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Nomenclature

This section contains a list of all symbols and indices which are used in this work.
The nomenclature complies with the following general rules:

• Operator- and operator-like symbols are typed in bold characters.

• Operator-like quantities are displayed with a caret, i.e. t̂.

• Lowercase operator symbols denote single-particle operators. An uppercase
symbol denotes the corresponding manybody operator, which is a sum of
the single-particle operators, e.g. T̂=

∑A
a=1 t̂a. The nomenclature contains

only the lowercase symbols.

• The eigenvalues of operator-like quantities are denoted with the same symbol
as the operator, but without the caret and as regular text. For example, the
eigenvalue equation for the operator t̂z is: t̂z |tz〉= tz |tz〉. One exception of
this rule is the definition lz ≡ ml of the magnetic quantum number for the
eigenvalues of angular moment operators for historical reasons and better
readability.

• The absolute value |r| of a boldface symbol is displayed as regular text
(|r| ≡ r).

• The components of up-to three-dimensional operator- and vector-like symbols
are denoted by the indices x , y and z as regular text. For example, a three-
dimensional vector r has the components rx , ry , and rz. The components
of vectors with arbitrary (nX) dimensions are denoted by numbers starting
from 1, i.e. X=

�

X1, X2, ...XnX

�T .
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• Raising and lowering operators are denoted by an additional ’+’ and ’-’ sign,
respectively, for example t̂+ and t̂−.

• General indices for a set of values, for example i for the set of states of a
nucleus, are taken from the Latin or Greek alphabet. Additional indices are
added as they follow in the respective alphabet, for example i is followed by
j, k, .... The set itself is denoted by an uppercase letter, for example: k ∈ K.

• The average/expectation value of a quantity is denoted in angular brackets,
i.e. 〈X 〉 is the average value of X .

• Nuclear reactions are denoted as ’(in, out)’, where ’in’ is the incoming pro-
jectile and ’out’ a set of ejectiles, in accordance with the Evaluated Nuclear
Structure Data File (ENSDF) manual [1].

• Particles are denoted by the symbols recommended by the Particle Data
Group (PDG) [2]. In particular, the word ’photon’ and the symbol γ will be
used. The word ’gamma ray’ was avoided, if possible, due to its conflicting
definitions in the literature.

2νββ Two-neutrino double beta

α j Expansion parameter for the representation of a nucleon-nucleon
pair with J = 0 and MJ = 0 in terms of shell-model orbitals.

ex/y/z Unit vector in x-, y- or z direction.

jγ(Eγ, r , t) Photon flux density, i.e. directional number of photons per area and
time unit with an energy Eγ at a space point r .

P Vector of parameters.

ra Single-particle position operator.

rab Distance vector of two particles a and b.

X Vector of input quantities.

Y Vector of output quantities.

10 Nomenclature



Ȧ(t) Time-dependent activity of a radioactive source in decays per time
interval.

dIi→ j→k

dΩ Energy-integrated differential cross section for the absorption of a
photon by a nucleus in the state i to an excited state j, and the
subsequent decay to a state k.

Â†( j j′; J , MJ ) Operator which creates a pair of nucleons from orbitals j and j′ with
a total angular momentum J and a z projection MJ .

â†
i , âi Creation/annihilation operator for a fermion in the state i.

D̂† Operator which creates a pair of nucleons with J = 2 and a z projec-
tion MJ in a given valence space.

d̂µ, d̂†
µ Annihilation/creation operator for a d boson state with a z compo-

nent µ.

f̂ Single-particle F -spin operator.

Ĥ Hamilton operator.

k̂a Single-particle kinetic energy operator k̂a = p̂2
a/2ma.

l̂ Orbital angular momentum operator.

Ô(0ν) Operator for neutrinoless double-beta decay.

Ô(0ν)F Fermi-part of the operator for neutrinoless double-beta decay.

Ô(0ν)GT Gamow-Teller part of the operator for neutrinoless double-beta
decay.

P̂v Valence-space projection operator.

Q̂χ Quadrupole operator in the IBM with the parameter χ.

Q̂v Complement of the valence-space projection operator, i.e. Q̂v =
1− P̂v .
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ŝ , ŝ† s-boson annihilation/creation operator.

Ŝ† Operator which creates a pair of nucleons with J = 0 and MJ = 0 in
a given valence space.

ŝa Single-particle spin operator.

t̂ Single-particle isospin operator. The tz = 1/2 and tz = −1/2 eigen-
states of this operator are the proton and the neutron, respectively.

Ûa Mean-field potential energy of particle a.

V̂2N
ab General two-body potential between particles a and b.

ˆ̃dµ Modified annihilation operator for a d boson state with a z compo-

nent µ ( ˆ̃dµ = (−1)µd̂−µ).

ħh Reduced Planck constant (6.582119596× 10−16 eVs [3]).

〈mν〉 Effective light neutrino mass in 0νββ decay.

〈Wi→ j→kεd(Eγ)〉 Abbreviation for the energy-dependent solid-angle integral over
the product of the angular distribution of an NRF cascade i→ j→ k
and the full-energy peak efficiency of a detector d. This integral
appears in the expression for the number of NRF events which are
counted by a detector.

〈X 〉t Time average of a quantity X .

O (x) ’Big O notation’ or ’Landau symbol’ which indicates the limiting
behavior of a function when x is ’small’ according to some criterium.

B(σL; i→ j) Lower limit for the reduced transition probability B(σL; i→ j). In
principle, all branching transitions of an excited state need to be
known in order to determine the ’true’ reduced transition probabili-
ties. This notation indicates that some of them may not have been
observed.
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P Projection operator onto states with good seniority.

Ci(x) Cosine integral Ci(x) = −
∫∞

x
cos(t)

t dt.

sc±(X ) Upper (’+’) and lower (’-’) limit of the shortest coverage interval of
the quantity X .

Si(x) Sine integral Si(x) =
∫ x

0
sin(t)

t dt.

dAi→k,d/dt Count rate of events corresponding to a transition from a state i to
a state j observed by a detector d.

gV/gA Ratio of the vector- and axial-vector coupling constants of the weak
interaction (the experimental value of the inverse ratio is gA/gV =
1.27641(45)stat.(33)syst. [4]).

N(Em) Original energy spectrum before the application of the detector
response. See also the definition of N(Em).

A Mass number (A= N + Z).

A(Eγ) Number of events contained in a lineshape with the centroid energy
Eγ.

a0→ j→k,dd ′ Asymmetry of the number of counted events associated with a tran-
sition from a state j to a state k between two detectors d and d ′.

Ai→k,d Number of events corresponding to a transition from a state i to a
state j observed by a detector d.

ann Neutron-neutron s-wave scattering length.

app Proton-proton s-wave scattering length.

B(AZ X ) Binding energy of the nucleus A
Z X .

B(E, pB) Normalized probability distribution of the continuous background
in a spectrum, which may depend on a vector of parameters pB.
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c Speed of light (c = 2.99792458× 108 ms−1 [3]).

D(Em, En) Detector response matrix which connects the energy bin En of the
original spectrum to the energy bin Em of the detected spectrum.

DX Set of all detectors in a setup X .

Eγ Energy of a photon.

Ebeam Nominal beam energy of the HIγS beam, which can be seen as the
centroid of the approximately Gaussian beam profile.

eπ, eν Charges of proton- and neutron bosons in the E2 operator of the
IBM-2.

Ei Excitation energy of state i.

Em Energy of the m-th bin.

ee even-even

eo, oe even-odd, odd-even

f (X , P) Arbitrary function f of a vector of input quantities X and parameters
P.

Fmax Maximum projection of the F -spin for a given number of proton-
and neutron bosons: Fmax = 1/2

�

Nν,s + Nν,d + Nπ,s + Nπ,d

�

.

gπ, gν Proton- and neutron g factors in the M1 operator of the IBM-2.

gπl , gνl Orbital g factors in the M1 operator for protons and neutrons. Their
bare values are given by gπl = 1 and gνl = 0 (see, e.g., Sec. V.B.III in
[5]).

gπs , gνs Spin-g factors in the M1 operator for protons and neutrons with their
bare values gπs = 5.5856946893(16) and gνs = −3.382608545(90)
[6].
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G0ν Integrated kinematical/phase space factor in 0νββ decay.

gX (ξ) Probability distribution function of the vector X . The symbol ξ
denotes a vector of variables for all possible values of X .

gi→ j Ratio of the number of Jz substates of the initial and final state for
a transition from state i to j (’spin factor’ J j+1/Ji+1).

H(r, 〈E〉) Neutrino potential in the Fermi- and Gamow-Teller part of the 0νββ
decay operator, which depends on the distance r between two
nucleons and the average energy difference 〈E〉 between an excited
state of the intermediate nucleus and the mean value of the initial
and final state of the 0νββ decay.

Irel(Eγ) Relative intensity of a photon with the energy Eγ which is emitted
by a radioactive source. Irel = 1 means that each decay of the source
creates exactly one photon of this energy.

Ii→ j→k Total cross section for the absorption of a photon by a nucleus in the
state i to an excited state j, and the subsequent decay to a state k.

Ii→ j Total cross section for the absorption of a photon by a nucleus in
the state i to an excited state j.

LC Threshold for a 95% confidence for the absence of activity.

Li→ j Multipole order of an EM transition between states i and j (L ∈ N).
The index for the corresponding transition is dropped if the initial
and final state are clear from the context.

Lαk Associated/generalized Laguerre polynomial.

M Total mass of a system of particles.

M(AZ X ), M(Z , A) Mass of the nucleus A
Z X .

M(Em, En) Pileup matrix which connects the energy bin En of the original
spectrum to the energy bin Em of the pileup spectrum.
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M (0ν) Nuclear matrix element for neutrinoless double-beta decay.

me Electron mass (9.1093837015(28)×10−31 kg [6]).

ml z projection of the orbital angular momentum operator (’magnetic
quantum number’).

mn Neutron mass (1.00866491582(49) u [7]).

mn Proton mass (1.00782503224(09) u [7]).

N (Em) Content of the bin of the spectrum N with the centroid energy
Em. May also be denoted as Nm for brevity or to emphasize that
a channel-energy mapping does not exist. In particular, the bare
letter N denotes an actually observed spectrum. When N is split up
into different contributions, subscripts, superscripts, or diacritics
are used in this work.

N Neutron number or principal quantum number of the harmonic
oscillator.

N(µ,σ) Normal distribution with mean value µ and standard deviation σ.

n2S+1lJ Spectroscopic notation, which contains the radial (n), total spin (S),
angular momentum (l) and total angular momentum (J) quantum
number of a manybody state.

N (0)(Em) Energy spectrum that would be detected if every single event could
be resolved. Corresponds to ’zero-order pileup’.

N (p)(Em) p-th order pileup correction to the spectrum N (0)(Em) with p ≥ 1.

Nγ(Eγ) Number of photons with an energy Eγ.

Nγ Total number of photons which hit the target.

Nfit(Em) Fit function which is assumed to describe the shape of the spectrum
N(Em).
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NB Number of background events.

ND Threshold for a 95% confidence for the presence of activity OR
number of nucleon-nucleon pairs with J = 2 and a z component MJ .

Nd Number of d bosons.

Nm See N(Em).

NR Number of randomly sampled values.

NS Number of events caused by artificial activity OR number of nucleon-
nucleon pairs with J = 0 and MJ = 0.

Ns Number of bins of spectrum s OR number of s bosons.

NT Normalization factor of the Theuerkauf line shape model.

Nt Number of target nuclei.

nt(r ) Number of target nuclei per unit volume at a point r .

NB,Σ Total number of background events in a spectrum.

Nnl Normalization constant of the harmonic oscillator wave function.

oo odd-odd

P(E, pP) Normalized probability distribution (’line shape’) of a peak, which
may depend on a vector of parameters pP .

Pγ(Eγ) Polarization factor which depends on the beam energy (Pγ ∈ [−1, 1]).

Pν Legendre polynomial of degree ν.

Pµν Unnormalized Legendre polynomial of degree ν and order µ.

PT (Em,µ,σ, t l , t r) Theuerkauf model for the line shape.
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Qββ Q value of a neutrinoless or a two-neutrino double-beta decay.
Q0νββ ≈Q2νββ for negligible neutrino masses.

Rnl(r) Radial part of the harmonic oscillator wave function.

tdead Dead time of a detector.

tlive Live time of a detector.

tstart Point in time when an experimental run starts.

tstop Point in time when an experimental run stops.

t l Left-tail parameter of the Theuerkauf line-shape model.

t r Right-tail parameter of the Theuerkauf line-shape model.

T1/2 Half life of a decay process (T1/2 = ln(2)τ).

VT (θ ) Factorized part of the transversal inelastic electron scattering cross
section which almost only depends on the scattering angle if the
electron energy is much larger than the excitation energy of the
nucleus.

Wi→ j→k,polarized(θ ,ϕ) Termwhich is added to (or subtracted from, depending on the
EM character) the unpolarized angular distributionWi→ j→k,unpolarized(θ )
to take into account the excitation from i to j by a completely po-
larized photon beam.

Wi→ j→k,unpolarized(θ ) Angular distribution of the emitted photon in the transition
from state j to k during the two-step cascade between states i, j and
k. The index ’unpolarized’ indicates that the excitation is assumed
to be caused by an unpolarized photon beam. Normalized to 4π.
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Wi→ j→k(θ ,ϕ,δi→ j ,δ j→k, Pγ) Angular distribution of the emitted photon in the tran-
sition from state j to k during the two-step cascade between states
i, j and k. It depends on the angular momentum- and parity quan-
tum numbers of the involved states and the multipole mixing ratios
δi→ j and δ j→k. The excitation is assumed to be caused by a photon
beam which has an energy-dependent polarization Pγ. Normalized
to 4π.

Xrand Random value drawn from the probability distribution gX of the
quantity X .

y (i) Auxiliary, energy-dependent quantity in the integrated phase space
factor.

Ylml
(θ ,ϕ) Spherical harmonics.

Z Proton number.

0νββ Neutrinoless double-beta

N Set of positive integer numbers including zero.

β j j′ Expansion parameter for the representation of a nucleon-nucleon
pair with J = 2 and a z component MJ in terms of shell-model
orbitals.

n̂d Single-d boson number operator.

CCD Charge-coupled device

COM Center of mass

DIN Deutsches Institut für Normung

ENSDF Evaluated Nuclear Structure Data File

EW Electroweak

exp experimental
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F Fermi

FEP Full-energy peak

FFT Fast Fourier transform

FWHM Full width at half maximum

GEANT4 Geometry and Tracking 4. Software framework for the simulation
of the passage of particles through matter [8–10].

GT Gamow-Teller

HIγS High-Intensity γ-ray Source

HO Harmonic oscillator

HPGe High-purity Germanium

IBM Interacting boson model

IBM-2 Proton-neutron version of the interacting boson model

INT Intrinsic

LCB Laser Compton backscattering

MC Monte Carlo

n Radial quantum number of the harmonic oscillator i.e. number of
nodes of the radial wave function OR index for an arbitrary nucleon,
i.e. n ∈ {ν,π}.

NME Nuclear matrix element

NRF Nuclear resonance fluorescence

ODR Orthogonal distance regression
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PDF Probability distribution function

PDG Particle Data Group

PVC Polyvinyl chloride

resi residual

sc Scissors mode

SM (Nuclear) Shell model

stat. Statistical contribution to the total uncertainty.

syst. Systematic contribution to the total uncertainty.

theo. Theory contribution to the total uncertainty.

u Atomic mass unit (931.49410242(28)MeV c−2. [6])

B(σL; i→ j) Reduced transition probability for the σL transition from state i to
j. This quantity is given in units of eV fm(2L+1) in the SI [3] system
of units. For conversion to the commonly used cgs [11] system
of units, use the relations e2

cgs = 1.4399764MeVfm and µN ,cgs =
0.10515446efm.

α Fine-structure constant (0.0072973525693(11)≈ 1/137 [6]).

ββ Double beta

χ2 Chi square statistic. Measure for the agreement between a model
and measured data.

χ Spin part of the total wave function.

χ2
red Reduced chi square.

χπ,χν Strength of the term in the proton- or neutron-quadrupole operator
which controls the γ-softness.
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dΩ Solid angle element. In spherical coordinates: dΩ= sin(θ )dθdϕ.

∆E General notation for an energy difference.

∆EN (Em) Width of a single bin of spectrum N . In the case of equidistant
binning, the dependence on the centroid energy Em is omitted.

∆N(Em) Residual of the bin with centroid energy Em after subtracting a fit
function Nfit(Em) from a spectrum N(Em).

∆T ’Shaping time’ of a trapezoidal filter.

δ(x) Delta function.

δp Pairing energy in the semiempirical mass formula.

δL,i→ j Multipole mixing ratio in the convention of Krane, Steffen and
Wheeler [12]: Ratio of the reduced transition widths of EM character
and multipole order σL and σ′(L + 1) with σ 6= σ′ for a transition
from state i to state j.

ε(Eγ, r ) Energy-dependent full-energy peak efficiency for the detection of
photons from an isotropic source at r . The parameter r may be
omitted if the origin of the photons is clear.

εint Intrinsic detection efficiency of a detector.

εd Single-d boson energy in the IBM-2 Hamiltonian.

γγ Double gamma

Γ Gamma function.

γ1 Auxiliary, Z-dependent quantity in the integrated phase space factor.

Γi Total width of a state i.
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Γi→ j Partial transition width from the state i to the state j. For the EM
process of NRF, the detailed balance theorem holds (chapter X.2.E
in [13]) and implies that Γi→ j = Γ j→i .

σ̂a Single-particle Pauli matrix, which is related to the single-particle
spin operator via ŝa = ħh/2σ̂a.

κ Strength of the quadrupole-quadrupole interaction in the IBM-2
Hamiltonian.

λ Overall strength of the Majorana operator in the IBM-2 Hamiltonian.

λ Reduced wave length, i.e. de-Broglie wave length of a particle
divided by 2π. If indexed with a transition label, i.e. λi→ j ≡ λ j→i , it
denotes the reduced wave length which corresponds to the energy
difference of the excited states.

〈Φ(Eγ)〉t Energy-dependent time-averaged photon flux.

µ Mean value of a quantity OR the reduced mass of a system of parti-
cles.

µ(Eγ) Energy-dependent mass attenuation coefficient of a material.

ν Symbol for the neutron OR a parameter of the quantum-mechanical
harmonic oscillator wave function, which can be interpreted as
the inverse squared length scale of the oscillator OR the seniority
quantum number.

ω Oscillator frequency multiplied by 2π.

Φ Basis states which do not have to be eigenstates of the full Hamilto-
nian of a system.

Φγ(Eγ, t) Energy- and time-dependent photon flux on target, i.e. number of
photons with an energy Eγ which hit the target per time interval at
a time t.
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π Symbol for the proton.

