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Zusammenfassung
Diemittlere Lebensdauer eines angeregten Kernzustands ist eine wichtige Beob-
achtungsgröße, die in direktem Zusammenhang mit der Übergangswahrschein-
lichkeit steht. Informationen über diemittlere Lebensdauer von angeregten Kern-
zuständen können Aufschluss über die Entwicklung der Kernform als Funktion
der Nukleonenzahl geben. Für diese Arbeit wurden die mittleren Lebensdau-
ern der Selten Erden Isotope 174,176,178,180Hf und 152Gd gemessen. Die mittleren
Lebensdauern wurden mittels der bereits in den 1950er Jahren eingeführten
Fast-TimingMethode bestimmt. Auf Grund der rasanten Fortschritte bei der Ent-
wicklung neuer Szintillationsdetektoren in den letzten zwei Jahrzehnten kann
diese Messmethode auf einen größeren Bereich angeregter Kernzustände an-
gewendet werden. Die Experimente wurden am FN-Tandembeschleuniger des
IFIN-HH mit dem ROSPHERE-Detektorarray durchgeführt.
Eine mögliche neue Signatur für den bekannten Quantenphasenübergang bei
N = 90wurdemit Hilfe der Ergebnisse des 152Gd-Experiments bestätigt, und de-
ren Korrelationmit anderen bekannten Signaturenwie der E0 -Übergangsstärke
wurde getestet. Die Entwicklung der Kollektivität und der Rotationsstruktur
der Hafniumisotope wurde untersucht und ein Maxiumum der Kollektivität
bei N = 100 identifiziert. Insgesamt wurden 13 mittlere Lebensdauern für die
174,176,178,180Hf-Isotope bestimmt.
Das kernmagnetische Dipolmoment ist ein wichtiger Indikator für die Zusam-
mensetzung der Protonen-Neutronen Wellenfunktion und damit für die Einteil-
cheneigenschaften des Kernzustands. Der zweite Teil dieser Arbeit präsentiert
die Ergebnisse einer g-Faktormessung des 2+1 -Zustands von 18O mit der kürz-
lich entwickelten ECR-TDRIV-Technik. Das Verfahren ist insbesondere für die
Anwendung auf radioaktive Ionenstrahlen vorgesehen, muss jedoch zuvor mit
stabilen Strahlen getestet werden. Das Analyseverfahren des 18O-Experiments
wird beschrieben und die Ergebnisse für den g-Faktor werdenmit früherenMes-
sungen und Schalenmodellberechnungen verglichen.
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Abstract
The mean lifetime of an excited nuclear state is an important observable di-
rectly related to the transition probability. Information on the mean lifetimes
of nuclear excited states can give insight into the evolution of the nuclear shape
as a function of nucleon number. For this work, mean lifetimes of the rare-
earth isotopes 174,176,178,180Hf and 152Gd have been measured. The mean life-
times have been determined with the fast-timing technique, already introduced
in the 1950s, but applicable to a wider range of excited nuclear states, due to
rapid progress in the development of new scintillation detectors in the last two
decades. Both experiments have been performed at the FN Tandem accelerator
of the IFIN-HH with the ROSPHERE detector array.
A possible new signature for the known quantum phase transition at N = 90 has
been established with the results from the 152Gd experiment and the correlation
to other observables, such as the E0 transition strength, has been investigated.
The evolution of collectivity and the rotational structure of the hafnium iso-
topes have been investigated and a maximum of the collectivity at N = 100
has been identified. In total 13 mean lifetimes have been determined for the
174,176,178,180Hf isotopes.
The nuclear magnetic dipole moment is an important indicator of the compo-
sition of the proton neutron wave function, and therefore the single particle
properties of the nuclear state. The second part of this thesis presents the results
from a g-factor measurement of the 2+1 state of 18O with the recently developed
ECR-TDRIV technique. The method is in particular foreseen for the application
to radioactive ion beams, but has to be tested with stable beams. The analysis
procedure of the 18O experiment is outlined and the results for the g factor are
compared to previous measurements and shell model calculations.
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“There are these two young fish swimming along and they happen to
meet an older fish swimming the other way, who nods at them and
says "Morning, boys. How’s the water?" And the two young fish swim
on for a bit, and then eventually one of them looks over at the other
and goes "What the hell is water?".....
— David Foster Wallace, This Is Water: Some Thoughts, Delivered on

a Significant Occasion, about Living a Compassionate Life
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1. Introduction & motivation
The atomic nucleus is an interesting research object. It is a complex, many par-
ticle quantum object, composed of protons and neutrons. Even though more
than 100 years passed since the discovery of radioactivity by H. Becquerel [1]
and the atomic nucleus by E. Rutherford [2], the binding force holding the nu-
cleons together still has to be fully understood. The ultimate goal of nuclear
structure physics would be a description of the nuclear force from basic princi-
ples, based on the fundamental interactions: gravitation, the electromagnetic
interaction, the weak and the strong interaction. The electromagnetic repulsion
of the positively charged protons has to be counteracted by some other force,
captivating the nucleons in the atomic nucleus. Gravitation and the weak force
are not strong enough, leaving the strong interaction, which is responsible for
the formation of hadrons, binding quarks and gluons together. The residual
color force of the quarks and gluons, the constituents of protons and neutrons,
has to be responsible for the formation of atomic nuclei [3]. The best theoreti-
cal description of the strong force is given by quantum chromodynamics (QCD)
[4]. Unfortunately a perturbative treatment of QCD is not possible at the en-
ergy scale of the nucleons. Furthermore, the finite amount of nucleons in the
atomic nucleus prevents to a large degree the application of statistical methods.
Therefore, alternative ways have to be taken to describe nuclear matter and to
treat QCD.
Several aspects of the nuclear force are empirically known. The binding energy
per nucleon is nearly constant for all known stable isotopes, around 8 MeV/A.
Indicating, that the nuclear force has a short range of a few fm and only acts on
direct neighbours. It has to be predominantly attractive to form nuclei and is
repulsive at very short distances, ∼0.7 fm, which can be deduced from the sat-
uration of the nuclear density in the core and the Pauli principle. The nuclear
force is charge independent (apart from the Coulomb repulsion), i.e. proton-
proton, neutron-neutron and proton-neutron interactions are equal, leading to
the concept of isospin. Moreover, the great number of non-spherical shaped nu-

1



Stable
RIB

Figure 1.1.: List of nuclear structure research facilities worldwide for stable
beams (l) and radioactive ion beams (RIBs) (u).

clei imply the existence of spin-dependent tensor forces.
The empirical information about the atomic nucleus and the nuclear force have
to be incorporated in a comprehensive theoretical description. Over the years,
a multitude of different theoretical models have been introduced, describing
certain aspects of nuclear structure. Three main groups of models are the shell
models (SMs), collective models, and algebraic models, such as the interacting
boson model (IBM). Through the advent of new radioactive ion beam (RIB) fa-
cilities in the last 20 years many new insights on nuclei far away from the valley
of β stability have been gained. Figure 1.1 shows some of today’s important
heavy ion beam facilities worldwide. Marked with l are stable beam facilities
and u mark current and future RIB facilities. More information on the produc-
tion of RIB are given in Refs. [5, 6]. The new available data lead to a further
improvement of our understanding of nuclear matter and serve as a test ground
for the different available theoretical descriptions. The playground of nuclear
physics, the nuclear chart is depicted in Figure 1.2, where all isotopes are repre-
sented in a N -Z chart. Here, only isotopes with an even number of protons and
neutrons, whose excited 2+1 and 4+1 states are known, are depicted. The color
code represents the energy ratio of the first excited 4+ state and the first excited
2+ state R4/2. Nuclei, whose lifetimes are greater than 1015 years, are considered
stable (□) and form the valley of stability. The R4/2 is an easily accessible observ-
able, connected to the shape of the nucleus. The ratios of all isotopes fall into
three categories. A value of less than 2 for isotopes at certain proton and neu-
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Figure 1.2.: Nuclear chart (adapted from [7]). Data from [8]. The color code
represents the R4/2 energy ratio of the shown isotopes. Stable iso-
topes are marked by □.

tron numbers, the so-called ”magic numbers” (Z , N = 2,8, 20,28, 50,82, 126),
corresponding to a spherical configuration of the nucleus. A value between 2
and 2.4 for isotopes in the vicinity of the magic numbers (vibrational nuclei)
and values of ∼ 3.33 for isotopes in between the magic shell closures (rigid ro-
tor).
Low-lying excited states of most accessible atomic nuclei decay mainly via the
emission of γ radiation, high-energetic photons. The measurement of the de-
excitation γ rays allows to infer properties of excited nuclear states and therefore
the structure of the nucleus, for instance its mean lifetime or its decay behavior.
New instrumentation, like the cerium doped lanthanum bromide (LaBr3(Ce))
detectors [9] with their excellent timing properties in combination with a com-
paratively good energy resolution for a scintillation detector or γ-ray tracking
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arrays composed of high-purity germanium (HPGe) detectors, such as the ad-
vanced gamma-tracking array (AGATA) [10] or the gamma-ray energy tracking
in-beam nuclear array (GRETINA) [11, 12] gave rise to new wave of high preci-
sion experiments and new insights into nuclear matter, e.g. the emergence and
disappearance of magic numbers far from stability (see Refs. [13–19]).
This work addresses two different techniques of γ-ray spectroscopy, foreseen

for the application to RIB: the investigation of mean lifetimes of excited nuclear
states in the rare-earth region of the nuclear chart via fast electronic scintil-
lation timing (FEST) and the investigation of magnetic dipole moments of ex-
cited nuclear states of low-Z nuclei with the electron-configuration-reset time-
differential recoil-in-vacuum (ECR-TDRIV) technique.

1.1. Lifetime measurements of excited states of rare
earth isotopes

1.1.1. Evolution of E2 transitions strengths of Hf isotopes
Another important observable, besides the R4/2 ratio, regarding the nuclear
shape of even-even nuclei, is the B(E2;2+1 → 0+GS) transition strength, connecting
the ground state (GS) and the 2+1 state. Since most nuclei far from shell closures
are quadrupole deformed [20] the B(E2) strength is an appropriate measure
of collectivity. Nuclei close to magic shell closures show small E2 transition
strengths (∼1 to 10 W.u.), whereas the B(E2) values of well-deformed nuclei
can reach a few hundred W.u. (see Refs. [21–34]). Examples are the rare-earth
isotopes around the mass number A≈ 170 with quadrupole deformation values
β ∼ 0.2− 0.4. In a naive valence-shell picture, solely allowing for an excitation
of valence nucleons, collectivity should be directly proportional to the number
of valence nucleons (holes) and thus maximize at mid-shell. A similar evolution
has also been predicted within the SU(3) dynamical symmetry of the IBM [35,
36]. Zhang et al. [37] pointed out, that the available experimental data indi-
cate a saturation of the B(E2) values and g factors [38, 39] of the first excited
states of even-even nuclei around A≈ 170, near mid-shell (between N = 82
and N = 126), instead of a maximum. Figure 1.3 presents the pre-year 20061

1Only the data available before the experimental campaign described in this work is shown in
Figure 1.3. In the meantime, the results obtained by M. Rudigier et al. for the Hf isotopes have

4 1. Introduction & motivation
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B(E2) data of the Er (u), Yb (6), Hf (l) and W (t) isotopes in that area of
the nuclear chart. A near constant behaviour for the B(E2) transition strength
is visible for the Er, Yb and the Hf isotopes at or below mid-shell (N = 104),
which is in agreement with the statement of Zhang. An overlap of the proton
and neutron wave functions alongside a reduction of the proton-neutron inter-
action near mid-shell was given as a qualitative explanation for the saturation.
In addition, it was revealed in Refs. [36, 42] that the tungsten and hafnium

isotopes display an irregularity in the differential of the B(E2) strengths, which
is defined as δB(E2) = B(E2)N − B(E2)N−2. The trend of the differential should
be smooth, but sharp drops and oscillations can be identified for the data of
the Hf and W isotopic chains. These oscillations and drops may hint at changes
in the underlying microscopic nuclear structure or simply point out incorrect
experimental data [the same B(E2)N value occurs in δB(E2)N and δB(E2)N+2

been published [40] and are in agreement with the results from this work. The new values of the
Hf isotopes show a similar trend to the Yb and Er isotopes. See also Section 6.1.

1.1. Lifetime measurements of excited states of rare earth isotopes 5
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sition probability B(E2;2+1 → 0+GS) in W.u. of the even-even Nd (t),
Sm (n), Gd (l) and Dy (�) isotopes around N = 90 as a function
of neutron number. Data taken from Refs. [21–25, 41, 46–53].

[36] amplifying the effect]. New experiments in this region of the nuclear chart
[36, 40, 43–45], indeed, revealed large discrepancies on the order of up to
20% from the literature values for the mean lifetime τ(2+1 ) of the Hf and W
isotopes. For that reason, a measurement campaign to determine the E2 tran-
sition strengths of low-lying yrast states of 174,176,178,180Hf was performed at the
Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara
(Horia Hulubei) (IFIN-HH) and will be presented in this thesis.

1.1.2. New signatures for a QPT in atomic nuclei
By going along the isotopic chains of the rare-earth isotopes from themagic shell
closure at N = 82 towards mid-shell, the B(E2) transition strength suddenly
jumps from values of just a few W.u. below N = 90 to a few 100W.u. [54–57].
A similar behaviour is found for the R4/2 ratios. These trends hint at a sudden
change in the nuclear shape as a function of nucleon number, known as a quan-

6 1. Introduction & motivation



tum phase transition (QPT) [58]. Further examples of such a sudden change
can be found, e.g. in the Zr, Sr region [59–62]. Figure 1.4 shows the evolution
of the inverse excitation energy of the first 2+ state (a), the two-neutron sepa-
ration energy S2n (b), the R4/2 energy ratio (c), and the E2 transition strength
B(E2;2+1 → 0+GS) for the even-even rare-earth Nd (t), Sm (n), Gd (l) and Dy
(�) isotopic chains. A clear change of these observables is visible at N = 90,
more rapid in Sm and Gd, indicating a QPT. Investigating these and further ob-
servables and their correlations can help to further improve our understanding
of QPTs [58, 63, 64].
A possible new signature of QPT is the product of transition probabilities, con-
necting the first excited 2+ state to the ground state and the first excited 0+

state, B(E2)prod = B(E2;0+1 → 2+1 ) × B(E2;0+2 → 2+1 ). The product can be re-
lated to the E0 transition strength ρ2, an established signature for a QPT (see
Refs. [65–67]). The Gd isotopes happen to be the perfect test case, since all
the experimental data, B(E2) strengths and ρ2, are available for the isotopic
chain over the QPT from N = 88 (152Gd) to N = 92 (156Gd). Due to the fact,
that the mean lifetime of the 0+2 state [the B(E2;2+1 → 0+2 ) value is derived from
this lifetime] was previously only determined in one experiment [68] with an
uncertainty of 22 %, a fast-timing lifetime measurement was performed with
the goal to verify or falsify this single measurement and further investigate the
correlations between different observables around the QPT.

1.2. Measurement of the g factor of 18O with the
ECR-TDRIV technique

The second part of this work focuses on the measurement of magnetic dipole
moments. These are an important indicator of the proton neutron wave function
composition and therefore the single-particle properties of the unpaired nucle-
ons of the investigated excited states [69, 70]. The determination of magnetic
moments of exotic nuclei can help to expand our knowledge of the underlying
microscopic structure of these nuclei. Customized experimental techniques are
required for the measurement of magnetic moments of exotic nuclei, because
additional experimental obstacles have to be overcome, compared to the appli-
cation to stable beams. For example the potential need to identify the reaction

1.2. Measurement of the g factor of 18O with the ECR-TDRIV technique 7



products with particle detectors2.
The region of the sd shell has been extensively studied in recent years, due to
a multitude of phenomena, e.g. as mentioned previously the emergence of the
magic number N = 16 [71] and the disappearance of N = 20 or the so-called
island of inversion at the edge of the sd shell [72]. Figure 1.5 (c) shows the lit-
erature values of the g factors of the N = Z + 2 nuclei (t) in the sd shell along
with predictions from the large scale shell model calculation code (NUSHELLX)
[73] employing the universal sd interaction B (USDB) [74, 75] (l). There is
an overall good agreement between the experimental values and the SM pre-
dictions, but at the edges of the sd shell the theoretical predictions deviate and
the experimental values are further from one (minus one) in comparison to the
theory. The SM calculations with the USDB interaction are capable to repro-
duce various properties of the N = Z + 2 isotopes. Figure 1.5 (a,b,d) presents,
in addition to the g factors, the excitation energies E(2+1 ), the reduced transi-
tion strengths B(E2;2+1 → 0+GS), and the quadrupole moments Q(2+1 ) of the 2+1
states. Discrepancies between theory and experimental data can be identified
solely for 18O and 38Ar. Hence, an experiment was performed at the Institut für
Kernphysik (IKP) of the Universität zu Köln, in order to determine the g factor
of the first 2+ state of 18O, testing the new experimental method ECR-TDRIV.
It is an extension of the traditional time-differential recoil-in-vacuum (TDRIV)
technique [76] for the application to RIB to relatively low Z nuclei (Z ≤ 20),
introduced by Stuchbery et al. in Ref. [77]. The technique has already been
successfully applied in the case of 24Mg [78, 79].

2Since a sizable amount of material is necessary to construct targets, nuclear reactions with
radioactive isotopes are often performed in inverse kinematics.

8 1. Introduction & motivation
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Figure 1.5.: Comparison between experimental data of the N = Z + 2 isotopes
in the sd-shell (t) with SM calculations from NUSHELLX [73] with
the USDB interaction [74, 75] (l). Depicted are (a) the excitation
energy E(2+1 ), (b) the B(E2;2+1 → 0+GS) transition strength, (c) the g
factors g(2+1 ), and (d) the quadrupole moment Q(2+1 ). Data taken
from Refs. [80–86].

1.2. Measurement of the g factor of 18O with the ECR-TDRIV technique 9



Outline
The thesis is structured in the following way:

• Chapter 2 introduces the main theoretical concepts used for the interpre-
tation of the experimental results.

• Chapter 3 presents the utilized nuclear reactions to populate excited states
of the isotopes of interest, γ-ray spectroscopy, and the experimental tech-
niques employed in this work, i.e. the FEST method and the ECR-TDRIV
technique.

• Chapter 4 describes the two experimental setups used in this work at the
IFIN-HH in Bucharest and the IKP der Universität zu Köln. The properties
of the used detector systems and the beam properties.

• The analysis procedure for the two types of experiments, e.g. data prepa-
ration and calibration procedures, and the extraction of the results are
expounded in Chapter 5.

• The discussion and interpretation of the results are presented in Chapter 6.

10 1. Introduction & motivation



2. Nuclear structure models

The following Chapter introduces the main theoretical concepts employed to
interpret the data of this work. It starts by introducing the reader to the different
approaches of the collective model by A. Bohr and B.R. Mottelson and the IBM,
as well as the concept of the QPT of atomic nuclei and the description of its
critical point. The introducedmodels are already treated extensively in standard
textbooks and, if not stated otherwise in this Chapter, the text follows Refs. [20,
35, 87–89] and references therein.

2.1. Collective model

Historically, the SM was the first successful model to describe the magic shell
closures at the nucleon numbers 2,8,20,28,50,82,126 and make predictions for
the properties of the ground-state and excited states in the vicinity of these
magic numbers. However, the SM calculations or the interpretation of their re-
sults becomes increasingly difficult with growing valence space of the nucleons,
e.g. for 154Sm, the valence protons and neutrons can couple to 3× 1014 possible
Jπ = 2+ SM states [89]. Furthermore, the lowest excited state of even-even nu-
clei is often a 2+ state, whose energy is quite below the energy needed to break
a pair of valence nucleons. Hence, there have to be other properties that are
common in even-even nuclei across the nuclear chart, i.e. collective properties.
The liquid drop model, introduced by A. Bohr, B.R. Mottelson [88], and many
others, treats the atomic nucleus as a drop of nuclear liquid, which may vibrate
or deform and rotate. The nuclear surface of such a liquid drop can be described
by the distance of the surface to the origin R(θ ,φ) in the collective coordinates

11
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Figure 2.1.: Nuclear shapes from spherical to prolate and oblate deformation in
the {β ,γ} plane.

aλµ by an expansion in terms of the spherical harmonics Y :

R(θ ,φ) = R0

⎡

⎣1+
∑︂

λµ

aλµY ∗λµ(θ ,φ)

⎤

⎦ , (2.1)

with the equilibrium nuclear radius R0 ≈ 1.25 3pAfm. Terms with the multipole
order λ= 0 represent a compression of the nucleus without changing its shape,
λ= 1 is equivalent to a displacement of the whole nucleus, which cannot result
from internal forces. Therefore, the λ = 2 (quadrupole) multipole mode is the
lowest order of interest at low energies, invoking a change in the nuclear shape.
Quadrupole deformation plays an important role for low-lying collective struc-
tures of atomic nuclei. Transforming the collective coordinate system of Eq. (2.1)
to the body-fixed system reduces the parameters aλµ to two real parameters β
and γ in the case of quadrupole deformation. These are defined as

a20 = β cosγ, a2±2 =
1
p

2
β sinγ and a2±1 = 0. (2.2)

The deformation strength (degree of axial deformation) is given by the quadrupole
deformation parameter β ≥ 0 and the asymmetry by the parameter γ, i.e. the
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degree of triaxiality, ranging from γ= 0° (prolate) to γ= 60° (oblate).
In these variables, the Bohr Hamiltonian can be written as [88]:

H = T + V = Tvib + Trot + V, (2.3)

with

Tvib = −
ħh2

2D

�

1
β4

∂

∂ β
β4 ∂

∂ β
+

1
β2

1
sin3γ

∂

∂ γ
sin3γ

∂

∂ γ

�

, (2.4)

Trot =
ħh2

8Dβ2

∑︂

κ

J2
κ

sin2 γ− 2/3κπ
, (2.5)

V = V (β ,γ). (2.6)

Here, D denotes the mass parameter and Jκ are the angular momentum op-
erators in the Euler angles. For certain values of β and γ, the Hamiltonian is
analytically solvable and the solution leads to, e.g. the harmonic oscillator (HO)
vibrator energy spectrum [β = 0,γ= 0, U(5)] [88, 90] or to the rigid-rotor en-
ergy spectrum [β > 0,γ = 0 or γ = 60, SU(3)] [88, 91], with their typical
energy ratios R4/2 = E(4+1 )/E(2

+
1 ), for even-even nuclei, of R4/2 = 2 (vibrator)

and R4/2 = 3.33 (rotor).
In addition, analytical solutions of the Bohr Hamiltonian have been found for the
QPT between spherical [U(5)] and γ-soft nuclei [O(6)], i.e. the E(5) symmetry
[92] and for the QPT between spherical and symmetrical axially deformed nu-
clei [SU(3)], i.e. the X(5) solution [93], and the entire range between X(5) and
the rigid-rotor limit in terms of the confined-β-soft rotor (CBS) model [94]. The
evolution of the potential energy surface for the QPT U(5)→S(U3) is depicted
in Figure 2.2.

