied, and the
mean value per patient was calculated, as described previ-
ously [18]. Differences of IRS between the different subtypes
of GCT were statistically evaluated using Student’s t-test
(GraphPad Software, San Diego, CA, USA). A p value of
<0.05 was considered significant.

2.8. siRNA Transfection. Tumor cells were transfected with
100 μl transfection mix (12μl HiPerFect, Qiagen, Hilden,
Germany, 2.5μl siRNA (20μM), and 85.5μl RPMI medium).
siRNAs used were Hs_PHF6_10, SI05120745 and Hs_PHF6_
11, SI05120752; Hs_CD81_6, SI02777236 and Hs_CD81_7,
SI02777243; Hs_CBX-3_6, SI02665222 and Hs_CBX-3_7,
SI03028165; and Hs_ENSA_20, SI05062218 and Hs_
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ENSA_21, SI05062225 (Qiagen, Hilden, Germany). After
incubation for 20min, 100 μl siRNA medium were mixed
with 2.3ml culture medium to create a concentration of
1 : 1000. The cells were incubated for 24 h or 48h.

2.9. Measurement of Cell Proliferation. 1 × 105 to 3 × 105 cells
were plated as described above. After 48h incubation time,
the culture medium was exchanged for a siRNA medium
(2.3ml culture medium, 100μl siRNA-Mix). For cell viability
analysis, equal numbers of cells were seeded into 96-well
flat-bottom plates and incubated for indicated time points.
Cell viability was determined by the CellTiter 96 AQueous
One Solution Cell Proliferation Assay (MTS) (Promega)
according to the manufacturer’s instructions.

3. Results

3.1. Quantitative Proteomic Profiling of TCam-2 and
NTERA-2. In order to find differences in the global proteome
of seminoma-like and embryonal carcinoma-like cell lines,
we performed a quantitative protein expression analysis by
SILAC-based mass spectrometry. The cell lines TCam-2
(representing cell line with seminoma characteristics) and
NTERA-2 (representing a cell line with embryonal carci-
noma characteristics) were cultured with light and heavy
isotope-labeled amino acids as described in the Material
and Methods. After cell lysis, equal amounts of protein of

light-labeled TCam-2 were mixed with heavy-labeled
NTERA-2 and vice versa and subsequently analyzed by
high-resolution mass spectrometry. Due to the incorporation
of SILAC amino acids, proteins derived from both cell lines
can be accurately assigned to the two cell lines and its expres-
sion and can be comparatively quantified (Figure 1(a)). In
two biological replicates, a total of 4856 proteins were identi-
fied and 3936 proteins could be quantified with a Gaussian
distribution of the ratios between the two cell lines
(Figure 1(b)). Next, an outlier significance score depending
on intensity values (significance B in Perseus, see citation
for more details [20, 21]) was calculated for every protein.
347 proteins showed a significantly different expression and
196 (TCam-2) and 102 (NTERA-2) proteins showed an at
least 2.5-fold increased expression. The complete list of iden-
tified proteins detected by the quantitative MS is given in
supplementary table 1, and the complete list of differentially
expressed proteins is given in supplementary table 2.

3.2. Bioinformatics Analysis Reveals Differential Pathway
Activation Patterns. The proteins showing significantly dif-
ferential expression based on the results of the quantitative
proteomic approach were subjected to a GO term analysis
by the Metacore software (https://portal.genego.com/). The
regulated proteins were found to be involved in different bio-
logical processes such as the regulation of tissue development
or ion transport.
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Figure 1: Proteomic profiling of testicular germ cell cancer cell lines. Workflow of SILAC-based mass spectrometry experiments. TCam-2
and NTERA-2 were metabolically labeled with amino acids of different masses allowing a comprehensive relative quantification of protein
expression by mass spectrometry (a). Distribution of SILAC ratios of all quantified proteins according to their relative expression in
NTERA-2 and TCam-2 (b).
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Network analysis was also performed using the Meta-
core (https://portal.genego.com/) software for the enrich-
ment of the shortest pathways inside the groups of
differentially regulated proteins, as described above. Supple-
mentary table 3 gives an overview of the networks found to
be the most significantly involved. Inside the networks,
differentially regulated proteins identified by the MS
approach are indicated in green for TCam-2 (representing

seminomatous histology) or in red for NTERA-2
(representing nonseminomatous histology). Blue proteins
represent proteins that were added from the Metacore
database as potentially linked to the proteins derived from
the MS analysis which are involved in different processes
such as proteins which play a crucial role, for example,
in gastrulation, endoderm development, or formation of
a primary germ layer (Figure 2(a)) or mammary gland
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development or fibroblast growth factor receptor signaling
pathway (Figure 2(b)).

