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Abstract

A Distributed observer design is described for estimating the state of a continuous-time,
input free, linear system. This thesis explains how to construct the local estimators, which
comprise the observer inputs and outputs, and it is shown which are the requirements to deal
with this structure. Every agent senses an output signal from the system and distributes it
across a fixed-time network to its neighbors. The information flow increases the capability
of each agent to estimate the state of the system and uses collaboration to improve the
quality of data.

The proposed solution has several positive features compared to recent results in the
literature, which include milder assumptions on the network connectivity and the maximum
dimension of the state of each observer does not exceed the order of the plant. The conditions
are reduced to certain detectability requirements for each cluster of agents in the network,
where a cluster is identified as a subset of agents that satisfy specific properties. Instead,
the dimension of each observer is reduced to the number of possible observable states of the
system, collected by the agent and by the neighbors.
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Chapter 1

Introduction

The project’s purpose is to evaluate and investigate possible distributed control algorithms
to be used with a swarm of drones in a research mission. The algorithm has the goal to
guide quad-copter drones, in order to find people buried under snow in avalanches, so to
minimize time spent on search and to ensure a prompt intervention from rescuers.
The European project airborne https://www.airborne-project.eu/ is involved in the devel-
opment of mixed ground and aerial robotics platforms, to support humans in search and
rescue activities in hostile environments, like alpine rescuing scenario, which is specifically
targeted by the project. The distributed estimate is carried out in order to cover a larger
research area and to allow a reduction in search times. Moreover, the weight of the device
used to estimate the position of the person involved increases with the capacity of providing
an accurate measure. Thus, the achievement of a distributed framework decreases the need
to have to transport a heavy device and increases the duration and search time for the
quad-copters.

Related works

This dissertation deals with the problem of distributed estimation when many agents are
present. If agents share information among each other according to some topology, both the
questions of optimal control law for a given topology ”What should an agent do?” and how
to design the topology ”Whom should an agent talk to?” become important. There is a huge
literature that seeks to deal with distributed Kalman filters [7] or distributed observers [5,
6], but many results present strictly assumptions [10] or redundant stability techniques [4].
Mostly, a consensus gain is designed in order to deal with the distributed structure, as in the
work reported in [6], where the information received by the neighboring agents is weighted
to perform linear combinations with the own agent information. Furthermore, there is a
numbered of distributed estimation techniques proposed and analyzed for noiseless models.
In [10], the distributed estimation problem is tackled as the problem of designing a decen-
tralized stabilizing controller for an LTI system. Differently from the approach presented in
this thesis, that work relies on state augmentations. Another interesting approach can be
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CHAPTER 1. INTRODUCTION 2

found in [5], where the authors rely on an orthonormal coordinate transformation matrix
in order to tackle the design of the distributed observer. However, the distributed design
of the observer needs global information about the communication graph and the proposed
observer lacks a tuning method to adjust the error convergence speed.

Contributions

The work reported proposes a novel approach to this problem based on the internal recon-
struction of the neighbor state and clarifies and expands the results of [10] in several ways.
Firstly, jointly observability hypothesis is substituted with collective detectability assump-
tion and the condition of non zero output matrices for all agents is relaxed. Secondly, our
solution is able to keep the maximum size of the observers as the size of the plant and in
this case, the computational effort is decreased and the efficiency of the overall system is
increased. Thirdly, the strong connectivity imposed at the graph is not necessary to ensure
the stability properties, instead, the detectability condition is only necessary inside a cluster
of agents.

Organization

The thesis is organized as follows. Chapter 2 presents an introduction to network systems
and linear system theory, with the notation used. In Section 2.3 the formal problem defini-
tion is presented with necessary conditions. In Section 2.4, the state-of-arts of a distributed
observer is evaluated in order to be comparable with the final solution and an example is
presented in Section 2.4.3. In Chapter 3, the proposed solution at this problem is explained
with a steps procedure and a description in pseudo-code. In the last chapter, the model is
analyzed and results are presented with short numerical examples.

Acknowledgments

I would like to express my deep gratitude to PostDoc Nicola Mimmo for his patient guidance,
enthusiastic encouragement and useful critiques of this research work.





Chapter 2

Mathematical Background

In this chapter, preliminaries and background information with a brief literature review of
distributed observers. In section 2.1, necessary technical preliminaries from network systems
are introduced. In section 2.2, some tools and properties are extracted from the huge field
of linear system theory. In section 2.3, a mathematical description of the problem and in
section 2.4 the literature on the design of a linear distributed observer is reviewed with an
example.

2.1 Introduction to network systems

Graph theory provides key concepts to model, analyze and design network systems and
distributed algorithms. In mathematics, graph theory is the study of graphs, which are
structures used to model pairwise relations between objects. In what follows, the most
important and useful definitions from [1] are summarized and will be exploited in the next
sections in order to define the distributed observer structure and to state the assumptions
with mathematical notation.

2.1.1 Graphs and digraphs

A graph in this context is made up of vertices (also called nodes) which are connected by
edges.

[Edge] An edge is a pair of nodes, it is important to define the difference between an
ordered and an unordered pair. An ordered pair (a, b) is a pair of objects and the order
in which the objects appear in the pair is significant: the ordered pair (a, b) is different
from the ordered pair (b, a) unless a = b. In contrast, the unordered pair {a, b} equals the
unordered pair {b, a}.

[Graphs] An undirected graph (in short, a graph) consists of a set V of nodes and of a
set Eu of unordered pairs of nodes, called edges. For u, v ∈ V and u 6= v, the set {u, v}

4



CHAPTER 2. MATHEMATICAL BACKGROUND 5

Figure 2.1: Example of graphs

Figure 2.2: Example of digraphs

denotes an unordered edge.
Two nodes u and v of a given graph are neighbors if {u, v} is an unordered edge. Given a
graph G, we let NG(v) denote the set of neighbors of v. Figure 2.1 illustrates some examples
of graphs.

[Digraphs] A directed graph (in short, a digraph) of order n is a pair G = (V,E), where
V is a set with n elements called nodes and E is a set of ordered pairs of nodes called
edges. In other words, E ⊆ V ×V. As for graphs, V and E are the node set and edge set,
respectively. Figure 2.2 illustrates some examples of digraphs.
For u, v ∈ V, the ordered pair (u, v) denotes an edge from u to v. A digraph is undirected
if (v, u) ∈ E anytime (u, v) ∈ E. In a digraph, a self-loop is an edge from a node to itself.

[Subgraphs] A digraph (V′,E′) is a subgraph of a digraph (V,E) if V′ ⊆ V and E′ ⊆ E. A
digraph (V′,E′) is a spanning subgraph of (V,E) if it is a subgraph and V′ = V.
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The subgraph of (V,E) induced by V′ ⊆ V is the digraph (V′,E′), where E′ contains all
edges in E between two nodes in V′.

[In- and out-neighbors] In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor
of v, and v is called an out-neighbor of u. We let N in(v) (resp., N out(v)) denote the set of
in-neighbors, (resp. the set of out-neighbors) of v.
Given a digraph G = (V,E), an in-neighbor of a non empty set of nodes U is a node
v ∈ V\U for which there exists an edge (v, u) ∈ E for some u ∈ U.

[In- and out-degree] The in-degree din(v) and out-degree dout(v) of v are the number of
in-neighbors and out- neighbors of v, respectively. Note that a self-loop at a node v makes
v both an in-neighbor as well as an out-neighbor of itself.