2.1.1. X(5) model

The X(5) solution of the Bohr Hamiltonian was established by F. Iachello in
Ref. [93]. It describes the critical point of a QPT between spherical and axially
deformed nuclei. The ansatz is to describe the potential in β with an infinite
square well with the barrier width βw and the potential in γ as a HO with the
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Figure 2.2.: Schematic evolution of the potential energy surface in the γ = 0°
plane from the geometric collective model [95], i.e. U(5)→SU(3).
Parameters taken from Ref. [20].

minimum at γ= 0°, if the potential V (β ,γ) can be separated into v(β) and u(γ):

v(β) =

¨

0, for β ≤ βw,

∞, for β > βw.
(2.7)

Figure 2.3 (a) shows the comparison between a potential derived from the col-
lective model and the approximation of the square well potential employed in
the X(5) ansatz. Empirical signatures for X(5) are, e.g. the ratios R4/2 = 2.9 and
B4/2 = B(E2;4+1 → 2+1 )/B(E2;2+1 → 0+GS) = 1.58 and the placement of the first ex-
cited band. Several empirical realizations of X(5) were found in the rare-earth
region of the nuclear chart along N = 90, e.g. 152Sm,150Nd,154Gd, and 156Dy
[54–57].

2.1.2. Confined β-soft rotor model
The CBS model [94] extends the X(5) approach towards the rigid-rotor limit. It
introduces an inner boundary for the infinite square potential v(β) and assumes
a HO potential for u(γ)with theminimum at γ= 0°. The stiffness of the potential
in β is given by

rβ =
βmin

βmax
, (2.8)
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Quadrupole deformation β

Figure 2.3.: Approximation of the nuclear potential as a function of the defor-
mation parameter β for (a) the X(5) and (b) the CBS model. (a)
The dark red line indicates a potential from the collective model.
(b) The black arrows indicate the moving inner boundary of the in-
finite square well potential of the CBS model. The wave function of
a 0+1 state is shown.

with the inner and outer boundaries βmin and βmax , respectively. Figure 2.3 (b)
shows the CBS potential for rβ = 0.4. The potential is equivalent to the X(5)
model for rβ = 0 and corresponds to the rigid-rotor limit for rβ → 1.
The CBS model successfully describes the evolution of low-energy 0+ bands
[94], the ground-state bands of strongly deformed nuclei [96] and for studying
the evolution of the E0 transition strength from X(5) nuclei to the rigid-rotor
limit [66]. In addition, it can be shown that

ρ2(E0)∝ B(E2)1B(E2)2, (2.9)

where B(E2)i = B(E2;2+1 → 0+i ). Thus, the product of B(E2) values might be a
new signature for a QPT in atomic nuclei. The full derivation can be found in
Appendix A.2. The limits of the Bohr Hamiltonian directly connect the collective
model to the IBM, which will be discussed in the next Section.
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Figure 2.4.: IBM symmetry triangle and the corresponding limits of the collec-
tive model. X(5) and E(5) are analytical solutions of the Bohr-
Hamiltonian, see Section 2.1.1.

2.2. Interacting boson model

The IBM [35] offers another approach to describe atomic nuclei. It is derived
from a truncation of the SM space, but is also able to interpret collective phe-
nomena. It is an algebraic model describing low energy collective excitations of
atomic nuclei over the whole nuclear chart. The building blocks of the model are
valence nucleons (protons or neutrons) paired to bosons, in analogy to Cooper
pairs in the electron gas [97]. In the sd-IBM-1 version, protons and neutrons
are treated as indistinguishable nucleons and the bosons can carry the angular
momentum L = 0 (s bosons) or L = 2 (d bosons). Naturally, the number of
bosons is given by

N = (Nπ + Nν)/2, (2.10)

with the number of valence protons and neutrons Nπ, and Nν, respectively. The
boson creation and annihilation operators of the sd-IBM-1 are

s†, s, and d†
µ, d̃µ (2.11)
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with µ ∈ {±2,±1,0}. Operators are written in terms of these boson operators.
For instance, a simplified Hamiltonian in the consistent-Q formalism1 [98, 99]
is given by [100]

H = εnd − κQχ ·Qχ = c
�

(1− ζ)nd −
ζ

4N
Qχ ·Qχ
�

, (2.12)

where nd is the d boson number operator (d†d̃), Qχ = (s†d̃+d†s)+χ(d†d̃)(2) the
quadrupole structure operator and ζ= 4N/(4N + ε/κ).
The sd-IBM-1 structure can be expressed in terms of the algebraic group U(6)
(see Refs. [35, 101]). Three analytical solutions of the sd-IBM-1 exist for the
three subgroups U(5), SU(3), and O(6) of U(6). They describe the three edges
of the IBM symmetry triangle, which can be mapped with the parameters χ ∈
[−
p

7/2,0] and ζ ∈ [0,1] as depicted in Figure 2.4. U(5) corresponds to ζ = 0,
SU(3) to ζ= 1 and χ = −

p
7/2 and O(6) to ζ= 1 and χ = 0.

2.2.1. Q-phonon scheme
The Q-phonon scheme was developed to describe low-lying excited states of
even-even nuclei [102–107]. Low-lying positive parity states can be approxi-
mated in terms of multiple quadrupole (Q) phonon excitations of the ground
state |0+GS〉 of a nucleus

|L+, n〉=
(L)

[Q...Q]
⏞ ⏟⏟ ⏞

n

|0+GS〉 . (2.13)

By an evaluation of the ratio

R(2) =
Σi>1B(E2;0+GS → 2+i )

Σi≥1B(E2;0+GS → 2+i )
, (2.14)

it was empirically proven in Ref. [104] that the first 2+ state of all collective
nuclei between Z = 30 and Z = 82 exhausts (≥90%) of the known E2 transition
strength from the GS. Moreover, a similar approach has come to the same results
for odd-spin states of collective nuclei [105].

1In the consistent Q formalism the same parameter χ is used for Qχ in the Hamiltonian and the
E2 transition operator T (E2) = eBQ, with the boson charge eB .
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3. Experimental techniques
In this Chapter several aspects of nuclear structure physics, that are particularly
important for this work, will be introduced. The first Section will acquaint the
reader with the exploited nuclear reactions, which populate excited states of
the isotopes of interest. It follows a short introduction to excited nuclear states
and the subsequent γ decay. Afterwards, the measurement of lifetimes of ex-
cited nuclear levels will be discussed. The last part of this Chapter outlines the
measurement of magnetic moments, in particular with the TDRIV technique.
The following Sections are based on standard textbooks of nuclear structure
physics, i.e. Refs. [20, 87, 108–110], and further details on specific topics can
be found there or in references therein.

3.1. Nuclear reactions
There is only a limited number of stable isotopes (∼ 300 [111]) available to
study in nature. Therefore, studying properties of the atomic nucleus almost
always requires the production of these nuclei by nuclear reactions. Nuclear
reactions were investigated for the first time about 100 years ago by Rutherford
et al. [2], by scattering α particles from a radioactive source on gold foils. With
the advent of many new technological advancements, reactor or accelerator
facilities worldwide allow to study a large variety of nuclear reactions and their
products.
A nuclear reaction is typically written in two equivalent ways:

a+ X → Y + b,

X (a, b)Y,

with the projectile a, the target X , and the reaction products Y and b. All re-
action partners can be nuclei, single nucleons or γ rays. Nuclear reactions can
be categorized in different ways. The process is called elastic scattering, if the

19



Fusion reaction,
Compound nucleus

Direct reactions

Coulomb excitation

Impact 
parameter

Figure 3.1.: Different trajectories for different reaction processes between heavy
ions.

incoming and outgoing particles are the same, i.e. a = b and X = Y , and the
outgoing particles are not in an excited state. If the impact parameter, i.e. the
perpendicular distance between the path of the projectile a and the target X
(as illustrated in Figure 3.1), is small, compound reactions can take place. These
will be further discussed in detail in Section 3.1.2. Direct reactions can occur
in the peripheral collision between the incoming particles and the target. The
reaction is called inelastic, if any of the outgoing particles emerges in an excited
state.
This work will focus on two types of nuclear reactions (see Ref. [87] and refer-
ences therein for information on further nuclear reactions);Coulomb excitation
(CoulEx) and fusion evaporation (FE). They will be introduced in the following
Sections.

3.1.1. Coulomb excitation
The excitation of an atomic nucleus via the electromagnetic (EM) field of an-
other nucleus by the exchange of virtual photons is CoulEx. The method is
well understood, because it is based on the EM interaction, and has already
been used to study atomic nuclei for decades. The theoretical description was
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Figure 3.2.: Classical orbit of the projectile in the Coulomb field of the target
nucleus, shown in the rest frame of reference of the target nucleus.

developed by K. Alder and A. Winther [112, 113]. If it is guaranteed that the in-
teraction between the nuclei is purely EM, CoulEx can be adequately described
in a semi-classical way. The following brief introduction of CoulEx is based on
the classical work of Refs. [112–114].
One requirement for the semi-classical treatment is, that the effective strength

of the interaction, i.e. the Sommerfeld parameter η, which can be written as
the ratio between the half-distance of closest approach in a head-on collision a
and the de Broglie wavelength λ of the relative motion of the two particles, is
large compared to unity:

η=
a
λ
=

ZP ZT e2

ħhv
≫ 1, (3.1)

where v is the relative velocity and ZP and ZT are the proton numbers of the
projectile and the target, respectively. Furthermore, the energy loss of the pro-
jectile ∆E should be small in comparison to its kinetic energy, i.e. ∆E/E ≪ 1.
Thereby, it is guaranteed, that the radii of the projectile and the target nucleus
do not overlap during the scattering process and the orbits of the particles are
only negligibly modified during the excitation process.
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The cross section of elastic scattering in a heavy-ion collision can be described
by

�

dσ
dΩ

�

Rutherford
=

1
4

a2

sin4(θ/2)
, (3.2)

with the scattering angle θ . In a semi-classical description, the CoulEx cross
section is equal to the Rutherford cross section modified by the probability that
a nucleus is excited from the initial state i to the final state f Pi→ f :

�

dσ
dΩ

�

CoulEx
= P i→ f

�

dσ
dΩ

�

Rutherford
, (3.3)

The probability Pi→ f can be expressed in terms of the excitation amplitudes bi f ,
summed over all magnetic substates mi and m f of the initial and final states:

Pi→ f =
1

(2Ii + 1)

∑︂

mi ,m f

|bi f |2, (3.4)

with the spin of the initial state Ii . The excitation amplitudes of one-step excita-
tion processes can be calculated in first order perturbation theory. The CoulEx
cross-section can be related to the reduced transition probability B(σλ; Ii → I f )
with radiation character σ and multipolarity λ:

dσEλ =
�

ZP e
ħhc

�2

a−2λ+2B(Eλ) fEλ(ξ), (3.5a)

dσMλ =
�

ZP e
ħhc

�2

a−2λ+2B(Mλ) fMλ(ξ). (3.5b)

Here, a is the earlier referred to half-distance of closest approach, the fσλ(ξ)
are tabulated in Ref. [112], and ξ is the dimensionless adiabaticity parameter,
defined by

ξ=
a
ħhv
∆E =

ZP ZT e2

ħhv
∆E
2E

, (3.6)

with the classical kinetic energy E = 1/2m0v2. The reduced transition proba-
bility is related to the reduced transition matrix elements through the Wigner-
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Eckart theorem [115]

B(σλ) f i =
∑︂

µ,m f

|︁

|︁〈I f m f |M(σλ,µ) |Iimi〉
|︁

|︁

2

=
1

2Ii + 1

|︁

|︁〈I f ∥M(σλ)∥Ii〉
|︁

|︁

2
. (3.7)

Here, M(σλ,µ) denotes the multipole transition operator associated with the
multipole radiation field σλµ. Eqs. (3.5a) and (3.5b) show that the CoulEx
cross-section for one-step excitation processes decreases by two orders of mag-
nitude with increasing multipolarity. Magnetic excitations are further reduced
by a factor β2 = (v/c)2 in comparison to electric excitations, due to the relative
motion of projectile and target and the thereby reduced magnetic field of the
projectile. Consequently, electric dipole (λ = 1) and quadrupole (λ = 2) tran-
sitions play a paramount role in CoulEx experiments, compared to transitions
with λ > 2. Quadrupole, i.e. E2, transitions are even more enhanced in com-
parison to other multipolarities in CoulEx experiments, because the excitation
transition probability of energetically low-lying excited states via E2 transitions,
B(E2), is usually many orders of magnitude larger than the transition probabil-
ities via E1 or M1 transitions, B(E1) or B(M1), given v≪ c.
The CoulEx cross sections can be calculatedwithmany different computer codes,
e.g. the multiple Coulomb excitation program (CLX) by H. Ower [116], which
include the correct treatment of higher order effects that can play an important
role in real experiments, e.g. multi step excitation processes.

3.1.2. Fusion evaporation
If the impact parameter of the incident particle p of a reaction is small in com-
parison to the radius of the target nucleus T (see Figure 3.1) and the energy
of p is high enough to overcome the Coulomb barrier and the collision time is
greater than 10−22 s, then there is a high probability that a compound nucleus X ⋆

is formed, due to random collisions of the nucleons of the projectile and target
nucleus. The compound nucleus is highly excited and decays via evaporation of
particles z and γ rays to the ground state of residual nuclei Y .

p+ T → X ⋆→ Y + z + γ. (3.8)
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Figure 3.3.: Simple level scheme of two states and the γ-ray transition connect-
ing these two states Iπi
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There are many possible exit channels, potential decay paths, for the compound
nucleus, but the relative decay probabilities of these channels are independent
of the creation process of the compound nucleus [87] and do only depend on the
total energy and the total angular momentum of the compound nucleus. The
decay of the compound nucleus is heavily dependent on the total energy, with
higher energy increases the probability for the evaporation of more nucleons.
Estimations of reaction yields can be calculated with specific FE computer codes,
such as the program to calculate fusion-evaporation cross sections (CASCADE)
[117] and the projection angular-momentum coupled evaporation code (PACE)
[118, 119].

3.2. Excited nuclear states
The EM transition between two states is characterized by the radiation character
σ and the multipolarity λ, where σ is either of electrical (E) or magnetic (M)
nature. Figure 3.3 illustrates a simple level scheme comprised of two states.
Conservation of energy, spin and momentum results in selection rules for energy
E, angular momentum λ and parity π of EM transitions

Eγ = Ei − E f , (3.9a)
|Ii − I f | ≤ λ≤ Ii + I f , (3.9b)

π f = πi ·πγ. (3.9c)

An EM transition of order λ involves a change of the parity quantum number
by (−1)λ for electrical or (−1)λ+1 for magnetic transitions. The transition prob-
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ability per unit time T f i of the γ decay from an initial nuclear state Iπi
i to a final

nuclear state I
π f

f is anti-proportional to the lifetime τ of the transition [108]:

T f i =
1
τ
=
∑︂

f

1
τ f

. (3.10)

In general, for several final states or mixing multipolarities, the total transition
probability is given by the sum over the partial probabilities. The total decay
rate, summed over the magnetic substates of the photon and of the final nuclear
state, can be expressed as [120]:

T (σλ) f i =
8π(λ+ 1)
λ[(2λ+ 1)!!]2

1
ħh

� Eγ
ħhc

�2λ+1

B(σλ; i→ f ), (3.11)

with the reduced transition strength B(σλ) from Eq. (3.7). Typical units for the
transition strengths B(σλ) are

[B(Eλ)] = e2fm2λ, [B(Mλ)] = µ2
N fm2λ−2. (3.12)

Typically the reduced transition strength is often found in the literature in units
of barn (b) instead of femtometer (fm2), with 1b = 100 fm2. Numerical forms
for the transition probabilities [108] can be stated,

T Eλ
f i = 5.498× 1022 f (λ)

�

Eγ[MeV]

197.33

�2λ+1

B(Eλ)
�

e2fm2λ
�

1/s, (3.13a)

T Mλ
f i = 6.080× 1020 f (λ)

�

Eγ[MeV]

197.33

�2λ+1

B(Mλ)
�

µ2
N fm2λ−2
�

1/s, (3.13b)

with f (λ) =
λ+ 1

λ[(2λ+ 1)!!]2
,

with the convention c = 1 and the relations

e2 = 1.44MeV fm, ħhc = 197.33MeV fm. (3.14)

Single-particle estimations, so called Weisskopf estimates [121], are often used
to compare different experimental results. They are a rough evaluation of the
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collectivity of a transition, i.e. the number of nucleons contributing to a transi-
tion. For a transition from the excited nuclear state Iπi

i to the state I
π f

f they can
be calculated by

B(Eλ, i→ f ) =
(1.2)2λ

4π

�

3
λ+ 3

�2

A
2λ
3 , (3.15a)

B(Mλ, i→ f ) =
10× (1.2)2λ−2

π

�

3
λ+ 3

�2

A
2λ−2

3 . (3.15b)

A measurement of the lifetime, as performed in this work, can therefore give
insight into the collectivity of an atomic nucleus. The next Section will introduce
the reader to the measurement of mean lifetimes of excited nuclear states and
in particular to the experimental technique of FEST.

3.3. Lifetime measurements
A wide variety of experimental techniques for the measurement of nuclear level
lifetimes or transition strengths is available, each technique with a particular
range of applicability depending on the order of magnitude of the lifetime. It is
therefore important to select the correct experimental method, since the tran-
sition energies and level lifetimes range over multiple orders of magnitude, i.e.
from few keV up to several MeV in the case of transition energies and from fem-
toseconds lifetimes or even less for short-lived levels to some milliseconds for
long-lived isomeric states in the case of level lifetimes up to years and gigayears.
The experimental methods can mainly be categorized into two types: direct

and indirect lifetime measurements. Figure 3.4 gives an overview of some of
these methods and their range of applicability in terms of the feasibility to in-
vestigate lifetimes.
The following Section 3.3.1 will present the method of electronic timing in

more detail. Themethod of CoulEx has already been introduced in Section 3.1.1.
Eqs. (3.5a) and (3.5b) show that the CoulEx cross section is directly propor-
tional to the reduced transition strength B(σλ), which in turn is connected to
the mean lifetime via Eqs. (3.10) and (3.11). The measurement of the CoulEx
cross sections therefore determines the mean lifetime of the excited state. The
other methods mentioned will not be further discussed here, but information on
nuclear resonance fluorescence (NRF) can be found in Refs. [122–124], on the
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Figure 3.4.: Experimental methods and their range of applicability in terms of
lifetimes. Red boxes represent indirect methods determining life-
times and black boxes direct methods.

Doppler-shift attenuation method (DSAM) in Refs. [125, 126], and on the recoil
distance Doppler-shift (RDDS) technique in Ref. [127] and references therein.

3.3.1. Fast electronic scintillation timing
Lifetimes of excited nuclear states in the range of ns down to a few tens of ps
can be measured with the FEST technique by measuring the time difference
between a start and a stop signal, e.g. the detection of a transition populat-
ing and the detection of a second transition depopulating the nuclear state of
interest. The measurable lifetimes are limited by the time resolution of the uti-
lized detectors and the electronics setup. Table 3.1 summarizes the properties
of a few commonly used detectors for γ-ray spectroscopy. It shows, that semi-
conductor detectors, i.e. here HPGe detectors, have in general a better energy
resolution in comparison to inorganic scintillators, but their time resolution is
one or two orders of magnitude larger and therefore limiting their usage for
lifetime measurements with fast-timing methods to the ns regime. Traditionally
the FEST method was introduced for βγγ coincidences [132, 133], where BaF2
scintillator detectors were used in combination with HPGe detectors and plastic
scintillators for the detection of the electrons. But for FE reactions the energy
resolution of the BaF2 is usually too low to resolve the close lying transitions.
The energy resolution of most scintillators,∆E/E ≈ 10%, narrows their applica-
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Table 3.1.: Overview and comparison of often used detectors in nuclear struc-
ture experiments.

Detector Type Light Output Decay Time ∆E/E
(γ(e−)/MeV) (ns) @ 662 keV (%)

HPGe semicond. 3× 106© 0.2©

LaBr3(Ce) inorg.scint. 61000ª 15-26« 2.8¨

NaI inorg.scint. 38000© 230© 5.6¨

BaF2(slow) inorg.scint. 9500© 630© 12.0H

BaF2(fast) inorg.scint. 1400© 0.6© 12.0H

BGO inorg.scint. 8200© 300© 10.0~

© Data taken from Ref. [109] ª Data taken from Ref. [9] « Data taken from Ref. [128] ¨ Data
taken from Ref. [129] ~ Data taken from Ref. [130] H Data taken from Ref. [131]

tion to study only a few cases of excited nuclear states, where the level density
is very low. The development of a new type of scintillator, i.e. the LaBr3(Ce)
detector [9], was the driving force behind a new wave of FEST measurements
in the last decade and the construction of a number of new detector arrays in-
corporating these detectors in combination with HPGe detectors to combine the
high energy resolution of the HPGe detectors and the good time resolution of
the LaBr3(Ce) detectors. Examples are the high efficiency observatory for γ-
ray unique spectroscopy (HORUS) setup in Cologne [134, 135], in Bucharest
the romanian array for spectroscopy in heavy ion reactions (ROSPHERE) array
[136–139] the fast timing array (FATIMA) for the facility for anti-proton and
ion research (FAIR) [140, 141], which was used in different combinations with
HPGe detectors such as the EXOGAM at ILL (EXILL) spectrometer [142–144],
Gammasphere at the Argonne national laboratory (ANL) [145] or the ν-ball
spectrometer [146] at the l’institut de physique nucléaire (IPN), Orsay.