3.3. In Vitro and In Vivo Validation of Differentially
Expressed Proteins. To validate the results of the proteomics
approach, four proteins were selected showing significant
differences in expression between the two GCT-cell lines
and which showed a physiological expression in nonneoplas-
tic germ cells or several stages of spermatogenesis (according
to The Human Protein Atlas database [17]), namely, CD81,
CBX-3, PHF-6, and ENSA. In order to verify the differential
protein expression, we additionally examined a third cell line
named NCCIT (showing EC characteristics also).

Western blot analyses confirmed the results of the quan-
titative proteomic profiling. According to MS, the amount of
CD81 (ratio TCam − 2/NTERA − 2 = 3 625) and CBX-3
(ratio TCam − 2/NTERA − 2 = 3 281) protein was signifi-
cantly higher in TCam-2 than in NTERA-2- cells (supple-
mentary table 2). These differences could be reproduced by
western blot analysis for CD81 and CBX-3 which showed a
marked difference in expression between the two cell lines
with embryonal carcinoma characteristics (NTERA-2- and
NCCIT) and TCam-2 (seminoma characteristics)
(Figures 3(a) and 3(b)). In contrast, expression of PHF6
(ratio NTERA − 2/TCam − 2 = 3 841) and ENSA (ratio
NTERA − 2/TCam − 2 = 2 707) proteins was significantly
higher in NTERA-2 than in TCam-2 cells (supplementary
table 2). These differences could also be reproduced by
western blot analysis for PHF6 and ENSA, which showed
marked differences in protein expression in NTERA-2 and
NCCIT compared to TCam-2 (Figures 3(c)and 3(d)). The
results confirmed the same expression pattern of NCCIT-
and NTERA-2 cells in contrast to TCam-2 cells.

To confirm the results of the western blot analyses and
gain insight into expression patterns within single cells of
primary tumors (i.e., nuclear, cytoplasmic, or membranous
staining), commercially available antibodies against CD81,
CBX-3, PHF-6, and ENSA were used for immunohistochem-
ical analysis of human tissues. FFPE tissue samples of 59
patients with malignant GCT of the testis were investigated

by immunohistochemical analysis. The investigated samples
comprised tumor-free testicular tissue (n = 16), GCNIS
(n = 18), seminomas (n = 21), and embryonal carcinomas
(n = 20). Seminomas (to compare with TCam-2 cells) and
embryonal carcinomas (to be compared with NTERA-2
and NCCIT cells) were explicitly chosen for direct a compar-
ison with the cell lines.

A tumor-free testis showed a strong membranous and
cytoplasmic expression of CD81 protein (Figure 4(a), arrow).
In germ cell neoplasia in situ (GCNIS), a similar pattern
of membranous and cytoplasmic expression was found
(Figure 4(b), arrow). All investigated seminomas showed
a strong membranous expression of CD81 in tumor cells
(Figure 4(c), arrow). In contrast, no or only a weak staining
of CD81 was seen in embryonal carcinoma cells (Figure 4(d),
arrow). The differences in staining intensity (according to the
immunoreactivity staining score (IRS)) of CD81 (Figure 4(e))
observed between seminomas and embryonal carcinomas
were marked and showed a statistical significance.

CBX-3 protein showed a strong nuclear expression in
spermatogonia, in contrast to a weaker expression in sper-
matocytes and spermatids (Figure 4(f), arrow). In addition,
a strong nuclear expression of CBX-3 was observed in
GCNIS (Figure 4(g), arrow). A strong nuclear expression
was also detected in most seminoma cells (Figure 4(h),
arrow). A much weaker nuclear expression of CBX-3 was
seen in embryonal carcinomas (Figure 4(h), arrow). The dif-
ferences in staining intensity (according to the immunoreac-
tivity staining score (IRS)) of CBX-3 (Figure 4(j)) observed
between seminomas and embryonal carcinomas were
marked and showed a statistical significance. The results of
CD81 and CBX-3 immunohistochemistry confirmed the
findings of the proteomic and western blot analyses.