πi Parity quantum number of state i.

Ψ Eigenstates of the full Hamiltonian for a given system.

ψnlml
(r,θ ,ϕ) Harmonic oscillator wave function.

〈σN 〉 Standard deviation of the bin contents of spectrum N in an energy
range where the expectation value for each bin is approximately
equal.

ρ Density of a material.

σL Notation for an electromagnetic transition of character σ ∈ {E, M}
and multipole order L ∈ N.

σ Electromagnetic character. Either E for ’electric’ or M for ’magnetic’.

σ(E) Energy-dependent width of a peak with a centroid energy E and a
normal-distributed line shape.

σ f (X , P) Uncertainty of the function value f (X , P)

σN (Em) Uncertainty of the bin of the spectrum N with the centroid energy
Em

σX Uncertainty of the quantity X . Depending on the context, this
symbol either denotes the 68.27% shortest coverage interval or the
standard deviation.

σi→ j(Eγ) Cross section for the absorption of a photon with an energy Eγ by a
nucleus in a state i, leaving it in a state j.

σX ,± Upper (’+’) and lower (’-’) limit of the uncertainty of the quantity
X .

τ Lifetime of excited nuclear states or, in general, the inverse of the
decay parameter of an exponential function.
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θ Polar angle in spherical coordinates.

ϕ Azimuthal angle in spherical coordinates.

ξ Isospin part of the total wave function.

ξ1,2,3 Strength of the different terms in the Majorana operator in the
IBM-2 Hamiltonian.

dε
dΩ′ (Eγ,θ

′,ϕ′, r ) Energy-dependent full-energy peak efficiency for the detection of
photons, emitted by a source at r in a direction given by θ ′ and ϕ′.

0 Index for the ground state of a nucleus.
�

â† b̂†...
�

i Coupling of a set of single-particle creation operators â†, b̂†, ... to a
creation operator for a multi-particle state with a set of quantum
numbers summarized by the index i.

a, b, ... Indices for single particles in an A-body system, i.e. 1≤ a, b, ...≤ A.

i, j, ... Indices for states of a nucleus, both excited states and the ground
state.

m, n, ... Indices for the bins of a spectrum.
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Abstract

Neutrinoless double-beta (0νββ) decay is a hypothetical second-order process of
the weak interaction, which, if observed, would reveal neutrinos as the first example
of so-called Majorana particles which are their own antiparticles. Furthermore,
since the decay rate for 0νββ decay is directly related to the effective mass of the
electron neutrino, it would allow for a direct determination of the neutrino mass.
However, an obstacle for the planning of future 0νββ-decay searches and for a
quantitative extraction of the neutrino mass are currently the poorly constrained
nuclear matrix elements which mediate the decay process. These matrix elements
have the be supplied by nuclear theory, which is challenged with the phenomena
of nuclear shape evolution and shape coexistence that prevail in regions of the
nuclear chart where most 0νββ decay candidates are located. A major problem is
the lack of sensitive experimental data, which are required to fix the parameters
of effective theories.

Based on a previous successful study, the nuclear structure of the candidate pairs
82Se/82Kr and 150Nd/150Sm was investigated in this work using the method of nu-
clear resonance fluorescence. The observables of interest were the decay channels
of a low-lying collective nuclear excitation, the scissors mode, which are expected
to be highly sensitive to the location of the candidate pairs in the phase diagram
of nuclear shapes. The scissors mode can be studied selectively and with a high
degree of model indepedence with the chosen method. The experiments were
performed at the High-Intensity Gamma-Ray Source which currently provides the
most intense, linearly polarized, quasi-monochromatic photon beam at the ener-
gies of interest. Using the high sensitivity of the polarized beam, magnetic dipole
excitations, which are the manifestations of the scissors mode in even-even nuclei,
were identified and their decay behavior was characterized. A known drawback of
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experiments with monoenergetic photon beams, namely the lack of a photon-flux
calibration, was solved in the present work without any additional instrumentation
by calibrating the flux on the nonresonant scattering of photons on the targets. For
this purpose, a detailed Monte-Carlo particle simulation application was developed.

For all nuclei of interest, decay branches on the order of few percent could either
be observed, or constrained to such small values. Two effective nuclear models,
the shell model and the interacting boson model, which are also frequently used
to predict 0νββ decay matrix elements, were used for a preliminary interpretation
of the data. For the nucleus 82Se, the shell model gave a good description of the
energies of excited 1+ states and the total observed strength. The good agreement
allowed for an interpretation of the structure of the wave functions of the scissors
mode candidates, which advised against a simple relation between the measured
quantities and the shape coexistence in that nucleus. For the higher-mass isotopes,
a careful parameter adjustment in the framework of the interacting boson model
was able to reproduce the entire low-energy structure of 150Nd and, with minor
exceptions also of 150Sm. The new parameter sets in this model were used together
with our collaborator to update previous predictions of nuclear matrix elements
for 0νββ decay.

Note that the analysis of the data on the A= 150 nuclei was done by Jörn Kleemann.
This work presents only his main results.
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Zusammenfassung

Der neutrinolose doppelte Betazerfall (0νββ-Zerfall) ist ein hypothetischer Prozess
zweiter Ordnung in der schwachen Wechselwirkung, der, im Falle einer experi-
mentellen Beobachtung, Neutrinos als das erste Beispiel von sogenanntenMajorana-
Teilchen identifizieren würde, welche ihre eigenen Antiteilchen sind. Außer-
dem würde es eine direkte Bestimmung der Neutrinomasse ermöglichen, da die
Zerfallsrate für den 0νββ-Zerfall im direkten Zusammenhang mit der effektiven
Masse des Elektron-Neutrinos steht. Ein Hindernis für die Planung von zukünftigen
Experimenten, die nach dem 0νββ-Zerfall suchen, und für eine quantitative Bes-
timmung der Neutrinomasse sindmomentan die nicht ausreichend eingeschränkten
Kern-Matrixelemente die dem Zerfallsprozess innewohnen. Diese Matrixelemente
müssen von der Kernstrukturtheorie bereitgestellt werden, die vor dem Prob-
lem der Beschreibung von Phänomenen wie der Entwicklung von Kerngestalten
und der Koexistenz von Kerngestalten steht, welche in Regionen der Nuklidkarte
vorherrschen, in denen auch die Kandidatenpaare für den 0νββ-Zerfall zu finden
sind. Ein Hauptproblem ist der Mangel an aussagekräftigen experimentellen
Daten, die benötigt werden um die freien Parameter von effektiven Theorien
einzuschränken.

Basierend auf einer vorherigen Studie wurde die Kernstruktur der Kandidaten-
paare 82Se/82Kr und 150Nd/150Sm in dieser Arbeit mit der Methode der Kernres-
onanzfluoreszenz untersucht. Zerfallskanäle einer niedrigliegenden, kollektiven
Kernanregung, der Scherenmode, waren die wichtigen Observablen, denn sie sind
erwartungsgemäß höchst sensitiv auf die Lage der Kandidatenpaare im Phasendi-
agramm der Kerngestalten. Mit der gewählten Methode kann die Scherenmode
selektiv und mit einem hohen Grad an Modellunabhängigkeit untersucht werden.
Die Experimente wurde an der High-Intensity Gamma-Ray Source durchgeführt,
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die momentan im interessanten Energiebereich die intensivsten linear polarisierten
quasi-monochromatischen Photonenstrahlen zur Verfügung stellt. Durch die hohe
Sensitivität des polarisierten Strahls konnten magnetische Dipolübergänge, als
welche sich die Scherenmode in gerade-gerade - Kernen manifestiert, identifiziert
und ihr Zerfallsverhalten charakterisiert werden. Ein bekannter Nachteil von Mes-
sungen mit monoenergetischen Photonenstrahlen, der Mangel an Möglichkeiten
zur Kalibrierung des Photonenflusses, wurde in der vorliegenden Arbeit dadurch
umgangen, dass, ohne Zuhilfenahme weiterer Messaufbauten, der Photonenfluss
anhand der nichtresonanten Streuung von Gammastrahlung an der Probe kalibriert
wurde. Zu diesem Zweck wurde eine detaillierte Monte-Carlo Simulationsanwen-
dung entwickelt.

Für alle betrachteten Kerne konnten Zerfallskanäle in der Größenordnung von weni-
gen Prozenten entweder beobachtet, oder auf solch kleine Werte eingeschränkt
werden. Zwei effektive Kernmodelle, das Schalenmodell und das Modell wechsel-
wirkender Valenzbosonen, die auch häufig benutzt werden um 0νββ - Zerfallsma-
trixelemente vorherzusagen, wurden für eine vorläufige Interpretation der Daten
benutzt. Das Schalenmodell lieferte eine gute Beschreibung der Anregungsen-
ergien von 1+-Zuständen und der gesamten beobachteten Stärke für den Kern
82Se. Die gute Übereinstimmung erlaubte eine Interpretation der Struktur der
Wellenfunktionen der mutmaßlichen Scherenmodenfragmente, die jedoch gegen
einen einfachen Zusammenhang zwischen den Messgrößen und der Koexistenz
von Kerngestalten in diesem Kern spricht. Bei den Isotopen mit höherer Masse
konnte eine sorgfältige Anpassung der Parameter des Modells wechselwirkender
Valenzbosonen die gesamte Niederenergie-Kernstruktur von 150Nd und, mit Ab-
strichen, auch die von 150Sm reproduzieren. Die neuen Parametersätze für dieses
Modell wurden in Zusammenarbeit mit unserer Kollaborateurin benutzt, um bish-
erige Vorhersagen von Kernmatrixelementen für den 0νββ-Zerfall auf den neusten
Stand zu bringen.

Es wird angemerkt, dass die Analyse der Daten für die Kerne mit der Massenzahl
150 von Jörn Kleemann durchgeführt wurde. In dieser Arbeit werden lediglich
seine Hauptergebnisse aufgeführt.

30 Zusammenfassung



Epigraph

Aber noch schlimmer wurde es, wenn er auf die Wissenschaft zu sprechen kam, - an die er
nicht glaubte. Er glaube nicht an sie, sagte er, denn es stehe dem Menschen völlig frei, an
sie zu glauben oder nicht. Sie sei ein Glaube, wie jeder andere, nur schlechter und dümmer
als jeder andere, und das Wort ”Wissenschaft” selbst sei der Ausdruck des stupidesten
Realismus, der sich nicht schäme, die mehr als fragwürdigen Spiegelungen der Objekte im
menschlichen Intellekt für bare Münze zu nehmen oder auszugeben und die geist- und
trostloseste Dogmatik daraus zu bereiten, die der Menschheit je zugemutet worden sei. Ob
etwa nicht der Begriff einer an und für sich existierenden Sinnenwelt der lächerlichste aller
Selbstwidersprüche sei? Aber die moderne Naturwissenschaft als Dogma lebe einzig und
allein von der metaphysischen Voraussetzung, daß die Erkenntnisformen unserer
Organisation, Raum, Zeit und Kausalität, in denen die Erscheinungswelt sich abspiele, reale
Verhältnisse seien, die unabhängig von unserer Erkenntnis existierten. Diese monistische
Behauptung sei die nackteste Unverschämtheit, die man dem Geiste je geboten.

Polemik der Figur Leo Naphta in
T. Mann, “Der Zauberberg“, 1. Auflage, Fischer E-Books (2009)
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1. Introduction

1.1. Neutrinoless Double-Beta Decay and Nuclear
Structure

Recently, the experimental observations of two-neutrino double-beta (2νββ) decay
[14] and double-gamma (γγ) decay [15–17] have been complemented by two
more nuclear decays which are mediated by the electroweak (EW) interaction
at second order: the competitive version of γγ decay [18] and the two-neutrino
double electron capture (2νECEC) decay [19]. From the point of view of nuclear
structure physics, the transition rates of these decays provide a quasi1 model-
independent access to nuclear matrix elements with the schematic structure [see,
e.g. [21] (2νββ) [18] (γγ), [22] (2νECEC)],

∑

n

wn(E f − En, En − Ei , ...)〈 f
�

�Ô
�

�n〉〈n
�

�Ô′
�

� i〉, (1.1)

which is unsurprisingly very similar to the expressions found in textbook-second-
order perturbation theory (see, e.g., chapter XVI in [23]). In Eq. (1.1), the
transition rate between the initial (i) and the final ( f ) state of the nuclear system
is given by a sum over transition matrix elements of operators Ô and Ô′ to interme-
diate states (n). The symbols wn denote weighting factors which depend on the
energy differences between the nuclear states and potentially also other variables.
Accessing matrix elements like 〈 f

�

�Ô
�

�n〉 by direct reactions is challenging, and

1There are non-negligible discrepancies between predictions of the phase-space factors in the EW
theory (for ββ decay, see, e.g., [20]). But generally, the nuclear matrix elements are by far the
most uncertain parameters. For 0νββ decay, this will be discussed below.

33



probably also model-dependent to a higher degree (see, e.g., the proposed exper-
imental study of ββ-decay-analog matrix elements by double charge exchange
reactions by the NUMEN project [24] and a related theoretical investigation [25]).

While the aforementioned decay processes are in agreement with the Standard
Model of particle physics [26], the motivation for this work is the lepton-number
violating process of neutrinoless double-beta (0νββ) decay. Recent review articles
about the topic, on which the following introduction of 0νββ decay will be based,
have been published by Vergados, Ejiri, and Šimkovic [27] (theory), and Avignone,
Elliott, and Engel [28] (theory and experiment).

After a first theoretical study by Goeppert-Mayer on the possibility of a double-beta
(ββ) decay process [29], Racah proposed a ’neutrino capture after beta decay’
[27] version as a test [30] of Majorana’s theory of the neutrino [31]. The latter, as
an alternative to the Dirac-Fermi theory of the neutrino [32], assumed that it was
its own antiparticle. This would facilitate a ’true’ (in addition to the sequential
version of Racah [30]) 0νββ process as proposed later by Furry [33], based on
[29]. Explicitly, the ββ-decay processes with and without emission of an electron
antineutrino are denoted as [27]:

A
Z X →A

Z+2 X ′ + 2e− + 2νe (1.2)
A
Z X →A

Z+2 X ′ + 2e− (1.3)

In the neutrinoless version [Eq. (1.3)], the two neutrinos form a virtual connection
in the Feynman diagram of the process, but do not appear as real particles (Fig. 2
in [28]).

In principle, ββ decay is possible for any situation where the binding energy
B(AZ+2X ′′) of the nucleus A

Z+2X ′′ is larger than the one of the nucleus A
Z X ′. From the

experimental point of view, a situation is preferred where the two-step transition
between these nuclei via single β decays is energetically forbidden, i.e.:

B(AZ+1X )< B(AZ X ′)< B(AZ+2X ′′) (1.4)

For a chain of even-even (ee), odd-odd (oo), or even-odd/odd-even (eo, oe) isobars,
B(AZ X ) is approximately proportional to −Z2 in proximity of the valley of stability
according to the semiempirical mass formula (see, e.g., Sec. 3.3. in [34] or
[35]). Therefore, it is much more likely that Eq. (1.4) is fulfilled for a sequence of
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ee/oo isobars, where the odd-even staggering due to the nuclear pairing force is
superimposed on the Z dependence.

In this case, the half-life for 0νββ decay from a 0+ ground state of an ee nucleus
to a 0+ state of the daughter nucleus is given by [27]2.

�

T (0ν)1/2

�−1
= G0ν(Qββ , Z)

�

�

�

�

〈mν〉
me

�

�

�

�

2
�

�M (0ν)
�

�

2 (1.5)

In Eq. (1.5), the symbol G0ν denotes the integrated phase space factor, which
takes into account the residual interaction of the two emitted electrons with the
Coulomb field of the daughter nucleus. It depends on the proton number Z of
the daughter nucleus and the Q value of the decay, Qββ . For the assumed decay
between 0+ states, the two electrons are in an s1/2 state, which makes the final
result particularly simple3. In close analogy to the so-called Fermi theory [32]
of single β decay, G0ν can be approximated as [Eqs. (3.5.17a - 3.5.21) for light
neutrinos using the ’Fermi factor’ from (3.1.25, 3.1.26) [36]]:

G0ν∝
∫

d
�

p(1)e− · p
(2)
e−

�

dE(1)e− dE(2)e− ×δ







E(1)e− + E(2)e− −

Qββ
︷ ︸︸ ︷

�

M
�

A
Z−2X

�

−M
�

A
Z X ′′

��

c2







× p(1)e− p(2)e−

�

2p(1)e− R
�2(γ1−1) �

2p(2)e− R
�2(γ1−1)

(1.6)

×

�

�Γ
�

γ1 + i y (1)
��

�

2 �
�Γ
�

γ1 + i y (2)
��

�

2

Γ (2γ1 + 1)4
eπy(1) eπy(2)

2Equation (1.5) assumes the annihilation of two left-handed light Majorana neutrinos, which is
regarded as the ’most popular’ mechanism by the authors of [27]. Other possibilities, like the
exchange of right-handed or heavy neutrinos, some of which are not sensitive to the neutrino mass,
are discussed in [27] as well. Nevertheless, all of them require nuclear structure input.

3The restriction to 0+→ 0+ transitions is a valid approximation for light neutrinos, which can be seen,
e.g., by comparing the expressions for 0+→ 0+ and 0+→ 2+ transitions in [36]]
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γ1 ≡
q

1− (αZ)2 (1.7)

y (i) ≡ αZ
E(i)e−

p(i)e− c
(1.8)

In Eq. (1.6), p(i)e− and E(i)e− denote the linear momentum and the total energy of
the i-th electron that is emitted in the decay. The symbol M(AZ X ) denotes the
mass of the nucleus A

Z X . For 0νββ decay, the difference of the rest energies of
mother (A

Z−2X ) and daughter (A
Z X ′′) nucleus, obtained from the rest masses by

multiplication with the squared speed of light c, is equal to Qββ [indicated by a
brace in Eq. (1.6)]. The symbol Γ (z) denotes the gamma function. The integration
contains a delta function δ, which ensures the conservation of energy. The symbol
R denotes the radius of the daughter nucleus, which is assumed to be spherical with
a well-defined boundary in this approximation [32], and the auxiliary symbols γ1
and y (i) are defined by Eqs. (1.7) and (1.8). In the latter two equations, α denotes
the fine-structure constant. For medium-mass and rare-earth nuclei, the factor
γ1 is on the order of unity, therefore the energy- and Z dependence of Eq. (1.6)
is dominated by the exponential terms. Consequently, G0ν is expected to vary
strongly with Z , and also at low Q values which are on the order of the rest energy
of the electron mec

2. This behavior is confirmed by realistic calculations with
different levels of approximative character[20, 37]4. The discrepancy of different
predictions is mostly less than 30% [20, 38], depending on the nucleus of interest.
This gives an estimate of the accuracy of G0ν.