2.1.2 Cluster and connectivity

[Paths] A path in a graph is an ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is an edge of the graph. A path is simple if no node appears more than
once in it, except possibly for the case in which the initial node is the same as the final node.

[Connectivity and connected components] A graph is connected if there exists a path be-
tween any two nodes. If a graph is not connected, then it is composed of multiple connected
components, that is, multiple connected subgraphs.

[Directed paths] A directed path in a digraph is an ordered sequence of nodes such that
any pair of consecutive nodes in the sequence is a directed edge of the digraph. A directed
path is simple if no node appears more than once in it, except possibly for the initial and
final node.

[Spanning trees] A subgraph of G is a spanning tree, if it has the same vertex set V =
{1, . . . ,m}, has no cycles, has m−1 edges and contains a node from which every other node
of G can be reached by traversing along the directed edges of G (the root node).

[Cluster ] A subgraph of G is a cluster, if it satisfies the following requirements:

1. It contains a spanning tree; and

2. It is a maximal subgraph in the sense that none of its spanning trees can be extended
by adding nodes from the set V.

We present four useful connectivity notions for a digraph G:

(i) G is strongly connected if there exists a directed path from any node to any other
node;

(ii) G is weakly connected if the undirected version of the digraph is connected;
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(iii) G possesses a globally reachable node if one of its nodes can be reached from any other
node by traversing a directed path;

(iv) G possesses a directed spanning tree if one of its nodes is the root of directed paths to
every other node.

Figure 2.3: Connectivity examples for digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if
H is strongly connected and any other subgraph of G strictly containing H is not strongly
connected.

As important difference, by definition clusters cannot have outgoing edges connecting them
to the outside nodes whereas strongly connected components of a digraph can have such
outgoing edges.

2.1.3 The Adjacency matrix

Given a digraph G = (V,E, {aij}ij∈E), with V = {1, ...,m}, the binary adjacency matrix
A ∈ {0, 1}m×m is defined by

aij =

{
1, if (i, j) ∈ E,

0, otherwise.

Here, a binary matrix is any matrix taking values in 0, 1.
Then, the out-degree matrix Dout and the in-degree matrix Din of a digraph are the diagonal
matrices defined by

Dout = diag(A 1m) =

 dout(1) 0 0

0
. . . 0

0 0 dout(m)

 ,
Din = diag(A ᵀ1m)
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2.1.4 The Laplacian matrix

Given a digraph G with adjacency matrix A and out-degree matrix Dout, the Laplacian
matrix of G is:

L = Dout −A

In components L = (`ij)i,j ∈ {1, ...,m}

`ij =


− 1, if (i, j) is an edge and not self-loop,

d(i), if i = j,

0, otherwise.

The following theorem is one of the results stated in [8], that will be useful to provide
detectability conditions for the system presented in the next section.

Theorem 2.1.1 The multiplicity of the zero eigenvalue of L is equal to the number of
clusters in the graph G

2.1.5 The Incidence matrix

Let G be an undirected graph with m nodes and n edges (and no self-loops, as by conven-
tion). Assign to each edge of G a unique identifier e ∈ {1, ..., n} and an arbitrary direction.
The (oriented) incidence matrix B ∈ Rm×n of the graph G is defined component-wise by

Bie =


+ 1, if node i is the source node of edge e,

− 1, if node i is the sink node of edge e,

0, otherwise.

An example of a ring graph with five nodes and five edges is shown below.

Bie =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1


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2.2 Linear System Theory Notions

In what follows, few properties of linear systems with linear algebra tools. These concepts
are used during the discussion of the internal structure for the observer.

2.2.1 Observability

In the study of dynamical systems, the key property for the design of observers is the
observability of the system. The definition of observability and some conditions that are
necessary and sufficient for a widely applied class of continuous-time linear systems are
provided. The class of input free systems can be written in general form as follows,{

ẋ = Ax

y = Cx
(2.1)

where x ∈ Rn is a state vector and y ∈ Rs are the outputs. Matrices A and C are of
dimensions n × n and s × n, respectively. The definition of observability is provided from
[3],

Definition 2.2.1 The state equation (2.1) is said to be observable if, for any unknown
initial state x(0), there exists a finite time t1 > 0 such that the knowledge of the output y
over [0, t1] suffices to determine uniquely the initial state x(0). Otherwise, the equation is
said to be unobservable.

The values of internal states can be inferred by the output y over some time interval.
If (A, C) is observable, its observability matrix O has rank n,

O =


C
CA

...
CAn−1

 (2.2)

and consequently n linearly independent rows. The observability property is invariant under
any equivalence transformation.

2.2.2 Similarity Transformation

A similarity transformation is a linear map whose transformed matrix Ā can be written in
the form

Ā = TAT−1 (2.3)

where A and Ā are called similar matrices. Similarity transformations transform objects in
space to similar objects.
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2.2.3 Canonical Decomposition

Let’s suppose that the system in (2.1) is not observable, so no = rank(O), the rank of
observability matrix O is lower than n. In this case, it is possible to apply a similarity
transformation to the system (2.1) with matrix T defined as,

T = [ wno+1, . . . wn, v1, . . . vno ] (2.4)

where the last no rows are any no linearly independent rows of O, and the remaining rows
can be chosen arbitrarily as long as T is nonsingular. In the equivalence transformation
z = Tx will transform (2.1) into

ż = TA (T )−1 z =

[
Aō Ap
0 Ao

] [
zō
zo

]
y = C(T )−1z = [0 Co]

[
zō
zo

] (2.5)

where Ao is no × no and Aō is (n− no)× (n− no), and the no-dimensional subequation of
(2.5), {

żo = Aozo

yo = Cozo
(2.6)

is observable and as the same transfer matrix as (2.1).

2.2.4 Detectability

Let recall the definition of the undetectable subspace of a matrix pair (C,A), A ∈ Rn×n,
C ∈ Rs×n. Let αA(s) denotes the minimal polynomial of A, i.e., the monic polynomial of
least degree such that αA(A) = 0, [11], factored as α−A(s)α+

A(s); the zeros of α−A(s) and
α+
A(s) are in the open left and closed right half-planes of the complex plane, respectively.

Note that Ker α−A(A) ∩ Ker α+
A(A) = {0}, and Ker α−A(A) + Ker α+

A(A) = Rn [11]. The
undetectable subspace of (C,A) is the subspace

C ,
n⋂
l=1

Ker (CAl−1) ∩Ker α+
A(A) (2.7)

furthermore, let O denote the unobservable subspace of (C,A)

O ,
n⋂
l=1

Ker(CAl−1) (2.8)
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2.3 Formal Problem Definition

State observers have had a huge impact on the entire field of estimation and control. An
observer for a process modeled by a continuous-time, time-invariant linear system:{

ẋ = Ax

y = Cx
(2.9)

with state x ∈ Rn, is a time-invariant linear system:{
˙̂x = Ax̂+ L(y − Cx̂)

ŷ = Cx̂
(2.10)

which is capable of generating an asymptotically correct estimate of x at a preassigned but
arbitrarily fast convergence rate. As is well known, the only requirement on the system (2.9)
for such an observer to exist is that the matrix pair (C,A) is observable. The distributed
structure, which follows, is one of the classical frameworks present in literature.