Immunohistochemically, PHF-6 protein showed strong
nuclear expression in spermatogonia and slightly weaker
expression in sertoli cells, whereas later stages of sper-
matogenesis did not express PHF-6 (Figure 5(a), arrow).
The expression of PHF-6 in GCNIS was heterogeneous,
with some nuclei showing strong and others weak or no
expression (Figure 5(b), arrow). Seminomas showed no or
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Figure 3: In vitro validation of differentially expressed proteins. In line with the results of the SILAC method and mass spectrometry, CD81
and CBX-3 show markedly higher expression in TCam-2 than in NTERA-2 (a, b). Conversely, PHF-6 and ENSA show markedly higher
expression in NTERA-2 than in TCam-2 cells (c, d).
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Figure 4: Immunohistochemical analysis of selected proteins (more highly expressed in TCam-2 than in NTERA-2) in tumor-free testis,
GCNIS, seminoma, and embryonal carcinoma: a tumor-free testis and GCNIS show no differences in CD81 and CBX-3 >expression (a, b,
f, g). The expression of CD81 and CBX-3 in embryonal carcinomas (d, i) is significantly lower than that in seminomas (c, h). The
differences between seminomas and embryonal carcinomas in staining intensity (IRS) of CD81 (i) and CBX-3 (j) are significant.
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Figure 5: Immunohistochemical expression of selected proteins (more highly expressed in NTERA-2 than in TCam-2) in a tumor-free testis,
GCNIS, seminoma, and embryonal carcinoma: A tumor-free testis and GCNIS show no marked differences in protein expression of PHF-6
and ENSA on immunohistochemical analysis (a, b, f, g). The expression of PHF-6 and ENSA in embryonal carcinomas (d, i) is markedly
higher than that in seminomas (c, h; white arrow tumor cells, black arrow lymphocytes). The differences between seminomas and
embryonal carcinomas in staining intensity (IRS) of PHF-6 € and ENSA (j) are significant.
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only minimal expression of PHF-6 protein. Beside the tumor
cells, lymphocytes also expressed PHF-6 (Figure 5(c),
arrows). In contrast, embryonal carcinoma cells showed a
strong nuclear expression of PHF-6 (Figure 5(d), arrow).
The differences in staining intensity (according to the immu-
noreactivity staining score (IRS)) of PHF-6 (Figure 5(e))
observed between embryonal carcinomas and seminomas
were marked and showed a statistical significance.

ENSA showed a strong nuclear and weak cytoplasmic
expression in late stages of spermatogenesis, whereas sper-
matogonia were only weakly positive for ENSA (Figure 5(f),
arrow). In addition, ENSA was found to be strongly
expressed in GCNIS, mostly nuclear (Figure 5(g), arrow).
Seminoma cells showed only a moderate nuclear expression
of ENSA (Figure 5(h), arrow). Interestingly, nuclear as well
as cytoplasmic expression of ENSA in embryonal carcino-
mas was significantly stronger than that in seminomas
(Figure 5(i), arrow).

The differences in staining intensity (according to the
immunoreactivity staining score (IRS)) of ENSA (Figure 5(j))
observed between embryonal carcinomas and seminomas
were marked and showed a statistical significance. The
results of PHF-6- and ENSA-immunohistochemistry con-
firmed the proteomic and western blot findings.

3.4. Knockdown of Selected Proteins Results in Reduction of
Cellular Survival in Seminoma and EC Cell Lines. To gain
insight into involved cellular processes and the putative role
of selected proteins detected by MS, siRNA experiments were
performed. The tumor cell lines NCCIT, NTERA-2, and
TCam-2 were transfected with two specific siRNAs to
achieve knockdown of CD81, CBX-3, PHF-6, and ENSA
as described above. A marked downregulation of protein
expression was achieved for all proteins for both siRNAs
used (Figures 6(a)–6(d)).

This downregulation had no effect on proliferation after
24 h (data not shown). 48 h after downregulation of CD81,
we observed a significant decrease of proliferation in NTERA-
2, NCCIT, and TCam-2 cells. In NCCIT and NTERA-2, trans-
fection with siRNA2 showed no statistical significances in
proliferation (Figures 7(a)–7(c)). After the downregulation
of CBX-3, we also observed a significant decrease of prolifer-
ation in all investigated GCT cell lines. SiRNA2 showed no
statistical significances in proliferation in NTERA-2 cells
(Figures 7(a)–7(c)). After the downregulation of PHF-6, we
observed a significant decrease of proliferation in all investi-
gated GCT cell lines, too. SiRNA2 had no effect in prolifera-
tion in TCam-2 cells (Figures 7(a)–7(c)). Finally, we
observed a significant decrease of proliferation in all investi-
gated GCT cell lines after downregulation of ENSA. SiRNA2
showed no statistical significances in proliferation in NCCIT
cells (Figures 7(a)–7(c)). The decrease in proliferation after
siRNA transfection appears to be independent of the different
levels of expression of the proteins, as one might suspect.

4. Discussion

GCTs are highly interesting tumors, both from a point of
view of developmental biology and considering their tumor

biology. GCTs are divided into seminomas and nonsemino-
mas [2]. For in vitro studies, several GCT cell lines are well
established, such as TCam-2 (with seminoma characteris-
tics), NTERA-2, and NCCIT (both with characteristics of
embryonal carcinomas) [7, 8, 22, 23]. We aimed to identify
new biomarkers for the differentiation of GCT cell lines on
the protein level. A recent study by van der Zwan et al. iden-
tified epigenetic footprints in TCam-2 and NCCIT cell lines.
These analyses confirmed a more germ cell-like profile in
TCam-2 cells and, in contrast, a more pluripotent phenotype
in NCCIT cells [9]. We compared the results of a differential
gene expression in TCam-2 and NCCIT cells of the work by
van der Zwan et al. [9] to the results of our project and found
44 (TCam-2) and 23 (NTERA-2 or NCCIT) similarly signif-
icantly differentially expressed proteins/genes. The exact
names of the genes are listed in Table 1. This underpins the
potential importance of these genes in the biology of these
tumor cells.