The second factor in Eq. (1.3) contains the ratio of the effective light neutrino
mass in 0νββ decay [27],

〈mν〉=
3
∑

k=1

�

U (11)
ek

�2
mk, (1.9)

and the electron mass. In Eq. (1.9), the quantities U (11)ek are matrix elements of the
experimentally well-investigated [2] Pontecorvo-Maki-Nakagawa-Sakata matrix,
which connect the light neutrino mass eigenstates mk to the flavor eigenstate ’e’

4The authors of Ref. [20] claim a more precise calculation than [37]. Nevertheless, [37] is mentioned
here as well, since the publication contains predictions for a larger set of nuclei and phase space
factors for decays to excited states.
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of the electron neutrino [39]. Of course, an observation of 0νββ decay alone
would have a enormous impact on contemporary physics. In addition, the factor
〈mν〉/me adds the hope that a measurement of T (0ν)1/2

can be used to fix the currently
unknown neutrino mass scale [27]. Due to the high interest in beyond-standard
model physics, many groups around the world are searching for signals from
0νββ decay, using experimental setups with ever-increasing scale and finesse. For
an overview of present and future efforts, see, e.g., a recent review article by
Dolinski, Poon, and Rodejohann [40]. The currently highest lower limits at a 90%
confidence level for several 0νββ-decay candidates are shown in Fig. 1.1.

The last factor in Eq. (1.3) is the nuclear matrix element (NME) M (0ν), whose
general structure was discussed at the beginning of this section (Eq. (1.1)). Since
the most ’straightforward’ access to M (0ν) would be via the 0νββ decay itself (if
〈mββ 〉 was known) the NMEs have to be provided by nuclear theory at the moment,
despite the ongoing experimental efforts on analog reactions (see, e.g., [24]). The
NME is the quantity that connects the aforementioned exciting beyond-standard
model physics to the main objective of this work, i.e. the nuclear structure of 0νββ
decay candidates. In Sec. 1.1.1, a simplified model will be used to illustrate the
influence of nuclear structure on M (0ν). In Sec. 1.2, a summary of state-of-the-art
realistic calculations for M (0ν) will be presented.

1.1.1. A Simple Model: Hypothetical 0νββ Decay of the
Dineutron

Themain aspects of the interplay between nuclear structure - in particular quadrupole
deformation - and 0νββ-decay will be illustrated by a simple model in this section5.
It is mainly based on chapters 3, 4 and 13 of the textbook by Talmi [59].

The smallest system in which a 0νββ decay could occur is a two-nucleon system of
protons (π) with an isospin quantum number of tz = +1/2 , and neutrons (ν) with
tz = −1/2. The corresponding two-nucleon systems are the Tz = −1 (dineutron),
5This section was motivated by the search of the author for a simple explanation of commonly quoted
properties of the NMEs like ’the matrix element is large if the overlap of the wave functions of the
initial and final state is large’. After finding Eqs. (34-36) in [28] and realizing that the approximated
operator for 0νββ decay is actually relatively simple, it was decided to attempt a simple calculation
from which this section originates. The reader may feel free to skip it.
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Figure 1.1.: Experimental limits (90% confidence interval) for the 0νββ-decay
half life of different mother nuclei. For each mother nucleus, up
to three bars indicate the current half-life limits. The experimental
collaborations which published the results are indicated by labels on
top of the bars. The limits are from [41–43] (48Ca), [44, 45] (76Ge),
[46–48] (82Se), [49] (96Zr), [50, 51] (100Mo), [52, 53] (116Cd), [54]
(128Te), [55] (130Te), [56, 57] (136Xe), and [58] (150Nd).

T = 0 (deuteron), and Tz = 1 (diproton) eigenstates of the total isopin operator
T̂ . In the following, consider the hypothetical situation where both the diproton
and the dineutron are more strongly bound than the deuteron. Furthermore, the
diproton is assumed to be more strongly bound than the dineutron to facilitate a
ββ decay 6.

6In reality, of course, the situation is quite adverse: The proton-neutron system (the deuteron) is
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Defintion of Operators

For the two-nucleon system, the intrinsic quadrupole moment of a state i, which
will be used as a measure of the quadrupole deformation in this section7, is given
by (see, e.g., Appendix ’Electromagnetic Transitions and Moments’ in [66]):

Q = 〈i|

√

√16π
5

�

e1r 2
1 Y20 (θ1,ϕ1) + e2r 2

2 Y20 (θ2,ϕ2)
�

|i〉 (1.10)

In Eq. (1.10), a = 1,2 are the single-particle indices. The quantities ea actually
denote the electric charges of the particles. To be able to assign a quadrupole
moment to the nuclear matter distribution instead of the charge distribution
(otherwise, the dineutron would always have a deformation of zero in this model),
eπ = eν = 1 will be used. The symbols ra denote the single-particle position
operators, which depend, in particular, on the polar- θa and the azimuthal angle
ϕa in spherical coordinates. Both are arguments of the spherical harmonic Y20.

In the two-nucleon system, the Fermi (F) and Gamow-Teller (GT) parts of the
0νββ decay operator, which are expected to be the dominant contributions, are
approximately given by (Eqs. (34) and (35) in [28]):

Ô(0ν)F = H(r12, 〈E〉)τ̂+1 τ̂
+
2 (1.11)

Ô(0ν)GT = H(r12, 〈E〉) (σ̂1 · σ̂2) τ̂
+
1 τ̂
+
2 (1.12)

In Eqs. (1.11) and (1.12), the symbols τ̂+a denote the single-particle isospin raising
operators, which convert neutrons into protons. The symbol (σ̂1 · σ̂2) denotes a
scalar product of the two single-particle pauli matrices, which are proportional

indeed weakly bound with an energy of about 2.22MeV [7]. On the other hand, the relatively large
measured absolute values of the s-wave scattering lengths for the neutron-neutron (discrepant values
of ann = −18.63± 0.10stat. ± 0.44syst. ± 0.30theo. fm [60] and ann = −16.06± 0.35 fm [61] coexist at
the moment) and the proton-proton (app = −7.8063± 0.0026 fm [62]) system suggest that both
systems are very weakly unbound. Due to the repulsive Coulomb interaction in the diproton, it can
be expected to be less strongly bound than the dineutron. A recent theoretical investigation [63]
even suggests that experimental results for ann can not exclude a very weakly bound system, since
the experimental techniques are not sensitive to the sign of the scattering length.

7The deformation parameter β2 from the collective model [64], which is often used to quantify the
quadrupole deformation of a nucleus, is approximately proportional to the quadrupole moment at
typical deformations of nuclei (see, e.g., the discussion of Eq. (6.9) in [65]).
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to the spin operators ŝa = ħh/2σ̂a. In the definition of ŝ , the symbol ħh denotes
the reduced Planck constant. The function H(rab, 〈E〉), which appears in both
operators, is the neutrino potential. It is approximately given by [Eq. (36) in
[28]]:

H(r12, 〈E〉)≈
2R
πr12

∫ ∞

0

d (qc)
sin (qr12/ħh)
qc + 〈∆E〉

=
R
πr12

{2Ci (〈∆E〉r12/ħhc) sin (〈∆E〉r12/ħhc) (1.13)

+ cos (〈∆E〉r12/ħhc) [π− Si (〈∆E〉r12/ħhc)]}

〈∆E〉 ≡ 〈E〉 −
�

Ei + E f

�

/2 (1.14)

In Eq. (1.13), rab denotes the distance between two nucleons a and b. The
quantity 〈∆E〉, defined in Eq. (1.14), is the difference between the average energy
〈E〉 of excited states in the intermediate nucleus A

Z+1X ′ and the mean value of the
energies of the initial (Ei) and final (E f ) state of the 0νββ decay of the nuclei A

Z X
and AZ+2X ′′, respectively. Actually, a sum over all intermediate state of the nucleus
A
Z+1X ′ would have to be performed (Eq. (24) in [28]), but their energies are often
replaced by an effective value 〈E〉. This is the so-called closure approximation
[see, e.g., Eq. (25) in [28] and [67, 68] for recent theoretical investigations].
The neutrino potential has been multiplied by the nuclear radius R to make it
dimensionless. In the second equality of Eq. (1.13), the integration over the
momentum variable qc has been executed, resulting in an expression that includes
the sine- and cosine integrals Si(x) and Ci(x).

While the neutrino potential in Eq. (1.13) depends on the distance of the nu-
cleons r12, the quadrupole moment in Eq. (1.10) requires the knowledge of the
single-nucleon wave functions. A model for which the transition between both
representations of the same total wave function is very simple is the harmonic
oscillator (HO). The Hamiltonian for the two-nucleon system is given by [see, e.g.,
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Eq. (13.1) in [59]]:

ĤHO =
1

2m1
p̂2

1

︸ ︷︷ ︸

k̂1

+
1
2

m1ω
2r 2

1

︸ ︷︷ ︸

ĤHO,1

+
1

2m2
p̂2

2

︸ ︷︷ ︸

k̂2

+
1
2

m2ω
2r 2

2

︸ ︷︷ ︸

ĤHO,2

(1.15)

In Eq. (1.15), p̂a denotes the momentum operator for particle a, and ma its
mass. In the scope of this problem, the masses of the proton and the neutron will
be assumed to be equal: mν = mπ ≡ m , in particular also m1 = m2 = m. Both
quantities appear in the single-particle kinetic energy operator k̂a, whose definition
is indicated by the innermost braces. The symbolω denotes the oscillator frequency,
multiplied by 2π. Equation (1.15) is the form of ĤHO where the independence
of the motion of the two particles is most evident, because it is a sum of two
single-particle Hamiltonians, as indicated by the outermost braces. An equivalent
formulation of the problem in terms of an independent motion of the center-of-
mass (COM) and the intrinsic (INT) two-nucleon system is possible [see, e.g., Eqs.
(13.2) and (13.3) in [59]]:

ĤHO =
1

4M
P̂2 +

1
2

Mω2R2

︸ ︷︷ ︸

ĤHO,COM

+
1

2µ
p̂2

12 +
1
2
µω2r 2

12

︸ ︷︷ ︸

ĤHO,INT

(1.16)

In Eq. (1.16), the symbols P̂ and R denote the momentum operator and the
position of the center-of-mass, respectively. The symbols p̂12 and r12 denote the
relative momentum operator and the distance vector between the two particles,
respectively. The symbols M = 2m and µ= m/2 denote the total- and the reduced
mass of the system. Two braces indicate the independent center-of-mass- and
intrinsic parts of the Hamiltonian.
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Wave Functions

For any of the independent systems, the eigenstates of the Hamiltonian are given
by [see, e.g., Eq. (3.7) and (4.3) in [59]]:

ψnlml
(r,θ ,ϕ) =

1
r

Rnl (r)Ylml
(θ ,ϕ) (1.17)

= Nnl r
l exp

�

−νr2
�

L l+1/2

n−1

�

2νr2
�

Ylml
(θ ,ϕ) .

In Eq. (1.17), the vector r and its components r, θ and ϕ may be replaced by
r1, r2, r12, or R from Eqs. (1.15) and (1.16). The wave function ψnlml

depends on
the angular momentum quantum number l, its projection on the z axis ml , and
the number of nodes n of the radial wave function Rnl . The radial wave function
includes a normalization factor Nnl [Eq. (4.3) in [59]] and the associated Laguerre
polynomials Lαk . To simplify the notation, the quantity

ν=
µω

2ħh
(1.18)

has been introduced, which can be interpreted as half the squared oscillator
length. In Eq. (1.18), the symbol µ may be replaced by any of m, µ, and M which
corresponds to the choice of the position vector. The angular part of the wave
function is given by the 3D spherical harmonics Y , which depend on the quantum
numbers l and ml . The eigenvalues of the harmonic oscillator are [Eq. (4.5) in
[59]]:

Enl =
�

2 (n− 1) + l +
3
2

�

ħhω=
�

N +
3
2

�

ħhω (1.19)

In Eq. (1.19), the principal quantum number N has been introduced.

It is now assumed that the spatial dynamics of both the dineutron and the diproton
are given by Eqs. (1.15) and (1.16). Furthermore, it is implicitly assumed that
the energetic prerequisites for 0νββ decay [Eq. (1.4)] are fulfilled8. The aim is to
study the impact of nuclear structure on 0νββ decay by calculating nuclear matrix
elements between initial and final two-nucleon states. The lowest-lying states of
ĤHO,INT in Eq. (1.16) for the Tz = ±1 systems are given by 11s0 and the triplet 23p0,

8This can be achieved, for example, by introducing artificial, isovector terms in the Hamiltonian that
depend on powers of Tz .
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23p1, and 23p2 in the spectroscopic notation n2S+1lJ . Using the symbols ψnlml
for

the spatial-, χSSz
for the spin-, and ξT Tz

for the isospin wave function, their total
wave functions Ψ are given by (only the J = 0 states are shown):

|Ψ(11s0)〉= ψ100(R)ψ100(r12)×χ00 × ξ1(±1) (1.20)

|Ψ(23p0)〉=
1
p

3
ψ100(R)ψ211(r12)×χ1(−1) × ξ1(±1) (1.21)

−
1
p

3
ψ100(R)ψ210(r12)×χ10 × ξ1(±1)

+
1
p

3
ψ100(R)ψ21(−1)(r12)×χ11 × ξ1(±1)

In Eqs. (1.20) and (1.21), it was assumed that the center-of-mass motion remains
in the 1s state. The numerical factors and phases in Eq. (1.21) are the usual
Clebsch-Gordan coefficients (see, e.g., chapter 44 in [2] for tabulated values) for
the coupling of angular momentum l = 1 and spin S = 1 to J = 0. The spatial
wave functions for the 1s and 2p states can be expanded in single-particle wave
functions [compare Eq. (13.10) and (13.11) in [59]]:

ψ100(R)ψ100(r12) = ψ100(r1)ψ100(r2) (1.22)

ψ100(R)ψ21ml
(r12) =

1
p

2

�

ψ100(r1)ψ21ml
(r2)−ψ21ml

(r1)ψ100(r2)
�

(1.23)

The ’-’ sign on the right-hand side of Eq. (1.23) is required since the wave function
on the left-hand side is antisymmetric.

Quadrupole Deformation

For the calculation of the quadrupole moments of the 1s and 2p states, it is evident
from the definition in Eq. (1.10) that only the spatial part of the wave functions
plays a role. Furthermore, since the quadrupole operator is separable in the same
way as ψnlml

, the matrix element is a product of integrals over the radial part
(r2

a ) and the angular part Y20. For a single harmonic-oscillator wave function, the
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integral over the radial part only depends on the principal quantum number [Eq.
(4.10) in [59]]:

〈ψnlml
|r2

a |ψnlml
〉=

1
2ν

�

N +
3
2

�

. (1.24)

Note that Eq. (1.24) defines the mean square radius. As already implied by Eq.
(1.24) for the angular part, any Jz substate can be selected due to the Wigner-
Eckart theorem for spherical tensor operators [see, e.g., chapter 8 of [59], in
particular Eqs. (8.4) and (8.15)], and the matrix elements evaluate to:

〈ψnlml
|Y20|ψnlml

〉= (2l + 1)

√

√ 5
4π

�

l 2 l
0 0 0

�2

. (1.25)

Eq. (1.25) contains a Wigner 3- j symbol, which vanishes for l = 0 and evaluates
to
p

2/15 for l = 1. Consequently, the quadrupole moments of the physical states in
Eqs. (1.20)/(1.22) and (1.21)/(1.23) are (using the shorter, basis-independent
notation ψnlml

(r1)ψn′ l ′ml′
(r2)→ 〈ψnlm|〈ψn′ l ′ml′

|, |ψnlm〉|ψn′ l ′ml′
〉):

Q(11s0)∝ 〈ψ100|Y20|ψ100〉= 0 (1.26)

Q(23p0)∝
�

〈ψ100|〈ψ211| − 〈ψ211|〈ψ100| − 〈ψ100|〈ψ210|+ 〈ψ210|〈ψ100| (1.27)

+ 〈ψ100|〈ψ21(−1)| − 〈ψ21(−1)|〈ψ100|
�

×
�

r 2
1 Y20(θ1,ϕ1) + r 2

2 Y20(θ2,ϕ2)
�

×
�

|ψ100〉|ψ211〉 − |ψ211〉|ψ100〉 − |ψ100〉|ψ210〉+ |ψ210〉|ψ100〉

+ |ψ100〉|ψ21(−1)〉 − |ψ21(−1)〉|ψ100〉
�

∝ 2

∫

dΩ
�

Y11Y20Y11 + Y10Y20Y10 + Y1(−1)Y20Y1(−1)

�

> 0

In the second step of Eq. (1.27), vanishing off-diagonal matrix elements have been
neglected, and the equivalent integrations over Ω1 and Ω2 have been summed.
Equations (1.26) and (1.27) show that the restriction to the first two states of the
system was sufficient to study the influence of quadrupole deformation on the
NME, since the s state is spherical and the p state has a finite quadrupole moment.
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Nuclear Matrix Elements

For a qualitative analyis of the NMEs the isospin-, spin-, and spatial part (in this
order) can be considered separately due to the absence of couplings between
the subspaces in the 0νββ-decay operators [Eqs. (1.20) and (1.21)]. Firstly, the
isospin part can be neglected, since its action is always the same, turning the νν
system into a ππ system:

τ̂+1 τ̂
+
2 |1,−1〉 ∝ |1,+1〉 (1.28)

Concerning the spin-part of the wave function, only the Gamow-Teller part of the
0νββ-decay operator [Eq. (1.12)] contains a spin-dependent factor σ̂1σ̂2. The
wave functions χSSz

are eigenfunctions of this operator, which can be seen by
rewriting it in the following way:

(σ̂1σ̂2) |χSSz
〉= 4ħh2 (ŝ1 ŝ2)|χSSz

〉= (1.29)

2ħh2
�

Ŝ2 − ŝ2
1 − ŝ2

2

�

|χSSz
〉=

¨

−3ħh2, S = 0

1ħh2, S = 1

In the last equality of Eq. (1.29), the eigenvalues for the two possibilities of parallel
(S = 1) and antiparallel (S = 0) spins have been evaluated. This means that neither
the Fermi- (a simple identity operator), nor the Gamow-Teller part of the 0νββ-
decay operator connect states with different spin alignments, in particular not
the 1s and 2p states. Note that this is a consequence of the extremely simple LS
coupling in the two-body system that was considered here, where a given value of
J can be traced back unambiguously to L and S. Nevertheless, it can be anticipated
for systems with more than two particles that transitions between states with a
large number of S = 0-nucleon pairs, i.e. in particular ground states of even-even
nuclei (see also Sec. 2.2.2), are enhanced.