2.3.1 Distributed structure

It is considered a fixed network of m > 0 autonomous agents labeled 1, 2, . . . ,m, which
are able to receive information from their neighbors. Neighbor relations between distinct
pairs of agents are characterized by a directed graph G = (V,E), with a set of vertices
V = {1, 2, . . . ,m} and a set of arcs E ⊆ V ×V defined so that there is an arc from vertex
j to vertex i whenever agent j is a distinct neighbor of agent i; thus G has no self-arcs, i.e.
(i, i) /∈ E. A , D and L are the adjacency matrix, the in-degree matrix and the Laplacian
matrix of the graph G, respectively.
So, each agent i can sense a signal yi ∈ Rsi , i ∈m = {1, 2, . . . ,m}, where the system is:{

ẋ = Ax

yi = Cix+ νi, i ∈m
(2.11)

with x ∈ Rn and νi is output disturbance for agent i.
Agent i estimates x using an ni-dimensional linear system with state vector x̂i and it is
assumed the information agent i can receive from neighbor j ∈ Ni is x̂j(t), as described in
[9]. 

˙̂xi = Ax̂i + Li(yi − Cix̂i) +
∑
j∈Ni

Hij (x̂j − Tjix̂i)

ŷi = Cix̂i

(2.12)

Here Hij , i, j = 1, . . . ,m, are given matrices. According to (2.12), each node computes its
estimate of the plant state x and the neighbours state Tjix̂i, from its local measurements yi,
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and the inputs Hij x̂j received from its neighbors, and also communicates to the neighbors
its outputs x̂i. By exploiting all agents equations, it is possible to write,

˙̂x1 = Ax̂1 + L1(y1 − C1x̂1) +H12 (x̂2 − T21x̂1) + · · ·+H1m (x̂m − Tm1x̂1)

˙̂x2 = Ax̂2 + L2(y2 − C2x̂2) +H21 (x̂1 − T12x̂2) + · · ·+H2m (x̂m − Tm2x̂2)

...
...

...
...

...

˙̂xm = Ax̂m + Lm(ym − Cmx̂m) +Hm1 (x̂1 − T1mx̂m) + · · ·+Hmm−1 (x̂m−1 − Tm−1mx̂m)

with Hij = [0] if j 6∈ Ni. Then in matrix form,
˙̂x1
˙̂x2
...

˙̂xm

 =

 A− L1C1 −
∑m

j=2H1jTj1 H12 · · · H1m

...
. . .

...

Hm1 · · · A− LmCm −
∑m−1

j=1 HmjTjm



x̂1

x̂2
...
x̂m


+
[
L1y1 L2y2 · · · Lmym

]′
Now, if it is taken x̂ = [x̂1, x̂2, . . . , x̂m]′ and y = [y1, y2, . . . , ym]′,

Ã = Im ⊗A =


A 0n×n · · · 0n×n

0n×n A · · · 0n×n
...

...
. . .

...
0n×n 0n×n · · · A


nm×nm

(2.13)

then C̃ = diag[C1, C2, . . . , Cm], L = diag[L1, L2, . . . , Lm] and H̃ = [Hij ]i,j=1,...,m where
Hij = −

∑m
j=1,j 6=iHijTji if j = i or Hij = [0] if j 6∈ Ni.

˙̂x = (Ã− LC̃ − H̃)x̂+ Ly (2.14)

This notation, will be useful to state detectability conditions for the overall system. The
problem of interest is to construct a suitably defined family of linear systems, in such a way
so that no matter what the initializations of (2.12) are, each signal x̂i(t) is an asymptotically
correct estimate of x(t) in the sense that each estimation error ei(t) = x(t)− x̂i(t) converges
to zero as t → ∞ at a preassigned, but arbitrarily fast convergence rate. Formally, it
amounts to the existence of gain matrices Li, Hi, i = 1, . . . ,m, such that the interconnected
system consisting of the error dynamics subsystems

ėi = (A− LiCi)ei −
∑
j∈Ni

Hij ẽj (2.15)

is globally asymptotically stable. Where ei = x− x̂i is the local estimation error at node i
and ẽj = x̂j−Tjix̂i is the estimation error of the state dynamic of agent j from i. Our chief
objective is to establish conditions which guarantee detectability for the distributed observer
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in (2.14). Such a detectability property is necessary for this estimation problem to have a
solution. The main result in the following section characterize the detectability property of
this large scale system in terms of detectability properties of its components. The necessary
condition for the large scale detectability is expressed in terms of the ”local” detectability
of the plant through individual node measurements, and the observability properties of the
node through interconnections. The observer presented in (2.12) has a maximum dimension
equal to the plant dimension n, this happen when agent i has fully observability of the plant.
In case of partial observable plant, but fully detectable, the dimension of the observer is
equal to the dimension of the detectable state.

2.3.2 Detectability conditions

It is important to declare conditions for distributed detectability described in [9] and [8].
The term distributed detectability, refers to the detectability property achieved by the
entire network, in contrast to the local detectability which refers to the detectability of the
plant from the measurements taken by individual nodes of the network. The undetectable
subspace of (Ci, A) is the subspace Ci, from (2.7), and let OHi denote the unobservable
subspace of (Hi, A), from (2.8). The following theorem shows necessary conditions for
collective detectability of the pair ([C̃ ′, H̃ ′]′, Ã), for the special case where Hi = H.
From [9]

Theorem 2.3.1 Suppose the pair
(

[C̃ ′, H̃ ′]′, Ã
)

is detectable. Then, the following state-

ments hold:

(i)
m⋂
i=1

Ci = {0}

(ii)
OH ∩ Ci = {0} ∀i ∈ {1, . . . ,m}

(iii)
rank OH ≥ maxi dim Ci

Statement (ii) of Theorem 1.2.2 means that every undetectable state of (Ci, A) must neces-
sarily be an observable state of (Hi, A). Also, every unobservable state of (Hi, A) must be
a detectable state of one of the pairs (Ci, A).
Detectability of the pair ([C̃ ′, H̃ ′]′, Ã) is necessary but is not sufficient for the existence of
the set of observer gains Li which ensure that the matrix Ã− LC̃ − H̃ is Hurwitz. There-
fore, the collective detectability property is a necessary condition for the observer (2.12) to
provide an estimate of the plant (2.11).
By using theorem 1 from [8], which states that the multiplicity of the zero eigenvalue of L
is equal to the number of clusters in the graph G, is possible to rewrite Theorem 2.3.1 by
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considering a general case with different matrices Hi. Let’s define the observability matrices
associated with the matrix pairs (Ci, A), and (Hi, A):

OCi ,


Ci
CiA

...
CiA

n−1

 OHi ,


Hi

HiA
...