In addition, we searched for proteins that were differently
expressed in cell lines and that are expressed physiologically
in spermatogonia and later stages of spermatogenesis. Fur-
thermore, we analyzed if the findings from the cell line
experiments were reproducible in FFPE tissue samples of
human GCTs. In the present study, 111 proteins showed
a statistically significant two-fold increase in expression
in TCam-2 compared to NTERA-2. Influenced by the
expression pattern in spermatogenesis and germ cell
tumors (according to The Human Protein Atlas database
[17]) by the availability of antibodies and their applicability
on both, cell lines and FFPE tissues, we chose the proteins
CD81 (ratio from SILAC-analysis TCam-2/NTERA-2:
3.626) and CBX-3 (ratio TCam-2/NTERA-2: 3.282) for
further investigations.

CD81 is a cell surface protein of the tetraspanin family. It
is widely expressed on many healthy tissues and on the
majority of tumor cells. Vences-Catalan et al. demonstrated
in comprehensive studies the role of CD81 as a promoter of
tumor growth and metastasis with a putatively important
role in tumor progression [24, 25]. Zhang et al. described that
an increased expression of CD81 was significantly associated
with reduced overall survival in patients with mammary car-
cinoma. Furthermore, CD81 knockdown results in decreased
proliferation andmigration in mammary carcinoma cell lines
in vitro [26]. In addition, Hong et al. described that CD81
increases melanoma cell motility by upregulating the metal-
loproteinase MT1-MMP-expression. This could be explained
by a prooncogenic Akt-dependent Sp1 activation [27]. Inter-
estingly, in our study, we could demonstrate that CD81
showed marked differences in its expression when compar-
ing seminoma (high expression) and embryonal carcinoma
tissue samples (low expression). CD81 interacts with CD9
(another member of the tetraspanin family), which is also
significantly upregulated in TCam-2 cells (supplementary
table 2), and both play an important role in the TGF beta
signaling pathway in melanoma cells [28]. TGF beta, EGF,
and FGF have been shown to play a role in the
differentiation of TCam-2 into a cell type resembling a
mixed nonseminoma [7]. This would be in line with the
findings of our study, as shown in Figure 2, where involved
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networks are displayed and demonstrate that these growth
factor signaling pathways play a crucial role. In addition,
first investigations with two siRNAs against CD81 showed a
significant reduction of proliferation in TCam-2 cells, as
well as in NTERA-2 and NCCIT cells (Figure 7). So the
extent of proliferation seems not to correlate with the
expression level of CD81. Usually, TCam-2 cells proliferate
remarkably slower than NTERA-2 and NCCIT. However,
the high expression of CD81 on TCam-2 and seminoma
samples is interesting given the induction of nonseminoma-
like phenotype by TGF beta signaling [6]. However, the
exact mechanism on how the proliferation was reduced in
this cell line has not been investigated in more detail and
remains to be elucidated.

A second protein which was markedly higher expressed
in TCam-2 cells than in NTERA-2 and NCCIT cells is
CBX-3. Little is known about the function of CBX-3 in cancer
cells. One study could demonstrate the essential function of
CBX-3 for male germ cell survival and spermatogenesis
[29]. Ma et al. described very recently that the expression of
CBX-3 in osteosarcomas is associated with a large tumor size,
high distant metastasis rate, and high clinical stage rate.
Furthermore, they could show that knockdown of CBX-3
by siRNA results in increased apoptosis and cell cycle
arrest at the G0 and G1 phases [30]. Another recent study

demonstrates the role of CBX-3 in tumor progression in
pancreatic cancer cell lines. It could be shown that the
tumor-promoting effect of CBX-3 might be mediated by
CDK1 [31]. Further similar results were demonstrated by
Zhang et al. which demonstrate that a high expression of
CBX-3 in squamous carcinomas of the tongue is associ-
ated with poor prognosis. In addition, the inhibition of
CBX-3 leads to cell cycle delay via the p21 pathway [32].
Similar findings were described by Fan et al. who showed
that CBX-3 promotes the progression of the cell cycle and
proliferation in vitro and in vivo in colon cancer cells.
They could explain that CBX-3 promotes colon cancer cell
proliferation by curbing cell cycle G1-S phase transition
[33]. Another study showed a high expression of CBX-3
in various human cancer tissues and suppression of tumor
growth of various cancer-derived cell lines following
siRNA-mediated knockdown [34]. Again, we found that
two siCBX-3 reduced tumor cell growth in all investigated
GCT cell lines. Further investigations of the mechanisms
underlying this observation and a potential role in antitu-
mor therapy are pending.