At last, consider the spatial part of the NME. Obviously, the neutrino potential in
Eq. (1.13) only depends on the distance r12 of two nucleons. Therefore, it can
immediately be concluded from the orthogonality of the spherical harmonics [see,
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e.g., chapter 3 in [59]]:
∫ 2π

0

dϕ

∫ π

0

dθY ∗lmYl ′m′ = δl l ′δmm′ , (1.30)

that matrix elements between different l vanish. Since the type of deformation is
encoded in the contributions of different spherical harmonics to a given state, this
means that 0νββ decay favors transitions between similar shapes. This makes the
process susceptible to phenomena like shape-phase transitions along a chain of
nuclei [69] and shape coexistence [70, 71] within a single nucleus, both of which
will be discussed in Sec. 1.2.

While the spherical harmonics are related to the type of deformation, the radial
wave functions can be a measure of the degree of deformation. For the harmonic
oscillator wave functions, this can be seen from the mean square radius in Eq.
(1.24), which increases monotonously with the principal quantum number. The
distance dependence of the neutrino potential H(r12, 〈∆E〉) in Eq. (1.13) is shown
in part (a) of Fig. 1.2 for realistic values of 〈∆E〉. Since it is nonnegative for all
values of r12, H(r12) can be interpreted as an (unnormalized) weighting factor in
integrals of the type

Nnl Nn′ l ′

∫ r

0

dr12Rnl H12Rn′ l ′ , (1.31)

which favors small distances between nucleons. The lower three panels of Fig. 1.2
show the normalized radial probability density N2

nlR
2
nl r
−2 for different low-lying

eigenstates of the two-body system. In addition, the value of the integral in Eq.
(1.31) is shown, which is asymptotic for r →∞ due to the exponential decay of
the integrand [see Eq. (1.17)]. It can be seen that the radial integrals in the NMEs
for 0νββ decay are largest for small nuclear deformations, i.e. configurations for
which the average distance between nucleons is minimized. The factor 〈∆E〉 has a
significant, but uniform impact on all the integrals.

Based on the findings in the previous paragraphs, a simple study of the effects of
shape evolution [69] can be performed: Assume that both the ground states of the
dineutron Ψ(0)νν and the diproton Ψ(0)ππ are superpositions of the two lowest-lying
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J = 0 states 11s0 and 23p0
9:

|Ψ(0)nn 〉=
Æ

1− βnn|11s0〉+
Æ

βnn|23p0〉 (1.32)

0≤ βnn ≤ 1 (1.33)

In Eq. (1.32), the index nn may stand for either νν or ππ. A parameter βnn,
suggestively named like the nuclear deformation parameter, has been introduced
to control the mixing of the 1s and 2p states. According to Eqs. (1.26) and (1.27),
the admixture of a 2p component in the ground state introduces a finite quadrupole
deformation:

Q(Ψ(0)nn )∝ βnn (1.34)

The NME for 0νββ-decay between the states in Eq. (1.32) consists of matrix
elements of the type:

M (0ν) = 〈Ψ(0)ππ(βππ)|Ô
(0ν)|Ψ(0)νν (βνν)〉= (1.35)

�
Æ

1− βππ〈11s0|+
Æ

βππ〈23p0|
�

Ô(0ν)
�
Æ

1− βνν|11s0〉+
Æ

βνν|23p0〉
�

=
Æ

1− βππ
Æ

1− βνν〈11s0|Ô(0ν)|11s0〉

+
Æ

1− βππ
Æ

βνν〈11s0|Ô(0ν)|23p0〉

+
Æ

βππ
Æ

1− βνν〈23p0|Ô(0ν)|11s0〉

+
Æ

βππβνν〈23p0|Ô(0ν)|23p0〉=
Æ

1− βππ
Æ

1− βνν〈11s0|Ô(0ν)|11s0〉+
Æ

βππβνν〈23p0|Ô(0ν)|23p0〉.

The last equality in Eq. (1.35) follows from the fact that the off-diagonal matrix
elements vanish due to Eqs. (1.29) and (1.30). The symbol Ô(0ν) may stand for
the Fermi- or the Gamow-Teller part of the complete 0νββ-decay operator [Eq.
(33) [28]]:

Ô(0ν)F+GT = Ô(0ν)GT −
�

gV

gA

�2

Ô(0ν)F (1.36)

9An operator that mixes states of equal J must be introduced in the Hamiltonian to create such a
situation. For example, in Sec. 7.1 of Casten’s textbook [65] where the deformed (Nilsson) shell
model is introduced, an anisotropic oscillator potential [Eq. (7.2) therein] can be used for this
purpose.
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In Eq. (1.36), the Fermi part is scaled by the squared ratio of the vector- and axial-
vector coupling constants gV/gA of the weak interaction, which has a numerical
value of about (gV/gA)

2 ≈ 0.61 [4].

The dependence of the matrix elements in Eq. (1.35) for Ô(0ν) = (gV/gA)
2 Ô(0ν)F

and Ô(0ν) = Ô(0ν)GT on the mixing parameters βνν and βππ is shown in part (a)
and (b) of Fig. 1.2, respectively. Due to the scaling by the eigenvalues of the
operator (σ̂1σ̂2) [Eq. (1.29)] and the factor (gV/gA)

2 in front of the Fermi part, the
Gamow-Teller matrix elements show a much larger variation over the parameter
space. The opposite signs of the 1s- and 1p matrix elements in Eq. (1.35), which
are a consequence of the different spin alignments, cause a cancellation of the
matrix elements for strongly mixed configurations. The absolute values of the
NMEs are largest for similar, pure configurations of the mother- and daughter
nucleus. In part (c) of Fig. 1.3, the NME, i.e. the squared absolute value of the
sum of part (a) and (b) is shown. Its general dependence on βνν and βππ is similar
to the dominating Gamow-Teller component. The accelerated change of the NME
towards pure configurations and βνν ≈ βππ suggests that the NMEs will be highly
sensitive to shape evolution, which may occur suddenly or gradually via first- or
second-order phase transitions [72, 73].
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Figure 1.2.: (a): Distance dependence of the neutrino potential H in the 0νββ-
decay operator for different values of 〈∆E〉 and R= 1 fm [Eqs. (1.11) -
(1.14)]. (b−d): Probability density of the nucleon-nucleon distance r
for a 1s-, 2p-, and 2s harmonic oscillator wave function with ν= 1 fm
in red (left ordinate), and the corresponding radial integral over the
neutrino potential [Eq. (1.31)] in the same line styles as part (a)
[right ordinate with identical scale for (b− d)].
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Figure 1.3.: Dependence of matrix elements of the Fermi- (a) and Gamow-Teller
part (b) of the NME on the mixing parameters βνν and βππ in the two-
nucleon model of Sec. 1.1.1. The former is multiplied by a factor of
(gV/gA)2 according to Eq. (1.36). To obtain parts (a) and (b), Eq. (1.35)
was evaluated for 0≤ βνν,βππ ≤ 1. The distance of the contour lines
is the same for (a) and (b). Part (c) shows the squared absolute value
of the total NME. The parameters βνν and βππ are correlated with the
2p admixture, i.e. proportional to the quadrupole deformation.
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1.2. Current State of Nuclear Structure Input

Section 1.1 ended with the problem of the determination of the NME M (0ν) from
nuclear theory. Using a simple model, general properties of the NME were studied
in Sec. 1.1.1. It turns out that these properties are reproduced by microscopic
models for actual 0νββ-decay candidates. As an example, compare a calculation
of the nuclear structure impact of deformation on the 0νββ decay between 150Nd
and 150Sm within the framework of energy-density functional theory by Rodríguez
and Martínez-Pinedo [74] (see also [75]) in Fig. 1.4 to the schematic calculation
in Fig. 1.3. The preference for decay between similarly deformed, in particular
weakly deformed, structures is apparent.

With the deformation parameters of Fig. 1.4 fixed by their experimental values,
the authors of Ref. [74] also give predictions for the 0νββ-decay NME. Since their
calculation implicitly contained more parameters and model assumptions (see,
e.g. [76, 77] about the density functional that was used in [74]), the question
about the accuracy and precision of theoretical NMEs arises. Obviously, there
are no measurements to validate the calculated NMEs. Therefore, an estimate of
the predictive power must be obtained by comparing the predictions of different
models. The top part of Fig. 1.5 shows a compilation of predicted NMEs by various
effective theories of nuclear structure from a review article by Engel and Menéndez
[21]. From this comparison, it can be seen that the uncertainty of the NMEs is much
larger than the one of the phase space factors (see Sec. 1.1). To obtain the bottom
part of Fig. 1.5, Eq. (1.5) was solved for the product T (0ν)1/2

|〈mν〉|2 to give an estimate
of the impact of the NMEs on actually observable quantities. The predictions, which
have an impact on the planning of future 0νββ searches and the extraction of
meaningful information about the neutrino (Sec. 2.3 in [21]), vary by more
than an order of magnitude at first glance. However, the predictions by different
models are obviously correlated. It is evident that they could be brought into
better agreement, at lowest order, by a simple multiplication with a constant factor.
This is due to known deficiencies of the models, like the restriction to a valence
space in the shell model and IBM, or the overestimation of pairing correlations in
quasiparticle models (see Sec. 3.6 in [21]). Nevertheless, a systematic uncertainty
inherent in all models is the general overprediction of weak decay rates. This
problem, the so-called ’quenching’ of the bare axial-vector coupling constant gA
(see Sec. 4 in [21]), was identified by comparison to experimental data on β- and
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Figure 1.4.: Strength of the Gamow-Teller part of the 0νββ-decay operator as
a function of the deformation (measured by the usual deformation
parameter β) of the initial and final states of the nuclei 150Nd and
150Sm. Result of a realistic theoretical calculation within the frame-
work of energy density functional theory. The right-hand ordinate
indicates symbolically the matrix element whose absolute magnitude
is indicated by the color code. A dark dot in the figure indicates the
most probable deformations of both isotopes as returned by the model.
Reprinted and modified figure with permission from [74] Copyright
(2010) by the American Physical Society.
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2νββ decay (see Sec. 3.1 and 4 in [21]). The observed quenching of M1 strength
for electromagnetic transitions of nuclei (see, e.g., Sec. V.C.2 in [5] or Sec. V.D.1
in [89]) has the same origin, summarized as ’quenching of spin matrix elements’
in a review article by Towner [90]. From a microscopic point of view, quenching is
caused mainly by the renormalization of transition operators (see also Secs. 2.3
and 2.2.2) and meson-exchange/two-body currents between nucleons [90].

Modern ab-initio theory (see, e.g., a review article by Epelbaum, Hammer, and
Meißner [91]) does not suffer from the quenching problem [92], and calculations
have been performed for nuclei as heavy as 100Sn (ibid., and [93]). The many-
body methods are, however, restricted to nuclei in proximity of shell closures
at the moment [94, 95]. Except for 48Ca, for which an ab-initio description is
possible [96, 97], the isotopes of interest for 0νββ decay studies are at least 6
nucleons/nucleon holes away from doubly magic nuclei, as can be seen in Fig. 1.6.
In addition, many of them are located in regions of the chart of nuclides where
collective behavior and phase transitions between spherical and deformed shapes
are expected to occur (black ellipses in Fig. 1.6). For the description of these
phenomena, effective models are invaluable [73] (in particular Sec. III therein),
but they require precise and unambiguous experimental data to constrain their
free parameters and benchmark their predictions (see Sec. VI.C in [28]). For
example, there has recently been a lot of 0νββ-decay related experimental effort
to study the low-energy structure of 76Ge/76Se [102–106]10, since germanium is
one of the most promising materials for 0νββ-decay detection (see Fig. 1.1).

The present work concentrates on the 0νββ-decay candidate pairs 82Se/82Kr and
150Nd/150Sm. The former is motivated by recent progress [68] in the framework of
the nuclear shell model towards large-scale calculations based on realistic interac-
tions [101], and beyond the closure approximation (see Sec. 1.1.1). Furthermore,
due to pioneering work in the operation of cryogenic calorimeters [107], the
CUPID-0 collaboration was able to improve the half-life limit for the 0νββ decay
of 82Se by one order of magnitude [46] compared to previous results [47]. Note
that CUPID-0 is a prototype for the planned large-scale CUPID experiment, which
aims to be competitive with highest currently reported limits for other isotopes
[108, 109]. The motivation for the investigation of the pair 150Nd/150Sm is its
favorable 0νββ half-life, which is predicted to be about an order of magnitude
lower than the ones for 76Ge and 136Xe (see Fig. 1.5), which hold the current
10The five publications are taken from the most recent of them, i.e. [106].
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records for half-life upper limits (see Fig. 1.1). It should be noted that several
of the calculations presented in Fig. 1.5 do not take into account an additional
decay branch to the 0+2 state of 150Sm, which is predicted [110] to lead to a further
significant reduction of the half-life. From the structural point of view, the stable
even-even Nd and Sm isotopes are collective nuclei in the vicinity of a shape phase
transition, which are known to be described well by the interacting boson model
[111]. In particular, 150Nd is a textbook realization [112] of the X (5) critical-point
symmetry [113] for the transition between spherical and rotational nuclei.

Leading experts in the field, in a workshop on "Nuclear matrix elements for neutri-
noless double beta decay" in 2005 [114] (see also Sec. VI.C in [28]), recommended
to perform charge exchange- [24, 115], nucleon transfer- [116]11, muon capture-
[117] and neutrino-nucleus scattering [118] experiments. These reactions, in
combination with β-, 2νββ-, and 2νECEC decay studies, were found to be the
most sensitive to 0νββ-decay related matrix elements. The authors of [114] also
emphasize the importance of deformation for 0νββ decay, which was discussed
above. In the present work, it was decided to employ the nuclear resonance fluores-
cence method (see Sec. 2.1) to study the structure of 82Se/82Kr and 150Nd/150Sm.
Compared to the experimental methods mentioned above, the involved matrix
elements are less closely related to 0νββ decay. However, the experiments are
more straightforward, and observables of interest can be extracted with a high
degree of model independence. The focus was on decay channels of a low-lying
collective dipole excitation, the so-called scissors mode, which are sensitive to the
deformation and the coexistence of shapes in an atomic nucleus (see Sec. 2.3).
The experimental study of this work is based on pioneering work by Beller et al.
[110].

11The given review article by Wimmer is more focused on experiments with radioactive beams. See
also references therein.
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Figure 1.5.: (Top) Predictions of NMEs M0ν for the 0νββ decay of different iso-
topes. The displayed calculations were performed in nonrelativistic
(’NR-EDF’ [78]) and relativistic (’R-EDF’ [79, 80]) energy density
functional theory, quasiparticle random-phase approximation (’QRPA
Jy’ [81], ’QRPA Tu’ [82, 83], ’QRPA CH’ [84]), the interacting boson
model (’IBM-2’ [85]), and the shell model (’SM Mi’ [86], ’SM St-M,
Tk’ [87, 88]). All predictions used a bare gA. Some of them have given
uncertainty estimates from a variation of the interaction. (Bottom)
Corresponding predictions of the product of the 0νββ decay half life
T 0ν

1/2
and the unknown effective neutrino mass mββ . Figure from [21]

(Fig. 5 therein). Reproduced with permission of IOP Publishing in the
format Thesis/Dissertation via Copyright Clearance Center.
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48Ca→48Ti

76Ge→76Se

82Se→82Kr

110Pd→110Cd

96Zr→96Mo
124Sn→124Te

100Mo→100Ru

116Cd→116Sn

128Te→128Xe

130Te→130Xe

148Nd→148Sm

136Xe→136Ba

134Xe→134Ba

150Nd→150Sm

154Sm→154Gd

160Gd→160Dy

198Pt→198Hg

232Th→232U

238U→238Pu

Figure 1.6.: Candidates for 0νββ decay on the chart of nuclides. The chart, which
was taken from [98] and modified, shows all known isotopes with
the neutron number on the abscissa and the proton number on the
ordinate. Different colors correspond to different ranges of the isotopic
lifetimes. Stable nuclei are shown in black. For better orientation, the
classical magic numbers at 8, 20, 28, 50, 82, and 126 [99, 100] are
indicated by white lines. Midshell regions, where nuclei are expected
to be deformed in their ground states, are indicated by black circles
in analogy to Fig. 2.1 in the nuclear structure textbook of Casten
[65]. Compared to the latter figure, another circle has been added in
the p f shell (Z ≥ 28 and 28 ≤ N ≤ 50) to indicate the region where
the phenomena of shape coexistence and triaxial deformation appear
[101]. The set of 0νββ decay candidates is from [85]. For pairs
of isotopes that are shown in gray or black, dedicated experiments
in search for their 0νββ decay have been or are still ongoing. The
black-labeled isotopes are the main objective of this work.
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1.3. Outline

The present work is structured as follows:

This introduction is followed by an overview of the relevant formalism (Sec. 2).
’Formalism’ includes a discussion of the experimental method of nuclear resonance
fluorescence (Sec. 2.1), the theoretical frameworks of the shell- and the interacting
boson model (Secs. 2.2.1 and 2.2.2), and the nuclear structure phenomenon of
interest (Sec. 2.3).

The following section (Sec. 3) describes the High-Intensity γ-Ray Source, where
all experiments of this work were performed (Sec. 3.1), the experimental setups
(Sec. 3.2), and the dedicated experiments (Secs. 3.3 and 3.4).

In the ’Analysis’ section (Sec. 4), the processing of the experimental data (spectra)
is described. The section starts with general information about the treatment of
uncertainty and parameter estimation (Sec. 4.1). After that, the Monte-Carlo
simulation framework which was used for the analysis is introduced (Sec. 4.2). The
remaining sections give give a detailed description and examples for all relevant
analysis steps.

Results for the observed transitions of 82Se/82Kr and 150Nd/150Sm are presented
in Sec. 5.

A discussion of selected results can be found in Sec. 6. In particular, the origin
of the observed magnetic dipole strength in the A= 82 nuclei will be discussed.
Furthermore, updated predictions of NMEs for the 0νββ decay of 150Nd, based on
the improved data, will be given (Sec. 6.2).

The main body of this work concludes with a summary and an outlook (Sec. 7).
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2. Background

This section introduces the experimental technique of nuclear resonance fluores-
cence (NRF) that was used to study the low-energy nuclear structure of the 0νββ
decay candidates. Furthermore, two theoretical models will be discussed which
were used to interpret the experimental results. At last, the nuclear scissors mode
will be introduced with a focus on its relation to nuclear shapes.

2.1. Nuclear Resonance Fluorescence

The most recent review article about NRF and the application to nuclear structure
studies, which was used as a guideline for this section, was published by Kneissl,
Pitz, and Zilges [119]. A historical review article on the topic, which is more
focused on the technique itself, was published by Metzger [120].