The FESTmethod is shown schematically for a radioactive source and a pair of
scintillation detectors in Figure 3.5. A more detailed description of the method
and the setup in Bucharest, that was used in this work, can be found in Refs. [136,
137]. The two γ-ray transitions populating and depopulating the state of inter-
est are detected with, e.g. two LaBr3(Ce) detectors. The signals go through a
constant fraction discriminator (CFD) to extract the timing information of the
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Figure 3.5.: Pair of scintillation detectors, two signal paths, one path delayed
with analogue electronics.

signals. One signal is delayed and both signals are fed into a time-to-amplitude
converter (TAC), whose output signal amplitude is proportional to the time dif-
ference between the start and the stop signal. The resulting delayed time distri-
bution Dλ(t), assuming no background contributions, is a convoluted function
of the exponential decay of the investigated nuclear state and the time response
of the experimental setup P(t), i.e. electronics and signal processing [147]:

Dλ(t) = nλ

∫︂ t

−∞
P(t ′)e−λ(t−t ′)dt ′, (3.16)

with the transition rate λ = 1/τ and the normalization n. If the start and the
stop signals are swapped, i.e. the start is on the depopulating transition (Decay)
and the stop on the populating transition (Feeder), the time distribution will be
mirrored and the exponential flank is towards negative time differences (anti-
delayed case).
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Figure 3.6.: Logarithmic plot of counts over time for (a) the slope method and
(b) the centroid-shift method.

Slope method

If the lifetime of the nuclear state of interest is large in comparison to the full
width at half maximum (FWHM) of the system’s response, a simple fit of the
exponential tail of the time distribution gives directly the lifetime of the nuclear
state [see Eq. (3.16)]. Figure 3.6 (a) shows the time distributions for a lifetime
larger than the FWHM of the system once with the start signal from the populat-
ing transition (orange line, Feeder) and with a start signal stemming from the
depopulating transition (black line, Decay). The slope of the decay tail of the
time distributions gives directly the exponential decay constant and therefore
the lifetime (λ= 1/τ).
It is important to ensure during the fitting procedure not to include contribu-
tions from the background and the prompt response of the setup.

Centroid shift

For shorter lifetimes, other methods, e.g. the centroid-shift method [132, 133]
or the generalized centroid difference method [135], have to be used to deter-
mine the lifetime of the nuclear state, since a fit to the decay tail of the time
distribution becomes unreliable, because the decay tail becomes very short. The
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center of gravity or centroid of a time distribution is defined as [148]:

C(Dλ) =< t >=

∫︁

tDλ(t)dt
∫︁

Dλ(t)dt
, (3.17)

resulting in the case of a start condition on the feeding transition (delayed case)
in

τ= Cd(Dλ)− Cd(P), (3.18)

with the centroid of the delayed time distribution Cd(Dλ) and of the system’s
prompt response Cd(P). If the start condition is set to a depopulating transition
C(D) and C(P) switch places in the equation. After the time walk correction
Cd(P) is equal to Ca(P) of the anti-delayed time distribution (more details on the
time-walk calibration can be found in Section 5.2.4). It follows for the centroid
difference [134]:

∆C = Cd(D)− Ca(D)
= Cd(P) +τ− (Ca(P)−τ)
= 2τ. (3.19)

Figure 3.6 (b) shows the expected prompt time response of the experimental
setup and the influence of the mean lifetime on the centroid of the delayed
(Start Feeder) and anti-delayed (Start Decay) time distributions. The difference
between the centroid of the delayed and the anti-delayed time distribution is
equivalent to twice the mean lifetime τ.

3.4. Magnetic dipole moments
This section is mainly based on Refs. [76–79, 87, 149].
As was already mentioned in the CoulEx section 3.1.1, the EM interaction of-
fers a great way to probe nuclear structure without disturbing the underlying
structure of the atomic nucleus. The EM interaction is well understood, mak-
ing it possible to perform model-independent measurements. The leading non-
vanishing term of a multipole expansion of a current distribution is the magnetic
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dipole moment. The magnetic dipole moment µ can be defined as

µ=
eħh
2m

l, (3.20)

with the electron charge e, the mass m and the angular momentum l. The
quantity µN = eħh/2mp with the proton mass is called the nuclear magneton.
The nuclear magneton µN = 5.05084× 10−27 J/T is three orders of magnitude
smaller than the Bohr magneton µB = 9.27405× 10−24 J/T, using the electron
mass instead of the proton mass. Hence, nuclear magnetism has a much smaller
effect in comparison to the magnetism of the electron shell.
The nuclear magnetic dipole moment is proportional to the nuclear spin [150]

µ∝ IµN , (3.21)
⇒ µ= g IµN . (3.22)

Its proportionality constant is given by the dimensionless g factor or Landé
factor [151]. Nuclear magnetic moments are created from the orbital angular
momentum l and the intrinsic spin s of the individual nucleons. Therefore, the
nuclear magnetic dipole operator is expressed as

µ=
A
∑︂

i=1

(g i
l l i + g i

ssi)µN , (3.23)

where l i , si are the orbital and intrinsic spin angular momentum operators and
g i

l , g i
s are the orbital and spin g factors, which account for the orbital and in-

trinsic spin contributions, of the i-th nucleon. The orbital g factor of protons is
gl = +1 and zero for the neutron, because it carries no electric charge. Quantum
mechanics predicts a spin g factor of two for fermions (particles with s = 1/2),
like the proton, neutron and electron. The electron spin g factor is indeed close
to that value, i.e. gs = −2.002319 304362 56(35) [152] and the small deviation
can be explained by quantum electrodynamics [153]. But the g factors of the
free nucleons differ substantially. They were experimentally determined to be
gπ,s = 5.585694 6893(16) and gν,s = −3.826085 45(90) [152], giving a hint to
their internal structure.
Since the pairing force favors the coupling of pairs of nucleons to a total angular
momentum of zero, valence nucleons have the biggest influence on the nuclear
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magnetic moment.
The magnetic dipole moment of an excited nuclear state can be measured by
the interaction between µ and an external (internal) magnetic field or by the
precession of an aligned nuclear spin I in a magnetic field. Strong magnetic
fields (on the order of kT), which are to date nearly impossible to reach in the
laboratory, are required to measure the Larmor frequency

ωL = g(2I + 1)
µN

ħh
B, (3.24)

where B is themagnetic field, if the lifetime of the investigated excited state is on
the order of picoseconds. Two such strong magnetic fields are the transient field
(TF) [154, 155], acting on swiftly moving nuclei of ions within a magnetized
ferromagnetic medium [156], and the free-ion hyperfine fields of ions recoiling
into vacuum (recoil-in-vacuum (RIV)) [76]. Precise knowledge of the charge
distribution of the electron shell of the projectile or the target are necessary to
calculate these magnetic fields to sufficient precision. Accordingly, calibration
measurements with known magnetic moments are often required.
RIV and TF have to be modified for their application to RIB. Since the focus
of this work is on the RIV technique the reader is referred to Refs. [157, 158]
for more information on the application of TF methods to RIB. The following
section will introduce the ECR-TDRIV technique based on Refs. [76–79, 159].

3.4.1. Time-differential recoil-in-vacuum
In the traditional RIV technique (time-integral attenuation) an ion beam im-
pinges on a target and excited ions emerge from the target into vacuum. If
the excited ions carry one or more electrons, the nuclear spin I and the atomic
spin J of the electrons couple to F = I + J and precess around F . The angular
distribution of the de-excitation γ-radiation of the emerging ions is measured.
By comparing the perturbed angular distribution to the unperturbed angular
distribution, the attenuation coefficients can be extracted. Using a plunger de-
vice the technique can be extended (time-differential attenuation). By changing
the distance between the target foil and an adjustable stopper foil behind the
target, the frequency of precession ωL can be measured, since the orientation
of the nuclear spin freezes, when the ions are stopped in the stopper foil (see
Ref, [77]). In the case of hydrogen-like ions, where the sole electron sits in the
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Figure 3.7.: ECR-TDRIV scheme. A particle detector is placed in forward direc-
tion and HPGe detectors around the target chamber.

1s orbital, the hyperfine field at the location of the nucleus can be calculated by

B1s = 16.7Z3R(Z)T, (3.25)

with the proton number Z and the Z-dependent relativistic correction factor
R(Z) ≈ 1+ (Z/84)2.5, which is near unity for small Z . Other electron configu-
rations decay to the ground state within 10−13s [160] and therefore only play a
minor role.
Accordingly, the Larmor frequency ωL is given by

ωL ≈ g(2I + 1)800Z3 MHz. (3.26)

The precession of the nuclear spin can be measured by investigating the per-
turbed angular correlation of γ-rays depopulating the excited state. RIV has to
be adjusted in the case of RIB. There, it is necessary to also detect the outgo-
ing particles with particle detectors. Hence, it was proposed by Stuchbery et al.
[77] to replace the stopper foil by a thin electron configuration reset foil, allow-
ing to place particle detectors in forward direction. The ECR-TDRIV technique
is illustrated in Figure 3.7. The perturbed particle-γ angular correlation has the
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following form, taken from Ref. [78]

W (θp,θγ,∆φ, t) =
∑︂

kq

akq(θp)Gk(t)D
k∗
q0(∆φ,θγ, 0), (3.27)

where θγ and θp denote the polar detection angles of the coincident γ rays and
particles, ∆φ = φγ −φp is the difference between the azimuthal angles of the
coincident γ rays and particles. The parameters akq(θp) are equal to the product
of the orientation parameters Bkq, the attenuation factors Qk, due to the finite
solid angle of the HPGe detectors, and the angular distribution coefficients F k.
Dk∗

q0(∆φ,θγ, 0) is the Wigner-D matrix and responsible for the transformation
into the reference system of the scattered ions. The time-dependent attenuation
coefficients Gk(t) depend on the nuclear g factor. The terms will be explained
in the following subsections.

Statistical tensor

The statistical tensor ρkq contains the information about the degree of orienta-
tion of the initial state. It is connected to the density matrix ρ [114]

ρkq =
p

2Ii + 1
∑︂

m,m′
(−1)Ii+m′
�

Ii k Ii
−m′ q m

�

〈m|ρ |m′〉 , (3.28)

k = 0,1, 2, . . . , 2Ii , if Ii is an integer and q goes from −k to k. For aligned
states, where substates with m and −m are equally populated, only statisti-
cal tensors with even k values are non-zero [149]. The orientation parameter
Bkq of Eq. (3.27) is related to the statistical tensor ρkq via

ρkq =
Bkq
p

2k+ 1
. (3.29)

Solid angle correction factor

Because of the finite solid angle of the HPGe detectors, the observed anisotropies
of the angular correlation are reduced. Therefore, the attenuation factorsQk are
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Figure 3.8.: Detector geometry for the calculation of the solid-angle attenuation
coefficient. Adapted from Ref. [163].

introduced (see also Refs. [161–163])

Qk =
Jk

J0
, (3.30)

where

Jk =

∫︂

Pk(cosα)
�

1− eτx(α)
�

sinαdα, (3.31)

with the γ-ray absorption coefficient τ and the ordinary Legendre polynomials
Pk. The integration is carried out over the path length x(α) of the γ ray in the de-
tector material, as shown in Figure 3.8, α is the angle between the propagation
of the γ ray and the symmetry axis of the detector.

Geometrical factors

The Fk coefficients only depend on the spin of the initial state Ii and final state I f
and on the transition’s multipolarity connecting these states. They are defined
as [113]

Fk = (−1)Ii+I f −1
Æ

(2k+ 1)(2λ1 + 1)(2λ2 + 1)(2Ii + 1)

×
�

λ1 λ2 k
1 −1 0

�§

λ1 λ2 k
Ii Ii I f

ª

, (3.32)
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where λi are the multipole order of the transition connecting i and f , (· · · ) is the
Wigner 3-j symbol and {· · · } the Wigner 6-j symbol, introduced in Ref. [164].
For a pure E2 transition, e.g. 2+1 → 0+GS, λ1 is equal to λ2.

Wigner-D matrix

By rotating the statistical tensor ρkq with the Wigner-D matrix by the Euler
angles (α,β ,γ), it is possible to transform the frame of reference, in which the
beam axis is the quantization axis, to a frame of reference, where the outgoing
reaction products define the quantization axis.

ρz-axis
kq =
∑︂

q′
ρreaction

kq′ Dk
qq′(α,β ,γ). (3.33)

TheWigner-D matrix can be expressed in terms of the spherical harmonics [114]

Dk∗
q0(∆φ,θγ, 0) = (−1)q

⌜

⎷ 4π
2k+ 1

Y k
−q(θγ,∆φ). (3.34)

The sole φ dependence of the angular correlation is on∆φ = φγ−φp. Only the
orientation parameters Bkq depends on φp and can be rewritten as

Bkq(θp,φp) = Bkq(θp, 0)e−iqφp = Bkq(θp)e
−iqφp , (3.35)

which can be incorporated into the spherical harmonics, with the Condon-Shortley
phase convention, and leads to

Y m
l (θγ,φγ)e

−iqφp = (−1)m
⌜

⎷ (2l + 1)
4π

(l −m)!
(l +m)!

Pm
l (cosθγ)e

imφγe−iqφp

≡ Y k
q (θγ,∆φ = φγ −φp). (3.36)

Time-dependent attenuation coefficients

The time-dependent de-orientation effect can be described by the attenuation
coefficients Gk(t). These attenuation, or perturbation, coefficients have a cosine
dependence on the time in the case of hydrogen-like ions with J = 1/2 [76]

Gk(t) = 1− bk(1− cosωL t), (3.37)
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with bk = k(k+1)/(2I +1)2. The attenuation coefficient for stopped ions is (for
the traditional RIV method, with a stopper foil)

Gstopped
k (t) = Gk(t). (3.38)

Ions that decay in flight have an average attenuation coefficient

Gflight
k (t) =

∫︂ t

o

Gk(t
′)e−λt ′λdt ′
�∫︂ t

o

e−λt ′λdt ′

= 1− bk[1− F(t)], (3.39)

and

F(t) =
1− e−λt(cosωL t −ωL t sinωL t)

(1+ω2
Lτ

2)(1− e−λt)
, (3.40)

with the lifetime τ of the excited state. In the limit t → ∞, the attenuation
coefficient can be written as

Gflight
k (∞) = 1− bk

�

ω2
Lτ

2

1+ω2
Lτ

2

�

. (3.41)

The observed attenuation coefficient contains both the flight and the stopped
terms, if the flight and the stopped components cannot be resolved in the γ-ray
energy spectrum

Gsum
k =
�

1− e−t/τ
�

Gflight
k + e−t/τGstopped

k . (3.42)

The second term has to be adjusted, if the stopper foil is replaced by a elec-
tron configuration reset foil. The average attenuation factor for γ decays that
happen after the reset foil is the product of Gk(t) and Gflight

k (∞), i.e. the elec-
tron configuration is randomly reset when the ion passes the reset foil and
the nucleus experiences further perturbations [77]. The attenuation factors
Gflight

k , Greset
k ≡ Gflight

k (∞) × Gk and Gsum
k are plotted in Figure 3.9 for the case

of 18O with data taken from Ref. [80].
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Figure 3.9.: Expected attenuation factors Gk as a function of time with a g factor
of 0.28 for 18O. Greset
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k (∞).

Relativistic corrections

The following relations have been taken from Refs. [149, 165, 166] and ref-
erences therein. If the investigated nucleus is in motion, rather than at rest,
the emitted γ radiation will be detected by a detector, resting in the laboratory
(LAB) frame of reference, here denoted as L, with a shifted energy

Eshifted = E0

p

1− β2

1− β cosαL
, (3.43)

with the energy emitted in the rest frame of the nucleus E0, the velocity β = v/c
and the emission angle αL between the direction of the moving particle and the
detection angle. The emission angle αL can be calculated by

cosαL = cosθ Lγ cosθ Lp + sinθ Lγ sinθ Lp cos∆φL. (3.44)
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The relation between the angles in the rest frame of the moving nucleus (NUC),
denoted as N, and laboratory frame, denoted as L, are given by

cosθNγ =
cosθ Lγ − cosθ Lp
�

βγL − (γL − 1) cosαL
�

γL(1− β cosαL)
, (3.45a)

tanφN
γ =

sinθ Lγ sinφL
γ − sinθ Lp sinφL

p

�

βγL − (γL − 1) cosαL
�

sinθ Lγ cosφL
γ − sinθ Lp cosφL

p [βγL − (γL − 1) cosαL]
, (3.45b)

where γL = 1/
p

(1− β2) is the Lorentz factor. If the z-axis is chosen as the
direction of the moving nucleus Eqs. (3.45a) and (3.45b) have the simpler form:

cosθ Lγ =
cosθNγ + β

1+ β cosθNγ
, (3.46a)

φL
γ = φ

N
γ . (3.46b)

The solid angle transformation, due to the Lorentz boost, is given by

dΩL =
1− β2

(1+ β cosθN)2
dΩN, (3.47)

W L(θ L) =WN(θN)
dΩN

dΩL . (3.48)
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4. Experimental setups
It is important to carefully select the facility and experimental method depend-
ing on the desired nuclei and its properties to investigate. In the field of nu-
clear physics, there are several different facilities available worldwide1, each
with advantages and disadvantages. In the last decade, many new RIB facili-
ties started operation. As a result, many so-called exotic nuclei, unstable nuclei
far off the valley of stability, are now available for investigation. An overview of
the different RIB facilities in operation (and under construction) can be found
in Ref. [168]. Moreover, alongside the development of new accelerator facili-
ties, the instrumentation has seen many new developments and advancements.
In the field of γ-ray spectroscopy, these include improvements in the spatial
resolution of HPGe detectors by using pulse shape analysis (PSA) for the deter-
mination of the interaction points of the γ rays in the detector and γ-ray tracking
algorithms for the reconstruction of the detected photons, e.g. for AGATA [10]
or the use of new detector materials like LaBr3(Ce) detectors [9].
The presented experiments with stable beams have been performed at the

9 MV FN Tandem accelerator of the IFIN-HH in Bucharest-Magurele, Romania
[169] using the ROSPHERE detector array [137] and at the 10 MV FN Tandem
accelerator of the IKP, Universität zu Köln, Germany using the HORUS detector
array [170, 171] together with the Darmstadt Cologne Yale (DARCY) plunger
device.

The two setups will be presented in detail in the following sections.

4.1. FEST @ IFIN-HH, Bucharest-Magurele
At IFIN-HH, a variety of ions can be produced by the two available ion sources,
a source of negative ions by caesium sputtering (SNICS) and a duoplasmatron.

1An overview of the available facilities in Europe is given in the NuPECC long-range plan [167].
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Figure 4.1.: (left) SF6 gas tank of the 9 MV FN Tandem accelerator at IFIN-
HH (taken October 2019, courtesy of P.R. John).(right) Open RO-
SPHERE detector array (taken June 2014).

Details on the working principle of those and further ion sources can be found in
Ref. [172]. The emitted ions can be accelerated up to 9(Q+1)/A MeV/A, where
Q is the positive charge state of the accelerated ions after passing the stripper
foil, by the 9 MV FN Tandem accelerator. The Tandem accelerator, as introduced
in Ref. [173], allows to use an applied terminal voltage a second time for the
acceleration of heavy ions, by removing the electron of ions with a stripper foil
at the center of the accelerator. The accelerated ions can be sent to different
experimental sites, e.g. the ROSPHERE detector array for γ-ray spectroscopy
experiments. Figure 4.1 shows the gas tank of the Tandem accelerator and the
open ROSPHERE array.

4.1.1. ROSPHERE detector array
The main device for the analysis of this work was the γ-ray spectroscopy de-
tector array ROSPHERE. It consists of 25 available detector positions that are
typically filled by LaBr3(Ce) scintillator detectors and/or HPGe detectors with
anti-Compton bismuth germanium oxide (BGO) shields. There are two types
of coaxial p-type HPGe detectors available at the IFIN-HH, either from ORTEC
or CANBERRA with relative efficiencies of 50-60%. The array is designed in a
spherical geometry and is divided into five rings, which are placed at 37°, 70°,
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Table 4.1.: Overview of the mixed ROSPHERE configuration used in the exper-
iments for this work. The target to detector distances are given for
both types of HPGe detectors (ORTEC/Canberra). The polar angle
θ for each of the five rings and the azimuthal angle φ of each of the
five positions is given.