Our investigations furthermore showed markedly
higher expression of PHF-6 in NTERA-2 and NCCIT cell
lines as compared to TCam-2. PHF-6 is a gene found in
association with the Börjeson-Forssman-Lehmann syndrome
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Figure 6: Transfection with siRNA markedly reduces protein expression of CD81, CBX-3, PHF-6, and ENSA: NCCIT, NTERA-2, and
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[35]. Interestingly, patients with this syndrome generally
show hypogonadism [36]. Our results show a strong nuclear
positivity of the PHF-6 protein in normal spermatogenesis
and GCNIS, whereas the expression in seminomas was mark-
edly lower. Notably, PHF-6 expression was markedly higher
in embryonal carcinomas, than in seminomas in FFPE
samples. Recently, PHF-6 has been described to be involved
in regulating rRNA synthesis, which may contribute to its
role in cell cycle control, maintenance of genomic integrity,
and tumor suppression [37]. This would be in line with our
results which show that siPHF-6 suppresses cell proliferation
in GCT cell lines (Figure 7).

Finally, ENSA (alpha-endosulfine) is a potent inhibitor of
PP2A-B55δ [38, 39]. PP2A is expressed in both primary
GCTs and GCT cell lines. Its inhibition mediates an apopto-
sis induction in GCT cells through activation of the MEK-
ERK signaling pathway [40]. Furthermore, inhibition of
ENSA with two specific siRNAs leads to reduced cell prolifer-

ation in all investigated GCT cell lines. Seminoma cells
showed only a moderate nuclear expression (Figure 5(h)),
in contrast to embryonal carcinomas which show a signif-
icantly stronger expression of ENSA than seminomas.
However, this finding supports the close developmental
relationship between early spermatogenesis and semino-
mas in contrast to embryonal carcinomas.

Using network analysis, the differently expressed proteins
identified by our proteomic analysis could be linked to the
proteins assigned from the Metacore database. Proteins were
closely linked to proteins such as SOX-2, SOX-17, NANOG,
or OCT3/4, which all have been described to play crucial
roles in pluripotency and differentiation of germ cells and
germ cell tumors [41–43]. Interestingly, another putative
stem cell gene, GDF-3, has been found to be expressed in
both seminomas and breast carcinomas [42]. The increased
expression of BCAT1 in NTERA-2 cells compared to
TCam-2 cells seems also of interest in distinguishing germ
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Figure 7: Transfection with siRNA decreases cell proliferation of GCT cell lines: in all investigated tumor cell lines, NCCIT (a), NTERA-2 (b),
and TCam-2 (c), proliferation was significantly reduced after transfection with siRNA against CD81, CBX-3, PHF-6, and ENSA.
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cell tumor subtypes. These findings are in line with the
results of Rodriguez et al., which could demonstrate a
strong overexpression of BCAT-1 in nonseminomas germ
cell tumors [44].

5. Conclusion

In summary, high-resolution mass spectrometry in combina-
tion with SILAC-quantification is suitable for the detection of
differentially expressed proteins in GCT cell lines. These
results could be reproduced by western blot analysis. Proteins
detected as differentially expressed by SILAC-basedMS could
furthermore be validated in FFPE samples of human GCTs
and normal (tumor-free) testes. This method is therefore
valuable for the detection of new markers with the potential
to distinguish between different histologic subtypes of these
tumors. In addition, network analyses serve to classify the dif-
ferentially expressed proteins into functional groups. Finally,
siRNA results indicate an antiproliferative potential of the
therapeutic knockdown of several detected proteins, which
warrants their evaluation as potential therapeutic targets.
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Supplementary Materials

Supplementary 1. Supplementary Table 1 Complete list of
identified proteins detected by the quantitative mass spec-
trometry as revealed by MaxQuant analysis of the obtained
MS raw data.

Supplementary 2. Supplementary Table 2 Differentially
expressed proteins in TCam-2 and NTERA-2.

Table 1: Differentially expressed genes compared with van der
Zwan et al. [9] and the results of the present study. The table
shows the identical genes, which are differentially expressed in
NCCIT or NTERA-2 compared to TCam-2.

Increased in TCam-2 Increased in NTERA-2/NCCIT

ACSF2 ACAT2

ANXA1 AP1S2

ANXA3 ARMCX2

CACNA2D2 ARRB1

COL17A1 ASS1

COL23A1 BCAT1

COMT C1QBP

CSRP1 CECR5

DUSP23 CRABP1

EFR3A CTSC

ENO2 DPYSL3

EPCAM GFPT2

FLNC HPRT1

GLIPR2 IQGAP2

GMPR MAD2L2

GSN MGST1

HEG1 PFAS

HIC2 PNMA2

ITGAV POLR3G

LAMA5 SH3BGRL

ODZ4 SOX2

PHLDA3 TMCO1

PPM1F UGP2

PRAME

PROM1

PSD3

PSTPIP2

PVR

PYGB

RAB15

RASSF2

RCN1

SDF2L1

SERPINE2

SLC25A29

SPARC

TAGLN

TCL1A

TFAP2C

TMEM132A

VAMP8

VSNL1

WASL
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Supplementary 3. Supplementary Table 3. Significantly
involved networks of proteins detected by SILAC and mass
spectrometry.