2.1.1. General Properties

Resonance fluorescence, in particular N-RF [(γ,γ′)], is the interaction of a system
with discrete bound states (the nucleus) and the quantized EM radiation field
(see, e.g. [121], in particular chapter V, §20 therein). In other terms, it is the
resonant absorption of a real photon by a nucleus, which leaves the nucleus in an
excited state, and the subsequent emission of potentially multiple photons in the
de-excitation process [119].

The mechanism has the advantage that the (nuclear) transition matrix elements
between bound states can be clearly separated from the well-known EM part of
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the reaction [see Eq. (2.4), or chapter V, §20 in [121] for a detailed derivation],
facilitating a model-independent determination of the former. In this sense, the
extraction of certain matrix elements is more straightforward over a large range of
excitation energies and target proton numbers than for EM-mediated processes
which involve the Coulomb scattering of charged elementary ([122], in particular
chapter 4.2 therein) or nuclear [123] particles, since they eventually need to take
into account the distortion of the projectile’s wave function by the target (see, e.g.
[124] for electron scattering or [125] for high-energy heavy-ion scattering).

Another advantage for the present study is the high selectivity of NRF to electric
(E1) and magnetic (M1) dipole excitations. This can be anticipated from single-
particle (’Weisskopf’) estimates (chapter XII.6.A in [13]) for the EM transition
rates between SM states, which decrease by orders of magnitude when the mul-
tipole order L increases1. The suppression of magnetic character compared to
electric character, which is also predicted by these estimates, is balanced by the
collectiveness of the M1 scissors mode [89] which is of main interest in this work.

To demonstrate the main disadvantage of the NRF method, it is instructive to
compare the relative magnitude of the energy-’integrated’ cross sections for elastic
photon scattering [Eq. (2.4) with i = k] and inelastic electron scattering [(e, e′)]
for low momentum transfer [Eq. (4-15a) in [122]], given a particular reduced
M1 transition width B(M1) [Eq. (2.6)] to an excited state at a typical energy
for a fragment of the scissors mode [89] of E j = 3MeV. Neglecting all factors
which are on the order of unity for a favorable choice of the target nucleus and
experimental kinematics, i.e. branching ratios, J- and L-dependent factors, and
recoil corrections, the energy-integrated cross sections are approximately:

dI
dΩ (γ,γ′)

≈
8π

λ3
i→ j

B(M1)W (θ ,ϕ)≈ 10−6 fm−1 × B(M1)W (θ ,ϕ) (2.1)

dσ
dΩ (e,e′)

=

∫ E j+∆E/2

E j−∆E/2

dσ
dΩdE

(E)dE ≈
dσ

dΩdE
(E0)∆E

≈
α2

ħhc
B(M1)∆EVT (θ )≈ 10−13 fm−1 × B(M1)VT (θ ) (2.2)

1The lowest multipole order L = 0, however, is forbidden for transitions involving a single real photon,
because due to their masslessness, the angular momentum of photons must always be a nonzero
integer number (see, e.g. appendix 1 in [121]).
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In Eq. (2.2), the symbol VT (θ ) denotes a scattering-angle dependent functionwhich
is on the same order of magnitude as W (θ ,ϕ) (Eq. (2.11)) for certain scattering
angles. It is assumed that the cross section is approximately constant over the
integration range ∆E . Setting ∆E = 1 eV, which is a typical width of a Doppler-
broadened nuclear resonance [120] and definitely fulfils the aforementioned
assumption, a numerical value for comparison with the NRF value is obtained.
Equations (2.1) and (2.2) suggest that, given particle beamswith similar intensities,
the reaction rate in NRF should be orders of magnitude higher than in (e, e′).
However, this naive estimate neglects that NRF is a resonant process, i.e. only
photons with an energy in the range of the resonance can excite it. Typical
photon beam performances (particles per time and energy interval) at 3MeV
are on the order of 102 s−1eV−1 [126] for bremsstrahlung-generated photons and
104 s−1eV−1 [127] for laser Compton-backscattered (LCB) photons. On the other
hand, electrons with any energy larger than the resonance energy can in principle
excite it. Therefore, a typical electron beam current of 20µA and a spectral width
of few keV [126], i.e. a particle current of 1014 s−1, more than compensates the
difference between Eqs. (2.1) and (2.2). Similar arguments can be applied for the
scattering of nuclear particles. These instrumental restrictions must be overcome
by increased target masses (possible due to the strong penetration power of gamma-
rays [128]) and measuring times, which restrict NRF to stable, and sufficiently
abundant isotopes [119].

Depending on the observable of interest, NRF experiments are also complicated
by the large photonic background that is caused by nonresonant atomic scattering
processes on the target or the beamline (see also Sec. 4.2 for a more detailed
discussion). At energies of few MeV of the present experiment, the Compton effect
is the dominant source of nonresonant background (see, e.g., chapter 2.III in [129],
in particular Fig. 2.18). The cross section for Compton scattering, evaluated at a
scattering angle of 90◦ for simplicity and integrated over the energy in analogy to
Eq. (2.2), is given by (ibid.):

dσ
dΩ Compton

(90◦)≈
1
2

Zα2
�

ħhc
mec2

�2 x2 + x + 1

(x + 1)3
∆E ≈ 10−3 eVfm2 × Z (2.3)

In Eq. (2.3), the symbol x is an abbreviation for the ratio of the initial photon
energy, and the electron rest energy, i.e. x = E j/mec2. Considering that typical
values of B(M1) in Eqs. (2.1) and (2.2) for low-lying collective M1 strength are
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on the order of 1µ2
N ≡ 1.6× 104 eVfm3 [89], NRF stills seems to dominate. But

again, any photon in the beam spectrum can be Compton-scattered, so indeed
the number of nonresonantly scattered photons will dominate the event rate
in an NRF experiment with currently available beams. This is different for the
scattering of massive, charged, and comparably highly energetic particles, where
the main sources of background are not alternative scattering processes, but
radiative corrections, especially for the light electrons (chapter 1.2 in [122])2.

At last, an important difference to the aforementioned techniques is that NRF
does not measure the excitation directly. A photoabsorption cross section derived
from an NRF experiment will only resemble the ’true’ cross section if all branching
transitions to lower-lying excited states are known or can be excluded [see Eq.
(2.4)]. Especially in recent discussions about low-lying electric dipole strength,
this was identified as a serious issue [130]. The direct branching transitions are
expected at lower energies where the intensity of the nonresonant background
increases approximately exponentially (see spectra of this work in Sec. D), which
prevents a firm constraint of single channels even if the ground-state transitions
can be identified unambiguously [131]. A model-independent way to overcome is
problem is the usage of the NRF-based self-absorption technique (for an introduc-
tion to the technique, see [120], for experimental applications see, e.g. [132, 133]).
Ultimately, the model-independence of NRF can be sacrifized to take into account
unobserved branching transitions by various assumptions which are summarized
in [134].

For the present study, the comparably straightforward access to branching ratios
andmultipole mixing ratios [see Eq. (2.10)] and the selectivity to dipole excitations
were seen as important advantages of NRF. Since several NRF cross sections of
low-lying dipole excited states were already known from previous studies [135–
137], the the limited access to absolute cross sections in experiments with quasi-
monochromatic photons could be partially compensated. Furthermore, a recently
developed model-dependent method for the relative and absolute calibration of the
beam photon flux was successfully applied (see Sec. 4.5.4). An access to absolute
photoabsorption cross sections was found to be of minor importance, since the
information about the relevant structure is contained in the branching ratios. Thus,

2For completeness, it should also be mentioned that the possibility of a coincident detection of different
particle types, which of course complicates the experiment, is an invaluable technique to reduce
experimental background.

62 2. Background



the investment into large amounts of enriched materials and weeks of experiments
for an NRF experiment were found to be worthwile.

2.1.2. Formalism

In the following, consider the process in which a real photon is resonantly absorbed
by a nucleus which is in an intrinsic state i (most probably the ground state,
denoted as ’0’). The absorption leaves the nucleus in an excited state j, from which
it decays to a lower-lying state k via emission of another photon. Although it is
emphasized here that ’another’ photon is emitted, the process is often denoted
as ’photon scattering’ [119] in analogy to actual scattering experiments. The
energy-integrated differential cross section for this process is [119]3:

dIi→ j→k

dΩ
dΩ= π2

�

ħhc
E j − Ei

�2

︸ ︷︷ ︸

λ2
i→ j

2J j + 1

2Ji + 1
︸ ︷︷ ︸

gi→ j

Γi→ j

︸ ︷︷ ︸

Ii→ j

Γ j→k

Γ j
︸︷︷︸

br.

︸ ︷︷ ︸

Ii→ j→k

Wi→ j→k

�

θ ,ϕ,δi→ j ,δ j→k, Pγ
�

4π
dΩ.

(2.4)
In Eq. (2.4), the excitation energies and angular momentum quantum numbers

of the states of the nucleus are denoted as Ei and Ji, respectively. The quantities
Γi→ j and Γ j→k denote the partial transition widths for the excitation- (i→ j) and
the decay transition ( j→ k), respectively, whose relation to the total width Γ j of the
state j will be discussed below. The symbol Wi→ j→k(θ ,φ,δi→ j ,δ j→k, Pγ) denotes
the angular distribution of the emitted photon in the transition from state j to k
for the given sequence of states, which also depends on the multipole mixing ratios
δi→ j and δ j→k of the excitation (i→ j) and the decay ( j→ k), and the polarization
Pγ of the photon used for the excitation (see below)4. It is normalized to 4π and
can be integrated out trivially in Eq. (2.4), resulting in the total cross section Ii→ j→k
for the process, which is indicated by the lowermost brace. The next-to lowest
3Ref. [119] explicitly gives the cross section for the excitation from the ground state (i ≡ 0), but this
assumption is not necesssary (see, e.g. chapter V, §17 and §20 in [121]).

4The dependence of the angular distribution on the multipole mixing ratios and the polarization of
the beam will often not be shown explicitly in other sections for the sake of brevity.
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brace indicates the definition of the total cross section Ii→ j for photoabsorption
from state i to j which differs from Ii→ j→k by the branching ratio (br.) Γ j→k/Γ j for
the subsequent decay to the state k. Equation (2.4) can be simplified further by
introducing the definition of the reduced wavelength λi→ j of the excitation photon,
and the ’spin factor’ [119] gi→ j which takes into account combinatorially the Jz
substates of the initial and final states in the excitation transition.

The total transition width Γ j is related to the lifetime τ j of the state j via [119]:

Γ j =
ħh
τ j

. (2.5)

It is the sum of partial transition widths for all possible decay channels [119]:

Γ j =
∑

k∈K

Γ j→k =
∑

k∈K

J j+Jk
∑

L=|J j−Jk|
Γ j→k,σL (2.6)

In Eq. (2.6), K is assumed to be the set of all lower-lying states which can be
populated from state j. If all partial widths Γ j→k are be assumed to be due to EM
transitions5, they can be further decomposed into partial widths Γ j→k,σL for the
different multipole orders Li→ j

6 and corresponding EM characters σ. According
to the EM selection rules [Eq. (2.12) and (2.15) in chapter XII.2.B [13]], the
following combinations of σ and L are allowed for a given transition from j to k:

�

�J j − Jk

�

�≤ L j→k ≤ J j + Jk (2.7)

σ j→k =

¨

E, π jπk = (−1)(L+1)

M , π jπk = (−1)L
. (2.8)

5Since the beam energies of the present experiment are much lower than the particle separation
thresholds of the nuclei of interest [138, 139], decays of photoexcited states by particle emission
can be neglected. On the other hand, even the lowest beam energy of 2.4MeV is high enough
that the alternative process of the emission of a conversion electron from a dipole-excited state
is negligible. This can be seen from estimates similar to the Weisskopf estimates from Sec. 2.1.1
(chapter XII.5.A in [13]).

6The index of L, which indicates the corresponding transition, will only be used if the initial and final
state are not clear from the context.
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The first selection rule, Eq. (2.7), which corresponds to the conservation of angular
momentum, limits the possible values for the momentum transferred by/to a
photon. The second selection rule, Eq. (2.8), determines the EM character based
on the parity quantum numbers π j and πk of the initial and final states of the
transition.

The partial transitions widths are related to the nuclear matrix elements of EM
transition operators [119]:

Γ j→k,σL = 8π
L + 1

L [(2L + 1)!!]2
λ
−(2L+1)
j→k gk→ j

1
2J j + 1

�

�〈Ψk



ÔσL



Ψ j〉
�

�

2

︸ ︷︷ ︸

B(σL; j→k)
︸ ︷︷ ︸

B(σL;k→ j)

(2.9)

In Eq. (2.9), the reduced probability B(σL; j→ k) for the transition j→ k, which
is indicated by the inner braces, has already been expanded to show its relationship
to the reduced matrix element of the EM multipole operator ÔσL (see, e.g., the
appendix ’Electromagnetic Transitions and Moments’ in [66] where also explicit
expressions for the EM operators can be found). From the definition of the reduced
probability for decay [B(σL; j → k)] it can be seen that it differs from the one
for excitation [B(σL; k → j)] by the factor gk→ j. The definition of the latter is
indicated by the outer braces in Eq. (2.9).

As indicated by the triangle inequality for L in Eq. (2.7), a transition between
two states may include multiple multipolarities. The relative magnitude of one
multipole order (σL) and the next-higher one [σ′L′ = σ′(L + 1)] with different
EM character (σ′ 6= σ) is quantified by the multipole mixing ratio (here in the
convention of Krane, Steffen and Wheeler [12]):

δ2
L,i→ j =

Γi→ j,σ′(L+1)

Γi→ j,σL
=

L (L + 2)

(L + 1)2 (2L + 3)2
λ−2

i→ j
B [σ′ (L + 1)]

B (σL)
(2.10)

The angular distribution for the two-step process in Eq. (2.4) can be expanded in
terms of Legendre polynomials Pν and unnormalized associated Legendre polyno-
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mials Pµν [119]7:

Wi→ j→k

�

θ ,ϕ,δi→ j ,δ j→k, Pγ
�

= Wi→ j→k,unpolarized

�

θ ,δi→ j ,δ j→k

�

(±)L′i→ j
Pγ
�

Eγ
�

Wi→ j→k,polarized

�

θ ,ϕ,δi→ j ,δ j→k

�

=
∑

ν∈{0,2,4}

Aν
�

JiJ j Li→ j L
′
i→ jδL,i→ j

�

× Aν
�

JkJ j Lk→ j L
′
k→ jδL,k→ j

�

× Pν [cos (θ )] (2.11)

(±)L′i→ j
Pγ
�

Eγ
�

∑

ν∈{2,4}

A′ν
�

JiJ j Li→ j L
′
i→ jδL,i→ j

�

× A′ν
�

JkJ j Lk→ j L
′
k→ jδL,k→ j

�

× P(2)ν [cos (θ )] cos (2ϕ)

Eq. (2.11) consists of two terms. The first term, Wunpolarized(θ ) denotes the angular
distribution for the excitation by an unpolarized photon beam. It depends on
the polar angle θ with repect to the direction of propagation of the incoming
photon beam. The second term, Wpolarized(θ ,ϕ) affects the angular distribution for
a nonzero polarization of the beam, quantified by the photon-beam energy (Eγ)-
dependent polarization factor Pγ with

�

�Pγ
�

�≤ 1. It introduces a dependence on the
azimuthal angleϕ, which is the angle with respect to the electric field vector ~E of the
photon beam, i.e. the polarization axis. The symbol (±)L′i→ j

indicates that the sign
of the polarization term is positive (negative) for an electric (magnetic) character
of the alternative multipolarity of the excitation transition i→ j. The expansion
coefficients Aν and A′ν, which depend on the sequence of angular momenta and

7Kneissl, Pitz and Zilges [119] assume that no larger momentum transfer than L = 2 occurs. This
also imposes the restriction that no more than 2 multipoles may be mixed in a single transition. In
accordance with the expected dominance of low multipolarities (see Sec. 2.1.1), and since only
dipole- and quadrupole transitions are relevant in this work, the same equations are given here.
The most general formalism can be found in [12].
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the corresponding EM multipoles, can be found in [12].

2.2. Nuclear Structure Models

This section introduces the nuclear shell model (SM) and the proton-neutron
version of the the interacting boson model (IBM, or IBM-2 for the π-ν version),
both of which were employed in this work to describe the structure of the 0νββ-
decay candidate pairs 82Se/82Kr and 150Nd/150Sm. A review article on the SM was
published by Caurier, Martínez-Pinedo, Nowacki, Poves, and Zuker [5], while for
the IBM, the textbook by Iachello and Arima [140] is usually cited. The models
will be motivated as subsequent approximations of the full A-body problem.

2.2.1. Shell Model

The introduction of the SM approximation follows a recent review article by
Coraggio, Covello, Gargano, Itaco, and Kuo [141] (in particular Sec. 3 therein),
which is more specialized than [5]. It starts from a general Hamiltonian H of the
A-body system:

Ĥ =
∑

a

p̂2
a

2m
︸︷︷︸

k̂a

+
∑

a<b

V̂2N
ab . (2.12)

Equation (2.12) contains single-particle kinetic energy terms k̂a, and a two-body
potential V̂2N

ab
8.

8As in Ref. [141], three-nucleon and higher-order interactions have been neglected here. They
can be taken into account approximately by using phenomenological effective one- and two-body
interactions, (see, e.g., Sec. 5.3.4 in [141]). In any case, the impact on excitation energies is
expected to be small for three-nucleon forces (ibid.) compared to the impact on binding energies,
while higher-order forces are not even expected to influence the latter significantly (see, e.g., the
derivation of 4N forces in χEFT [142] and a recent numerical investigation [143]).
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Now, a one-body operator Û is introduced by inserting a zero in Eq. (2.12) [Eq.
(9) in [141]]:

Ĥ =
∑

a

k̂a + Ûa

︸ ︷︷ ︸

Ĥmean

+
∑

a<b

V̂2N
ab −

∑

a

Ûa

︸ ︷︷ ︸

Ĥresi

. (2.13)

The assumption behind Û is that, due to the nature of the nucleon-nucleon force9,
all nucleons experience an effective mean-field Ĥmean in which they move inde-
pendently from each other. Residual nucleon-nucleon correlations are taken into
account by Ĥresi, which is assumed to be a comparably small perturbation. The
eigenstates of Ĥmean, defined by

Ĥmean|Φi〉= Emean,i |Φi〉, (2.14)

can be used as basis states to expand the solutions of the A-body system:

Ĥ |Ψi〉= Ei |Ψi〉, (2.15)

|Ψi〉=
∑

j

〈Φ j |Ψi〉|Φ j〉. (2.16)

In Eqs. (2.14) and (2.15), the symbols Ei denote the energy eigenvalues of the
eigenstates of the mean-field (Φi) and the total (Ψi) Hamiltonian.