Ring Number of detectors θ φ Distance
& Type (deg) (deg) (mm)

1 5 HPGe 37 0, 72, 144, 216, 288 179/210
2 5 LaBr3(Ce) 70 36, 108, 180, 252, 324 186/217
3 4 HPGe/1 LaBr3(Ce) 90 0, 72, 144, 216, 288 176/208
4 5 LaBr3(Ce) 110 36, 108, 180, 252, 324 186/217
5 5HPGe 143 0, 72, 144, 216, 288 179/210

90°, 110°, and 143° with respect to the beam axis, respectively. Each ring can
accommodate up to five detectors. The most commonly used configuration is a
mixture of HPGe and LaBr3(Ce) detectors to determine lifetimes using the FEST
method (see Ref. [136]). For this work the array was used in such a mixed con-
figuration with eleven LaBr3(Ce) and 14 HPGe detectors. Thereby, employing
the excellent timing properties of the LaBr3(Ce) detectors for the determination
of the investigated lifetimes, e.g. an individual time resolution of 200-300 ps and
the high energy resolution of the HPGe detectors of about 1.9 keV at 1.33 MeV
[137] in order to select the γ-decay cascade of interest. The achievable total
γ-ray detection efficiency in this mixed configuration is 1.10(3)% at 1332 keV
for the HPGe detectors and 1.75(5)% for the LaBr3(Ce) detectors [137]. The
distance of the detectors to the target position depends on the detector type and
the position within the array. Furthermore, it is possible to utilize ROSPHERE
together with a plunger device for lifetime measurements with the RDDS tech-
nique [127, 174, 175] in the femtosecond to picosecond range or other auxiliary
detectors such as the solar cells for reaction experiments at ROSPHERE (SOR-
CERER) array, to distinguish transfer reactions from FE reactions [176]. The
position information of the detector setup for the present work is summarized
in Table 4.1.
The electronics and data aquisition system (DAQ) system of ROSPHERE has

two main branches: a slow branch for HPGe coincidences (usually two or three
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Figure 4.2.: Block diagram of the LaBr3(Ce) electronics. Complete scheme, in-
cluding HPGe electronics is shown in Ref. [137].

detectors registering events during a set coincidence time window) and a de-
layed coincidence branch for fast timing measurements. The block diagram
of the LaBr3(Ce) electronics is shown in Figure 4.2. The energy information is
taken from the last dynode of the photo-multiplier tube (PMT). The signal of the
anode is used to extract the timing information of the detected events. Further
details about this experimental setup can be found in Refs. [136, 137].

4.1.2. Conducted experiments @ IFIN-HH
An overview of the conducted experiments at IFIN-HH that were performed and
analyzed during this work is given in Table 4.2. Stated are the employed reac-
tions, the target and beam information, and the aim of each experiment. This
text will restrict itself to a description of the 152Gd andHf experiments. Themain
part of the analysis of the 152Gd experiment was already reported in Ref. [177],
but was rechecked in preparation to publish the results in Ref. [138]. The re-
sults of the Hf experiments and their discussion are published in Ref. [139] and
the publication of the results of the 150Gd experiment is in preparation.
Excited states of 152Gd were populated via the 149Sm(α,n)152Gd FE reaction.
Calculations using the computer codes CASCADE [117] and PACE [118, 119]
have been performed before the experiment, estimating contributions from other
reaction channels, e.g. the evaporation of more neutrons. The results of the
CASCADE calculation can be found in Appendix C.1. Hence, it was possible to
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Table 4.2.: List of conducted experiments at the IFIN-HH that are referred to
in this work. Excited states of the Hf isotopes were populated by β
decay of the Ta reaction products.

Isotope Target Beam
of interest Isotope Thickness Reaction Energy Aim

(mg/cm2) (MeV)
174Hf 171Yb 3.0 (6Li,3n)174Ta 30 τ(2+1 )
176Hf 172Yb 2.3 (7Li,3n)176Ta 30 τ(2+1 )
178Hf 174Yb 2.5 (7Li,3n)178Ta 30 τ(2+1 )
180Hf 180Hf 12.0 (16O,16O) 55 τ(2+1 )
152Gd 149Sm + Au 1.3+ 4.3 (α,n) 17.5 τ(0+2 )
150Gd 147Sm + Au 2+ 5 (α,n) 17.5 τ(3−1 )

optimize the beam energy for the desired 1-n reaction channel. The beam en-
ergy was set to 17.5 MeV, slightly above the Coulomb barrier (VC = 17.18MeV),
after measuring the excitation function around the calculated optimum of the
beam energy, and thereby reducing other evaporation channels to a minimum.
The α particles impinged on a two layered target of 1.3 mg/cm2 enriched 149Sm
evaporated on a 4.3 mg/cm2 gold backing. The Sm target material was com-
posed of 93.2% of 149Sm with small contaminants from 150Sm (3.3%), 148Sm
(1.5%), 152Sm (1.2%) and 0.8% of other elements. The aim of the experiment
was the determination of the mean lifetime of the first excited 0+ state of 152Gd
and the search for new signatures for a QPT from E2 observables.
For the population of excited states of the even-even 174,176,178,180Hf isotopes

two different nuclear reactions were employed. Excited states of 180Hf were
populated via CoulEx. An oxygen beam with a primary beam energy of 55 MeV,
just at the Cline-criterion for safe Coulomb excitation [178] and well below
the Coulomb barrier at 88 MeV, impinged on a 12 mg/cm2 thick 180Hf target.
The target consisted of 93.9% of 180Hf with small contaminants from other
stable Hf isotopes, i.e. 179Hf (1.6%), 178Hf (2.8%), 177Hf (1.3%), and 0.4% of
other elements. Excited states of the other investigated hafnium isotopes, i.e.
174,176,178Hf, were populated via β-decay following FE reactions with a Li beam,
171Yb(6Li,3n)174Ta, 172Yb(7Li,3n)176Ta and 174Yb(7Li,3n)178Ta, with target thick-

4.1. FEST @ IFIN-HH, Bucharest-Magurele 45



nesses of 172Yb: 2.3 mg/cm2, 171Yb: 3 mg/cm2 and 174Yb: 2.5 mg/cm2. The pri-
mary beam energy has been set to 30 MeV. The beam was cycled between
on (one hour) and off (one hour) to take in- and off-beam data and to stay
in the activation maximum of the β decay. Here, the aim was the determina-
tion of more precise values of the mean lifetimes of the 2+1 states of the even-
even 174,176,178,180Hf isotopes, investigating the evolution of the E2 transition
strengths around mid-shell, between N = 82 and N = 128.

4.2. ECR-TDRIV @ IKP, Universität zu Köln
The 10 MeV FN Tandem accelerator at the IKP of the Universität zu Köln, similar
to the tandem accelerator of IFIN-HH, provides a wide variety of ion beams up
to an energy of 10(Q+1)/A MeV/A to the different experimental sites, such as
the HORUS setup [171] (for nuclear structure and astrophysics experiments and
FEST lifetime measurements), the plunger setup (for DSAM and RDDS lifetime
measurements) [127] or the atomic mass spectroscopy (AMS) setup [179, 180].
There are three different ion sources available: a duoplasmatron for He beams
and two sputter sources for negative ion beams.
For this work the HORUS setup was used in combination with the DARCY

plunger device and a double-sided silicon strip detector (DSSD) for particle
identification.

4.2.1. HORUS detector array & DARCY plunger device
Up to 14 HPGe detectors can be placed in the HORUS array at five different
polar angles θ with respect to the beam axis. An overview of the available de-
tector positions and the used configuration is given in Table 4.3. For this work
only HPGe detectors were mounted in the holding structure of HORUS. The
BGO shields of the individual HPGe detectors were removed, in order to place
the HPGe crystals as close as possible to the DARCY target chamber and thereby
increasing the detection efficiency of γ rays. Absorbers, consisting of lead and
copper foils with a thickness of one millimeter each, were placed in front of the
detectors to suppress low-energy γ-ray radiation. Figure 4.3 shows the HORUS
array and the target chamber of the DARCY plunger device. The pre-amplified
signals from the HPGe detectors were fed into XIA digitizers and then read
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Figure 4.3.: (left) Open HORUS array with the installed DARCY plunger device.
(right) Open DARCY target chamber with the mounted 58Ni target
(images taken February 2019).

out. Target and degrader foils were mounted in the DARCY device [see Fig-
ure 4.4 (left)]. DARCY was constructed in collaboration with the Universität zu
Köln and Yale University and commissioned during this work for the 18O ECR-
TDRIV measurement. A computer-aided design (CAD) drawing of the device is
shown in Figure 4.4 (left), where the beam direction is depicted by a blue arrow
and the target and degrader (stopper) holding structures are colored green and
red, respectively. The adjusted target-to-stopper (degrader) distances have to
be maintained during the experiment by a feedback loop. Figure 4.5 shows the
utilized electronics of the feedback loop for DARCY. A BNC P8-5 pulse generator
sends a voltage pulse V to the degrader foil. The amplified output signal from
the target foil, which is proportional to the product of the capacitance C and
V , assuming the foils to act as a parallel-plate capacitor, is measured. Here, the
experimental capacitance (Cex p) is a combination of the capacitance of the foils
(C f oils), which is anti-proportional to the distance at short distances, and the ca-
pacitance of the holding structures (C f rame), assumed to be constant (see also
Ref. [182]). The voltage on a piezo-electric crystal is adjusted, by comparing
the measured voltage to a distance calibration curve, taken right before the ex-
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Table 4.3.: The HORUS detector configuration used in this work.
The efficiencies are given relative to a 3“ × 3′′ NaI(Tl)
scintillation crystal at a γ-ray energy of 1.33 MeV [109,
181].

Name Detector type / θ φ Distance to degrader
Rel. efficiency (deg) (deg) (mm)

Ge 0 HPGe; 60% 90 0 175(2)
Ge 1 HPGe; 85% 90 55 175(2)
Ge 2 HPGe; 60% 90 125 175(2)
Ge 3 HPGe; 60% 90 180 175(2)
Ge 4 HPGe; 60% 90 235 175(2)
Ge 5 HPGe; 60% 90 305 175(2)
Ge 6 HPGe; 60% 135 270 168(2)
Ge 7 HPGe; 80% 45 270 168(2)
Ge 8 HPGe; 60% 45 90 168(2)
Ge 9 HPGe; 85% 135 90 168(2)
Ge 10 HPGe; 80% 145 180 168(2)
Ge 11 HPGe; 100% 145 180 168(2)
Ge 12 HPGe; 60% 35 180 168(2)
Ge 13 HPGe; 100% 35 0 168(2)

periment. The piezo-element control is turned off and the plunger motor moves
to certain distances from the contact point of the two foils to a set maximum
distance (typically a few 100µm, depending on the estimated lifetime to be
measured). For each distance the motor position and the voltage are saved (l,
see Figure 4.6). The data points are fitted by a series of second order polynomi-
als. The uncertainty in the distance depends on the distance itself. Close to the
electrical contact, the uncertainty is ∆d = 0.1µm and for distances larger than
100µm it is∆d = 1µm. Figure 4.6 shows the data of the calibration run. Due to
surface imperfections of the two foils, the electrical contact does not necessarily
correspond to a distance of 0µm, but a certain offset. The offset of the exper-
iment was determined to be 15(2)µm by extrapolating the calibration points
to the point, where Cex p − C f rame goes to infinity, i.e. the limit of the inverse
Cex p − C f rame goes to zero [see Figure 4.6 (b)]. Only small distances are taken
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Figure 4.4.: (left) CAD drawing of the DARCY plunger. The blue arrow indicates
the beam direction and the target and degrader position are colored
green and red, respectively. (right) The 24 rings of the mounted
DSSD in the DARCY target chamber are visible. In the back the Ta
beam catcher can be seen (taken February 2019). The blue arrow
indicates the beam direction.

into account, because the assumption of a parallel-plate capacitor becomes less
accurate for larger distances. The systematic uncertainty of the offset has been
obtained by varying the number of calibration points taken into account for the
extrapolation.
For the detection of scattered beam-like particles and FE reaction products a
S3-500 DSSD from Micron Semiconductor Ltd in the shape of a compact disc
(CD) [183] was mounted in the DARCY target chamber at forward angles with
respect to the incoming beam. The DSSD has an inner radius of 10(1)mm and
an outer radius of 35(1)mm. It is segmented into 32 strips (wedges) on the back
and 24 rings on the front (see Figure 4.4). Due to a limited amount of available
channels of the XIA modules, two neighboring rings (strips) were readout to-
gether, condensing the number of individual rings to twelve and the strips to
16, resulting in a total amount of 12×16= 192 pixels and therefore an angular
segmentation of ∆θ = 2.5(2)◦, ∆φ = 22.5°. The DSSD was placed as close as
possible to the mounted degrader foil of DARCY at 27(1)mm, ensuring a larger
angular coverage, ranging from θ = 22(2)◦ to θ = 52(2)◦. The front side (rings)

4.2. ECR-TDRIV @ IKP, Universität zu Köln 49



Pulser Amp. Lin.
Gate

Piezo
Control

ADC
Computer

Delay

DARCY

Piezo
Motor

Figure 4.5.: Schematics of the electronics setup used to control the DARCY
plunger device. The output signal of DARCY is amplified by an am-
plifier (Amp.) and shaped with a linear gate and stretcher module
(Lin. Gate).

of the mounted DSSD is shown in Figure 4.4 (right). In addition, hits on the CD
detector stemming from Rutherford scattering of the beam with the target foil
or the degrader foil can be reduced by the increased inner polar angle of the
DSSD. Rutherford scattering is one limiting factor of the experiment, because
of the increased count rate of the inner CD rings. Behind the DSSD a thick Ta
foil was placed as the beam dump.
For the further analysis, the segments of the DSSD were combined into three
rings and 16 strips. Table 4.4 gives an overview of the segments and their prop-
erties.

The goal of the conducted experiment at the IKP was the determination of
the g factor of the first excited 2+ state of 18O with the ECR-TDRIV method.
Excited states of 18O were populated via the 58Ni(18O,18O⋆)58Ni CoulEx reac-
tion. The 18O projectiles impinged on a 2.9 mg/cm2 58Ni target. Subsequently,
the excited ions exit the target, pass through a 1.8 mg/cm2 Ta degrader foil,
and are detected by the DSSD at forward angles. The beam energy was set to
56 MeV, i.e. above the Coulomb barrier, allowing the oxygen ions to emerge
from the target foil in a mostly hydrogen-like or fully stripped charge state.
Only certain polar angles of the DSSD were used for the analysis to ensure that
only safe CoulEx events are evaluated (see Section 5.3.2). Data was taken for
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Figure 4.6.: Distance calibration of DARCY. The inset of (a) shows the fit to
the data with d = a/(Cex p − C f rame) +Offset. (b) Determination of
the offset of the distance to the electrical contact by extrapolation.
Here, only the statistical uncertainty of the offset is given.

eleven different target-degrader distances between 1.0(1) and 145(1)µm (i.e.
1,10,20, 30,40, 50,60, 70,85, 100, and 145µm), not including the offset of the
DARCY distance calibration of 15(2)µm.
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Table 4.4.: Angles of the DSSD segments. The left side shows the
polar angle θ of the DSSD front. The right side the az-
imuthal angle φ of the DSSD back. Every two rings and
two strips were read-out together, because of the limited
available digitizer channels.

Ring Name θ Strip Name φ
(deg) (deg)

R1-R8 inner 29.1+6.0
−6.9 S1-S2 S1 179.6(113)

R9-R16 middle 40.4+4.6
−5.3 S3-S4 S2 157.1(113)

R17-R24 outer 48.9+3.5
−3.9 S5-S6 S3 134.6(113)

S7-S8 S4 112.1(113)
S9-S10 S5 89.6(113)
S11-S12 S6 67.1(113)
S13-S14 S7 44.6(113)
S15-S16 S8 22.1(113)
S17-S18 S9 −0.4(113)
S19-S20 S10 −22.9(113)
S21-S22 S11 −45.4(113)
S23-S24 S12 −67.9(113)
S25-S26 S13 −90.4(113)
S27-S28 S14 −112.9(113)
S29-S30 S15 −135.4(113)
S31-S32 S16 −157.9(113)
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5. Data analysis & results
The first part of this Chapter outlines the necessary steps of the data prepa-
ration and analysis procedure of the FEST experiments at IFIN-HH, Bucharest
- Magurele and presents the obtained results. The second part outlines the
data analysis procedure and the results of the ECR-TDRIV measurement at IKP,
Cologne.

5.1. General remarks

Numerical evaluations of this work have been performed using the interactive
shell IPython [184] and the Python libraries NumPy [185, 186], pandas [187],
and SciPy [188, 189]. For symbolic calculations (e.g. spherical harmonics) the
Python library SymPy [190] has been used. The results are visualized with
the help of the Python libraries Matplotlib [191] and Cartopy [192] and the
vector-graphics program Inkscape [193]. Energy and time spectra, matrices,
and cubes have been additionally investigated with the nuclear spectrum anal-
ysis tool (hdtv) [194] with the version of [195], based on tv [196] for the oxy-
gen data and with the gamma-ray spectrometer software (GASPWARE) package
[197] in the case of the FEST experiments.

5.1.1. Propagation of uncertainties

For the published results in Ref. [138, 139], the stated uncertainties of the mea-
sured mean lifetimes and all derived quantities have been calculated in the fol-
lowing way. If the output quantity Y has a functional relation with the input
quantities X i , Yi = f (X i), and if each input quantity X i is subject to its own
uncertainty σX i

and f can be approximated by a Taylor expansion, σ2
f can be
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given as (see Ref. [198]):

σ2
f =
∑︂
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+
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i, j ̸=i

∂ f
∂ X i

∂ f
∂ X j

covX i ,X j
, (5.1)

where covX i ,X j
is the covariance between X i and X j .

For this work, the propagation of uncertainty follows the recommendedmethod
of the Guide to the Expression of Uncertainty in Measurement (GUM) [198]
adopted from Refs. [199, 200]. The input and output quantities X i and Yi fol-
low a probability-distribution function (PDF). The PDF can be approximated by
sampling a random number NR of XR from the PDF. Evaluating f for each XR
results in a set of values YR. The results of Y are then given as:

mode(Y )+[sciu(Y )−mode(Y )]
−[mode(Y )−scil (Y )]

, (5.2)

where mode(Y ) gives the most probable value of Y and scii(Y ) the upper (u)
and lower (l) boundary of the shortest coverage interval (“sci”) of the approx-
imated distribution, including 68% of the distribution analogous to the one-σ
environment of a Gaussian distribution. The most probable value is obtained by
approximating the PDF of Y by a Gaussian kernel-density estimator and deter-
mining the maximum of the PDF. The estimator, using a bandwidth following
Scott’s rule [201], smoothes the distribution of YR.

5.1.2. Weighted mean
Based on themethodology of the particle data group (PDG) review article [202],
a standard weighted least-squares procedure has been used in this work for
averaging data

Y ±δY =

∑︁

i wi · Yi
∑︁

i wi
±

�

∑︂

i

wi

�−1/2

, (5.3)

with wi = 1/(δYi)2. 1/(N − 1)χ2 = 1/(N − 1)
∑︁

i wi · (Y − Yi)2 was calculated to
compare the measurement data, assuming that they follow a Gaussian Distribu-
tion, with the weighted average. For data values with asymmetric uncertainties
the weights were set to wi = [(δYu,i + δYl,i)/2]−2. If χ2/(N − 1) is less or equal
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to one, the result is quoted as in Eq. (5.3). In the case that χ2/(N−1)> 1 a scal-
ing factor S was used to increase the quoted uncertainty under the assumption
that the uncertainties of the data points were underestimated or that systematic
uncertainties cannot be excluded,

S =
�

χ2/(N − 1)
�1/2

. (5.4)

This approach is not used for χ2≫ 1, because the data points give contradictory
results and should not be averaged.

5.2. Fast-timing lifetime measurements
The following Sections illustrate the mandatory steps of the data preparation
and analysis of a FEST experiment at IFIN-HH. The focus will be on the fast-
timing lifetime measurement of 174,176,178,180Hf, but the same approach has been
taken for the 152Gd data. The results of the Hf and Gd experiments have already
been reported and discussed by the author in Refs. [138, 139], respectively. The
narrative of this work follows these publications.
The first Section expounds the process of the data analysis starting from the
raw data.

5.2.1. Data preparation
Raw data are written to disk as listmode files, so called “runs”, each containing
∼ 2h of data. Every listmode entry contains the identification number (id) of
the detector registering the event (analogue-to-digital converter (ADC) chan-
nel), the recorded signal height, and the time information relative to a trigger
signal, e.g. a γγ coincidence, of all the detected events in a defined timewindow.
The raw data have to be sorted using the sorting code gsort of the GASPWARE
package [197] developed at the Instituto Nazionale di Fisica Nucleare (INFN)
Legnaro and the IFIN-HH Bucharest. Resulting, in the case of the fast-timing
experiments, energy and time spectra, matrices, cubes or hypercubes (EγEγ co-
incidence matrices, EγEγ∆t cubes, or EγEγEγ∆t hypercubes). The sorting code
allows via an input file (an example input file can be found in the Appendix B.1)
to implement energy and time calibration polynomials during the sorting pro-
cedure, as well as to set additional conditions on the detectors, e.g. selecting
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specific decay transitions with energy gate conditions in additional detectors.
Furthermore, the crucial time-walk calibration (see Section 5.2.4) can already
be included in this input file.
These calibration procedures will be outlined in the following, beginning with
the energy and time calibration of the LaBr3(Ce) and HPGe detectors.