HiA
n−1


Then from Lemma 2 of [8], The pair ([C̃ ′, H̃ ′]′, Ã) is detectable if and only if

Ker (diag [OH1 , . . . ,OHm ] (L ⊗ Im)) ∩
m∏
i=1

Ci = {0} (2.16)

and then the Theorem 2 from [8] states,

Theorem 2.3.2 Suppose the pair ([C̃ ′, H̃ ′]′, Ã) is detectable. Then, for every cluster G(i1, . . . , is)
the following statements hold:

(i) ⋂
i∈{i1,...,is}

Ci = {0}

(ii) for all i ∈ {i1, . . . , is},  ⋂
j∈Ni

OHj

 ∩ OHi ∩ Ci = {0}

The interpretation of claims (i) and (ii) of Theorem 2.3.2 is as follows. Claim (i) states
that every state of a collectively detectable plant is necessarily detectable by at least one
observer within each cluster of the network. Also, condition (ii) states that communications
between the observer nodes in a collectively detectable system must be designed so that
each plant x has at least one of the three properties at every node of every cluster: (a) it is
detectable by the node from its measurements (i.e., x /∈ Ci), or (b) it is observable from the
information the node receives from its neighbours (i.e, x /∈ OHi), or (c) it is observable by
at least one of the neighbours with whom the node communicates (i.e, there exists j such
that j ∈ Ni and x /∈ OHj ).
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2.4 Cutting-edge

In this section, it is reported a simply distributed observer structure defined in [10], in
which the layout is similar to the one states in (2.12). In this case, a stabilization technique,
recalled from the decentralized theory, is implemented in order to asymptotically estimates
the state of the plant. Furthermore, the assumptions and limitations associated with this
framework are evaluated and will be relaxed in the next chapter.

2.4.1 Structure

As a first assumption, the system described in (2.11) is considered without disturbances, in
order to deal with a simple structure, so{

ẋ = Ax

yi = Cix i ∈m
(2.17)

with x ∈ Rn, yi ∈ Rsi and i ∈m = {1, 2, . . . ,m}. Then it is assumed throughout that Ci 6=
0, ∀i ∈ m, and the system defined by (2.17) is jointly observable, i.e. if C = [C ′1, . . . , C

′
m]′

then the system (A,C) is observable. Another important assumption is to ensure that
network graph G is strongly connected. The structure considers the case when the only
information transmitted between neighboring agents are estimator states zi. So, we will
focus on observers with the following structure

żi =
∑
j∈Ni

Hijzj +Kiyi i ∈m

x̂i =
∑
j∈Ni

Mijzi i ∈m
(2.18)

where the state estimation error ei = zi − x is given by

x̂i − x =
∑
j∈Ni

Mijej

ėi =
∑
j∈Ni

Hijzj + (KiCi −A)x
(2.19)

The easiest way to satisfy the observer design equations is to pick

I =
∑
j∈Ni

Mij i ∈m (2.20)

A−KiCi =
∑
j∈Ni

Hij i ∈m (2.21)

where Hij = 0 if j 6∈ Ni, it is possible to express these equations in a more explicit form,
which takes into account the constraints on the Hij imposed by (2.21). In order to deal
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with a new structure, three new matrices Ui, Cii and Cij are defined as

Cij = bij ⊗ In×n with j ∈ Ni

Ui = ui ⊗ In×n =


0n×n

...
In×n

...
0n×n


nm×n

Cii = CiU
′
i =

[
0si×n · · · Ci · · · 0si×n

]
si×nm

where ui is the ith unit vector in Rn and bij is the row in the transpose of the incidence
matrix B associated to the graph G. It is then possible to express the H in a more compact
form:

H = Ã+
∑
i∈m

∑
j∈Ni

UiFijCij (2.22)

where Fii = −Ki and Fij = Hij with i ∈m, j ∈ Ni and j 6= i. This structure is equal to the
one defined in eq. (2.14) for matrix H̃. Note that there are no constraints on the Fij and
the problem of constructing a distributed observer of this type, thus, reduces to trying to
choose the Fij to at least stabilize H if such matrices exist. This problem is mathematically
the same as the classical decentralized stabilization problem for which there is substantial
literature.

2.4.2 Decentralized Control

One approach to decentralized stabilization problem was presented by [4] and it consists
to try to choose the Fpq such that for given p ∈ m and q ∈ Np, the matrix pairs (H,Up)
and (Cpq, H) are controllable and observable, respectively. Having accomplished this, let
(H,Up, Cpq) represent a controllable and observable plant, we define:

Hdyn =

[
H 0nm×l

0l×nm 0l×l

]
(nm+l)×(nm+l)

Udyn =

[
Up 0nm×l

0l×n Il×l

]
(nm+l)×(n+l)

Cdyn =

[
Cpq 0si×l
0l×n Il×l

]
(sp+l)×(n+l)

(2.23)

represents the observer dynamics plus l additional integrators. Let

D(s) = |sI −H| = snm + αnm−1s
nm−1 + ...+ α0 (2.24)

be the characteristic polynomial of H and ρc and ρo the smallest integers that

rank[Up, HUp, · · · , HρcUp] = n
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and
rank[C ′pq, C

′
pqH, · · · , C ′pqHρo ] = n

For convenience call β = min(ρc, ρo) and define the set Λl = {λ1, .., λnm+l} to be a set of
arbitrary complex numbers subject only to the requirement that λi with Imλi 6= 0 appears
as one of a complex conjugate pair.
Theorem 2 from [4] states that:

Theorem 2.4.1 Let (H,Up, Cpq) be a controllable observable system and let Hβ, Uβ, Cβ be
as defined in (2.23). Given any set Λβ, there is a matrix K such that the eigenvalues of
Hβ + UβKCβ are precisely the elements of the set Λβ.

Now assume H is cyclic (its characteristic polynomial is the same as its minimal polynomial)
and setting β = m− 1, because the matrix H is cyclic and the pair (H,Cpq) is observable,
there are row vectors η′ and g′ with g′ = η′Cpq such that the pair (H, g′) is observable. In
order to construct the gain matrix K, that stabilise the system, lets define

P (s) =
nm+l∏
i=1

(s− λi) λi ∈ Λl

as the characteristic polynomial of the closed-loop system. then the problem is to choose
K so that

Λl(s) ≡ P (s) ≡ sl+nm + βl+nm−1s
l+nm−1 + · · ·+ β0

Equation coefficients of s leads to Φδ = β? defined as



1 0 · · · 0 0 0

αnm−1 1 · · ·
...

...
... L

... αnm−1
. . .

...
... 0

α0
...

. . . 0 0
0 α0 1 L 0
... 0 αnm−1 L

...
...

...
...

...
0 0 · · · α0 0 0





δ0
1
...
δ0
l

δ1
l+1 − δ0

l+1
...

δ
sp
l+1 − δ

0
l+1

δ1
l − δ0

l
...

δ
sp
l − δ

0
l

...
δ
sp
1 − δ0

1



=



βnm+l−1 − αnm−1

βnm+l−2 − αnm−2
...
...
...

βl − α0
...
...
β0


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where L corresponds to

L =



g′Up
g′HUp + αnm−1g

′Up
...

g′H i−1Up +
∑i−1

j=1 αnm−jg
′H i−j−1Up

...

g′Hnm−1Up +
∑nm−1

j=1 αnm−jg
′Hnm−j−1Up


(2.25)

To arbitrary obtain pole placement with output feedback it must be shown then that Φ has
full rank and that, given vector δ, the elements of the feedback matrix K may be determined
as follows:

K0 =

 kr+1,sp+1 · · · kr+1,sp+l
...

. . .
...

kr+l,sp+1 · · · kr+l,sp+l

 Kj =


kj kj,sp+1 · · · kj,sp+l

kn+1
... K0

kn+l


with j = 1, 2, . . . n and δji = (−1)i times the sum of all the principal minors of order i of Kj ,
i = 1, . . . , l+ 1; j = 0, 1, . . . , sp and σ0

l+1 ≡ 0. For any δ there is a matrix K, of appropriate

dimensions, such that δj1, . . . , δ
j
l+1 are the coefficients of the characteristic polynomial of Kj .