Another assumption of the shell model is that the eigenstates of Ĥmean can be
grouped in sets (’shells’/’orbitals’) which are separated by their excitation energies
from each other. As long as the excitation energies are small compared to the
separation energy between different shells, the most strongly bound Ac nucleons
will remain in the Ac lowest orbitals and can be treated as an inert core. Therefore,
the A-body problem in the full space can be reduced to an A− Ac = Av problem in
the ’valence’ space using the projection operator P̂v [Eq. (12) in [141]]:

P̂v =
∑

i∈V

|Φv,i〉〈Φv,i |. (2.17)

9See, e.g., phenomenological introductions to the SM by Casten in Sec. II.3 of [65] or Otsuka in
Sec. 4.1 of [144]
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In Eq. (2.17), the symbol V denotes the set of valence-space basis states Φv,i . They
are defined as [Eq. (10) in [141]]:

Φv,i =
�

â†
v,1â†

v,2...â†
v,Av

�

i
|c〉 (2.18)

In Eq. (2.18), the symbols â†
v, j denote creation operators for single-particle states

in the valence space, which are coupled to produce a basis state with the label
’i’ (where i is assumed to contain all quantum numbers necessary to identify
the state), and applied to the core state c. The complement of P̂v is given by
Q̂v = 1− P̂v. With these definitions, the eigenvalue equation in the valence space
is given by [Eq. (16) in [141]]:

�

P̂vĤ P̂v + P̂vĤQ̂v
1

Ei − Q̂vĤQ̂v

Q̂v Ĥ P̂v

�

︸ ︷︷ ︸

ˆ̂Heff

P̂v |Ψi〉= Ei P̂v |Ψi〉. (2.19)

Equation (2.19) contains the definition of the effective valence-space Hamiltonian
Ĥeff. The second term of Ĥeff can be interpreted as corrections due to correlations
with basis states outside the valence space. An expansion of the denominator in
this term, i.e.

1
1− Q̂v ĤQ̂v/Ei

= 1+ Q̂v ĤQ̂v/Ei +
�

Q̂v ĤQ̂v/Ei

�2
+ ..., (2.20)

shows that this term introduces higher-order multi-nucleon correlations to compen-
sate for the reduction of the model space, even if the original Ĥ contains only terms
up to a certain order. Therefore, the transition to the valence-space problem is an
actual simplification of the A-body problem only if the aforementioned assumptions
are valid, i.e. the expansion in Eq. (2.20) can be truncated at some point10.

In analogy to Eq. (2.20), any transition operator must also be transformed for
the application in the valence space (Sec. II.A in [5]). In a first-order approx-
imation, this can be taken into account by using effective coupling constants

10In this context, the author of the present work would like to cite Talmi: "No clear demonstration was
ever given that the shell model is a good approximation nor a characterization of properties of the
interactions for which this is the case. Today, as in 1949, the best proof for the validity of the shell
model is the good agreement of its predictions with experiment." (Introductory chapter of [59].
Talmi refers to the ’year of birth’ of the shell model in 1949 [99, 100].)
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(electric charges, g factors, ...). In particular for M1 strength, the observation that
experimental transition strengths are systematically lower than predictions with
bare coupling constants in the shell model is known as ’quenching’ of M1 and GT
strength (see, e.g., Sec. V.C.2 in [5] for a discussion of the problem, [92] for a
recently proposed solution).

In practice, the original phenomenological proposal by Goeppert Mayer [99] and
Haxel, Jensen and Suess [100] for Û [5],

Û = V (r) + cl l l̂
2 + cls l̂ · ŝ , (2.21)

can be used, which successfully describes the ’magic numbers’ in nuclei. Equation
(2.21) contains a potential with a dependence on the distance r from the origin.
The most simple form of V (r) is a harmonic oscillator (V (r)∝ r2), which can be
significantly improved by using phenomenologically or microscopically motivated
potentials (see, e.g. [145], in particular Sec. 4.2). In addition to the dependence
on r, Eq. (2.21) contains terms which are proportional to the ’ll’- l̂2 and ’ls-coupling’
l̂ · ŝ via the respective parameters cl l and cls.

For the effective Hamiltonian, procedures exist to construct it from from the
underlying nucleon-nucleon potential [141]. The difficulty of such approaches lies
in the appearance of the eigenvalues of the A-body problem Ei on both sides of Eq.
(2.19) (see, e.g., the discussion of Eq. (22) in [141]). An alternative is to treat
matrix elements of the form

〈c|âv,i Ĥ â†
v, j |c〉 (2.22)

〈c|âv,i âv,i Ĥ â†
v,k â†

v,k|c〉 (2.23)

as free parameters, which can be fit to experimental data in a finite valence space.
Equations (2.22) and (2.23) give examples for one- and two-body matrix elements.
The pure fitting procedure has been successfully applied in the sd shell (Sec. 4.7
in [145]), for example.

The present work uses the JUN45 interaction for the f5pg9 space by Honma,
Otsuka, Mizusaki and Hjorth-Jensen [101] to investigate the structure of 82Kr and
82Se. This interaction was constructed using a mixture of both approaches, where
some parameters are fit to data and others are fixed by a realistic nucleon-nucleon
interaction.
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Presently, shell-model calculations for nuclei as heavy as the neutron-deficient
mercury isotopes [146], and as far away from shell closures as 166Er [147] are
feasible in the framework of the Monte-Carlo shell model [148]. However, an
interpretation of the results for the nuclei 150Nd and 150Sm is given in the framework
of the IBM (see Sec. 2.2.2) in the present work, which is much less computationally
demanding.

2.2.2. Interacting Boson Model

The introduction of the interacting boson model [140] follows a book chapter by
Otsuka in [144], which is based on articles by Otsuka, Arima, and Iachello [149],
and Iachello and Talmi [150]. As in that chapter, the introduction will sketch the
mapping procedure from the shell model to the IBM oblivious to the distinction
between the two types of nucleons without loss of generality. This approximation is
the so-called IBM-1. At the end of this section, a distinction will be made between
protons and neutrons to be able to describe mixed-symmetric states.

It is well known that nucleons of the same type, interacting via the nucleon-nucleon
interaction and subjected to the Pauli principle, experience an effective, strong
pairing interaction [151]. The simple semiempirical mass formula (see, e.g., Sec.
3.3 in [34] or [35]) gives the following estimate for the pairing energy of two
neutrons or protons:

δp ≈ apA−3/4 ≈ 34MeVA−3/4 (2.24)

In Eq. (2.24), the numerical value of the parameter ap was taken from the text
below Eq. (3.29) in [34]. Comparing the excitation energies of low-lying states of
rare-earth nuclei like 150Nd and 150Sm [139] to δp ≈ 800keV suggests that pairs of
equal nucleons can be used as elementary degrees of freedom, if only a description
of those states is desired. This results in a strong reduction of the size of the model
space.

Consequently, an operator Â† is introduced which creates a pair two equal nucleons
in the j- and j′ orbitals of the valence space with a total angular momentum J and
a z component MJ [Eq. (4.3) in [144]]:

Â†
�

j j′; J , MJ

�

≡
1

Æ

1+δ j j′

�

â†
j â

†
j′

�(J)

MJ
(2.25)
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From symmetry arguments for deformed nuclei (Sec. 4.3 in [64]), the properties
of the residual interaction in a shell-model valence space (Sec. 4.4 in [65] or Sec.
6.6 ’Features of Quadrupole Modes in Spherical Nuclei’ in [64]), empirical studies
[152], or simply from the success of the following truncation of the IBM [140], it
is anticipated that the low-lying level scheme of medium-heavy to heavy nuclei
away from shell closures is dominated by quadrupole-collective excitations. It is
therefore a valid approximation to consider only pairs of nucleons coupled to J = 0
(’S pairs’) and J = 2 (’D pairs’) [Eqs. (4.1) and (4.2) in [144]]:

Ŝ† =
∑

j

α j Â
†( j j; 0, 0) (2.26)

D̂†
MJ
=
∑

j j′
β j j′ Â

†( j j; 2, MJ ). (2.27)

Equations (2.26) and (2.27) contain some degrees of freedom: the expansion
parameters α j and β j j′ . Before their impact is discussed, it should be noted that
states of NS S pairs and ND D pairs generated by acting naively with the operators
in Eqs. (2.26) and (2.27) on the inert core [Eq. (4.4) in [144]]

�

Ŝ†
�NS
�

�

D̂†
�(ND)

�(J)

MJ
|c〉 (2.28)

are not orthogonal in general. The reason is that there may be several ways to
achieve the coupling of D pairs to J and MJ (see, e.g., chapter 15 in [59] about
multinucleon states). To resolve this ambiguity consistently within the IBM picture,
the basis states are constructed as eigenstates of the pairing interaction [Eqs. (4.5)-
(4.8) in [144], see also Sec. 19 in [59]]. They can then be distinguished by the
so-called seniority quantum number ν, which indicates the number of nucleons
that are not coupled to J = 0. With the projection operator P onto states with
seniority ν= 2ND, the basis states are given by [Eq. (4.9) in [144]]:

|NS , ND, J , MJ ,Ξ〉 ∝P
�

Ŝ†
�NS
�

�

D̂†
�ND
�(J)

MJ
|c〉. (2.29)

In Eq. (2.29), the symbol Ξ denotes a set of additional quantum numbers to dis-
tinguish between degenerate ν= 2ND states. Given the proper orthogonalization,
the states of Eq. (2.29) can be shown [149] to behave like a system of bosons with
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spin j = 0 (s-boson) and j = 2 (d-boson). With the definition of the s- and d-boson
annihilation/creation operators ŝ/ŝ† and d̂µ/d̂

†
µ and the respective boson numbers

Ns and Nd , Eq. (2.29) can be mapped to boson states [Eq. (4.10a) in [144]]:

|Ns, Nd , J , MJ ,Ξ〉 ∝
�

ŝ†
�Ns
�

�

d̂†
�Ns
�(J)

MJ
|c〉. (2.30)

In the following, a redefinition of the d-boson annihilation operator will be used
[see, e.g., Eq. (2.79) in [144]]:

ˆ̃dµ = (−1)µd̂−µ (2.31)

In contrast to d̂µ, the operator
ˆ̃dµ defined by Eq. (2.31) has the necessary symmetry

properties to use the usual angular momentum coupling via Clebsch-Gordan
coefficients (see, e.g., Sec. 2.5.1 in [144]). Furthermore, since the d-boson
operators can be interpreted as 5-component vectors, a scalar product ’·’ will be
used to simplify sums of the type

∑

µ d̂†
µ

ˆ̃dµ.

Now that the transition from the fermionic to the bosonic problem has been
sketched, the impact of the parameters α j and β j j′ in Eqs. (2.26) and (2.27) can
be discussed: In analogy to the matrix elements of the one-body operator Û in
the motivation of the shell model [Eq. (2.13)], it is assumed that the α j and β j j′

can be chosen such that the residual interaction between many-boson states is a
comparably small perturbation (for the general procedure, see [153])11.

Given a shell-model operator Ô, the matrix elements of the derived IBM operator
ÔIBM can be obtained from the following requirement [Eq. (4.22) in [144]]:

〈NS , ND, J , MJ ,Ξ|Ô|NS , ND, J ′, MJ ′Ξ〉 ≈ 〈Ns, Nd , J , MJ ,Ξ|ÔIBM|Nd , Nd , J ′, MJ ′ ,Ξ
′〉

(2.32)
In analogy to the transition from the full space to the shell-model valence space
[Eq. (2.20)], the restriction to S- and D-pair states may introduce higher-order
multi-boson correlations. Alternatively, the matrix elements can also be obtained

11In the words of Otsuka: "The first Ansatz for the microscopic foundation of the IBM is that the
low-lying quadrupole collective states are dominated by the SD states in eq. (4.9) with appropriately
chosen amplitudes α j and β j j′ " [Sec. 4.4 in [144]. Otsuka refers to Eq. (4.9) therein, which is
equivalent to Eq. (2.29) in this work.]
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by fitting experimental data, as outlined in Eqs. (2.22) and (2.23) for the shell
model.

In practice, however, it was found that combinations of the Casimir operators of
the six-dimensional group U(6) with the 36 generators [Eq. (2.77) in [144]]:

ŝ† ŝ , ŝ†d̂µ, d̂†
µ ŝ , d̂†

µd̂ν, (2.33)

are sufficient to describe the three most commonly encountered collective phe-
nomena in even-even nuclei: the vibrator, rigid rotor, and γ-soft rotor [69]. In
particular, the ideal limits of the three phenomena are represented by the three
dynamical symmetries U(5), SU(3), and O(6) of the U(6) group. They are often
visualized in the so-called symmetry triangle by Casten [69], which is shown in
Fig. 2.112. It depicts the parameter space of the IBM in a 2D triangle with the
dynamical symmtries and their geometrical interpretations at the edges. Two ana-
lytical solutions of the Bohr Hamiltonian are also indicated, the so-called critical
point symmetries E(5) [154] and X (5) [113]. They describe the phase transitional
points between the vibrator and the γ-soft rotor and between the vibrator and the
rigid rotor.

The procedure described above can be performed for neutrons and protons sepa-
rately (see, e.g., Sec. 4.6 in [144]) since neutron-proton pairing is expected to be
suppressed, in particular for isospin-asymmetric nuclei [155]. This results in the
definition of neutron- and proton-boson operators which are identified by an addi-
tional index ν or π compared to Eq. (2.33) (e.g. ŝ†

ν, d̂†
π,µ). With the requirement

of particle number conservation for neutron- and proton bosons, respectively, the
so-called IBM-2 has the group structure U(6)× U(6) with 2× 36= 72 generators
(Sec. 2.8.1 in [144]). In particular, the IBM-2 retains the dynamical symmetries
and the eigenstates of the IBM-1. IBM-2 states can be characterized by the F -spin
quantum number, which is the bosonic analog of the isospin quantum number (Sec.
4.11 in [144]). Explicitly, the neutron- and the proton boson are the fz = −1/2 and

12Note that there also exists a version of the symmetry triangle which differentiates between the
prolate- and the less commonly encountered oblate ground-state deformation in the SU(3) limit
[Fig. 1 b) in [69]].
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Figure 2.1.: Visualization of the parameter space between the three commonly
encountered collective behaviors of nuclei in the so-called symmetry
triangle by Casten [69]. The three ideal limits of the vibrator, prolate
rotor, and γ-soft rotor are shown in the corners of the triangle together
with their interpretation as the dynamical symmetries of the IBM-1
[140]. For each limit, a typical low-energy level scheme, including
angular momentum and parity quantum numbers, relative excitation
energies and transition strengths, and the R4/2 ratio is shown. The
symmetry triangle also includes the two critical point symmetries
E(5)[154] and X (5)[113], which are analytical solutions of the Bohr
Hamiltonian at the phase transition from spherical to deformed shapes.
Reprinted by permission from Springer Nature Customer Service Cen-
ter GmbH: Nature Physics [69] Copyright (2010).

fz = 1/2 eigenstates of the F -spin operator. Many-boson states with the property

F̂2|Nν,s, Nν,d , Nπ,s, Nπ,d , J , MJ ,Ξ〉= Fmax (Fmax + 1) |Nν,s, Nν,d , Nπ,s, Nπ,d , J , MJ ,Ξ〉

Fmax =
1
2

�

Nν,s + Nν,d + Nπ,s + Nπ,d

�

(2.34)
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are called fully symmetric states and represent eigenstates of the IBM-1. In
Eq. (2.34), the symbols Ns and Nd as well as the notation for the many-boson states
in Eq. (2.30) has been generalized in an obvious way to distinguish neutron- and
proton bosons. The quantity Fmax is the maximum possible projection of the F -spin
for a given number of neutron- and proton bosons. IBM-2 states with F < Fmax are
called mixed-symmetric and not part of the IBM-1 basis. A prominent example for
such a state, the scissors mode, will be introduced in Sec. 2.3.

Practical calculations in the IBM-1 (IBM-2) often do not employ all of the 36 (72)
generating bilinear operators: a small subset is usually sufficient (see, e.g., Sec. 1.2
in [144] and [69]) to reproduce the structure of collective nuclei in the parameter
space given by the symmetry triangle (Fig. 2.1). Consequently, instead of the full
IBM-2 Hamiltonian (see, e.g., [140] or [156]), this work used the following subset
of all available operators at lowest order, which is given, for example, by Eq. (5.5)
in [150]:

Ĥ = εd

�

n̂dπ + n̂dν

�

+κ
�

Q̂χππ · Q̂
χν
ν

�

+λM̂πν. (2.35)

The Hamiltonian in Eq. (2.35), whose parameterization has been changed com-
pared to Eq. (5.5) in [150], consists of mainly three parts, which can derived
microscopically [150], but are motivated phenomenologically here. Each term has
at least one parameter, which can also be derived from first principles (see above).
However, in most cases, the parameters of Eq. (2.35) are adapted to experimental
data within sensible limits (see, e.g., Sec. 3.4 and 3.7 in [144]). The first term,
with the single-d boson energy ε, contains the number operators for neutron- and
proton d bosons [Eq. (2.89) in [144]]:

n̂d = d̂† · ˆ̃d (2.36)

If the strength of the quadropule-quadrupole interaction is negligible (κ= 0) in
Eq. (2.35), the term in Eq. (2.36) creates an equidistant quadrupole-phonon like
spectrum of excited states, which is expected to be found in an ideal vibrator [69].
The second term in Eq. (2.35) is interpreted as a quadrupole-quadrupole interac-
tion between neutron- and proton valence bosons, and a microscopic motivation
for it is given in Secs. 4.2 and 4.3 of [144]: In the single-nucleon picture, a pair
of one neutron and one proton is expected to be spatially correlated due to the
short-range character of the nucleon-nucleon interaction and the absence of the
Pauli principle. As a consequence, the quadrupole moments of the neutron- and
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proton distributions in the nucleus will adapt to each other. The IBM accounts for
this fact by using the Q̂χππ · Q̂

χν
ν term with the quadrupole operators Q̂χn

n defined by
[Eq. (4.18) in [150]]:

Q̂χn
n =

�

d̂†
n ŝn + ŝ†

n
ˆ̃dn

�

+χ
�

d̂†
n
ˆ̃d†

n

�(2)
(2.37)

For ε = 0 and χ = −
p

7/2 in Eq. (2.35), the second term in Eq. (2.35) creates a
rotor-like spectrum of excited states with a scaling of the energies proportional to
J(J+1) [69]. The control parameter χ determines the γ-softness of the nucleus and
leads to the limit of a γ-soft rotor for εd = 0 and χ = 0 in Eq. (2.35). In principle,
the first two terms are therefore enough to traverse the symmetry triangle (Fig.
2.1) and describe states with F = Fmax.