5.2.2. Energy calibration
The obtained pulse-height energy-spectra of the HPGe and LaBr3(Ce) detectors
have to be calibrated with γ-ray energies of a calibration source, e.g. 152Eu with
its well-known strong γ-decay transitions in the range of 121 to 1408 keV [51]
(see Figure 5.1). A calibration curve can be obtained from the calibration points
of the source (t) by fitting a polynomial Ei =

∑︁

n anCn
i to the calibration data

and obtaining the energy Ei corresponding to a channel number Ci [109]. In
the case of the HPGe detectors polynomials of third order and for the LaBr3(Ce)
detectors polynomials of fourth and fifth order have been used. These polyno-
mials for each detector were already included in the sorting procedure.
It is useful to also perform an energy-width calibration of the FWHM of the
peaks to be able to discriminate single and double peaks of the experimental
data. The total FWHMT of a peak can be written as [109]:

FWHM2
T = FWHM2

D + FWHM2
X + FWHM2

E , (5.5)

FWHM2
D = (2.35)2FεE, (5.6)

where FWHM2
D denotes the peak width from statistical effects, FWHM2

X stands
for the peak width due to charge carrier collection and FWHM2

E is the FWHM
due to electronic noise. Furthermore, F is the Fano factor [109], ε the energy re-
quired to create an electron-hole pair and E the γ-ray energy. Figure 5.1 (bottom)
shows the determined FWHM (6) as a function of the γ-ray energy for the cal-
ibration run of detector HPGe0. According to Eq. (5.6), a square root function
was fitted to the data (red dashed line).
The energy calibration of the LaBr3(Ce) detectors has to be performed in more
steps, because of the greater degree of non-linearity in the energy response com-
pared to the HPGe detectors. After a first energy calibration with a calibration
source, a gain matching has to be performed with known γ-ray transitions from
in-beam data, due to the count rate dependence of the detection efficiency of
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Figure 5.1.: (top) Channel over Energy from the 152Eu source measurement for
detector HPGe0. (middle) Residuum of the fit of (top) to the data.
(bottom) Width calibration of the detector, using Eq. (5.6).

the LaBr3(Ce) detectors. Moreover, the detected energy of the LaBr3(Ce) detec-
tors shifts with time because of temperature and voltage fluctuations. For this
reason, these effects have to be corrected on a run-by-run basis.
Figure 5.2 shows the calibrated HPGe and LaBr3(Ce) energy sum spectra of all
detectors. Transitions of the 152Eu calibration source used for the calibration of
the detectors are marked by t. For the HPGe detectors, additional transitions
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Figure 5.2.: Energy-calibrated γ-ray spectra of the first HPGe and the first
LaBr3(Ce) detectors of the ROSPHERE detector array. The utilized
γ-ray energies of the 152Eu calibration source are marked by t for
the LaBr3(Ce) and HPGe detectors. Additional γ-ray energies were
used for the HPGe detectors (t).

of the decay of 152Eu were used (t), which have been omitted for the calibra-
tion of the LaBr3(Ce) detectors, because they could not be resolved in every
detector, due to the worse intrinsic energy resolution of LaBr3(Ce) detectors in
comparison to HPGe detectors.

5.2.3. Time alignment

The time difference between two signals is processed by the TAC into a logic
signal with an amplitude proportional to the time difference. The TAC can be
calibrated by using a generic prompt signal with different known delays, e.g.
by using different cables with known lengths. The timing information of the
HPGe detectors is processed by a time-to-digital converter (TDC) and can be
calibrated in the same way.
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Figure 5.3.: (left) Working principle of a CFD: The incoming signal is split up.
One signal is inverted and delayed (a) and the other one attenuated
(b). Finally, both signals are summed up (c). (d) Due to signal
noise, the threshold determining the zero crossing of the summed
signal cannot be set to zero, but has to be placed slightly above zero.
This leads to small differences in the determination of the signal
time depending on the signal amplitude, i.e. time walk. Shown is
the zero-crossing for three different input amplitudes, 0.5, 1 and 2.

5.2.4. Time-walk calibration
The time-walk calibration of the experimental setup is essential for the deter-
mination of lifetimes in the picosecond range (see Section 3.3.1). The time dif-
ference obtained from the TAC signals includes not only the time difference
between the start and the stop signal, i.e. the effective lifetime τeff of all states
between these two transitions, but also the time response of the setup ttw,i, i.e.

∆texp = τeff + ttw,1(Eγ,1) + ttw,2(Eγ,2). (5.7)

The time response of the setup usually depends on the energy of the detected
photons, resulting in the energy-dependent time walk. The effect can be re-
duced with the usage of a CFD. Whose working principle is shown in Figure 5.3.
An input signal is split into two signals. The first signal is delayed and inverted
and the second one is attenuated. Subsequently, both signals are summed up
and the zero crossing of the sum signal, which is independent of the input sig-
nal amplitude is determined. Nevertheless, even with a CFD, a time walk still
remains. The threshold, determining the zero crossing, has to be placed above
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Figure 5.4.: (left) Centroid difference between a common stop transition,
244 keV (6) and 344 keV (l) and coincident transitions. (right)
Partial level scheme of 152Gd and 152Sm after the decay of 152Eu.
Transition energies are given in keV.

the noise of the baseline, creating a small offset in the determination of the zero
crossing [as indicated by the inlay of Figure 5.3 (d)]. Therefore, it is necessary
to determine the time walk of every detector of the setup.
One way to calibrate the system in the energy range of 244 keV up to 1.4 MeV is
to use a 152Eu source with its known γ-ray transitions and lifetimes. The char-
acteristic γ-ray energy spectra can be used for the determination of the time
walk. Figure 5.4 shows the partial level schemes of both decay paths of 152Eu,
to 152Gd and 152Sm, and the time difference between a common stop signal, i.e.
the 344 keV (2+1 → 0+GS) transition of 152Gd or the 244 keV (4+1 → 2+1 ) transition
of 152Sm, and the coincident decay transitions. The shown data (l and 6),
in Figure 5.4 (left), were already corrected for the vertical offset between both
data sets, due to the difference in energy of the common stop signals and there-
fore the difference in the time response for 244 and 344 keV. The fit to the data
with a polynomial function is depicted by the black line. The fit uncertainty is
indicated by the shaded red area, only visible in the high energy region. The
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Figure 5.5.: Eγ∆t matrix of the HPGe detectors. The area in the black box con-
tains the prompt coincidence events. The zero point of the time
differences was arbitrarily shifted to channel 1000.

time response of each detector was corrected by the fitted polynomials (see Ap-
pendix C.2 for the time walk determination of all detectors). For more details of
the time response of LaBr3(Ce) detectors and other methods for the calibration
of the setup the reader is referred to [134, 136].

5.2.5. Random background
Random background, can origin from the γ decay of nuclei, which are not in-
vestigated but produced in the reaction of the beam and the target, or the en-
vironment, i.e. uncorrelated random coincidences. Its contributions can distort
the final result. A selection in the HPGe Eγ∆t matrix, where ∆t is the time-
difference between two events registered in the HPGe detectors, can suppress
these uncorrelated events. Figure 5.5 shows the Eγ∆t matrix of the HPGe de-
tectors of ROSPHERE. True coincidences are temporally correlated and create
an area of prompt coincidences, resulting in a peak in the ∆t projection of the
matrix. The black box in Figure 5.5 marks the area of prompt coincidences.
Random events on the contrary have no time correlation and create a plateau
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SPHERE using a 152Eu source (l). A fit with Eq. (5.8) to the data
is shown by the dark red line.

of random background in the ∆t projection. A condition to exclude events that
are outside of the selected area was set in the sorting code. Naturally, there are
also random events in the selected area, but their influence has to be treated
later during the determination of the lifetimes.

5.2.6. Efficiency calibration
Detector efficiency is limited by the finite size of the detector material and the
geometry of the detectors. Moreover, the efficiency is dependent on the incident
γ-ray energy. The detector efficiency has to be known, if γ-ray intensities are
needed to extract observables from the γ-ray energy spectra, e.g. angular dis-
tributions or CoulEx cross-sections. For a FEST analysis information about the
detector efficiencies are in general not necessary, but the procedure to deter-
mine the relative efficiency of ROSPHERE will be outlined here, since relative
efficiencies are needed for the CoulEx analysis of 180Hf.
The relative efficiency is determined from the measured peak areas A and the
known transition intensities I via the relation ε = A/I . Relative intensities
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are sufficient for CoulEx experiments, since the transitions are normalized to
a known transition, e.g. the 2+1 → 0+GS transition. The energy dependence is
found by fitting the calibration points from the calibration source via the fol-
lowing fit function [109]:

ε= exp

�

N
∑︂

i

p[i]× log(E)i
�

. (5.8)

Figure 5.6 shows the efficiency curve of the first HPGe detector, HPGe 0, of the
ROSPHERE detector array from a 152Eu calibration source (l). The dark red
line shows the fit to the data using Eq. (5.8).
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5.2.7. 174,176,178,180Hf results

After completing all the necessary steps, i.e. energy, efficiency and time-walk
calibrations, the time alignment of the detectors and the random background
subtraction, energy spectra and matrices can be extracted from the data. Fig-
ure 5.7 presents the obtained partial energy spectra of the HPGe and LaBr3(Ce)
detectors for the four different reactions, populating excited states of (a) 174Hf,
(b) 176Hf, (c) 178Hf, and (d) 180Hf. Transitions, that were used for the determi-
nation of lifetimes, are marked (s).
As mentioned in Section 3.3.1, mean lifetimes in the range of nanoseconds

have been determined with the slope method using EγEγ coincidences within
the LaBr3(Ce) detectors. Examples of such long-lived states are the 2+1 states
of 174,176,178,180Hf and the 2−1 state of 176Hf. The time-difference spectra were
extracted by setting an energy condition on a start and a stop transition in the
EγEγ∆t cubes. The resulting time-difference spectra have to be corrected for
random coincidences and Compton background below the full energy peaks.
Thus, the method discussed in Refs. [36, 203] was applied. In each case, four
different time-difference spectra were created, by gating on the energy (A) of
the start and the stop transition, (B) of the start transition and a background
region of the stop transition, (C) of the background of the start transition and
the stop transition, and (D) of the two previously defined background regions.
Applying coincidence logic the final time-difference spectra are given by the
combination (A)-(B)-(C)+(D). The background energy gates were chosen on
the right side of the start/stop transitions to exclude possible Compton events
from the transitions themselves. In the case of the 2+1 state, energy gates were
set on the 4+1 → 2+1 and 2+1 → 0+GS transitions and in the case of the 2−1 state of
176Hf, on the 2−2 → 2−1 and 2−1 → 2+1 transitions [see Figure 5.9 and 5.11 for the
partial level schemes of the investigated isotopes]. The time-difference spectra
of the delayed case, including the fits, are depicted in Figures 5.8 and 5.10(a).
The decay cascades are shown on the left of each sub figure. The fit regions
were chosen by moving a gate with a defined time width of a few hundred pi-
coseconds across the time difference spectra. Only the regions where the slope
stays constant were used for the fit. Thus, eliminating the influence from the
prompt peak and background contributions.
The centroid shift method (see Section 3.3.1) has been employed for the de-
termination of lifetimes of short-lived excited states in the range of a few ten
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Figure 5.7.: Partial energy spectra for (a) 174Hf, (b) 176Hf, (c) 178Hf, and
(d) 180Hf [LaBr3(Ce) (red) and HPGe (black)]. See Section 5.2.7.
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picoseconds, here the 4+1 , 6+1 and 3−1 states. Figures 5.12 and 5.10 (b) present
the obtained delayed and anti-delayed time-difference spectra for the short-
lived yrast states of 174,176,178,180Hf and for the 3−1 state of 176Hf, respectively.
The high transition density of the β decay to 176Hf [see Figure 5.7 (b)] made it
necessary to decrease the gate widths in this case, resulting in lower statistics
of the time distributions and therefore larger uncertainties of the determined
lifetimes.
Each individual case will be discussed in the following Sections.

174Hf

A partial level scheme of states of 174Hf populated by the electron capture decay
of 174Ta to 174Hf is depicted in Figure 5.9 (a). Mainly positive-parity states are
populated by this reaction [204] . States of the yrast band of 174Hf are excited
up to the 6+1 state. From the γ-ray energy spectrum transitions feeding and
depopulating these states have been identified [see Figure 5.7 (a)]. The mean
lifetimes of the three yrast states 2+1 , 4+1 and 6+1 have been extracted. For the
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determination of τ(4+1 ), the 4+3 → 4+1 and 4+1 → 2+1 transitions have been used,
because the sum energy of the 6+1 → 4+1 and 4+1 → 2+1 γ-ray transitions [E(6+1 →
4+1 ) + E(4+1 → 2+1 ) = 517keV] is close to 511 keV. Therefore, Compton scattered
events from 511 keV e−e+ annihilation γ rays contaminate the coincidence area
of the 6+1 → 4+1 and 4+1 → 2+1 transitions.

176Hf

The electron capture decay of 176Ta populates numerous excited states of 176Hf.
This results in a complex decay scheme [205, 206], as can be seen in the γ-
ray energy spectrum depicted in Figure 5.7 (b). The relevant part of the level
scheme for this work is shown in Figure 5.9 (b). Besides the yrast band a low-
lying negative-parity K = 2 band of 176Hf is strongly populated by this decay. As
a result, it was possible to determine the mean lifetimes of the 2−1 state, and for
the first time of the 3−1 state (see Figure 5.10). For the determination of τ(3−1 )
two populating transitions have been used, i.e. the two transitions populating
the 3−1 state at 611 keV [(2,3)−→ 3−1 ] and at 645 keV (2−2 → 3−1 ) in combination
with the decay to the 4+1 state. The quoted mean lifetime is the weighted mean
of both values, τ(3−1 ) = 25(12)ps (see Appendix 5.1.2). The extracted mean
lifetime of the 2−1 state, τ(2−1 ) = 6.28(16)ns, is lower than the adopted value of
τ(2−1 ) = 6.72(25)ns given in Ref. [31], but in good agreement with a part of the
quoted references of the data sheets, e.g. Ref. [207].
The gates for the determination of the mean lifetimes have to be carefully se-
lected in the LaBr3(Ce) detectors, especially for 176Hf, due to the high transition
density of the energy spectra. All selected energy gates were cross checked
within the energy spectra of the HPGe detectors, due to their higher energy
resolution compared to the LaBr3(Ce) detectors.

178Hf

The β decay of 178Ta following FE primarily populates the 8− isomeric state of
178Hf at an energy of 1147 keV. It decays via the emission of γ rays through
the yrast band to the GS. Consequently, mainly yrast transitions are visible in
the obtained γ-ray spectrum [see Figure 5.7 (c)]. The decay transition depop-
ulating the isomeric state, 8−1 → 8+1 at 88.9 keV, and the transition 2+1 → 0+GS at
93.2 keV are very close in energy. For this reason, these transitions can not be
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Figure 5.10.: (a) Logarithmic plots of the time-difference spectrum for the decay
of 2−1 state of the isotopes 176Hf. The linear fit is indicated by the
dashed black line. (b) Delayed (black) and anti-delayed (orange)
time distributions of the cascade (2/3)−→ 3−1 → 4+1 .

separated with the LaBr3(Ce) detectors. Additional energy gates in the HPGe
detectors are not able to isolate one of them, since both transitions are from the
same decay cascade. Selecting the coincidence region in the EγEγ plane, results
in a time-difference spectrum which is a superposition of two time-difference
distributions; on one hand a distribution of the pair of coincidence γ rays from
the 2+1 → 0+GS and 4+1 → 2+1 transitions and on the other hand a distribution of
the pair of coincidence γ rays from the 8−1 → 8+1 and 4+1 → 2+1 transitions. The
ordering of the energy gates is reversed for the two cases. The 88 keV γ ray
corresponds to a transition populating the cascade and the cascade is depopu-
lated via the 214 keV γ-ray transition (anti-delayed case), whereas the 2+1 state
is populated via the 214 keV transition and decays via the 93 keV γ-ray transi-
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tion [delayed case, see Figure 5.11 (a)]. Thus, the time-difference distribution
is a superposition of a delayed and an anti-delayed distribution, and the tails
correspond to the effective mean lifetime of the 4+1 , 6+1 and the 8+1 states on one
side of the time distribution and to the mean lifetime of the 2+1 state on the other
side. The tail of the long-lived 2+1 state can be identified in the time distribution
[see Figure 5.8 (c)]. Additionally, the mean lifetime of the 4+1 state (for the first
time) and of the 6+1 state have been determined using the centroid shift method.

180Hf

Excited states of 180Hf were populated by CoulEx. Hence, it was possible to de-
termine the mean lifetimes using FEST and CoulEx. The CoulEx analysis was
performed with the computer code CLX [116], which is based on the original
code of Winther and De Boer [208].
The 180Hf target was already in use in a FE experiment directly before the
discussed CoulEx experiment. Therefore, the material was still activated and
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transitions stemming from the decay of the FE reaction products, e.g. 181Ta,
182W and 184W, can still be identified in the HPGe energy spectrum [see Fig-
ure 5.7 (d)]. Moreover, due to a178Hf contamination in the target material, its
lifetimes have to be taken into account. The transition energies of the 2+1 → 0+GS
and the 4+1 → 2+1 transitions in both isotopes, 178Hf and 180Hf, are very close in
energy (93.2 keV vs. 93.3 keV and 213.4 keV vs. 215.3 keV). Consequently, both
transitions cannot be separated in the LaBr3(Ce) detectors for the two isotopes.
The partial level scheme of 180Hf is depicted in Figure 5.11 (b). However, the
6+1 → 4+1 transitions of both isotopes are 9 keV apart and have been identified in
the HPGe energy spectrum. Using the observed intensity of the 6+1 → 4+1 tran-
sition of 178Hf at 332 keV and the measured mean lifetimes (2+1 , 4+1 ) of

178Hf of
this work (see Table 5.1), the 178Hf contribution can be subtracted.
The relative CoulEx cross sections are equal to the relative yields of excited
states:

Y (Jπi )

Y (2+1 )
=
σCoulEx(Jπi )

σCoulEx(2+1 )
. (5.9)

The experimental yield of a state Jπi can be calculated by subtracting the popu-
lating γ-ray intensities of the state from the depopulating γ-ray intensities. Fig-
uratively, the yield quantifies how often a state was populated via CoulEx. The
yields were obtained from the efficiency-corrected γ-ray intensities, after sub-
traction of the 178Hf γ-ray intensities, and normalization to the 2+1 → 0+GS transi-
tion. The CoulEx calculationwith CLX has been performed by varying thematrix
elements of the 4+1 → 2+1 and 6+1 → 4+1 transitions and comparing the resulting
relative CoulEx cross sections with the experimental yields. Uncertainties were
determined by a variation of the matrix elements within the range of the uncer-
tainties of the calculated experimental yields. The energy loss of the beam of
18 MeV in the target has been taken into account. The obtained mean lifetimes
from the CoulEx analysis and the FEST measurement are listed in Table 5.1.
Both values τ(4+1 ) = 100(23)ps from FEST and τ(4+1 ) = 103(12)ps from CoulEx,
are in good agreement within their uncertainties. Consequently, a weighted av-
erage of these independent evaluations can be calculated: τ(4+1 ) = 102(11)ps.

The obtained experimental results of all Hf isotopes are given in Table 5.1.
Another similar FEST experiment of Hf isotopes was recently performed by
Rudigier et al. [40]. Since their determined lifetimes are in good agreement
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with the values of this work, weighted average values of the lifetimes of these
values are given in Table 5.1. The mean lifetimes are directly related to the tran-
sition strength in the case of pure radiation character [see Eq. (3.11)]. Since the
decay between states of the yrast band of even-even nuclei is dominated by E2
radiation, the B(E2) values can be directly calculated from the obtained mean
lifetimes. For this purpose, Eq. (3.11) has to be multiplied by (1+α) to include
electron conversion, with the electron conversion coefficient α. The conversion
coefficients for the determination of the B(E2) values have been taken from
Ref. [209].
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5.2.8. 152Gd results
γ-ray spectroscopy

The γ-ray transitions of 152Gd can be clearly identified in the HPGe-detector en-
ergy spectrum, due to their energy resolution of about 2.5 keV @ 300 keV and
3 keV @ 1.4 MeV. Figure 5.13 (a) shows the total projection of the EγEγ coinci-
dence matrix of all HPGe detectors between 170 and 900 keV [137]. The γ-ray
transitions of interest for the determination of τ(0+2 ), i.e. the 2+2 → 0+2 transition
at 315 keV and the 0+2 → 2+1 transition at 271 keV, are marked by u [see also
the partial level scheme of 152Gd in Figure 5.15 (c)]. The yrast band was pop-
ulated up to the 10+1 state (10+1 → 8+1 transition at 553 keV). Many additional
transitions from other excitation bands can be identified, but will not be further
discussed in this work. The inset of Figure 5.13 (a) shows the total projection
zoomed in on the relevant energy region around 300 keV. The γ-ray transitions
of 152Gd are marked by u. Further transitions from other reaction channels,
such as CoulEx of the α beamwith the Au backing of the target or FE of the beam
with the beam dump, are indicated byt. For the determination of themean life-
time τ(0+2 ) additional energy conditions were set on the detected energy of the
HPGe detectors, creating HPGe gated EγEγ∆t cubes. These additional condi-
tions are necessary, since the peaks of the contaminants (CoulEx and FE) cannot
be separated in the LaBr3(Ce) energy spectra. Figure 5.13 (b) exemplary shows
the result of a gate on the 4+2 → 2+2 transition at 351 keV in the HPGe detectors,
on the energy projection of the LaBr3(Ce)-detector-coincidence matrix. The
LaBr3(Ce) γ-ray energy spectrum with a second gate on the LaBr3(Ce) energy
is shown in Figure 5.13 (c). The peak at 315 keV (originating from the 2+2 → 0+2
transition) can clearly be distinguished from the 2+1 → 0+GS transition at 344 keV.
After checking the HPGe energy spectra with the same coincidence conditions
interference from the known contaminants can be excluded and clean gates can
be set on the relevant transitions in the LaBr3(Ce) detectors to determine the
lifetime of the first excited 0+ state of 152Gd.