References

[1] J. Beyer, P. Albers, R. Altena et al., “Maintaining success,
reducing treatment burden, focusing on survivorship: high-
lights from the third European consensus conference on diag-
nosis and treatment of germ-cell cancer,” Annals of Oncology,
vol. 24, no. 4, pp. 878–888, 2013.

[2] H. Moch, A. L. Cubilla, P. A. Humphrey, V. E. Reuter, and
T. M. Ulbright, “The 2016 WHO classification of tumours of
the urinary system and male genital organs-part a: renal,
penile, and Testicular Tumours,” European Urology, vol. 70,
no. 1, pp. 93–105, 2016.

[3] D. M. Berney, L. H. J. Looijenga, M. Idrees et al., “Germ cell
neoplasia in situ (GCNIS): evolution of the current nomencla-
ture for testicular pre-invasive germ cell malignancy,”Histopa-
thology, vol. 69, no. 1, pp. 7–10, 2016.

[4] “International Germ Cell Consensus Classification: a prog-
nostic factor-based staging system for metastatic germ cell
cancers. International Germ Cell Cancer Collaborative
Group,” Journal of Clinical Oncology, vol. 15, no. 2, pp. 594–
603, 1997.

[5] C. Bokemeyer, K. Oechsle, F. Honecker et al., “Combination
chemotherapy with gemcitabine, oxaliplatin, and paclitaxel
in patients with cisplatin-refractory or multiply relapsed
germ-cell tumors: a study of the German Testicular Cancer
Study Group,” Annals of Oncology, vol. 19, no. 3, pp. 448–
453, 2007.

[6] D. R. Feldman, G. J. Bosl, J. Sheinfeld, and R. J. Motzer, “Med-
ical treatment of advanced testicular cancer,” Journal of the
American Medical Association, vol. 299, no. 6, pp. 672–684,
2008.

[7] D. Nettersheim, A. J. M. Gillis, L. H. J. Looijenga, and
H. Schorle, “TGF-β1, EGF and FGF4 synergistically induce
differentiation of the seminoma cell line TCam-2 into a cell
type resembling mixed non-seminoma,” International Jour-
nal of Andrology, vol. 34, no. 4, Part2, pp. e189–e203,
2011.

[8] R. Eini, H. Stoop, A. J. M. Gillis, K. Biermann, L. C. J.
Dorssers, and L. H. J. Looijenga, “Role of SOX2 in the eti-
ology of embryonal carcinoma, based on analysis of the
NCCIT and NT2 cell lines,” PLoS One, vol. 9, no. 1, article
e83585, 2014.

[9] Y. G. van der Zwan, M. A. Rijlaarsdam, F. J. Rossello et al.,
“Seminoma and embryonal carcinoma footprints identified
by analysis of integrated genome-wide epigenetic and expres-
sion profiles of germ cell cancer cell lines,” PloS One, vol. 9,
no. 6, article e98330, 2014.

[10] B. Zhang, J. Wang, X. Wang et al., “Proteogenomic character-
ization of human colon and rectal cancer,” Nature, vol. 513,
no. 7518, pp. 382–387, 2014.

[11] L. H. J. Looijenga, H. Stoop, and K. Biermann, “Testicular
cancer: biology and biomarkers,” Virchows Archiv, vol. 464,
no. 3, pp. 301–313, 2014.

[12] M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster,
“Quantitative mass spectrometry in proteomics: a critical
review,” Analytical and Bioanalytical Chemistry, vol. 389,
no. 4, pp. 1017–1031, 2007.

[13] S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope
labeling by amino acids in cell culture, SILAC, as a simple
and accurate approach to expression proteomics,” Molecular
& Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002.

[14] H. Bohnenberger, L. Kaderali, P. Ströbel et al., “Comparative
proteomics reveals a diagnostic signature for pulmonary
head-and-neck cancer metastasis,” EMBO Molecular Medi-
cine, vol. 10, no. 9, article e8428, 2018.

[15] H. Bohnenberger, T. Oellerich, M. Engelke, H. H. Hsiao,
H. Urlaub, and J. Wienands, “Complex phosphorylation
dynamics control the composition of the Syk interactome in
B cells,” European Journal of Immunology, vol. 41, no. 6,
pp. 1550–1562, 2011.

[16] T. Oellerich, V. Bremes, K. Neumann et al., “The B-cell antigen
receptor signals through a preformed transducer module of
SLP65 and CIN85,” Embo Journal, vol. 30, no. 17, pp. 3620–
3634, 2011.