The last term in Eq. (2.35), the so-called Majorana operator, distinguishes between
IBM-2 states with different F spin. It is defined as [Eq. (5.6) in [150]]:

M̂πν = ξ1

�

d̂†
πd̂†
ν

�(1)
·
� ˆ̃dπ

ˆ̃dν
�(1)

(2.38)

+ ξ3

�

d̂†
πd̂†
ν

�(3)
·
� ˆ̃dπ

ˆ̃dν
�(3)

+ ξ2

�

d̂†
π ŝ†
ν − d̂†

ν ŝ†
π

�

·
� ˆ̃dπ ŝν −

ˆ̃dν ŝπ
�

. (2.39)

In addition to the global parameter λ it contains the parameters ξ1,ξ2, and ξ3 to
regulate the strengths of its three terms. In the literature, it is often emphasized
that the Majorana operator is at least partially phenomenological (compare Sec.
V.A in [150], Sec. 4.12 in [144], Sec. 3.2.3 in [157]), but its usual effect in the IBM-
2 of shifting mixed-symmetric states to higher energies implies a relation to the
symmetry energy of nuclear matter [158]. Obviously, in order to gain information
about all parameters of the IBM-2 Hamiltonian in Eq. (2.35), experiments on
mixed symmetry states are a valuable tool (see, e.g., [159] for vibrational nuclei,
and [89] with a focus on deformed nuclei).

At last, the transition operators for magnetic dipole- and electric quadrupole
transitions are given by [Eq. (5.8) and (4.17)/(4.18) in [150]]:

ÔIBM
M1 = gπL̂π + gνL̂ν (2.40)
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ÔIBM
E2 = eπQ̂χππ + eνQ̂

χν
ν . (2.41)

The M1 operator [Eq. (2.40)] contains the proton- and neutron-boson g factors
gπ and gν and the angular momentum operators [defined, e.g., near Eq. (2.11) in
[150]]:

L̂=
p

10
�

d̂† ˆ̃d
�(1)

. (2.42)

Note that the M1 operator does not distinguish between orbital and spin strength
[compare to the single-nucleon M1 operator in Eq. (2.43)], since the nucleon
pairing procedure [Eqs. (2.26) and (2.27)] eliminated the possibility of single-
nucleon spin-flip transitions. The E2 operator [Eq. (2.41)] contains the quadrupole
operators defined in Eq. (2.37), whose relative strength is given by the boson
charges eπ and eν. Similar to the parameters of the Hamiltonian [Eq. (2.35)], the
effective g factors and boson charges for a particular model space can be derived
by renormalization of the bare g factors/charges or fixed by experimental data.
In the present work, the so-called ’consistent-Q formalism’ was used [160, 161],
meaning that the same values of χπ and χν were used in the quadrupole operators
of the Hamiltonian [Eqs. (2.35) and (2.37)] and the E2 transition operator [Eq.
(2.41)].

2.3. Scissors Mode

In this section, the nuclear scissors mode will be introduced. The introduction is
based on a review article by Heyde, von Neumann-Cosel and Richter [89].

Start by defining the (fermionic) magnetic dipole operator [Eq. (7) in [89]]:

ÔM1 =

√

√ 3
4π

A
∑

a=1

�

g(a)l l̂a + g(a)s ŝa

�

µN (2.43)

In Eq. (2.43), the symbols g(a)l and g(a)s denote the orbital- and spin-g factors, which
are different for protons and neutrons and may be ’quenched’ in a restricted model
space (see Sec. 1.2). Equation (2.43) indicates that there are two mechanisms to
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generate M1 strength, i.e. so-called spin-flip transitions (ŝ) and the orbital motion
of nucleons (l̂), both of which may be collective (see, e.g., Sec. I.A in [89]).

The phenomenon of interest in the present work, the nuclear scissors mode, is an
orbital, collective magnetic dipole resonance in medium-heavy and heavy nuclei
(see, e.g., Secs. I.A and I.B in [89]). Its orbital character can be inferred by using
experimental probes like inelastic proton scattering which are only sensitive to
one of the two contributions in Eq. (2.43) (see, e.g., Fig. 5 in [89]). The collective
nature of the scissors mode can be seen from its comparably large excitation
strength on the order of 1µ2

N (Sec. III.A.1.a in [89]), and its correlation with
the nuclear quadrupole deformation (see, e.g., Sec. III.A.1.f in [89]) and the
low-lying E2 strength [162]. Note here that electromagnetic probes like electron
scattering and NRF have been invaluable (see, e.g., Sec. III.A.1.c in [89]) for
the establishment of the M1 character of the scissors mode. Due to the collective
nature of the scissors mode, the mean excitation energy 〈Esc〉 of the 1+ states,
which are the manifestations of the scissors mode in even-even nuclei, show a
rather smooth dependence on the mass number A and the deformation parameter
β (Sec. III.1.a (ii) in [89], see also the footnote):

〈Esc〉 ≈ 62× A−1/3β MeV (2.44)

The name ’scissors mode’ originates from its interpretation as a rotational oscillation
of the valence protons against the valence neutrons in a quadrupole-deformed
nucleus (see, e.g., Sec. II.A.2.a in [89]). This interpretation of the scissors mode
in geometrical model is depicted in Fig. 2.2. In the framework of the IBM, the
counterpropagation of the proton- and neutron bodies is manifested in the mixed-
symmetric character of the excited 1+ states, which emerge naturally in the IBM-2
(see, e.g., Sec. II.A.2.b in [89]).

In the present work, the scissors mode is investigated due to its sensitivity to
nuclear shape evolution: The study of decay branchings of low-lying dipole-excited
states as a measure for shape coexistence was originally proposed by Rusev et al.
[163], who used a calculation in a deformed mean-field model to interpret their
observed branching from an excited J = 1 state to the 0+2 state of 100Mo. The first
observation of a decay from a scissors mode 1+ state to an excited 0+2 state with a
small branching ratio of Γ1+→0+2

/Γ1+ = 0.027(1) was reported by Beller et al. [110]
for the nucleus 154Gd. Since the IBM-2 is both well suited for the study of the
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Figure 2.2.: Interpretation of the scissors mode in the geometrical model as a
counterpropagation of the valence proton and -neutron bodies of a
quadrupole-deformed nucleus. Reprinted with permission from [89]
Copyright (2010) by the American Physical Society.

scissors mode (see, e.g., Sec. III.A.2.b in [89]) and the shape evolution [69] of
heavy nuclei, it was the model of choice for the authors, who were able to readjust
the model parameters with an unprecedented precision. With the new constraints,
they updated their predictions of NMEs for the 0νββ decay from 154Sm to 154Gd,
and found a strong increase of the predicted matrix element to the 0+2 state. From a
calculation in the framework of energy density functional theory [75], the authors
found that this increase of the matrix element was indeed a result of the rapid
shape evolution in this region of the nuclear chart.

Systematic investigations of the decay behavior of the scissors mode in the IBM
using, for example, the simple Hamiltonian given by Eq. (2.35) to traverse the
entire symmetry triangle of nuclear shapes (see Fig. 2.1) predict a generic decay
behavior (see, e.g., [164], in particular Abb. 3.4 therein, or [165]): Towards
the limit of the ideal vibrator (the U(5) limit of the IBM), low-lying 1+ states are
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interpreted as two-phonon mixed-symmetry states [Eq. (25) in [159]], which are
expected to decay primarily to their symmetric counterparts (Sec. 2.6 in [159]).
Towards the limit of the ideal rigid rotor (the SU(3) limit of the IBM), the decay of
the scissors mode to the 0+2 state, which is a member of another rotational band,
is exactly forbidden (see, e.g. Sec. 2.7.4.2 in [144]). As one moves away from
these ideal limits, the decay behavior of the scissors mode is expected to evolve
accordingly.

Consequently, the scissors mode, whose properties can be studied with a high
precision and quasi model-independently in NRF (see Sec. (2.1.1)), is expected to
give a robust estimate of the degree of shape coexistence within a given nucleus.
Furthermore, being a mixed-symmetry state, it provides access to the parameters
of the Majorana operator, i.e. the proton-neutron interaction. Last but not least,
a recent study by Beck et al. [166] opened up a path for a local determination
of the effective boson charges in the IBM-2 quadrupole operator [Eq. (2.41)] by
observing a nonzero E2 admixture to the 1+→ 2+1 transition.
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3. Experiments

This section describes the facility where all of the experiments of the present study
were performed in Sec. 3.1. After that, the experimental setups are described in
Sec. 3.2. Specific information about the experiments on 82Kr/82Se and 150Nd/150Sm
will be given in Secs. 3.3 and 3.4, respectively. All subsequent sections will assume
a right-handed coordinate system in which the beam propagates in the positive z
direction and the positive y direction is assumed to point upwards (see Figs. B.1
and B.2). Information about the experiments is available in the general electronic
logbook of the γ3 collaboration [167]. A precise 3D reconstruction of the geometry
around the beam line in the upstream target room (Sec. 3.1), in particular also of
the experimental setups, was created as a part of this thesis (see Sec. 4.2).

3.1. High-Intensity γ-ray Source (HIγS)

The experiments were performed at the High-Intensity Gamma-Ray Source (HIγS)
of the Triangle Universities Nuclear Laboratory at Duke University, NC, USA. A
review article about HIγS, on which the following introductory paragraph is based,
was published by Weller et al. [168].

The facility generates a quasi-monochromatic, almost 100% linearly polarized
photon beam by the Compton-backscattering of laser photons from a free-electron
laser on an ultrarelativistic electron beam. In the collision with the beam, the
energy of the laser photons on the order of 1 eV is increased by at least a factor
of 106, creating a highly energetic photon beam. This beam escapes the free-
electron laser cavity and is transported downstream by about 60m, where it is
shaped by a variable-size lead collimator. In the present experiments, a collimator
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diameter of 0.75 in or 1.0 in was used. Tens of centimeters after the collimation,
the beam enters an evacuated1 beam pipe made of polymethyl methacrylate
(PMMA, ’plexiglass’) and propagates into the so-called upstream target room. In
this room, two setups were mounted in a row which are described in Sec. 3.2.
Due to the low attenuation of the photon beam in the targets (see Sec. 4.6), the
two samples can be irradiated simultaneously. About 50 cm downstream from the
second setup, the photon beam exits the evacuated beam pipe and travels on into
another experimental hall called the ’gamma vault’ under normal atmosphere. The
photon beam is stopped more than 10 meters downstream of the second target.

For beam diagnostics, a charge-coupled device (CCD) camera [169] is available,
which can be moved into the optical axis to take a 2D image of the intensity
distribution of the beam. Its location is about 1.5m downstream from the second
target position. Figures 3.1 and 3.2 show two such images of the beam2. In the
latter image, an alignment target was placed at the target position of the first setup
to check the alignment of the beam with the target. Furthermore, a High-purity
Germanium (HPGe) detector (’zero-degree detector’) was available, which can be
moved into a position about 1m downstream from the second target position to
record the energy spectrum of the beam. This measurement and the reconstruction
of the beam spectrum is described in Sec. 4.5.4.

At nominal energies of about 3MeV, the photon beam can be expected to be 100%
linearly polarized in the x direction. For these polarization and energy settings, the
HIγS is expected to provide a collimated photon flux of about 107 s−1 to 108 s−1
[127]3 In the 82Kr/82Se experiment, the standard deviation of the approximately
Gaussian beam profile increased linearly with the nominal energy Ebeam from
30 keV at Ebeam = 2.4 MeV to 60 keV at Ebeam = 4.1MeV

1For an estimate of the quality of this vacuum, see Sec. 4.5.4.
2In fact, the exemplary beam images in Figs. 3.1 and 3.2 are from a more recent campaign. However,
the same instrumentation and alignment targets were used in the experiments of the present work.

3This value depends on the type of mirrors in the free-electron laser cavity and on their quality, since
they degrade significantly within weeks from the constant irradiation.
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Figure 3.1.: Two dimensional intensity profile of the HIγS beam as recorded by a
CCD camera downstream from the zero-degree detector. The camera
image consists of 752×580 quadratic pixels with side length 0.088mm.
No material was in the way of the beam when this image was taken.
The intensity is indicated by a color scheme which goes from purple
(low intensity) to yellow (high intensity). However, the exact relation
between the actual beam intensity and the intensity of the image is
unclear.
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Figure 3.2.: Two dimensional intensity profile of the HIγS beam. In this measure-
ment, an alignment target was mounted at the target position of the γ3

setup. Its visible ring shape actually has an outer diameter of 10mm,
but it appears larger on the camera because the beam is divergent and
distorted by the target itself. See also Fig. 3.1.
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3.2. Experimental Setups

The two experimental setups which were used in the present study will be denoted
as the γ3 setup [170] and the ’polarimetry setup’ in the following. Only the 82Kr
target was mounted in the second setup, all other isotopes were at the γ3 target
position.

The γ3 setup is a dedicated setup for γ-γ coincidence measurements [170]. It
features four HPGe detectors and four Lanthanum Bromide detectors in its most
common configuration. For the present analyses, only the high-resolution spectra of
the HPGe detectors were used. Denoting the detector positions by their polar angles
θ and their azimuthal angles ϕ as (θ ,ϕ), the HPGe detectors were mounted at
(90◦, 0◦), (90◦, 90◦), (135◦, 45◦), and (135◦, 135◦) or equivalent angles, i.e. ϕ±90◦,
in all experiments.

The polarimetry setup consisted of four HPGe detectors in a cross configuration
(90◦, 0◦), (90◦, 90◦), (90◦, 180◦), and (90◦, 270◦). This configuration increased the
sensitivity to parities of excited states, but without detectors at backward angles,
a distinction between dipole- and quadrupole-excited states was not possible (see
Sec. 4.6.1).

For the readout of all detector signals, an analog data acquisition system in combi-
nation with the GENIE software [171] was used.

The detectors were mounted at distances of 60 cm to 120 cm (measured from the
detector face to the target position) and shielded by different amounts of lead
and copper filters. Both setups were shielded from each other by walls of lead
and concrete bricks, in particular to avoid small-angle scattering of photons from
the first target into the detectors of the second setup. Long measurements with
radioactive sources confirmed the impenetrability of these walls at the energies of
the present experiment.

3.3. Experiments on 82Kr and 82Se

For the isotopes 82Se and 82Kr, little information about dipole-excited states in
the energy range below the neutron separation threshold existed [138]. For 82Se,
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a diploma thesis by Werner [137] was available to the author, in which an NRF
experiment with bremsstrahlung at an end point energy of 3.2MeV was performed.
Therefore, the purpose of this experiment, which was performed simultaneously
with 82Se in the γ3- and 82Kr in the polarimetry setup, was to scan the energy
range where the scissors mode is expected. According to Eq. (2.44), it was
decided to cover a range from Ebeam = 2.4MeV to Ebeam = 4.1MeV. An overview
of all experimental runs, including calibration and background measurements,
can be seen in Tab. 3.1. Single runs for scanning had a duration on the order of
3 h. However, enough time was allocated in advance to perform a high-precision
measurement of the decay behavior of newly observed 1+ states. As can be seen
from the run overview, the experiment first focused on the known 1+ state of 82Se
at 2981 keV. However, when excited 1+ states of both 82Kr and 82Se were found at
a beam energy of 3.80MeV, it was decided to measure their decay simultaneously.

The 82Se target consisted of 1.99845(7) g of selenium in the chemical compound
SeO2. It was enriched to 99.930(5)%4 in the isotope 82Se. The target powder was
contained in a cylindrical container made of polyvinyl chloride (PVC). Due to the
chlorine and carbon content of the PVC material, several NRF transitions from
isotopes 13C5 [173] 35Cl [174] and 37Cl [175] were observed in the spectra of the
present experiment (see Sec. C).

The 82Kr target consisted of 1.50218(11) g of pure krypton gas. It was enriched to
99.9450(5)% in the the isotope 82Kr. The gas was contained in a stainless steel
sphere, similar to Ref. [176], but with a larger inner radius of 9.0(2)mm. Due
to the iron content of the gas sphere, NRF transitions from the isotope 56Fe [177]
were observed. Since the exact composition of the steel sphere was unknown
(stainless steel may also contain significant amounts of chromium), measurements
with an identical, empty target were performed whenever a potential transition of
82Kr was observed, to make sure that it was not caused by a contaminant in the
target container.

4Uncertainty estimated from the last digit given by the manufacturer.
5Note that the more abundant isotope of carbon, 12C, does not have excited states below 4440 keV
[172].
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Table 3.1.: Run plan of the 82Kr/82Se experiment based on the electronic logbook
[167]. The order of the runs corresponds to the actual history of
the experiment. Some very short runs, which were aborted due to
various reasons, are not listed here. This is why the run numbers are
not continuous. Lines without run numbers indicate modifications of
the experimental setup which happened in between two runs. The
notation ’empty target’ indicates that an identical, but empty, target
container was placed at the target position. Runs without a beam energy
correspond to measurements with the given radioactive sources at the
target positions. Footnotes to the respective beam energies indicate
when the beam profile was measured using the zero-degree detector.
This was always done for about 30min immediately before the actual
run.

Run Number Ebeam γ3 Polarimetry Real Time 6

(MeV) (s)

707 2.987 82Se 82Kr 13461
708 2.98 82Se 82Kr 14384
709 2.98 82Se 82Kr 7764
710 2.407 82Se 82Kr 5554

Changed shielding between setups.
Shielded 56Co source inside safe.

711 2.40 82Se 82Kr 2172
712 2.40 82Se 82Kr 1820
713 2.507 82Se 82Kr 6280
714 2.657 82Se 82Kr 6865
715 2.65 82Se 82Kr 7679
716 2.807 82Se 82Kr 10859
717 2.98 82Se 82Kr 24800
718 3.107 82Se 82Kr 6918
719 3.10 82Se 82Kr 9100

6Read off from the spectra of the arbitrarily selected HPGe 1 created by the GENIE [171] data
acquisition system. The real times of other channels always agreed within few seconds.

7Beam profile was measured using the zero-degree detector before this run.
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Table 3.1.: (Continued).
Changed shielding upstream of γ3 setup.

720 2.50 82Se 82Kr 8491
721 2.987 82Se+152Sm 82Kr 8129
722 Natural background measurement 40924

Changed shielding upstream of γ3 setup.
723 56Co 152Eu 11994
724 152Eu 56Co 10760
725 Natural background measurement 49207
726 56Co 60Co 18976

Changed distance of HPGe 1.
727 152Eu 56Co 11736
7288 Natural background measurement 35665
7298 2.987 82Se 82Kr 6505
730 2.98 82Se 82Kr 11825
731 2.98 82Se 82Kr 51798
7328 2.98 82Se 82Kr 31285
733 2.98 82Se 82Kr 18676
7348 56Co 152Eu 7254
7358 Natural background measurement 42634
7368 152Eu 56Co 7254
7379 22Na 60Co 9601
738 22Na 60Co 7907
739 60Co 22Na 5853
740 56Co 152Na 3532
741 152Eu 56Co 44162
742 Natural background measurement 8849

Adjusted target position in both setups.
743 3.20 82Se 82Kr 2224

Changed distance of HPGe 7.
744 3.207 82Se 82Kr 12554

Shielded 56Co source inside safe.