Lifetime determination

After applying the corrections outlined in Sections 5.2.2 to 5.2.5, two HPGe
energy-gated EγEγ∆t cubes were sorted for the LaBr3(Ce) detectors. The region
of the coincident start and stop transitions, e.g. 271 keV and 315 keV for the 0+2
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Figure 5.13.: (a) Total projection of the EγEγ matrix of the HPGe detectors be-
tween 170 and 900 keV. The important transitions for the deter-
mination of τ(0+2 ) of

152Gd are marked by u. In the inset the tran-
sitions from the Au target backing and other FE reaction products
are marked (t). The 8+2 → 7−1 transition of 152Gd is indicated
by u. (b) HPGe gated total projection of the EγEγ matrix of the
LaBr3(Ce) detectors, (c) in coincidence with the 271 keV transi-
tion in the LaBr3(Ce) detectors marked by the shaded area.
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state, have been selected in the energy-energy plane of these cubes, resulting
in the time-difference spectra for the combination of start and stop transitions.
Depending on the effective mean lifetime of the nuclear states between the tran-
sitions either the centroid shift method or the slope method were applied. A cor-
rection for random coincidences and the Compton background was performed
by applying the method described in Section 5.2.7. Some lifetimes of 152Gd and
152Sm, known from literature, in the picosecond and in the nanosecond range
were determined to benchmark the applied calibrations and corrections. The
results can be found in Table 5.2 alongside their respective literature value. For
the 2+1 and 4+1 states of 152Gd these are in good agreement. However, there is a
disagreement between the value for the 2+1 state of 152Sm and the adopted value
found in the nuclear data sheets [51]. Nevertheless, several experiments in the
data sheets are in agreement with the measured value of τ(2+1 ) = 2049(10)ps,
e.g. the average value of τ(2+1 ) from CoulEx experiments is 2.049(17) ns.
As was already mentioned in the previous section, different energy conditions
were imposed on the HPGe detectors, selecting the decay cascade of the second
0+ state of 152Gd. Hence, two different data sets were evaluated, one with a
gate condition in the HPGe detectors on the ground-state transition of the first
2+ state at 344 keV and a second one with a gate condition in the HPGe de-
tectors above the start and stop signal, i.e. the 4+2 → 2+2 transition at 351 keV.
Figure 5.14 depicts the EγEγmatrices from the LaBr3(Ce) detectors for these two
cases, where dark red circles mark the coincidence area of the 2+2 → 0+2 tran-
sition and the 0+2 → 2+1 transition. Figure 5.15 (a) and (b) show the resulting
time-difference spectra, where yellow data points correspond to the delayed
case and the black data points to the anti-delayed one. The centroid differ-
ence between the delayed and the anti-delayed time distribution is equivalent
to twice the mean lifetime [see Eq. (3.19)]. Both obtained lifetime values agree
well with each other and the weighted average of both values was determined
to be 96(6) ps or T1/2 = 67(4)ps.
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Figure 5.14.: (top) EγEγ matrix of the LaBr3(Ce) detectors, gated on the 344 keV
transition in the HPGe detectors. (bottom) The same with a gate
on the 351 keV transition in the HPGe detectors.
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Table 5.2.: List of obtained lifetimes of 152Sm and 152Gd. The
reported mean lifetime of the 0+2 state is the aver-
age of two different data sets, see text. Literature
values were taken from the nuclear data sheets
[51].

Jπn Gate-1 Gate-2 τ=∆C/2 τlit.
(ps) (ps)

152Sm 2+1 4+1 → 2+1 4+1 → 0+GS 2049(10) 2024(16)
152Gd 2+1 4+1 → 2+1 2+1 → 0+GS 51(6) 46(4)

2+1 2+2 → 2+1 2+1 → 0+GS 46(6) 46(4)
4+1 6+1 → 4+1 4+1 → 2+1 9(6) 11(1)
0+2 2+2 → 0+2 0+2 → 2+1 96(6) 53(12)
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5.3. TDRIV g-factor measurement of 18O
The following chapter describes the analysis of the ECR-TDRIV measurement
of the g factor of the first excited state of 18O. First the data preparation will
be explained and then the calibration procedure for the HPGe detectors and in
particular the DSSD will be presented.

5.3.1. Data preparation
The data of the Cologne experiment were written to disk in a listmode output
format in subrun files, each containing ten minutes of data. The listmode data
can be processed using the sorting code Cologne (SOCO) [210]. The sorting
code allows, through the use of several configuration files (*.conf, see Appendix
B.3), the calibration of the data and the extraction of spectra and matrices with
different gating conditions, including background subtraction. More details can
be found in the SOCO manual [211].

Particle-γ time difference and random background subtraction

In a first step the timestamp offsets of all the individual detectors (HPGe +
DSSD) were corrected w.r.t. a reference detector, i.e. here, the first strip of the
DSSD, using the timestamp-shift command of SOCO. In this way the coinci-
dence window and the windows for the random time background subtraction
were determined. These windows are crucial to group the data into events, by
grouping coincident hits, within the determined coincidence window, together
into events. Figure 5.16 depicts the time difference between one HPGe detector
and the first strip of the DSSD. Temporally correlated particles and γ rays create
a prompt peak of true coincidences on a plateau of random coincidences of un-
correlated particles and γ rays. Indicated by the shaded areas in Figure 5.16 are
the prompt gate and the background gates to the left and right of the prompt
peak used in this work. The combined width of both background gates is equal
to the width of the prompt gate. Random background subtracted matrices can
be created, by subtracting matrices, gated on the background region, from ma-
trices gated on the prompt region.
After determining the width of the prompt and the background region, the event
building was performed with the additional requirement, that only events were
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Figure 5.16.: Time difference between hits in the first strip of the DSSD (S1) and
the HORUS detector Ge0. The shaded areas mark the gates set on
the peak of prompt coincidences and the random background.

taken into account, where one DSSD detector and one HPGe detector registered
an event.
The calibration of the utilized detectors with calibration sources is another

mandatory step of the analysis. The procedure will be outlined in the following
section.

5.3.2. Energy calibration
The HPGe detectors of the HORUS setup were calibrated before the experiment
with a 226Ra source and its known γ-ray positions and intensities [212].
Due to changes to the setup between this calibration run and the final setup,
the detectors had to be recalibrated. For this purpose in-beam γ-ray transitions
stemming from FE reaction products and commonly known background transi-
tions, which could be identified in the energy spectrum, were used. These γ-ray
transitions can be found in Table 5.3. The general calibration procedure was
already explained in Section 5.2.2 of the FEST experiment and will be omitted
here. Figure 5.17 shows the known energy of the calibration transitions over
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Table 5.3.: List of γ rays used for energy cal-
ibration of the HPGe detectors of
the HORUS setup.

In-beam Background

Eγ (keV) Origin Eγ (keV) Origin

135.9 70As 511.0 β+ decay
1039.5 70Ge 608.9 214Bi
1454.3 58Ni 1460.8 40K

360.4 67Ga 1763.0 214Bi
2614.5 208Bi

their determined position and the final fits to the data using cubic polynomials.
In principle, energy drifts can occur in all parts of the electronic setup [213],
e.g. due to induced changes of the signal voltage by temperature changes of the
experimental environment. Temperature changes result in a variation voltage of
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Figure 5.17.: Energy calibration of the HORUS HPGe detectors.

82 5. Data analysis & results



the high voltage supply or they shift the operational point of the pre-amplifiers.
For that reason, each detector was corrected for eventual run shifts on a subrun
basis.
The calibrated sum spectra of all HORUS detectors, without any particle condi-
tions, for each target-to-degrader distance can be found in AppendixD.4.

DSSD

The next step in the analysis is the calibration of the segments of the DSSD.
The reaction products were identified by identifying the corresponding γ-ray
transitions in a particle energy-gated HPGe energy spectrum. Then the energy
calibration has been performed by comparing the particle energy spectrum with
calculated energies of the reaction partners from the reaction kinematics. Fig-
ure 5.18 illustrates the reaction kinematics of the employed CoulEx reaction.
The kinetic energy (MeV) of the outgoing reaction products, i.e. 18O and 28Ni,
over their scattering angle is shown on the left side and on the right side the
scattering angle of target-like reaction products as a function of the scattering
angle of beam-like reaction products is depicted. The beam attenuation, due
to the energy loss in the target(∼ 6MeV) was already considered, resulting in
a beam energy of 50 MeV at the center of the target. The shaded area marks
the angular coverage of the DSSD. The target-like reaction products, i.e. 58Ni
nuclei, are already nearly stopped in the 1.8 mg/cm2 Ta degrader foil and can
therefore be ignored for the further discussion. Moreover, such events would
contaminate the data, since it is only possible for target-like particles to scatter
in forward direction, when the impact parameter of the reaction is small. For the
employed beam energy of 56 MeV (above the Coulomb barrier VC = 39.8MeV),
this regime is dominated by the nuclear interaction. It has to be ensured, that
the investigated particle-γ coincidence events stem from a purely electromag-
netic interaction of the beam with the target. Therefore, the maximum scat-
tering angle for so-called “safe” CoulEx has been determined. The minimum
distance in a heavy ion collision between the target and the projectile is

d(θCMS) = a0

�

1+
1

sinθCMS/2

�

, (5.10)
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Figure 5.18.: (left) Kinetic energy of the reaction products plotted over their
scattering angle in the laboratory frame. The shaded area indi-
cates the angular coverage of the DSSD. (right) Laboratory scat-
tering angle of 58Ni nuclei shown as a function of beam-like reac-
tion products (18O). The thick lines indicate the angular coverage
of the DSSD for beam-like (blue) and target-like (dark blue) reac-
tion products.

where ao is the distance of closest approach in a head-on collision, which leads
together with the Cline criterion for safe CoulEx [178]

d(θ ) = 0.72
Ap + At

At

Zp Zt

ELAB
≥ Rp + Rt + 5 fm, (5.11)

to a condition for the scattering angle. The scattering angle of the oxygen ions
in the LAB system has to be smaller than 44.3°. Figure 5.19 shows the minimum
distance as a function of the scattering angle in the center-of-mass (CMS) sys-
tem. The oxygen particles reach the DSSD after passing the degrader foil with
an energy between 32 and 40 MeV. The energy loss in the target depends on
the scattering angle of the particles, because particles scattered at the angle θb
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Figure 5.19.: Determination of Safe CoulEx scattering angle in the laboratory
system.

have to cross a longer distance in the degrader material. That is

∆E(θb) =
∆E(θb = 0)

cosθb
, (5.12)

where ∆E is the energy loss in the material and θb is the scattering angle of the
particle. The detected energy of the DSSD has been calibrated using the infor-
mation of the reaction kinematics and the energy loss of the oxygen particles in
the degrader foil. During the experiment a drastic change of the detected energy
spectrum was observed (compare the particle energy spectra in AppendixD.2),
due to radiation damage from impinging ionizing particles to the DSSD [214],
which results in a decrease of the amount of collected charge and a downward
shift of the measured particle energies (see also [215]). For this reason, for each
segment of the DSSD the maximum of the energy spectrum between the chan-
nels 2000 and 32000 was determined for every subrun, excluding electronic
noise in the lower channels, e.g. from the plunger signals. Finally calibration
polynomials have been applied to the energy spectra on a subrun-to-subrun ba-
sis. Figure 5.20 shows the corrected energy spectra of all rings and strips for the
first plunger-degrader distance of 50µm. The fifth strip S05 was removed from
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tom) for the target-degrader distance of 50µm. The oxygen-like
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shows the three separated rings of the DSSD.
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the further analysis. It was not working correctly during the experiment and
detected mainly low energy noise (see Figure 5.20 (bottom)).

5.3.3. Relative efficiency of HORUS

After the energy calibration, the relative efficiency of each detector of HORUS
was determined with a 226Ra calibration source. The general procedure for the
determination of the relative efficiency has already described in Section 5.2.6.
The γ-ray transitions of the 226Ra source and their relative intensities were taken
from Ref. [216] and are tabulated in Table 5.4. The relative efficiency as a func-
tion of energy are depicted in the AppendixD.3.

Table 5.4.: List of γ rays of the 226Ra source used for relative
efficiency calibration of the HPGe detectors of the
HORUS setup and their transition energy, relative
(Rel.) and absolute (Abs.) intensity. Data taken
from Ref. [216].

Transition energy Rel. intensity Abs. intensity
(keV) (%) (%)

222Rn 186.211(13) 7.815(25) 3.555(11)
214Bi 241.997(3) 15.997(48) 7.268(37)

295.224(2) 40.48(8) 18.414(36)
351.932(2) 78.26(16) 35.60(17)

214Po 609.312(7) 100 45.49(19)
768.356(10) 10.755(36) 4.892(16)
934.061(12) 6.814(22) 3.10(1)

1120.287(10) 32.77(7) 14.91(3)
1238.111(12) 12.819(29) 5.831(13)
1377.669(12) 8.722(25) 3.968(11)
1764.494(14) 33.66(10) 15.31(5)
2204.21(4) 10.80(6) 4.913(23)
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5.3.4. Particle-γ coincidences
The reaction products were identified in the particle-gated HPGe energy spectra.
Due to the fact, that the beam energy was set above the Coulomb barrier of the
(18O,58Ni) reaction, the cross section for FE reactions is high. It is therefore
necessary to separate the different reaction channels by setting conditions on
the energy and the scattering angle of the outgoing particles in the particle
detectors. Figure 5.22 shows the projections of a EγEp matrix of the sum energy
of all HORUS detectors1 against the energy of the four inner most rings of the
DSSD for the first plunger distance of 50µm, ensuring safe CoulEx (see previous
Section). The three different projections (a-c) on Eγ were obtained by setting
three different conditions on the particle energy, as indicated by the inlay energy
spectra. FE reaction products (t) have less energy in comparison to the reaction
products of one- or two-nucleon transfer (u) and CoulEx reaction products (n).
Hence, the energy peak corresponding to outgoing oxygen-like particles can be
easily identified. The γ-ray transitions from FE reactions are strongly suppressed
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Figure 5.21.: Partial level
scheme of 18O.

by selecting the correct energy of the particles
in the DSSD [see Figures 5.22 (c) and 5.23 (c)].
Unfortunately, the energy and mass of reaction
products stemming from one- and two-nucleon
transfer reactions are similar to 18O CoulEx re-
action products. Both cannot be disentangled,
but the transition energies of the transfer re-
action products are below the 2+1 → 0+GS γ-ray
transition of 18O at 1982keV (see Figure 5.21).
Because of the degradation of the DSSD de-
tector during the experiment, the energetically
low-lying FE peak in the particle spectrum van-
ishes for later runs (compare Figure 5.22 and
Figure 5.23). The downward shift of the FE en-
ergy shifts that peak below the threshold and
cannot be seen anymore in the last data. But
the particles from the CoulEx reaction and the
transfer reactions can still be identified in the
particle spectrum.

1Without Doppler correction.
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Figure 5.22.: Particle gated energy spectra of HORUS at a plunger distance of
50µm. The inlay shows the energy spectrum of the four inner most
rings of the CD. The shaded area marks the gate for the HPGe
projections. Comparing (top) and (middle) with (bottom) the FE
reaction channel (t) can be cleanly disentangled from the CoulEx
(n) + xn transfer reactions (u). The 2+1 → 0+GS transition of 18O
at 1982keV is Doppler broadened.
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Figure 5.23.: Particle gated energy spectra of HORUS at a plunger distance of
10µm. The inlay shows the energy spectrum of the four inner most
rings of the CD. The shaded area marks the gate for the HPGe
projections.
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5.3.5. Doppler shift

Since the g factor is measured via the oscillation of the particle-γ angular cor-
relation as a function of time, it is necessary to determine the velocity of the
excited ions emerging from the target. Therefore, the energy of the 2+1 → 0+GS
transition of 18O has been determined for different γ-ray scattering angles α. As
mentioned before in Section 3.4.1, the detected energy Eγ depends on αL

Eγ = E0

p

1− β2

1− β cosαL
. (5.13)

Figure 5.24 shows the energy of the 2+1 → 0+GS transition of 18O as a function of
the γ-ray scattering angle αL. The solid line illustrates the fit to the data via
Eq. (5.13) and its uncertainty, resulting in β = 0.072(1).
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Figure 5.24.: Measured energy of the 2+1 → 0+GS transition of 18O as a function
of scattering of the γ rays αL, i.e. the angle between the DSSD
segment and the HPGe detector, for the longest target-to-degrader
distance at 165(1)µm.
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5.3.6. Angular correlations and determination of the g factor
The DSSD segments and the HPGe detectors (see Table 4.4 and Table 4.3) can
form 672 particle-γ combinations (14 HPGe× 16 DSSD strips× 3 DSSD rings).
Ensuring safe CoulEx (see Section 5.3.2), only the 224 time-dependent angular
correlations, with the inner ring of the DSSD, were taken into account. This
number is further reduced by ignoring combinations that include the faulty
DSSD strip S05 (see Section 5.3.2), resulting in 210 angular correlation groups.
HPGe energy spectra, with a condition on the registered particle energy in the
inner ring (see Section 5.3.4), were investigated for all 210 combinations. Thus,
for each DSSD segment - HPGe detector combination the peak areas of the
2+1 → 0+GS transition of 18O were determined for every target-to-degrader dis-
tance. Here, the γ-ray from the decay in flight and the further shifted γ-ray
after the degrader are not resolved and the peak area of the sum of both has
been determined. The partial energy spectra for each detector combination and
distance can be found in the AppendixD.4. The peak areas were determined by
integrating the energy spectra and subtracting the background content, calcu-
lated by a fit to the data close to the peak (on both sides) with a polynomial of
second order. Asymmetric uncertainties were assumed for the bin contents of
the energy spectra, due to the low count rates, as suggested by the collider de-
tector at Fermilab (CDF) group in Ref. [217] (Uncertainty: ±0.5+

p
N + 0.25).

The background subtracted peak areas were corrected for the Lorentz boost,
by multiplying the peak areas with the corresponding correction factor [see
Eq. (3.47)].
The observed number of counts Np−γ for a specific target-to-degrader distance
and a HPGe-DSSD detector combination is

Np−γ = N0εpεγW (θp,θγ,∆φp−γ), (5.14)

where N0 is a normalization constant, dependent on the experimental details,
εγ and εp are the efficiencies of the HPGe detector and the DSSD segment
and W (θp,θγ,∆φp−γ) is the angular correlation function, Eq. (3.27). As de-
scribed in Ref. [218], by taking the ratio of the number of counts in one HPGe
detector-DSSD segment combination to the sum over all HPGe detector-DSSD
detector segments in one ring of the DSSD, the efficiencies of HPGe detectors
and, under the assumption that the efficiency in one ring is constant as a func-
tion of φ, the efficiencies of the particle segments can be factored out, resulting
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in

NdetN(θp,θγ,∆φi)
∑︁

i N(θp,θγ,∆φi)
=

W (θp,θγ,∆φi)

W (θp,θγ)
, (5.15)

where Ndet is the number of particle strips in one ring of the DSSD and W (θp,θγ)
is given by Eq.(3.27) with q ≡ 0. Hence, only the attenuation coefficients G2 and
G4 remain as free parameters of the perturbed angular correlation function. As
introduced in Section 3.4.1, the attenuation coefficients Gk depend on the Lar-
mor frequency, Eq. (3.26), and thereby on the g factor [see Eq. (3.37)].
The 210 angular correlation groups were evaluated based on Eq.(3.27), as-
suming |g| = 0.28, and ordered according to the amplitude of the oscillations.
Three different groups can be established, 30 combinations should show a larger
amplitude of the oscillation (strong), 28 combinations a medium amplitude
(medium) and 152 combinations a negligible amplitude (weak). The angular
correlation data of Ge00-DSSD combinations as a function of ∆φ is shown for
all eleven set target-to-degrader distances in Figure 5.25. As mentioned previ-
ously, combinations including the strip S05 of the DSSD, which registered a lot
of noise at low energies (see Figure 5.20) were omitted for the analysis and are
marked by □.
The angular correlation (orange region) corresponding to the final result

(see below) is included in Figure 5.25. The remaining angular correlations are
shown in AppendixD.5. Eq. (5.15) was fitted to the three above established
groups for all target-to-degrader distances, using the Monte-Carlo methodol-
ogy introduced in Section 5.1.1, with the following assumptions

• the velocity of the emerging ions: β = v
c = 0.072(1).

• the offset of target-to-degrader distance: ∆d = 15(2)µm.

• the magnetic field, assuming a hydrogen-like electron configuration:
B1s = 8.574kT.

• the mean lifetime of the 2+1 state, taken from Ref. [80]: τ(2+1 ) = 2.80(7)ps.

• the statistical tensors were taken from the output of the CLX calculation,
including the matrix elements for the 0+1 → 2+1 transition [80] and the
quadrupole moment Q = −0.035(9)eb (weighted average taken from val-
ues of Ref. [86]) (see the input file in Appendix B.3).
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The obtained results for the g factor are |g| = 0.31+0.11
−0.06 in the case of strong

oscillations, and there are two possible solutions for the case of medium oscilla-
tions |g| = 0.48+0.05

−0.03 or |g| = 0.96+0.09
−0.10. The second solution was dismissed, due

to the disagreement with the result for the case of strong oscillations. The un-
certainties include at this point only the statistical uncertainties from the fit to
the data sets. The fit to the group of weak oscillations did not converge, due to
the large uncertainties of the data points and only weak expected oscillations.
Further systematic uncertainties stem from the finite opening angle of the DSSD
segments (θp = 22°−35°), the uncertainty in the target-to-degrader distance of
±2µm and the uncertainty in the lifetime of the 2+1 state, resulting in:

|g(2+1 )|=

¨

0.31+0.16
−0.09, (strong),

0.48+0.08
−0.07, (medium).

(5.16)

A simultaneous fit to both data sets (strong and medium) results in a value of

|g(2+1 )|= 0.44+0.08
−0.07. (5.17)

The two groups of medium and strong oscillations were ordered according to
whether the γ-ray intensities should initially increase (W↑) or decrease (W↓).
The weighted average of both resulting groups was calculated and a ratio of
the group initially increasing and the group initially decreasing was formed
R = W ↑/W ↓. This ratio is depicted in Figure 5.26 as a function of the dis-
tance for the medium oscillation data set (a) and the final fit to both data sets
(strong and medium) (b). Here, the ratios of each two distances (apart from
the last distance, which stands alone) were combined and the weighted average
is presented. Additionally, the ratio corresponding to the determined g factor
is shown as a dashed line. The uncertainty bands correspond to the angular
correlation with a g factor in the above stated limits, Eqs. (5.16) and (5.17).
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6. Discussion
The first part of this chapter will discuss the implications of the determined
mean lifetimes of the Hf isotopes. Next the case of 152Gd will be examined and
the last part addresses the results from the g factor measurement of the first
excited state of 18O.