[17] M. Uhlen, L. Fagerberg, B. M. Hallstrom et al., “Tissue-based
map of the human proteome,” Science, vol. 347, no. 6220,
article 1260419, 2015.

[18] F. Bremmer, S. Schallenberg, H. Jarry et al., “Role of N-
cadherin in proliferation, migration, and invasion of germ cell
tumours,” Oncotarget, vol. 6, no. 32, pp. 33426–33437, 2015.

[19] F. Bremmer, S. Schweyer, M. Martin-Ortega et al., “Switch of
cadherin expression as a diagnostic tool for Leydig cell
tumours,” APMIS, vol. 121, no. 10, pp. 976–981, 2013.

[20] J. Cox and M. Mann, “MaxQuant enables high peptide identi-
fication rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification,” Nature Biotechnology,
vol. 26, no. 12, pp. 1367–1372, 2008.

[21] S. Tyanova, T. Temu, P. Sinitcyn et al., “The Perseus computa-
tional platform for comprehensive analysis of (prote)omics
data,” Nature Methods, vol. 13, no. 9, pp. 731–740, 2016.

[22] J. de Jong, H. Stoop, A. J. M. Gillis et al., “Further charac-
terization of the first seminoma cell line TCam-2,” Genes,
Chromosomes and Cancer, vol. 47, no. 3, pp. 185–196,
2008.

[23] S. Teshima, Y. Shimosato, S. Hirohashi et al., “Four new
human germ cell tumor cell lines,” Laboratory Investigation,
vol. 59, no. 3, pp. 328–336, 1988.

[24] F. Vences-Catalán, R. Rajapaksa, M. K. Srivastava et al.,
“Tetraspanin CD81 promotes tumor growth and metastasis
by modulating the functions of T regulatory and myeloid-
derived suppressor cells,” Cancer Research, vol. 75, no. 21,
pp. 4517–4526, 2015.

[25] F. Vences-Catalán, R. Rajapaksa, M. K. Srivastava et al.,
“Tetraspanin CD81, a modulator of immune suppression in
cancer and metastasis,” Oncoimmunology, vol. 5, no. 5, article
e1120399, 2016.

[26] N. Zhang, L. Zuo, H. Zheng, G. Li, and X. C. Hu, “Increased
expression of CD81 in breast cancer tissue is associated with
reduced patient prognosis and increased cell migration and
proliferation in MDA-MB-231 and MDA-MB-435S human
breast cancer cell lines in vitro,” Medical Science Monitor,
vol. 24, pp. 5739–5747, 2018.

[27] I. K. Hong, H. J. Byun, J. Lee et al., “The tetraspanin CD81
protein increases melanoma cell motility by up-regulating
metalloproteinase MT1-MMP expression through the pro-
oncogenic Akt-dependent Sp1 activation signaling path-
ways,” Journal of Biological Chemistry, vol. 289, no. 22,
pp. 15691–15704, 2014.

13Disease Markers

http://downloads.hindawi.com/journals/dm/2019/8298524.f3.xls


[28] H. X. Wang and M. E. Hemler, “Novel impact of EWI-2, CD9,
and CD81 on TGF-β signaling in melanoma,” Molecular &
Cellular Oncology, vol. 2, no. 4, 2015.

[29] J. P. Brown, J. Bullwinkel, B. Baron-Lühr et al., “HP1gamma
function is required for male germ cell survival and spermato-
genesis,” Epigenetics & Chromatin, vol. 3, no. 1, p. 9, 2010.

[30] C. Ma, X. G. Nie, Y. L. Wang et al., “CBX3 predicts an unfavor-
able prognosis and promotes tumorigenesis in osteosarcoma,”
Molecular Medicine Reports, vol. 19, no. 5, pp. 4205–4212,
2019.

[31] L. Y. Chen, C. S. Cheng, C. Qu et al., “Overexpression of CBX3
in pancreatic adenocarcinoma promotes cell cycle transition-
associated tumor progression,” International Journal of Molec-
ular Sciences, vol. 19, no. 6, p. 1768, 2018.

[32] H. Y. Zhang, W. C. Chen, X. Y. Fu, X. Su, and A. K. Yang,
“CBX3 promotes tumor proliferation by regulating G1/S phase
via p21 downregulation and associates with poor prognosis in
tongue squamous cell carcinoma,” Gene, vol. 654, pp. 49–56,
2018.

[33] Y. Fan, H. P. Li, X. L. Liang, and Z. Xiang, “CBX3 promotes
colon cancer cell proliferation by CDK6 kinase-independent
function during cell cycle,” Oncotarget, vol. 8, no. 12,
pp. 19934–19946, 2017.