For example, one choice is

K0 =


−δ0

1 −δ0
2 · · · −δ0

l

1 0 · · · 0

0
. . .

. . .
...

... · · ·
...

0 · · · 0 1 0

 Kj =


h′i

1
0
... K0

0



hj = −


δj1 − δ0

1
...

δjl − δ
0
l

δjl+1 − δ
0
l+1

− (δ0
1 − δ

j
1)


0
δ0

1
...
δ0
l


A step back it is needed in order to deal with the structure of H matrix defined in eq.
(2.22), that now is express in terms of Hdyn. For simplicity, assume that p = m, so we need
to build the K such that the system (Hdyn + UdynKCdyn) is Hurwitz. As it can be seen in
the following formulation, the stabilization part of the system is only pose on the last agent
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m,

UdynKCdyn =



0n×n · · · 0n×n 0n×n 0n×l
...

. . .
...

...
...

... · · ·
... 0n×n 0n×l

k1,sp+1 · · · k1,sp+l

0n×n · · · 0n×n D̄Cm
kn,sp+1 · · · kn,sp+l

0l×n · · · 0l×n B̄Cm K0


where D̄ = [k1k2 . . . , kn]′ and B̄ = [kn+1, . . . , kn+l]

′. So, we could rewrite the full system
(Hdyn + UdynKCdyn), as follows

Ĥ =

[
H + UmD̄Cm UmĒ

B̄Cm K0

]
(2.26)

where

Ē =

 k1,sp+1 · · · k1,sp+l
...

...
kn,sp+1 · · · kn,sp+l


At the end, the stabilization can be achieved by increasing the size of the last observer by
l = m− 1 and by replace the matrices Hmi, i ∈m, i 6= m, and Hmm in the eq. (2.22) with[

Hmi

0

]
and

[
Hmm + D̄Cm Ē

B̄Cm K0

]
respectively.

theorem 1 from [10] can be state,

Theorem 2.4.2 Suppose that (2.17) is a jointly observable system and that Ci 6= 0, ∀i ∈
m. If graph G is strongly connected, then for each symmetric set of mn + m − 1 complex
numbers Λ, there is a distributed observer (2.18) for which the spectrum of the (mn+m−
1)× (mn+m− 1) matrix Ĥ , [Hij ] is Λ.

This observer, for a process modeled by a continuous-time, time-invariant linear system as
(2.17), is capable of generating an asymptotically correct estimate of x exponentially fast
at a preassigned convergence rate, no matter what the initializations of (2.17) and (2.18)
are.
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Figure 2.4: Graph G of the first distributed observer

2.4.3 Numerical example

An example of a system with two agents is considered in order to demostrate the stability
properties previously described. Let’s consider the following system

ẋ =


0 1 0 0
−1 0 0 0
0 0 0 −2
0 0 2 0

x,
with x ∈ R4, which is being observed by two agents (m = 2) in such a way that

y1 = [1 0 0 0]x = C1x,

y2 = [0 0 1 0]x = C2x

so the jointly observability condition is satisfied with the matrix C = [C ′1, C
′
2]′, and the

observability matrix O has rank(O) = 4. Furthermore, C1, C2 are 6= 0, the graph G is
shown in fig. 2.4, is strongly connected and the incidence matrix B associated is described
as follows

B =

[
1 −1
−1 1

]
used to construct matrix H, with matrices U1 and U2,

U1 = u1 ⊗ I4 =

[
I4

04×4

]
, U2 = u2 ⊗ I4 =

[
04×4

I4

]
,

u1 = [1 0]′, u2 = [0 1]′ and I4 is the identity matrix. Furthermore, matrices C11, C12, C21

and C22 are described in the following way,

C11 = C1U
′
1 =

[
C1 04×4

]
1×8

C12 = b1 ⊗ I4 =
[
I4 −I4

]
8×8

C21 = b2 ⊗ I4 =
[
−I4 I4

]
8×8

C22 = C2U
′
2 =

[
04×4 C2

]
1×8

The matrix H can now be states as

H = Ã− U1K1C11 + U1F12C12 + U2F21C21 − U2K2C22

=

[
A−K1C1 + F12 −F12

F21 A−K2C2 + F21

]



CHAPTER 2. MATHEMATICAL BACKGROUND 21

0 5 10 15

Time

-10

-8

-6

-4

-2

0

2

4

6

8

10
Observer: 1

(a) Observer 1

0 5 10 15

Time

-35

-30

-25

-20

-15

-10

-5

0

5

10

15
Observer: 2

(b) Observer 2

Figure 2.5: State of the plant in solid lines and estimates of agents in dashed lines
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in which K1, K2, F12 and F21 are free matrices, used to stabilize the system or at least make
the matrix pairs (H,U2) and (C2, H), controllable and observable, respectively. In this way,
the size of the second agent can be improved, with l = 1 and by using the decentralized
control presented in section 2.4.2, it is possible to stabilize the full system with the dynamic
compensator. The new matrix Ĥ is described as follows,

Ĥ =

 A−K1C1 + F12 −F12 04×1

F21 A−K2C2 + F21 + D̄C2 Ē

01×4 B̄C2 K0


with eigenvectors distribute between 1.5 to 2.5. The full system, composed by agents 1 and
2 is shown in fig. 2.5 and is described below ż1

ż2

zdyn

 =

 A−K1C1 + F12 −F12 04×1

F21 A−K2C2 + F21 + D̄C2 Ē
01×4 B̄C2 K0

 z1

z2

zdyn


+

 K1 04×1

04×1 K2 − D̄
0 B̄

[ y1

y2

]

The error is shown in fig. 2.6a and the new state introduced by the dynamic compensator
is shown in fig. 2.6b.

2.4.4 Considerations

In this example, the overall dimension of the observer is 9×9, with the first agent having the
same plant size, while the last has an extra state introduced by the dynamic compensator.
With this approach, the dynamic compensator is forcing the stabilization of the entire
system to ensure the converge of the estimation. The strong connectivity of the graph is
a necessary condition for implementing the decentralized control technique from the last
observer.
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Chapter 3

A Novel Study on Distributed
Observer Design

This chapter presents the main result. In Section 3.1, the design methodology is described
step by step. In Section 3.2, one classic control technique is used to stabilize the observer,
then in Section 3.3, a review of the stability properties.

3.1 Design procedure

Roughly speaking, the idea behind is to share the transformation matrices, used for the
canonical decomposition, between neighboring agents, in order to reconstruct internally the
neighbor state. Furthermore, each agent sends his number of observable states, in this way,
the construction of the neighbor state shrinks to the observable one. The design is described
as a step procedure, in which at each step the knowledge of the system from the agent i
increases, if the information provided from neighbors is linearly independent respects to the
own one.