6.1. Evolution of E2 strengths of 174,176,178,180Hf.

6.1.1. Quadrupole collectivity around mid-shell
The recently remeasured lifetimes from Refs.[36, 40] and this work reveal a
new picture. The determined B(E2) values do not show the saturation around
mid-shell anymore, but a maximum shifted towards a lower neutron number, as
can be seen in Figure 6.1 (a). Here, the B(E2) transition strength from the 2+1
state to the GS of the Er (u), Yb (6), Hf (n) and W (t) isotopes is shown as a
function of the P parameter[221]

P ≡
NπNν

Nπ + Nν
, (6.1)

where Nπ,ν are the number of valence protons(π) and valence neutrons (ν) or
proton and neutron holes with respect to major shell closures, e.g. N = 82
and N = 126 or Z = 50 and Z = 82. P can be seen as the average number of
proton-neutron interactions per valence nucleon [20]. Nuclei with P < 4 show
spherical characteristics, whereas nuclei with P > 5 are deformed. The turning
point of each isotopic chain in Figure 6.1 marks mid-shell, since the number of
valence particles (holes) maximizes at mid-shell. As can be seen, the maximum
of the E2 strengths does not lie at the turning point, but on the upper branch
(lower neutron number) of the depicted isotopic chains. The pre-mid-shell data,
coming from lower P, of the different isotopic chains follow the same trend and
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Figure 6.1.: (a) B(E2;2+1 → 0+GS) transitions strengths as a function of P =
NπNν/(Nπ+Nν) of the Er, Yb, Hf and W isotopic chains. Data taken
from [21–34, 40] and this work. (b) "Quadrupole" B(E2) values,
B(E2)Q, vs. P obtained by removing the β4 hexadecapole defor-
mations as described in [219]. β2 values are taken from [41] and
the β4 values from [220]. (c) β4 hexadecapole deformations as a
function of P. Data taken from [220].
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the collectivity, i.e. the B(E2) strength, increases with P. But the E2 strengths
drop unexpectedly before mid-shell for the W, Hf and Y isotopes. In the case
of Er the available data does not extend beyond mid-shell. Furthermore, after
the infliction point, the E2 strengths are significantly lower and the pre-mid-
shell maximum of the B(E2) strengths gets more pronounced for higher proton
numbers. Zamfir et al. [219] attributed the different trends of the B(E2) values
before and after mid-shell to the influence of the hexadecapole deformation
parameter β4 on the quadrupole moment Q. The quadrupole moment can be
expanded Q∝ β2(1+0.36β2+0.97β4+ ...). The B(E2) strength is proportional
to Q2. A "pure quadrupole" B(E2) value [219] can be defined by removing the
influence of β4

B(E2;2+1 → 0+GS)Q = B(E2;2+1 → 0+GS)

�

Q(β4 = 0)
Q(β4 ̸= 0)

�2

. (6.2)

These values are depicted in Figure 6.1 (b). Due to the applied correction the
B(E2) strengths of nuclei with negative values of β4 is increased in comparison
to nuclei with positive values of β4. The deformation parameters for the calcu-
lation of B(E2)Q have been taken from [41] or if not experimentally available
from [220]. Figure 6.1 (c) shows the trend of β4 as a function of P. The values
are near-constant until they turn negative around N = 98. Consequently, the
early drop of the E2 strength is reduced. Even though experimental data on hex-
adecapole deformation is scarce, there are numerous indications in the high-N ,
high-Z region of this major shell (e.g. Ref. [222]). But to date no microscopic
explanation for the resulting drop in B(E2) strength has been provided.
Another observable discussed in conjunction with the evolution of collectivity
is the double difference of binding energies, introduced in Ref. [225], i.e. the
average proton-neutron interaction of the last proton pair with the last neutron
pair [226]

δVpn(Z , N) =
1
4
{[BE(Z , N)− BE(Z , N − 2)]

− [BE(Z − 2, N)− BE(Z − 2, N − 2)]}, (6.3)

where BE(Z , N) is the binding energy of a nucleus with Z protons and N neu-
trons. The double difference δVpn depends, in general [227], on the occupied
neutron and proton orbitals. It is large where the overlap of the proton and neu-
tron orbitals is large. The δVpn values of the rare earth isotopes are depicted in
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a N -Z chart in Figure 6.2 (a), with the binding energies taken from Refs. [223,
224]. High values of δVpn are obtained in the area below the neutron and proton
mid-shell and in the area above the neutron and proton mid-shell. The values
in the upper left quadrant, i.e. below neutron mid-shell and above proton mid-
shell, are in comparison smaller. Figure 6.2 (b) shows the projection, marked
by the black square in (a). δVpn is nearly constant for the W and Hf isotopes,
but jumps by ∼ 100keV at N = 104. If neutrons already scatter early into the
corresponding orbitals, the abrupt increase of δVpn may already be reflected at
N < 104.
The measured B(E2) values of the yrast bands of the Hf isotopes can be further
investigated by looking at the ratio B4/2 = B(E2;4+1 → 2+1 )/B(E2;2+1 → 0+GS).
The resulting values from this work and the adopted values from neighbouring
isotopes are shown in Figure 6.3 (b). The determined values agree overall with
the predictions of a rigid rotor B4/2,rot = 1.44, even though the uncertainty for
B4/2 of 178Hf is large and prevents a definite assignment. However, as shown
in Figure 6.3 (a), the B(E2) values of higher lying states deviate from the ro-
tational limit. The B(E2;6+1 → 4+1 ) transition strength of 174Hf is unexpectedly
lower than the corresponding B(E2;4+1 → 2+1 ) value and the same trend cannot
be excluded for 176Hf within the experimental uncertainty. Unfortunately, data
on higher lying transitions of the yrast band are not available. But similar re-
sults were obtained in Ref. [40] for the Hf isotopes and in Ref. [228] for 162Yb.
These B(E2) values also indicate a change in rotational structure past N = 100,
in agreement with the previous arguments on the hexadecapole deformation
and the δVpn.

6.1.2. Kπ = 2− band of 176Hf
Apart from the evolution of the E2 transition strength, the observation of the
low-lying negative parity states 2−1 and 3−1 allowed the investigation of the K =
2− rotational band of 176Hf (see Refs. [205, 206]). The transition connecting
these two states has not been observed yet and it was unfortunately also not
observed in this work. The expected energy of 65 keV may be obscured by x-ray
transitions and is in competition with the decay via internal conversion1. The
E1 decay transitions to the yrast band are, according to the Alaga rules [229],

1The internal conversion coefficient is 19.8(16) for a E2 transition at 65 keV and increases rapidly
with the multipolarity.
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first forbidden transitions with ∆K = 2. In Ref. [205] a large admixture of M2
and E3 strength has been determined for the decay transitions of the 2−1 state
by measuring conversion electrons. The decay transitions of the 3−1 state have
been confirmed to be of E1 character.
Under the assumption that the transition width of the 3−1 → 2−1 transition is
negligible, upper limits for the E1 transition strengths of the decay transitions
3−1 → 4+1 and 3−1 → 2+1 have been determined, using the extracted mean life-
time of τ(3−1 ) = 25(12)ps (see Section 5.2.7). These transitions are suppressed
by three orders of magnitude in comparison to other E1 strength of 176Hf. An
overview of the E1 strength distribution of 176Hf is given in Ref. [230].
The extracted mean lifetime of the 2−1 state is slightly below the adopted litera-
ture value [31], but in good agreement with othermeasurements, e.g. Ref. [207].
From the new weighted average value of τ(2−1 ) (see Table 5.1) the transition
strengths of its decay 2−1 → 2+1 can be determined with the known multipole
mixing ratios from [207] and the branching ratios from [31]. The transition
strengths are given in Table 6.1.

Table 6.1.: The B(Eλ) strengths of 176Hf were determined with
the known branching ratios taken from Ref. [31], the
conversion coefficients taken from Ref. [209] and the
multipole mixing ratios of the 2−1 → 2+1 transition
δ(M2/E1) = 0.129(35) and δ(E3/E1) = 0.28(7) taken
from Ref. [207].

Transition Iγ σλ B(σλ) B(σλ)
(%) in µ2

Nb
2λ−2/e2bλ in W.u.

2−1 → 2+1 100(8) E1 4(2)× 10−10 2(1)×10−8

M2 10(3)× 10−3 2(1)×10−2

E3 6(2)× 10−2 30(12)

3−1 → 4+1 47(4) E1 8+6
−3 × 10−8 4+3

−2 × 10−6

3−1 → 2+1 100(8) E1 9+9
−3 × 10−8 4+5

−1 × 10−6
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6.2. τ(0+2 ) of
152Gd - possible new signatures for a

QPT
The determined mean lifetime τ(0+2 ) = 96(6)ps of 152Gd is nearly twice the
previous stated lifetime from Ref. [68] of 53(12) ps. The quoted uncertainty
is a combination of the statistical uncertainty in determining the centroids of
the time distributions and the uncertainty of the energy-dependent time-walk
calibration. As was shown in Section 3.2, the mean lifetime of an excited state
τ is proportional to the inverse of the reduced transition strength B(σλ) [see
Eq. (3.11)]. Thus, after determining the new value for the lifetime τ(0+2 ) it is
possible to calculate the E2 transition strength (with the conversion coefficient
α= 0.0826(12) taken from Ref. [209])

B(E2;0+2 → 2+1 ) = 0.528+0.036
−0.029 e2 b2,

= 115+6
−8 W.u. (6.4)

In addition, a new value for the ρ2(E0) transition strength can be determined
using the dimensionless ratio of the E0 and E2 transition strengths defined by
Rasmussen [231]

X (E0/E2)≡
B(E0)
B(E2)

=
ρ2(E0)e2R4

B(E2)
, (6.5)

where R is the nuclear radius (∼ 1.2×A1/3). With the measured value of the ratio
X (E0/E2) = 0.0122(5) given in Ref. [232] and the newly determined B(E2;0+2 →
2+1 ) value one obtains

ρ2(E0) = 37.9+3.2
−2.5 × 10−3. (6.6)

It has been shown in the framework of the IBM in Ref. [65], that the E0 tran-
sition strength ρ2(E0) sharply increases and maximizes at the critical point of
the spherical to quadrupole deformed shape transition. Bonnet et al. showed
in Ref. [66], using the CBS model, that ρ2(E0) decreases from the critical point
toward the rigid rotor limit. Figure 6.4 (b) presents the experimental data of
ρ2(E0) of the even-even Nd (t), Sm (n) and Gd (l) isotopic chains around
N = 90 as a function of the P parameter. The data included in Figure 6.4 is
tabulated in Table 6.2. The abbreviations B(E2)i = B(E2;0+i → 2+1 ), ρ

2(E0) =
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Figure 6.4.: Evolution of (a) the energy of the first excited 0+ state, (b) the E0
transition strength ρ2(E0;0+2 → 0+GS), (c) the product of B(E2)1 ×
B(E2)2, and (d) the product of summed M1 strength ΣB(M1)1 ×
ΣB(M1)2 of the Nd (t), Sm (n) and Gd (l) isotopes around N =
90 as a function of P. Marked by orange boxes are the obtained
values from this work. The shaded grey area marks the area of
transitional nuclei between spherical nuclei (P < 4) and deformed
nuclei (P > 5). Data taken from Refs. [21–25, 41, 46–52, 232–
235].

ρ2(E0;0+2 → 0+GS) and B(M1)i = ΣB(M1;0+i → 1+sc) have been used. Even though
experimental data are sparse, they reveal the expected trend of ρ2(E0). The
experimental values of ρ2(E0) are small at the magic shell closure N = 82
(P = 0) and increase in the transitional region, maximize near N = 90 (152Sm
and 154Gd), before they decrease towards deformed nuclei (Gd). In addition to
ρ2(E0;0+2 → 0+GS), the E0 strength connecting the 0+3 state to the 0+GS is depicted
for 158Gd, supporting the statement of a sizeable E0 strength in deformed nu-
clei. The obtained value from this work supports the hypothesis of ρ2(E0) as
a signature for a QPT. Including the new value, the maximum of the ρ2(E0)
strength is more pronounced and the uncertainty has been considerably reduced
in comparison to the old value of ρ2(E0) = 6.6(14) × 10−3. Furthermore, the
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E0 strength of 152Gd remains sizeable, supporting the argument that 152Gd is
located at the QPT. As mentioned in the CBS section (Section 2.1.2), the E0
strength can be related to a product of B(E2) strengths

ρ2(E0) = C × B(E2;0+1 → 2+1 )× B(E2;0+2 → 2+1 ), (6.7)

with C =
�

3Z
4π

�2 1
(eR2)4

, (6.8)

where Z is the proton number, and R the nuclear radius. Figure 6.4 (c) shows
the product B(E2)1 × B(E2)2 as a function of P. The position of the maximum
for the product of B(E2) values is shifted to a lower P value, as can be seen from
the known Nd and Sm values. The position does not exactly coincide with the
location of the maximum of the E0 strength for the Gd isotopes. The reason
may be related to the application of the Q-phonon scheme in the derivation of
Eq.(6.7).
The peak of the B(E2) product at the QPT critical point can be qualitatively

understood in the context of the geometrical Davydov-Chaban model [238]
and the vibrational model. Taking the intrinsic frame expression for the E2-
transition operator

Q2µ =Q0D2
µ0β , (6.9)

results in

B(E2;0+1 → 2+1 )× B(E2;0+2 → 2+1 ) =Q4
0| 〈0

+
1 |β

2 |0+2 〉 |
2. (6.10)

By using wave functions obtained from the Davydov-Chaban and vibrator mod-
els and typical values for the deformation β and the fluctuation of the defor-
mation, numerical estimates can be calculated for the three cases of spherical,
transitional and deformed nuclei (see Appendix A.3 for more details) and are
presented in Table 6.3.
An estimation of the B(E2) product for vibrational nuclei, such as 150Gd and

148Sm, can be calculated, by taking the relation B(E2;0+2 → 2+1 ) = 2 ·B(E2;2+1 →
0+1 ) from vibrator models. Hence, a reasonable upper limit is (the approximated
values are marked by « in Table 6.2)

B(E2)1B(E2)2 = 2(B(E2)1)
2. (6.11)
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Table 6.3.: Numerical estimates for B(E2)1 ×
B(E2)2.

B(E2)1×B(E2)2

spherical nuclei: 1.0×10−3Q4
0

transitional nuclei: 12.8×10−3Q4
0

deformed nuclei: 0.2×10−3Q4
0

Thereby, it can be shown that for vibrational nuclei, where to date only the
B(E2;0+1 → 2+1 ) transition strength is known, the product of B(E2) strengths is
small. Furthermore, there is indeed a maximum at or between N = 88 and
N = 90.

In addition, Figure 6.4 (d) presents another observable, which can be related
to the product of B(E2) strengths in the IBM, the product

B(M1;0+1 → 1+sc)B(M1;0+2 → 1+sc) =
⎛

⎝

10.6

Z2
�

1− E(0+2 )
2E(1+sc)

�

⎞

⎠B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ), (6.12)

where 1+sc is the scissors mode (see Ref. [239] for more information on the scis-
sors mode). The full derivation of Eq. (6.12) is shown in Appendix A.1. J. Beller
has shown in his work [233]2, that the product of M1 strength also maximizes
at the critical point of a QPT in the case of the gadolinium isotopes 152,154,156Gd.
For the neighbouring elements, there are to date only two further values known
on the decay of the scissors mode to the 0+2 state available from Ref. [234, 235]
and thereby the product of summed M1 strength. These two values for 150Sm
and 150Nd agree within their uncertainties with the above statements. The value
of 150Sm (below the QPT at N = 88) is small and the value of 150Nd at the criti-
cal point is larger, even though its uncertainty does not allow a final conclusion,
but data on their isotopic neighbours could clarify the picture.

2Therein, for the first time ΣB(M1;1+sc.→ 0+2 ) has been determined for nuclei across the QPT.
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6.3. g-factor measurement of 18O
In the nuclear chart the nucleus 18O is located just two neutrons away from the
doubly magic nucleus 16O. Therefore, its excited states are expected to be dom-
inated by neutron excitations. The g factor of the 2+1 state of 18O has previously
been determined by Goldring et al., 0.20≤ |g| ≤ 0.36 [240] (time-integral RIV),
Speidel et al. |g|= 0.35(4) [241] and more precisely by Asher et al. [242]. The
latter obtained |g| = 0.287(15), with the traditional TDRIV method, i.e. the
current adopted value in the nuclear data sheets. In agreement with a neu-
tron excitation, the sign of the g factor has been determined to be negative by
Forterre et al. [243] with TF. The measurement of Goldring et al. suffered
from a low ion velocity. The kinetic energy was only E(18O) = 33MeV. There-
fore, the charge-state distribution contained a sizeable amount of 6+ ions and
assumptions about the electron configuration had to be made, leading to only
an upper and lower limit of the g factor. Only for the case of hydrogen-like ions
can the hyperfine field at the location of the nucleus be calculated, because the
electron configuration is known. Similarly, Speidel et al. had to make assump-
tions about the charge-state populations and the electronic configurations. They
measured the decoupling of the angular momentum J and the nuclear spin I as
a function of an externally applied magnetic field in order to determine the g
factor. As mentioned in the introduction (see Chapter 1.2), the adopted value
of the g factor of Asher deviates from the theoretical SM prediction with the
USDB interaction by more than five standard deviations. Recent studies using
the ECR-TDRIV and TF techniques have shown that the magnetic moments of
other isotopes in the sd-shell, i.e. 22Ne [159], 24Mg [78], and of 26Mg [82], are
reproduced well by these SM calculations. Hence, it needs to be clarified if the
deviations of 18O data are due to the experimental data or a short coming of the
used USDB interaction, since deviations between theory and experiment only
occur at the edges of the sd shell. The value obtained from this work with the
ECR-TDRIV technique,

g(2+1 ) = −0.44+0.07
−0.08, (6.13)

is slightly below the adopted value from Asher et al., but within its uncertainty
it agrees well with the SM prediction and the values of Goldring and Speidel.
The different experimental values are compared in Figure 6.5, including the
prediction of the SM using the USDB interaction. Based on the new value of the
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Goldring et al. Speidel et al. Asher et al. This work

−0.5

−0.4

−0.3

−0.2

g(
2+ 1

)

(a) USDB
This work

Adopted value

18O 22Ne 26Mg 30Si 34S 38Ar

−0.4

0.0

0.4

0.8

g(
2+ 1

)

(b)

USDB
Data

This work

Figure 6.5.: (a) Comparison of different experimental values of g(2+1 ) of
18O. (b)

Comparison between experimental data of the N = Z + 2 isotopes
in the sd-shell.

g factor no final conclusion can be drawn. The uncertainty of the value from
this work stems mainly from the low statistics of the measured particle-γ coinci-
dences (see FiguresD.7 ff. in the Appendix). Most evaluated groups sensitive to
the oscillation of the angular correlation are located at or close to the minimum
of the angular correlation, resulting in small γ-ray intensities. Minor roles play
the uncertainties arising from the determination of the target-to-degrader dis-
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tance and the uncertainty due to the angular coverage of the combined DSSD
segments.

Different approaches can be taken to improve the presented measurement.
The limiting factor of the performed experiment has been the count rates of the
DSSD segments. As can be seen in the DSSD energy spectra (see AppendixD.2),
the DSSD segments visibly degraded over the experiment due to radiation dam-
age. It would be possible to increase the detection efficiency of γ rays by a factor
of ∼ 2, by shortening the distance of the HPGe detectors to the target. Thereby,
the covered solid angle is increased. However, the employed target chamber has
to be replaced with a target chamber with a smaller diameter. Another approach
would be to place the DSSD farther away from the beam dump or to shield it
against possible back scattered particles from the beam dump. Thus, allowing
to significantly increase the beam current on the target. Moreover, improve-
ments could be made, by placing more HPGe detectors close to the sensitive
region around θ = 90°. Thereby, the sensitivity of the setup to the oscillation
of the angular correlation is increased. This step would require a different de-
tector setup, since the HORUS detector array does not have additional detector
holding structures at θ = 90°.
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7. Conclusion & outlook
In this work, two different techniques of γ-ray spectroscopy, also foreseen for
RIB, have been successfully applied to stable nuclei. Mean lifetimes of low-lying
excited states have been determined for the rare-earth isotopes 174,176,178,180Hf
and 152Gd. The presented FEST experiments have been performed at IFIN-HH
with the ROSPHERE detector array in amixed configuration with LaBr3(Ce) and
HPGe detectors. For the population of excited nuclear states FE and CoulEx re-
actions have been employed.
The evolution of collectivity in the N = 82 to N = 126 shell has been investi-
gated with the help of the extracted E2 transition strengths. The extractedmean
lifetime of the 0+2 state of 152Gd, τ(0+2 ) = 96(6)ps, is in disagreement with the
previous measured value. The new value and the connected ρ2(E0;0+2 → 0+GS) =
38(3)×10−3 strength and B(E2;0+2 → 2+1 ) = 115+6

−8 W.u. strength revealed a cor-
relation between the E0 strength, an established signature of a QPT [65, 66],
and the product of B(E2;0+1 → 2+1 )×B(E2;0+2 → 2+1 ) for the gadolinium isotopic
chain. Additionally, this product of B(E2) strengths can be related to another
possible new signature, i.e. the product ΣB(M1;1+sc → 0+GS)×ΣB(M1;1+sc → 0+2 )
connecting the mixed-symmetry scissors mode to the GS and the 0+2 state, which
has been investigated in Ref. [233]. Further investigations of the E0 strength in
neighbouring isotopic chains of gadolinium could give new insight into the cor-
relation between the E0, E2 and M1 observables. The investigation of the M1
strength of the scissors mode of the neodymium, samarium and dysprosium
chains are ongoing [234, 235, 244, 245].
Towards mid-shell, the early peak of collectivity at N = 100 has been identified
for the Hf isotopes from the determined lifetimes of the 2+1 states of 174,176,178,180Hf
in agreement with other recent measurements [40]. In total 13 mean lifetimes
of excited states of 174,176,178,180Hf have been determined, two (τ(4+1 ) = 85(13)ps
of 178Hf and τ(3−1 ) of

176Hf) for the first time. Several observables, such as δVpn
and the determined B(E2;6+1 → 4+1 ) strengths, hint at a change in rotational
structure of these isotopes past N = 100.
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Apart from the evolution of the E2 strength, the low-lying negative parity band
of 176Hf has been investigated. Here, the determined mean lifetime of the 2−1
state is in good agreement with older measurements and τ(3−1 ) = 25(12)ps has
been determined for the first time. For a comparison of the hafnium data to
the evolution of the E2 transition strength of the tungsten isotopes, recently a
RDDS measurement of 170W has been performed at INFN, Legnaro, which is
analyzed by K. Ide in her master thesis [246]. For the investigation of the ex-
otic nuclei around A∼ 190 and at at N = 126 the FEST experiments S452 and
S450, respectively, are scheduled and will be performed at the Gesellschaft für
Schwerionenforschung (GSI) in the close future.