[34] M. Takanashi, K. Oikawa, K. Fujita, M. Kudo, M. Kinoshita,
and M. Kuroda, “Heterochromatin protein 1γ epigenetically
regulates cell differentiation and exhibits potential as a ther-
apeutic target for various types of cancers,” The American
Journal of Pathology, vol. 174, no. 1, pp. 309–316, 2009.

[35] A. Baumstark, K. M. Lower, A. Sinkus et al., “Novel PHF6
mutation p.D333del causes Borjeson-Forssman-Lehmann
syndrome,” Journal of Medical Genetics, vol. 40, no. 4, article
e50, pp. 50e–550, 2003.

[36] M. Borjeson, H. Forssman, and O. Lehmann, “An X-linked,
recessively inherited syndrome characterized by grave mental
deficiency, epilepsy, and endocrine disorder,” Acta Medica
Scandinavica, vol. 171, pp. 13–21, 1962.

[37] J. Wang, J. W. Leung, Z. Gong, L. Feng, X. Shi, and J. Chen,
“PHF6 regulates cell cycle progression by suppressing ribo-
somal RNA synthesis,” The Journal of Biological Chemistry,
vol. 288, no. 5, pp. 3174–3183, 2013.

[38] A. Gharbi-Ayachi, J. C. Labbe, A. Burgess et al., “The substrate
of Greatwall kinase, Arpp19, controls mitosis by inhibiting
protein phosphatase 2A,” Science, vol. 330, no. 6011,
pp. 1673–1677, 2010.

[39] S. Mochida, S. L. Maslen, M. Skehel, and T. Hunt, “Greatwall
phosphorylates an inhibitor of protein phosphatase 2A that
is essential for mitosis,” Science, vol. 330, no. 6011, pp. 1670–
1673, 2010.

[40] S. Schweyer, A. Bachem, F. Bremmer et al., “Expression and
function of protein phosphatase PP2A in malignant testicular
germ cell tumours,” The Journal of pathology, vol. 213, no. 1,
pp. 72–81, 2007.

[41] J. de Jong, H. Stoop, A. J. M. Gillis et al., “Differential expres-
sion of SOX17 and SOX2 in germ cells and stem cells has bio-
logical and clinical implications,” The Journal of Pathology,
vol. 215, no. 1, pp. 21–30, 2008.

[42] U. I. Ezeh, P. J. Turek, R. A. Reijo, and A. T. Clark, “Human
embryonic stem cell genes OCT4, NANOG, STELLAR, and
GDF3 are expressed in both seminoma and breast carcinoma,”
Cancer, vol. 104, no. 10, pp. 2255–2265, 2005.

[43] A. H. Hart, L. Hartley, K. Parker et al., “The pluripotency
homeobox gene NANOG is expressed in human germ cell
tumors,” Cancer, vol. 104, no. 10, pp. 2092–2098, 2005.

[44] S. Rodriguez, O. Jafer, H. Goker et al., “Expression profile of
genes from 12p in testicular germ cell tumors of adolescents
and adults associated with i(12p) and amplification at
12p11.2-p12.1,” Oncogene, vol. 22, no. 12, pp. 1880–1891,
2003.

14 Disease Markers



Stem Cells 
International

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

MEDIATORS
INFLAMMATION

of

Endocrinology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Disease Markers

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International

Oncology
Journal of

Hindawi
www.hindawi.com Volume 2013

Hindawi
www.hindawi.com Volume 2018

Oxidative Medicine and 
Cellular Longevity

Hindawi
www.hindawi.com Volume 2018

PPAR Research

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Immunology Research
Hindawi
www.hindawi.com Volume 2018

Journal of

Obesity
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Computational and  
Mathematical Methods 
in Medicine

Hindawi
www.hindawi.com Volume 2018

Behavioural 
Neurology

Ophthalmology
Journal of

Hindawi
www.hindawi.com Volume 2018

Diabetes Research
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Research and Treatment
AIDS

Hindawi
www.hindawi.com Volume 2018

Gastroenterology 
Research and Practice

Hindawi
www.hindawi.com Volume 2018

Parkinson’s 
Disease

Evidence-Based 
Complementary and
Alternative Medicine

Volume 2018
Hindawi
www.hindawi.com

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/sci/
https://www.hindawi.com/journals/mi/
https://www.hindawi.com/journals/ije/
https://www.hindawi.com/journals/dm/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/jo/
https://www.hindawi.com/journals/omcl/
https://www.hindawi.com/journals/ppar/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jir/
https://www.hindawi.com/journals/jobe/
https://www.hindawi.com/journals/cmmm/
https://www.hindawi.com/journals/bn/
https://www.hindawi.com/journals/joph/
https://www.hindawi.com/journals/jdr/
https://www.hindawi.com/journals/art/
https://www.hindawi.com/journals/grp/
https://www.hindawi.com/journals/pd/
https://www.hindawi.com/journals/ecam/
https://www.hindawi.com/
https://www.hindawi.com/