3.1.1 Step 1

Consider the state estimation problem for a general system with the same framework pre-
sented in (2.11) seen by agent i {

ẋ = Ax

yi = Cix+ νi, i ∈m
(3.1)

where x ∈ Rn, yi ∈ Rsi and νi ∈ Rsi .
At the first step, agent i computes the observability matrix O[1]

i , as defined in (2.2),

where n
[1]
oi = rank(O[1]

i ) ≤ n. In order to apply the canonical decomposition, that makes
a change of coordinates and splits observable and unobservable states, the transformation

24
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matrix T
[1]
i is needed. In the new coordinates z

[1]
i = T

[1]
i x, the system has matrices

ż
[1]
i = T

[1]
i A

(
T

[1]
i

)−1
z

[1]
i =

[
A

[1]
ōi A

[1]
pi

0 A
[1]
oi

][
z

[1]
ōi

z
[1]
oi

]

y
[1]
i = Ci(T

[1]
i )−1z

[1]
i + νi =

[
0 C

[1]
oi

] [ z
[1]
ōi

z
[1]
oi

]
+ νi

(3.2)

in which with zoi , is identified the observable part of system (3.1) and with zōi the unob-
servable. Equation (3.2) can be rewritten in more compact way as{

ż
[1]
i = Ā

[1]
i z

[1]
i

y
[1]
i = C̄

[1]
i z

[1]
i + νi

(3.3)

where Ā
[1]
i = T

[1]
i A(T

[1]
i )−1 and C̄

[1]
i = Ci(T

[1]
i )−1.

Each agent is interested only in the information that knows and is able to share with the
network. In this coordinates system, agent i will use only the observable part, and from
equations (3.2), instead of (3.3), will follows{

ż[1]
oi = A[1]

oi z
[1]
oi

y[1]
oi = C [1]

oi z
[1]
oi + νi

(3.4)

At the end of step 1, agent i sends matrix T
[1]
i and n

[1]
oi at every neighbor j with j ∈ Ni.

3.1.2 Step 2

At the beginning of the second step, agent i has received T
[1]
j and n

[1]
oj from every neighbor

j, with j ∈ Ni, and it can reconstruct the state zj of agent j.{
z

[1]
j = T

[1]
j x

z
[1]
i = T

[1]
i x → x = (T

[1]
i )−1z

[1]
i

→ z
[1]
j = T

[1]
j (T

[1]
i )−1z

[1]
i = T

[1]
ji z

[1]
i

where it is defined T
[1]
ji = T

[1]
j (T

[1]
i )−1, then the state z

[1]
j is decomposed into the observable

and the unobservable part. n
[1]
oj is equal to the number of observable rows of matrix T

[1]
ji

and (n− n[1]
oj ) are the remain unobservable rows.z

[1]
ōj

z
[1]
oj

 =
(n− n[1]

oj ) {

n
[1]
oj {

T
[1]
ōji

T
[1]
oji

 z[1]
i (3.5)
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So, the system (3.4) for agent i, now it is composed by

ż
[1]
i = Ā

[1]
i z

[1]
iy

[1]
i = C̄

[1]
i z

[1]
i + νi

z[1]
oj = T [1]

ojiz
[1]
i ∀j ∈ Ni

(3.6)

The new output matrix C
[2]
i at step 2 of agent i takes into account all the matrices T

[1]
oji , as

in the following structure

C
[2]
i =



Ci

T
[1]
owi

...

T
[1]
oji
...

T
[1]
oui


with {w, . . . , j, . . . , u} ∈ Ni (3.7)

where w, j and u are neighbors for the agent i. So, the matrix (3.7) is considering only

the observable part, for each neighbour. As seen in step 1, the observability matrix O[1]
i ,

for the second step, is updated by computing it with matrices C
[2]
i and A, named O[2]

i .

Furthermore, n
[2]
oi = rank(O[2]

i ) and transformation matrix T
[2]
i , defined as in (2.4), are

updated according to the new observability matrix O[2]
i . By exploiting the transformation

matrix T
[2]
i

z
[2]
i = T

[2]
i x (3.8)

the system (3.3) is transformed into{
ż

[2]
i = Ā

[2]
i z

[2]
i

y
[2]
i = C̄

[2]
i z

[2]
i + νi

(3.9)

and the same consideration given in (3.4) is used to rewrite the system (3.6) as

ż[2]
oi = A[2]

oi z
[2]
oi{

y[2]
oi = C [2]

oi z
[2]
oi + νi

z[2]
oj = T [2]

ojiz
[2]
oi ∀j ∈ Ni

(3.10)

where the observable state zoi is used to reconstruct the neighbour observable state zoj ,
so, only the observable part of the plant is used as own injection output for agent i. As

before, at the end of step 2, the matrix T
[2]
i and the observability number noi are sent to

neighbours.
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3.1.3 Step k

The generalization of the algorithm leads to a more concise description of the step procedure.

Let’s define as parameters for step k, the message composed by the matrix T
[k−1]
j and n

[k−1]
oj ,

given from every neighbour j ∈ Ni and the own agent matrices A, Ci. So, the initialization

consists in the assignment of Ci, to the first rows of C
[k]
i , as described in Function STEP k.

Then, in the for-loop, for every message received, T
[k−1]
ji is created with the product between

T
[k−1]
j and the inverse of T

[k−1]
i . Only the first noj rows are assigned to C

[k]
i , if noj < n,

as described with the notation
(
` : `+ noj , :

)
. ` is considered as counter that progressively

increases the size of C
[k]
i , with the observability number noj provided by neighbors . At

the end, the observability decomposition is computed and the updated transformation T
[k]
i ,

with the observability number associated n
[k]
oi are sent to neighbours j ∈ Ni.

Function STEP k(A, Ci):

Data: A ∈ Rn×n, Ci ∈ Rsi×n,
⋃
j∈N MSG

[k−1]
j

Result: MSG
[k]
i

begin

initialization : C
[k]
i (1:si, :) ← Ci

forall
(
T

[k−1]
j , n

[k−1]
oj

)
∈
⋃
j∈N MSG

[k−1]
j do

T
[k−1]
ji ← T

[k−1]
j

(
T

[k−1]
i

)−1

C
[k]

i (`:`+noj , :)
← T

[k−1]

oji (n−noj :n, :)
`← `+ noj + 1

end

(Ā
[k]
i , C̄

[k]
i , T

[k]
i , n

[k]
oi )←OBSF(A, C

[k]
i )

MSG
[k]
i ←

(
T

[k]
i , n

[k]
oi

)
∀j ∈ Ni

end

return Ā
[k]
i , C̄

[k]
i , T

[k]
i , n

[k]
oi

3.2 Control

The end of iterations appears when matrix Ti remains invariant for each step after k, and
after a number of steps greater than m − 1, with m = {1, . . . ,m} equal to the number
of agents in the graph G. Furthermore, full observability for agent i is reached when the
observability number noi is equal to the plant dimension n. Instead if noi < n, the observer
dimension is equal to noi and only the detectable dynamics are followed by agent i. By
calling the detectability theorem 65 of [2],
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Theorem 3.2.1 Given a system (A,B,Ci, D), with the undetectable space Ci associated
to the couple (A,Ci) as described in (2.7), then for A ∈ Rn×n, Ci ∈ Rsi×n, there exist
Ki ∈ Rn×si such that

σ [A+KiCi] ⊂ C−

if and only if the pair (A,Ci) is detectable.

The gain Ki, in our case, is constructed using
(
A,C

[k]
i

)
, with step k as last step.