The second part of this thesis covered the measurement of magnetic moments
of excited nuclear states with the ECR-TDRIV technique [77], developed for the
application to RIB. To further refine the technique, it has been employed for
the determination of the g factor of the 2+1 state of 18O. A CoulEx experiment
has been performed at the Tandem accelerator of the IKP der Universität zu
Köln. The experimental setup consisted of the HORUS detector array in combi-
nation with the DARCY plunger device and a DSSD for particle identification.
The g factor has been determined through the oscillation of the angular cor-
relation of de-excitation γ rays to g(2+1 ) = −0.44+0.07

−0.08, proving the feasibility of
such experiments with stable beams. The obtained value is two σ away from
the adopted value from the nuclear data sheets [80], but in agreement with
previous measurements. Within its uncertainty, it is also in agreement with
SM calculations using the USDB interaction, which deviate from all previous
measurements. However, the value is not precise enough to draw a final conclu-
sion. Further investigations with a follow-up experiment and the comparison
to other theoretical predictions on the basis of ab-initio calculations [247, 248]
are foreseen to clarify the situation. Possible obstacles and improvements for
future ECR-TDRIV experiments have been discussed in this work. As a next
step, the technique should be applied to RIBs. A first RIB experiment has been
performed at the isotope separator on-line device (ISOLDE) facility at conseil
européen pour la recherche nucléaire (CERN), investigating 28Mg, but no final
results have been obtained so far [159].
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A. Derivations

A.1. Relation between E2 and M1 strength in
even-even nuclei

The following derivation is based on Ref. [249]. Within the Q-phonon scheme it
can be demonstrated [233] that the M1-branching ratio of the 1+ scissors mode
(sc) to the first and second 0+ states is related to the ratio of B(E2) values from
these two 0+ states to the 2+1 state

�

1−
E(0+2 )

2E(1+sc)

�2 B(M1;0+2 → 1+sc)

B(M1;0+1 → 1+sc)
=

B(E2;0+2 → 2+1 )

B(E2;0+1 → 2+1 )
. (A.1)

Eq. (A.1) can be derived, starting with the IBM-2 Hamiltonian

H = Hπ +Hν −κ
∑︂

µ

(−)µQπ,µQν,−µ, (A.2)

where π denotes the proton part and ν the neutron part. Calculating the double
commutator of the Hamiltonian and the M1-transition operator results in

∑︂

η

(−)η[[H,Mη(M1)],M−η(M1)]

= −6κ(gπ + gν)
2
∑︂

µ

(−)µQπ,µQν,−µ, (A.3)

with the M1-transition operator

M(M1) = gπLπ − gνLν. (A.4)
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Taking thematrix elements 〈0+1 | ... |0
+
1 〉 (see Ref. [250]) and 〈0

+
1 | ... |0

+
2 〉 of Eq. (A.3)

we obtain

2E(1+sc)
|︁

|︁〈0+1 ∥M(M1)∥1+sc〉
|︁

|︁

2
=

3
2
κ(gπ + gν)

2 N
Z

|︁

|︁〈0+1 ∥M(E2)∥1+sc〉
|︁

|︁

2

(A.5a)
(2E(1+sc)− E(0+2 )) 〈0

+
1 ∥M(M1)∥1+sc〉 〈1

+
sc∥M(M1)∥0+2 〉=

3
2
κ(gπ + gν)

2 N
Z
〈0+1 ∥M(E2)∥2+1 〉 〈2

+
1 ∥M(E2)∥0+2 〉 . (A.5b)

Dividing Eq. (A.5b) by Eq. (A.5a) and taking the result in square results in Eq. (A.1).
Furthermore, it was shown empirically in Ref. [105] that

B(M1;0+1 → 1+sc) =
10.6
Z2

B(E2;0+1 → 2+1 ). (A.6)

Multiplying Eq. (A.6) squared with Eq. (A.1) results in

B(M1;0+1 → 1+sc)B(M1;0+2 → 1+sc) =
⎛

⎝

10.6

Z2
�

1− E(0+2 )
2E(1+sc)

�

⎞

⎠B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ), (A.7)

⇒ B(M1)1 · B(M1)2∝ B(E2)1 · B(E2)2. (A.8)

B(E2)i replaces B(E2;0+i → 2+1 ) and B(M1)i =
∑︁

B(M1;0+i → 1+sc). The left-
hand-side (lhs) of Eq. (A.8) was shown to be a possible new signature for a QPT
in Ref. [233]. A peak is expected around the QPT because one of the factors
(B(M1)i) is either forbidden or suppressed for the ideal vibrational or rotational
limits. This is indeed the case for the Gd-M1-data around N = 90 (154Gd), Fig-
ure. 6.4,(c). Unfortunately, there is no data for the neighbouring isotopic chains.
Hitherto, the right-hand-side (rhs) of Eq. (A.8) should also be unknown signa-
ture for a QPT.
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A.2. Relation between ρ(E0) and B(E2)1 × B(E2)2
Starting from the definition of the E0 strength from Ref. [236]

ρ2
i f =
| 〈Ψ f | T (E0) |Ψi〉 |2

(eR2)2
, (A.9)

and the E0 and E2 transition operators for axially symmetric quadrupole defor-
mation from Ref. [66]

T (E0) =
3Z
4π

eR2β2, (A.10a)

T (E2) =
3Z
4π

eR2β , (A.10b)

with the nuclear radius R= 1.2A1/3 and the deformation parameter operator β .

ρ2(E0) =
�

3Z
4π

�2

| 〈Ψ f |β2 |Ψi〉 |2

=
�

3Z
4π

�2

|Σi 〈Ψ f |β |2+i 〉 〈2
+
i |β |Ψi〉 |2

≈
�

3Z
4π

�2

| 〈Ψ f |β |2+1 〉 〈2
+
1 |β |Ψi〉 |2. (A.11)

In the last step the assumption of the Q-phonon scheme, that the first 2+1 state
exhausts nearly all the E2 transition strength from the ground state (empirically
proven in Ref. [104]), was used. Together with the above definition of the E2
transition operator one obtains

ρ2(E0) = C · B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ). (A.12)

with C =
�

3Z
4π

�2 1
(eR2)4

. (A.13)
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A.3. B(E2)1 × B(E2)2 maximum at QPT
The following arguments are taken from [249]. It can be qualitatively shown,
that the product B(E2)1×B(E2)2 maximizes at the critical point of a QPT. Using
the intrinsic frame expression for the E2-transition operator

Q2µ =Q0D2
µ0β , (A.14)

we obtain the following expression for the product of B(E2)-transition strengths

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ) =Q4
0| 〈0

+
1 |β

2 |0+2 〉 |
2. (A.15)

First, for the case of transitional and deformed nuclei the Davydov-Chabanmodel
[251] can be used to determine the wave functions of the 0+1 - and 0+2 -states

Ψ(0+1 ) =N
− 1

2
0 β−

3
2 exp
�

−
1
2
(β − β0)2

2β2
00

�

, (A.16a)

Ψ(0+2 ) =N
− 1

2
1 β−

3
2 exp
�

−
1
2
(β − β0)2

2β2
00

�

(β − β0)p
2β00

, (A.16b)

with the normalization constants Ni . β00 =
ħh

2
p

BC
where C is the stiffness coef-

ficient of β vibrations at the minimum of the potential and B is the mass coeffi-
cient. β0 gives the position of the maximum of the wave function.
Inserting these wave functions into Eq. (A.15) results in

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 )

= 8Q4
0β

4
00

|︁

|︁

|︁a(1+ Erf(a) + 2p
π

�

1+ a2 − a
�

e−a2
|︁

|︁

|︁

2

(1+ Erf(a))
�

1+ Erf(a)− 2p
π

e−a2
� , (A.17)

where a = β0p
2β00

.
In the second case for the spherical limit β0 = 0 and using the harmonic oscil-
lator potential V (β) = 1/2Cβ2 the wave functions are

Ψ(0+1 ) =N
− 1

2
0 β−2exp
�

−
1
2
β2

2β2
00

�

, (A.18a)

Ψ(0+2 ) =N
− 1

2
1 β−2exp
�

−
1
2
β2

2β2
00

�

(β2 − β2
00), (A.18b)
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and therefore

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ) = 2Q4
0β

4
00. (A.19)

With the two expressions Eq. (A.19) and (A.17), it is possible to get numerical
estimates for the product B(E2)1 · B(E2)2 for the three cases of 1) the spherical
limit, 2) transitional nuclei and 3) deformed nuclei.

• Spherical limit: β00 = 0.15:

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ) = 1.0 · 10−3Q4
0.

• Transitional nuclei: β00 = 0.2 and β0p
2β00
= 1:

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ) = 12.8 · 10−3Q4
0.

• Deformed nuclei: β00 = 0.03 and β0 = 0.3:

B(E2;0+1 → 2+1 )B(E2;0+2 → 2+1 ) = 0.2 · 10−3Q4
0.

A.3. B(E2)1 × B(E2)2 maximum at QPT 119
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B. Input files

B.1. gsort input file
The setup-file is seperated into three sections:

• Format: data format, detectors or fixed parameters (detector)

• Declaration: selection of events, general rules (hgatedef)

• Analysis: calibration of parameters, creation of spectra etc. (recal)

Listing B.1: gsort input file
1 ***************************************
2 ** Definition of the file format
3 format GASP
4

5 ** Definition of the detectors and their parameter and resolution
6 ** Definition of additional placeholder parameters need for e.g. the
7 ** time-walk calibration
8 header F 1 8192
9 detector G 14 2 8192 4096

10 detector L 11 2 8192 8192 PLUS 2 8192 8192
11 detector A 11 PLUS 2 8192 8192
12

13 ** Definition of gates on the parametesr
14 ** ?0 corresponds to the energy and ?1 to the time information
15 *Gate 0 on 351 + 385 keV - HPGe
16 hgatedef G0 2
17 769 774
18 701 705
19 ** Gate 1 on 519 keV - HPGe
20 hgatedef G0 1
21 1037 1040
22

23 ** Gate 2 on 344keV - LaBr
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24 hgatedef L0 1
25 338 351
26

27 ** Calibrations of the different parameters
28 ** Syntax: recal parameter file offset gain gate detectors
29 ** for gate and detectors: lower and upper limit
30 recal G0 Cal/GeE-2nd.cal 0.00 2.00 10 8192 0 14
31 recal G1 Cal/Ge-TDC-Feb2014.cal 1000.00 0.50 10 4000 0 14
32 recal G1 Cal/GeTSHIFTS.cal 0.00 1.00 10 4000 0 14
33

34 ** copy uncalibrated energy information of the LaBr to L3
35 copy L0 L3
36 recal L0 Cal/le-gmatch NORUN 0.00 1.00 10 8000 0 11
37 recal_mult L0 Cal/pint_LE.mcal NORUN 0.00 1.00 10 8000 0 11
38 recal L0 Cal/LE-gcor-87.cal RUN 0.00 1.00 10 8000 0 11
39 recal L1 Cal/TAC-10ps-Feb2014 NORUN 0.00 1.00 10 8000 0 11
40 recal L1 Cal/LT-Shifts NORUN 0.00 1.00 10 8000 0 11
41

42 ** Time-walk calibration
43 ** copy L0 to L2, calibrate L2 via calibration polynoms from file
44 ** subtract L2 from L1 with a offset
45 copy L0 L2
46 recal L2 Cal/La-walkcorr-1 0.00 1.00 10 2000 0 11
47 add L1 L2 L1 Fact 1.00 -1.00 Off 1000
48 gate L1 10 8000 IN 0 11
49

50 ************
51 ** Create Projections of all the detector parameters for each detector
52 proje
53 ** Create E(g1)-E(g2) matrix of HPGe detectors
54 sort2d_symm G0 Ge-symm-TW-2 Res 8192
55

56 ** Create E(g1)-E(g2)-dT cube of the LaBr detectors with a gate on
57 ** HPGe detectors H1
58 sort3d_diff L0 L0 L1 1000 La-La-dT-g351-385 Res 2048 2048 2048 H1 1
59

60 ***************************************
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B.2. CLX input file
A CLX input file can be separated into three sections:

• The first part includes the title, input/output control flags, the number of
levels/highest multipolarity/maximum energy, proton number and mass
number of the projectile, and the target, projectile or target excitation (not
in all versions of CLX included), the beam energy (MeV) and the angular
coverage

• In the second part the levels are defined with number, spin, energy (MeV),
parity(1=+,-1=-) and K quantum number

• Matrix elements connecting the declared states are defined in the last
part with initial state, final state, matrix element and the multipolarity
(negative values for magnetic transitions)

Listing B.2: CLX input file of the 180Hf(16O,16O)180Hf⋆ experiment
1 16O -> 180Hf @NIPNE
2 11101111
3 5 2 0
4 0 0 0
5 8 16
6 72 180
7 2
8 55
9 0 180 1

10

11 1 0 0.0000 1 0
12 2 2 0.0933 1 0
13 3 4 0.3086 1 0
14 4 6 0.6408 1 0
15

16 1 2 0.967 2
17 2 3 0.211 2
18 3 4 0.18 2

Listing B.3: CLX input file of the 58Ni(18O,18O⋆)58Ni experiment
1 18O -> 58Ni
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2 11101111
3 3 2 0
4 0 0 0
5 8 18
6 28 58
7 1
8 55
9 1 180 1

10

11 1 0 0.000 1 0
12 2 2 1.982 1 0
13 3 4 3.555 1 0
14

15 1 2 0.069 2
16 2 2 -0.046 2
17 2 3 0.030 2
18 3 3 0 2

B.3. SOCO2 channel configuration files
The sorting code SOCO uses several configuration files. They contain

• source.conf: definition of the detectors and their origin

• channel.conf: definition of the channel id, corresponding to the defined
detectors and their time relation

• calibration.conf: calibration polynomials for the defined channel ids

• matrix_def.conf and matrix_correl.conf: definition of matrices

• requirements.conf: possible conditions on the created events

• gate.conf: conditions on single channels or defined types

More details can be found in the SOCO manual [211].

Listing B.4: source.conf
1 # Type Name DGF Crate Slot SubS
2 SINGLE R1R2 1419 0 12 0
3 SINGLE S1S2 1423 0 15 0
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4 SINGLE Ge0 1429 0 20 0
5 ...

Listing B.5: channel.conf
1 # ID DetID SId Type Name Offset IsTr On/Off
2 28 0 0 Ge Ge00 15 1 1
3 0 100 0 GASP R1R2 -3 1 1
4 4 104 0 LABR R9R10 -4 1 1
5 8 108 0 Silicon R17R18 -2 1 1
6 12 201 0 Solar S1S2 0 1 1
7 ...

Listing B.6: calibration.conf
1 # ID p0 p1 p2 ...
2 28 -0.3405 0.1615 -8.5e-09
3 ...

Listing B.7: matrix_def.conf
1 #MatrixId Name DimX DimY IsSym.
2 0 Ge_Ge 4096 4096 1

Listing B.8: matrix_correl.conf
1 # MatrixID Channel ID X Channel ID Y window background
2 # GG matrix
3 0 28 29 20 30
4 ...

Listing B.9: requirement.conf
1 # Type Min Max
2 GASP 1 20

Listing B.10: gate.conf
1 # Type Min Max
2 GASP 5000 16000
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C. Supplementary data for the FEST
experiments.

C.1. CASCADE calculation: α beam, 149Sm target

Table C.1.: CASCADE calculation of a α beam on 149Sm target [117].
Compound Nucleus: 153Gd, VCoulomb=17.18 MeV, Lcrit.=17ħh

E (MeV) 17.0 18.0 19.0 20.0 21.0 22.0 23.0
Cl0 ħh 1.5 4.2 5.9 7.2 8.2 29.2 10.0

Nuc. chan. σ (mb)
153Gd γ 0.0 0.1 0.1 0.1 0.1 0.0 0.0
152Gd n 132.3 251.7 381.7 310.2 182.5 118.7 74.9
151Gd 2n 6.8 15.1 215.1 457.6 625.4 763.0

σ f usion 132.3 258.6 396.0 525.5 640.4 744.4 838.3
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C.2. Time-walk calibration of ROSPHERE
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Figure C.1.: Time-walk calibration of the LaBr3(Ce) detectors of ROSPHERE.
The same range was used to indicate the stronger energy depen-
dence of the detectors 5 and 6 in comparison to the other detectors.
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D. Supplementary data for the
TDRIV experiment.

D.1. CASCADE calculation: 18O beam, 58Ni target

Table D.1.: CASCADE calculation of a 18O beam on a 58Ni target [117].
Compound Nucleus: 76Kr, VCoulomb=41.66 MeV, Lcrit.=38ħh

E (MeV) 46.0 48.0 50.0 52.0 54.0 56.0 58.0
Cl0 ħh 14.1 16.8 19.0 21.0 22.8 24.5 26.0

Nuc. chan. σ (mb)
74Br np 21.4 17.8 21.5 17.9 21.5 18.6 19.1
73Br 2np 38.7 52.5 64.4 67.1 70.5 64.1 64.4
74Se 2p 22.0 21.3 23.6 20.7 21.5 18.8 17.7
73Se n2p 125.5 180.6 206.4 238.4 246.8 255.7 256.9
72Se 2n2p 3.1 7.3 15.9 31.2 48.8 80.4 102.5
73As 3p 13.3 15.3 18.7 19.6 22.3 21.8 23.4
72As n3p 1.0 2.9 8.8 12.5 21.7 25.0
71As pα 10.7 11.1 12.8 12.1 12.9 12.6 13.2
70As npα 24.4 33.5 51.0 60.8 74.7 79.0 88.9
70Ge 2pα 19.2 31.3 37.4 47.3 54.4 60.3 65.8
69Ge n2pα 0.3 0.5 2.4 4.7 10.5 16.1
67Ga p2α 2.5 4.1 7.0 10.9 14.2 20.2 23.1

σ f usion 291.7 389.9 478.4 558.6 631.3 697.8 758.4
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D.2. Particle spectra - 18O TDRIV
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Figure D.1.: Uncalibrated particle energy spectra (rings) over time.
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Figure D.2.: Uncalibrated particle energy spectra (rings and strips) over time.
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Figure D.3.: Uncalibrated particle energy spectra (strips) over time.
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D.3. Relative efficiency of HORUS
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Figure D.4.: Relative efficiency of HORUS from a 226Ra calibration source.
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D.4. HPGe energy spectra - 18O TDRIV
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Figure D.5.: Calibrated energyspectra of HORUS without particle gates at a dis-
tance of 1, 10, 20, 30, and 40µm.
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Figure D.6.: Calibrated energyspectra of HORUS without particle gates at a dis-
tance of 50, 60, 70, 85, 100 and 145µm.
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Figure D.7.: Particle gated energyspectra of Ge 0 of HORUS.
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Figure D.8.: Particle gated energyspectra of Ge 0 of HORUS.
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Figure D.9.: Particle gated energyspectra of Ge 1 of HORUS.
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Figure D.10.: Particle gated energyspectra of Ge 1 of HORUS.
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Figure D.11.: Particle gated energyspectra of Ge 2 of HORUS.
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Figure D.12.: Particle gated energyspectra of Ge 2 of HORUS.
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Figure D.13.: Particle gated energyspectra of Ge 3 of HORUS.
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Figure D.14.: Particle gated energyspectra of Ge 3 of HORUS.
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Figure D.15.: Particle gated energyspectra of Ge 4 of HORUS.
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Figure D.16.: Particle gated energyspectra of Ge 4 of HORUS.
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Figure D.17.: Particle gated energyspectra of Ge 5 of HORUS.
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Figure D.18.: Particle gated energyspectra of Ge 5 of HORUS.
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Figure D.19.: Particle gated energyspectra of Ge 6 of HORUS.

148 D. Supplementary data for the TDRIV experiment.



S9 S10 S11 S12 S13 S14 S15

1µm

S16

10µm

20µm

30µm

40µm

50µm

60µm

70µm

85µm

100µm

1.8 2.1

0

20
145µm

C
ou

nt
s/

8
ke

V

Energy (MeV)

Figure D.20.: Particle gated energyspectra of Ge 6 of HORUS.
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Figure D.21.: Particle gated energyspectra of Ge 7 of HORUS.
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Figure D.22.: Particle gated energyspectra of Ge 7 of HORUS.
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Figure D.23.: Particle gated energyspectra of Ge 8 of HORUS.
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Figure D.24.: Particle gated energyspectra of Ge 8 of HORUS.
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Figure D.25.: Particle gated energyspectra of Ge 9 of HORUS.
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Figure D.26.: Particle gated energyspectra of Ge 9 of HORUS.
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Figure D.27.: Particle gated energyspectra of Ge 10 of HORUS.
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Figure D.28.: Particle gated energyspectra of Ge 10 of HORUS.
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Figure D.29.: Particle gated energyspectra of Ge 11 of HORUS.
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Figure D.30.: Particle gated energyspectra of Ge 11 of HORUS.
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Figure D.31.: Particle gated energyspectra of Ge 12 of HORUS.
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Figure D.32.: Particle gated energyspectra of Ge 12 of HORUS.
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Figure D.33.: Particle gated energyspectra of Ge 13 of HORUS.
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Figure D.34.: Particle gated energyspectra of Ge 13 of HORUS.
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