3.2.1 Full observability

Firstly, let’s consider a full observable system for all the agents noj = n, for each j ∈m, so
the observer structure, for agent i, is described as follows

˙̂zi = Āiẑi +Ki

(
ỹi − C̄ [k]

i ẑi

)

inputs: ỹi =



C̄izi
ẑw
...
ẑj
...
ẑu


outputs: C̄

[k]
i ẑi =



C̄i
Twi

...
Tji
...
Tui


ẑi

(3.11)

with C̄
[k]
i composition of col

(
T

[k−1]
ji

)
, for each j, w, u ∈ Ni, with the first n rows equal

to C̄i, as in (3.7), and the step number is omitted, for a clear explanation. Eq. (3.11)
is expanded in order to better show the inputs ỹi and outputs for the observer and the
matrices associated to neighbours. Furthermore, it is possible to split the gain matrix Ki

and associated each gain to each dynamics, in a explicit way,

˙̂zi = Āiẑi +
[
Li Hiw · · · Hij · · · Hiu

]
(



C̄izi

ẑw
...
ẑj
...
ẑu


−



C̄i

Twi
...
Tji
...
Tui


ẑi)

where Ki = [Li Hiw · · · Hij · · · Hiu], with {w, . . . , j, . . . , u} ∈ Ni, The observer i, de-

scribed by
(
A,Ci, Li,

∑
j∈Ni

Hj

)
as in the structure (2.12), is now shown below

˙̂zi = Āiẑi + Li
(
yi − C̄iẑi

)
+
∑
j∈Ni

Hij (ẑj − Tjiẑi) (3.12)
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Algorithm 1: Distributed observer algorithm

Data: A ∈ Rn×n, Ci ∈ Rsi×n
Result: ẑi
begin

initialization : T
[1]
i ← OBSF(A, Ci)

while T
[k−1]
i 6= T

[k]
i or k < m do

Ā
[k]
i , C̄

[k]
i , T

[k]
i , n

[k]
oi ←STEP k(A, Ci)

end

Ki ← Ki : {σ
[
Āi +KiC̄

[k]
i

]
⊂ C−}

Li ← Ki (:, 1:noi)
`← noi + 1
forall j ∈ Ni do

Hij ← Ki (:, `:`+noj )

Tji ← C̄
[k]

i (`:`+noj , :)
`← `+ noj + 1

end
˙̂z ← Āiẑi + Li

(
yi − C̄iẑi

)
+
∑

j∈Ni
Hij (ẑj − Tjiẑi)

end

3.2.2 Full detectability

In this case each agent has a number of observable states lower or equal than the dimension
of plant noi ≤ n, so the observer structure, for agent i, is described as follows

˙̂zoi = Aoi ẑoi +Ki

(
ỹoi − C [k]

oi ẑoi

)

inputs: ỹoi =



Coizoi
ẑow

...
ẑoj
...
ẑou


outputs: C [k]

oi ẑi =



Coi
Towi

...
Toji

...
Toui


ẑoi

(3.13)

with C
[k]
oi composition of col

(
T

[k−1]
oji

)
, for each j, w, u ∈ Ni, with the first noi rows equal to

Coi , as in (3.11), and the step number is omitted, for a clear explanation. In this case the

gain matrix Ki is computed in order to ensure the eigenvalues of the system
(
Aoi −KiC

[k]
oi

)
to be with negative real part. The observer i, in this case, is described by the following
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explicit equation

˙̂zoi = Aoi ẑoi + Li (yoi − Coi ẑoi) +
∑
j∈Ni

Hij

(
ẑoj − Toji ẑoi

)
(3.14)

with Toji ẑoi the projection of the observable state ẑoi to the observable state ẑoj .

3.3 Stability properties

The asymptotically stability properties are considered in order to demonstrate the robust-
ness of solution. So, the error ei = zi − ẑi and error dynamic are stated as in (2.15),

ėi =
(
Āi − LiC̄i

)
ei −

∑
j∈Ni

Hij (ẑj − Tjiẑi) (3.15)

and the right hand side is given by the difference between the internal state ẑj received from
agent j and the reconstructed state Tjiẑi from agent i. By substituting terms ẑi = zi − ei
and ẑj = zj − ej inside the sum,

ėi =
(
Āi − LiC̄i

)
ei −

∑
j∈Ni

Hij (zj − ej − Tji(zi − ei))

=
(
Āi − LiC̄i

)
ei +

∑
j∈Ni

Hij (ej − Tjiei) +
∑
j∈Ni

Hij (Tjizi − zj)

=
(
Āi − LiC̄i

)
ei

(3.16)

where the terms deleted, are the projection of state zi, ei to zj and ej , respectively. The
structure from (2.14) is recalled with the consideration of all agents, with e = [e1, . . . , em]′

the error dynamic can be written in a compact form as,

ė =
(
Ã− L̃C̃

)
e (3.17)

where the matrices Ã = blockdiag(Ā1, . . . , Ām), C̃ = blockdiag(C̄1, . . . , C̄m) and L̃ =
blockdiag(L1, . . . , Lm. As discuss in Section 2.3.2, the distributed detectability for the full
system in (2.14) is achieved if the statements of Theorem 2.3.2 are satisfied, then the matrix(
Ã− L̃C̃

)
is Hurwitz and the error decreases exponential fast at a preassigned converge

rate.

3.3.1 Considerations

The design introduced has some advantages of respect to the layout given in Section 2.4.
Firstly, in the case of a fully observable system, the overall dimension of the observer is
equal to (nm) × (nm), with n as plant dimension and m as the total number of agents.
Instead the dimension proposed in the literature layout in (2.26), is (mn + l) × (nm + l),
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with l = m − 1, the number of states introduced by the dynamic compensator in order to
stabilize the system. Secondly, the assumption of joint observability is substituted with the
necessary condition of collective detectability, and in case of a fully detectable system, the
overall dimension of the observer is even lower than before and equal to

∑m
i=0 noi . Thirdly,

the hypothesis for matrices Ci 6= 0, ∀i ∈ m = {1, . . . ,m} is relaxed and in the following
chapter an example shows this achievement. Fourthly, the strong connectivity of graph G is
not necessary to ensure the stability properties, as seen before, the detectability condition
is only necessary inside a cluster of agents.



Chapter 4

Simulation Results

Simulations are presented in order to show the effectiveness of the proposed solution. Firstly
a generic system with sinusoidal behavior, in which agents cooperate to estimate the plant
dynamics. Then in the second section, the properties for the convergence of the observers
are showed in a use case relates to the search and rescue problem. Matlab is the tool used
to test the algorithm and to present the results.

4.1 System example

Specifically, it is posted a case in which one of the agents is without output measures, so,
the condition from the literature approach in section 2.4 is exceeded. Furthermore, the
graph is not strongly connected, in fact, one agent is only able to provide his information
to the rest of the network and not to receive. Let’s consider the following continuous-time
system, as in Section 2.4.3,

ẋ =


0 1 0 0
−1 0 0 0
0 0 0 −2
0 0 2 0

x,
with x ∈ R4, which is being observed by four agents (m = 4) in such a way that

y1 = [1 0 0 0]x = C1x,

y2 = [0 0 0 0]x = C2x,

y3 = [0 0 1 0]x = C3x,

y4 = [0 0 0 1]x = C4x.

each agent is able to see only one dynamic of the system, except for agent 2, and by
considering the matrix C = [C ′1, C

′
2, C

′
3, C

′
4]′ the requirement of jointly observability for

(A,C) is satisfied. Then the following topology for the graph G of the agents is showed in

32
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Figure 4.1: Graph G of simulation

figure 4.1 and the adjacency matrix is described as follows:

A =


0 1 0 0
1 0 0 1
0 1 0 0
0 0 0 0

 (4.1)

The graph is weakly connected and agent 4 is the globally reachable node for G. After the

first step each observability transformation matrix T
[1]
i and the number of observable states

n
[1]
i is computed.

T
[1]
1 =


0 0 0 −1
0 0 1 0
0 1 0 0
1 0 0 0

 T
[1]
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



T
[1]
3 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 T
[1]
4 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


n

[1]
2 = 0, is the number of dynamics seen by agent 2, instead all agents n

[1]
1 = n

[1]
3 = n

[1]
4 = 2

have a number of observable states equal than two.
They send the transformation matrix to their neighbours in order to proceed with the

second step. According to the second step, the output matrices are updated, and agent 2
has covered the lack of information thanks to agents 1 and 3 and is described as follows:

C
[2]
2 =


0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


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Figure 4.2: State of the plant in solid lines and estimates of agents in dashed lines
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with the new output matrix, agent 2 is able to share the full knowledge of the state, n
[2]
2 = 4,

to agents 1 and 4. Instead, agents 1 and 4 still have to complete the full observability of the

system, in fact, T
[1]
1 = T

[2]
1 and T

[1]
4 = T

[2]
4 , and they have to wait for the end of the second

step in order to receive the transformation matrix from agent 2. So, at the third step, the
transformation matrices for agents 1 and 4 become identities,

T
[3]
1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 T
[3]
4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


with a number of observable states equal than 4, n

[3]
1 = n

[3]
4 = 4. Agent 3 is not able to

achieve the full observability of the system, the reason is related to the structure of the
network, i.e. agent 3 has not in-coming edges. After the third step, the knowledge of the
system for each agent remains the same, so it is possible to define the gain matrices for the
observers. In this case, the full structure is described as follow:

˙̂z1 =
(
Ā1 − L1C̄1

)
ẑ1 + L1y1 +H12 (ẑ2 − T21z̄1)

˙̂z2 =
(
Ā2 − L2C̄2

)
ẑ2 +H21 (ẑ1 − T12z̄2) +H23 (ẑ3 − T32z̄2)

˙̂zo3 = (Ao3 − L3Co3) ẑo3 + L3yo3
˙̂z4 =

(
Ā4 − L4C̄4

)
ẑ4 + L4y4 +H42 (ẑ2 − T24ẑ4)

Agent 3 is estimating only the observable part of the system, that consists of the last two
states, so the size of the gain L3 is 2× 2.

4.1.1 Comparison

The system previously described was implemented in a Matlab script and simulated. Fig

4.2 shows the evolution of the plant state modes, transformed with matrices T
[3]
i , in order

to be projected into the subspace of the observers, and the estimates for the proposed
distributed observer. Note that for agent 3, only two dynamics of the plant are followed,
fig 4.2c. Furthermore, in the case of agent 2, the estimation of state variables is given from
its neighbors. The design has been carried out placing the poles around -5 and the error
dynamics from all the observers are shown in fig. 4.3a. The overall dimension reached by
the observer is 14× 14, and compare to the implementation with the design in Section 2.4,
having an overall dimension of 19 × 19, with the error dynamics in fig. 4.3b, our design is
more stable and efficient. The error dynamics presented in fig. 4.3b are given from a fully
connected observer, with C2 = [0 1 0 0] and poles placed around -5.
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Figure 4.3: Evolution of errors for all the agents for the design proposed and for the literature
one
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Figure 4.4: Simulated scenario for target position estimation

4.2 Simulated scenario

In this section, one use case is provided to better describe the implementation of the
distributed estimation framework previously presented. Regarding three agents, with a
strongly connected ring graph, which is able to estimate the 3D position of a target system
by only sensing the range distance, named di for agent i. The system is states as

ẋ =

 0 0 0
0 0 0
0 0 0

x = Ax with x =

 xt
yt
zt

 (4.2)

where the state x is the 3D position of target t. At time k our agents are situated at positions
Pi(k) = [xi(k), yi(k), zi(k)]′ with i = {1, 2, 3}, as shown in fig. 4.4. The squared range
distance di(k)2 at time k sense from agent i is described as follows,

d2
i (k) = (xi(k)− xt)2 + (yi(k)− yt)2 + (zi(k)− zt)2

after a new step, named k+1, agent i is able to build his output matrix Ci as the difference
between two consecutive steps.

d2
i (k + 1)− d2

i (k) = (xi(k + 1)− xt)2 − (xi(k)− xt)2 + (yi(k + 1)− yt)2 − (yi(k)− yt)2 +

+ (zi(k + 1)− zt)2 − (zi(k)− zt)2

= x2
i (k + 1)− 2xtxi(k + 1) + x2

i (k)− 2xtxi(k) + y2
i (k + 1)− 2ytyi(k + 1)+

+ y2
i (k)− 2ytyi(k) + z2

i (k + 1)− 2ztzi(k + 1) + z2
i (k)− 2ztzi(k)
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where x2
i (k + 1), x2

i (k), x2
i (k + 1), x2

i (k), x2
i (k + 1) and x2

i (k) are known quantities, so it is
possible to define the new range d̂i(k) as,

d̂2
i (k) = d2

i (k)− x2
i (k)− y2

i (k)− z2
i (k)

= −2xtxi(k)− 2ytyi(k)− 2ztzi(k)

and the same for d̂2
i (k + 1), then the output matrix Ci can be states,

yi = d̂2
i (k + 1)− d̂2

i (k)

= −2 (xi(k + 1)− xi(k))xt − 2 (yi(k + 1)− yi(k)) yt − 2 (zi(k + 1)− zi(k)) zt

= −2
[

(xi(k + 1)− xi(k)) (yi(k + 1)− yi(k)) (zi(k + 1)− zi(k))
]  xt

yt
zt


= Cix

As we can see, the elements of Ci are different than zero if the new position reaches by agent
i is not at the same coordinate respect to the previous one. Another important constraint
imposes by the construction of matrix Ci is that all agents have to move orthogonally respect
to each other, in order to ensure full observability of the system ẋ = Ax. In figures 4.5, are
shown the dynamics of the three agents with the following output matrices,

y1 =
[

1 0 0
]
x = C1x

y2 =
[

0 1 0
]
x = C2x

y3 =
[

0 0 1
]
x = C3x

In this case, each agent moves along one coordinate, and the full observability is reached
with one step. The target position is estimated by sharing the knowledge between agents
and the error dynamics is presented in figure 4.5d.

4.3 Conclusion

This thesis has introduced and detailed a new technique of the distributed state estimation
for a class of linear systems. The design was developed in two main steps. The first step
involved the design of an observability transformation for linear systems that arise in the
application of a model reduction technique. The second step involved the design of the gain
matrices used to reach the dynamic of a plant sense by distributed multiple sensors. Through
the exchange of information from each neighboring agent that exploits the availability of
multiple measurements, local state estimates can be obtained. The observer from the last
step is shown to provide better performance than the decentralized controlled one.
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(c) Observer 3 scenario

0 1 2 3 4 5 6 7 8 9 10

Time

0

1

2

3

4

5

6

7

8
ERRORS

(d) Errors for all agents in scenario

Figure 4.5: State of the plant in solid lines and estimates of agents in dashed lines
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