8No spectra of HPGe 3 for this run.
9Beamline not evacuated. In all runs labeled with this footnote, this was unintentional.

90 3. Experiments



Table 3.1.: (Continued).
745 3.357 82Se 82Kr 18009
746 3.507 82Se 82Kr 13180
74710 3.657 82Se 82Kr 1755

Changed distance of HPGe 7.
Changed shielding in polarimetry setup.

748 3.65 82Se 82Kr 21955
Changed distance of HPGe 6 and 8.
Changed shielding in both setups.

7499 3.65 82Se empty target 7999
750 3.807 82Se 82Kr 8269
751 3.80 82Se empty target 10430
75210 3.957 82Se 82Kr 2687
7538 3.95 82Se 82Kr 16118
7548 3.95 empty target empty target 10419
755 4.107 82Se 82Kr 14023
756 4.10 82Se empty target 8441
757 3.827 82Se 82Kr 10026
758 3.82 82Se 82Kr 19173
759 3.82 82Se 82Kr 20037
760 3.82 82Se 82Kr 28873

Changed shielding between both setups.
76211 60Co 22Na 18311
7638,9 56Co 60Co 39686
7648,12 152Eu 60Co 39686
7668 56Co 60Co 6150
7678 Natural background measurement 47053
768 152Eu 60Co 12232
769 56Co 1497
770 56Co 2036

10Beam profile measurement.
11No shielding around both target positions. The shielding had to be removed in order to place the

target correctly. After the target placement, it was forgotten to reattach it.
12No shielding around γ3 target position. The shielding had to be removed in order to place the target

correctly. After the target placement, it was forgotten to reattach it.
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3.4. Experiments on 150Nd and 150Sm

For the isotopes 150Nd and 150Sm, NRF data from bremsstrahlung experiments
already existed [135, 136]. However, the bremsstrahlung experiments, which
were not sensitive to the parities of dipole-excited states, could only report strong
dipole-excited states in the energy range of the scissors mode (see Sec. 2.3). The
present experiments focused on the strongest known transitions of both isotopes at
2994 keV (150Nd) and 3082 keV (150Sm) for a precise determination of their decay
behavior. The experimental data were analyzed and prepared by Jörn Kleemann.
This thesis presents a summary of his work in the present sections and in Sec. 6.2.
A detailed description of both experiments can be found in the BSc (150Sm) [178]
and MSc theses (150Nd) [179] of Jörn Kleemann. For 150Sm, it turned out that the
parity quantum number of the excited state at 3082 keV, which had been assigned
by Ziegler et al. using the model-dependent Alaga rule [see, e.g., Eq. (6.19) in
[65]], was incorrect. However, another 1+ state was located within the energy
range of the beam profile and this one’s decay behavior could be studied.
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4. Analysis

4.1. General

In this section, the general methodology of the analysis is introduced, loosely
following the notation of Sec. 4 in [180]. Several sections discuss a functional
relation between vectors of input quantities X and output quantities Y with nX
and nY dimensions:

Y = f (X , P) . (4.1)

In Eq. (4.1), the symbol f denotes an arbitrary function of the input quantities and
a vector of additional parameters P. Any component of X and Y may be distributed
according to a probability distribution function (PDF). The corresponding PDF for
X is denoted as gX (ξ), where ξ is a vector of variables for all possible values of X .
A random value drawn from the PDF gX is denoted as Xrand. It is assumed that the
components of X are independent, which means that a respective PDF gX i

(ξi) for
each X i exists. Furthermore, it is assumed that ’uncertainties’ σX i

of the quantities
X i can be quantified, which are discussed in more detail in Sec. 4.1.1.

4.1.1. Propagation of Uncertainty

For the propagation of uncertainty, a method recommended in Supplement 1 [180]
to the ’Guide to the Expression of Uncertainty in Measurement’ [181] was used.
To approximate the PDF gY , a number of NR random vectors Xrand is sampled from
gX . The function f is evaluated for each Xrand, resulting in a set of values Yrand
which is distributed according to gY in the limit NR→∞.
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Final results for Yi are given in the form

mode(Yi)
+[sc+(Yi)−mode(Yi)]
−[mode(Yi)−sc−(Yi)]

, (4.2)

where mode(Yi) denotes the mode, and sc± denote the upper (’+’) and lower (’-’)
limit of the 68.3%1 shortest coverage interval (Sec. 3, in particular 3.16 in [180])
of the approximated distribution. If the shortest coverage interval is symmetric, a
quantity may also be given in the short form:

mode(Yi) [sc+(Yi)−mode(Yi)] =mode(Yi) [mode(Yi)− sc−(Yi)] (4.3)

The number inside the brackets of Eq. (4.3) is given without a decimal point. This
means that the last digit of the uncertainty is assumed to correspond to the last
digit of the mode, i.e. for example, 12.3(23)≡ 12.3+2.3

−2.3.

In this work, the mode is determined by the following procedure: A first approxi-
mation of gY is obtained by sorting the values Yi,rand into a histogram with

�
p

NR

�

equidistant bins2. The mode is assumed to be the centroid of the bin with the
highest content. Since the histogramming method is highly sensitive to statistical
fluctuations and outliers, the smooth probability distribution of Yrand is approxi-
mated by a Gaussian kernel-density estimator [183], using Scott’s rule (ibid., in
particular Sec. 6.5.1). Scott’s rule is a standard choice for the bandwidth of the
smoothing kernel which is used, for example, by the python scientific computing li-
brary SciPy [184]. Using the first approximation of the mode from the histogram as
a starting point, it is then determined as the maximum of the estimated probability
distribution.

The probability distributions of the input quantities X i are assumed to be Poissonian
(chapter 3.II.B in [129]) if the uncertainty is dominated by counting statistics (for
example peak areas in raw spectra returned by the fit algorithm of hdtv). If a
symmetric uncertainty σX i

of a value 〈X i〉 is given3, for example as the output of an
algorithm or in a data sheet, the quantity is assumed to follow a normal distribution
1This number was chosen in analogy to a normal-distributed quantity, where approximately 68.3% of
the distribution are contained in a 2σ interval around the mode/mean value.

2This is a rule of thumb for the optimum number of histogram bins, and often used as a standard
choice, for example by the data analysis framework ROOT [182].

3The notation for the uncertainty and the value itself are intentionally suggesting a standard deviation
and a mean value.
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N(〈X i〉,σX i
). If a quantity with a lower (σX i ,−) and upper (σX i ,+) uncertainty limit

is given, it is modeled by the PDF

gX i
(ξi) =

¨

N
�

ξi , 〈X i〉,σX i ,−
�

ξi ≤ 〈X i〉
N
�

ξi , 〈X i〉,σX i ,+

�

ξi > 〈X i〉
. (4.4)

The PDF in Eq. (4.4) is discontinuous at its mode ξi = 〈X i〉, which, in general, is
not equal to its mean value.

For the present calculations, NR = 106 was chosen, because repeated Monte Carlo
(MC) evaluations of the same output quantity yielded stable results for the mode
and the shortest coverage interval with systematic uncertainties lower than < 1%.

4.1.2. Parameter Estimation

Equation (4.1) can also be interpreted in the sense that tuples of measured values
(X i , Yi) exist, i.e. nX = nY , and the goal is to estimate the parameters P of a
mathematical model f that is assumed to describe (’fit’) the data. In the most
general case, the uncertainties of the X i and Yi are on the same order of magnitude.
In this case, the optimum values of P were determined using orthogonal distance
regression (ODR, see, e.g., [185]4), which is one possible generalization of ordinary
least-squares fitting:

minP,δ

nX
∑

i=1

w2
Yi

¦

[ f (X i +δi , P)− Yi]
2 +w2

Xi
δ2

i

©

. (4.5)

In Eq. (4.5), the vectors wX and wY contain weighting factors for each data point in
the X - and Y dimension. The vector δ contains nX additional artificial parameters,
which take into account the deviation of the fitted function in the X dimension. In
this work, wXi

= σ−2
X i

and wYi
= σ−2

Yi
were used.

The uncertainties of the parameters P were determined by an MC method in close
analogy to Sec. 4.1.1: The minimization of Eq. (4.5) was repeated NR times using

4Equation (4.5) is an intermediate step between Eq. (1.7) and Eq. (ODR) in [185] which includes
the weighting factors w , but only scalar values of X i and Yi . The notation has been adapted.
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randomly sampled values Xrand and Yrand and the same weighting factors, resulting
in a set of values Prand. The mode and shortest coverage interval for P were then
evaluated as described in Sec. 4.1.1. In a similar way, the total uncertainty of
the ’predicted’ function value f (X , P) for a fixed X can be evaluated by evaluating
f with the NR sets of parameters. The generalized uncertainty band of f will
be denoted as σ f (X , P). An advantage of the aforementioned procedure is that
correlations between the fit parameters are implicitly taken into account, which is
especially important for evaluating σ f .

It was applied, for example, for the energy calibration (Sec. 4.5.1). Figure 4.3,
which shows the fit residuals in the X - and Y dimension, illustrates the interplay
between σX and σY . There is one calibration point at 2448 keV [186], which is
well-known in the literature, but has poor statistics in this run. Without taking into
account the peak-fit uncertainty, it would have strongly increased the calibration
uncertainty. In many other cases, the uncertainty in one dimension was much
larger than the other, and a 1D fit was performed, minimizing the chi square (χ2)
statistic (see below).

If an evaluation of the function f was computationally too expensive, the afore-
mentioned MC method could not be applied. This was the case, for example, for
the determination of δL,i→ j (see Sec. 4.6.1), where each evaluation of f for a given
δL,i→ f required a full MC particle simulation. Since all of the computationally
demanding fits in this work only had a single parameter, its value was determined
by evaluating f on a 1D grid of values for P ≡ P and minimizing the reduced
chi-square (χ2

red) statistic (see, e.g., Sec. 39.3.2.3 in [2]:

χ2
red =

1
nX − nP

nX
∑

i=1

[Yi − f (X i , P)]2

σ2
Yi

︸ ︷︷ ︸

χ2

. (4.6)

For simplicity, Eq. (4.6) is shown for a 1D problem (nP = 1). The definition of χ2

is indicated by a brace below Eq. (4.6). With the χ2 statistic, a confidence interval
for P can be obtained by taking all sets of parameters for which the following
inequality is fulfilled [Eq. (39.29) in [2]]:

χ2 ¯minP(χ
2) + 1. (4.7)
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4.1.3. Systematic Uncertainty

Some parts of the analysis contain inherent systematic uncertainties, which are
difficult to quantify. If a situation was encountered where a parameter estimation
obviously yielded too small uncertainties, and the presence of systematic uncertain-
ties could not be excluded, the procedure recommended by the Particle Data Group
(PDG) ([2], in particular Sec. 5.2.2) for dealing with underestimated uncertainties
is used: First, χ2

red [Eq. (4.6)] is calculated using the optimum parameters and
compared to the expected value of 1. If χ2

red is larger than 1, indicating the presence
of systematic uncertainties, then σ f is scaled by a factor

q

χ2
red. As the authors of

[2] emphasize, this method was not used to fix extremely large χ2
red, which would

indicate an insufficient model or systematic uncertainties strong enough to make
the measurement meaningless.

The method of the PDG was applied in the analysis steps listed below. For each
point, a short justification is given where the systematic uncertainties are identified.

• For the fits of the energy calibration (see Sec. 4.5.1), where nonlinear effects
may be superimposed on the assumed linear energy calibration. This is
discussed in Sec. 9.4 of [187] [in particular, see Fig. 9.5 (a)].

• For the calculation of the weighted average of photon energies observed in
multiple detectors (see Sec. 4.5.1). Some of the energy calibrations had
to be extrapolated in cases where no high-energy calibration points were
available. As another safeguard against the aforementioned nonlinear effects,
the PDG procedure was applied again.

• For the fits of MC simulations to data (see Sec. 4.5.2 and 4.5.4). These simu-
lations are based on phenomenological models of the underlying microscopic
processes and an approximation of the actual experimental geometry.

4.1.4. Spectrum

The raw data from the DAQ are available as pulse-height spectra, whose processing
will be one of the main subjects of this chapter. To be able to perform mathematical
operations on a spectrum, the following definition will be used throughout this
work:
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Definition 4.1. Identify the bins of a one-dimensional spectrum by their discrete
centroid energy values Em, where m is an integer label (the ADC channel) with
the possible values 1≤ m≤ Ns. Assuming that the symbol N denotes the spectrum
itself, then N (Em) or Nm denotes the content of the bin with centroid energy Em.
The width of a single bin of the spectrum N is denoted as ∆EN (Em).

4.1.5. Numerical Evaluation and Visualization

For numerical calculations in this work, the python libraries NumPy [188, 189] and
SciPy [184], and the C++ data analysis framework ROOT [182] were used. All
data were visualized using the python library Matplotlib [190]. Some schematic
plots used the TikZ library for LaTeX [191].

4.2. Simulation of the Experimental Setup

An about 7m-long part of the beam line at HIγS [168] was implemented in the
MC particle simulation framework GEANT4 [8–10], as a part of the so-called ’utr’
code [192]. Even though its original field of application was high-energy physics,
the GEANT4 framework is now routinely applied in the analysis of low-energy NRF
experiments by groups all over the world, for example in Cologne [193], Darmstadt
[194], Dresden [195], Durham [196], Istanbul [197], and Tokai [198]5.

The virtually reconstructed setup was used in several steps of the analysis to
take into account geometric effects, and, in particular, to inter- and extrapolate
properties of the detectors which would otherwise be challenging to determine.
Presumably, the simulation contains all structural elements of the beam line which
are relevant for the present NRF experiment. The geometry extends from the
collimator room, where the photon beam exits the evacuated beam line, to the zero-
degree detector, after which it propagates unhindered into another experimental
5The given publications are, to the knowledge of the author, the latest NRF-based publications which
make use of the GEANT4 framework and have a first author from the respective location. They are
sorted alphabetically by the location. The representative publications for Cologne and Durham do
not mention GEANT4 explicitly, but as a co-author of [193] and close collaborator of the Durham
group, the author of this work can confirm that GEANT4 was used.
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hall. It includes the two experimental setups and various shielding components.
Due care has been exercised in the implementation of the targets and the detectors,
which are based on technical drawings and data sheets, since they represent the
main interaction points of the photons.

GEANT4 provides (phenomenological) models for a multitude of interaction pro-
cesses of particles with matter. The choice which models and particles to include
in a simulation is left to the user. Since the photon beam energies of the present
experiment were below the neutron separation thresholds of most commonly used
materials and, in particular, the targets, only photons and electrons/positrons,
which may be created as secondary particles, were simulated. For photons, mod-
els for Rayleigh scattering, the photoelectric effect, Compton scattering, and the
conversion of polarized particles (see, e.g., Sec. 2.III in [129]) from the so-called
’Livermore’ package of low-energy EM physics models were used. The aforemen-
tioned interaction processes are the most probable ones for photons at the energies
of the present experiment (see, e.g., Sec. 2.III in [129]). Recently, the Delbrück
scattering process was added to GEANT4 by Omer and Hajima [199]. Elastic,
or coherent, scattering processes like Rayleigh- and Delbrück scattering are a
potential source of systematic errors in NRF experiments. Especially when single
ground-state transitions cannot be resolved any more in the range of the beam
profile [133], they can mimick the elastic NRF process and lead to an overesti-
mation of the actual NRF cross section. However, even in long-term simulations
of the present experimental setup, no elastically scattered photons from either of
the two processes were detected. In any case, the level density of the isotopes
of interest was low enough, so that a discrimination of NRF photons would have
been straightforward.

The NRF process itself is not included in the standard packages of GEANT4,
probably because the data are too sparse6. It was not needed for the present
analysis, since all other relevant processes could be simulated, and therefore it
was possible to disentangle the different contributions to the observed spectrum
(see Sec. 4.3 and 4.5.4). In addition, the low cross section of NRF would have
required simulation times which are orders of magnitude larger (see the discussion
in Secs. 2.1.1 and 4.5.4). However, the present analysis required a simulation of
the angular distributions of the resonantly scattered photons. This functionality

6The author of this work became aware too late of the excellent GEANT4 extension which has been
developed by Lakshmanan et al. [200] and extensively tested [201].
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was implemented as a part of this work. Using an accept-reject sampling algorithm
(see, e.g., chapter 2 in [202]), the ’utr’ code generates primary particles with an
arbitrary angular distribution in an arbitrarily oriented coordinate system.

For electrons/positrons, models for quasi-continuous energy loss by bremsstrahlung,
ionization and multiple scattering were used and complemented by a model for
the annihilation of positrons (see, e.g., Sec. 2.II in [129]), all of them from the
same Livermore package.

In all simulations, primary photons with a well-defined energy and momentum
direction were released into the virtual geometry and their interactions were
simulated by GEANT4. For each particle, the energy depositions inside the detector
crystals were accumulated and stored to obtain energy spectra in analogy to
the experiment. This procedure assumes a pileup-free (see, e.g., Sec. 17.V in
[129]) detection system. However, pileup can be taken into account by post-
processing the simulated spectra (see Sec. 4.3.3) in the present case. The number of
simulated primary particles was always chosen large enough, so that the influence
of the statistical uncertainty which is introduced by the Monte Carlo method was
negligible compared to all other involved uncertainties.

4.3. Spectrum Decomposition

This subsection describes the different contributions to the energy spectra of
photons7 which were detected during the experiments. Furthermore, the influence
of the detector response on the original photon spectrum will be discussed. The
combined knowledge of photon sources and detector properties was used in the
analysis to extract information like the original beam spectrum or the photon flux
from the measured spectra.

7Due to the properties of the beam and the detectors, almost exclusively photons were detected in the
experiments of this work. Therefore, the word ’photons’ will be used as a substitute for ’particles’ in
this section.
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4.3.1. Original Spectrum

In the experiments of this work, the original spectrum N is composed of contri-
butions by actual NRF photons from the target (Nnrf), nonresonantly scattered
photons from anywhere on the beamline (Nnr) (see, e.g., Sec. 4.III in [129]),
ambient background (Nbg) (Sec. 20.I in [129]), energy deposition by cosmic
radiation (N cr) (ibid.), and electronic noise (N en) (for the specfic case of HPGe
detectors, see chapter 12.III in [129]):

N = Nnrf + Nnr + Nbg + N cr + N en. (4.8)

4.3.2. Detector Response

Assuming that an original spectrum N of particles impinges on a detector, then
the detected spectrum N (0) is obtained by a matrix-vector multiplication of N(Em)
with the detector response matrix D(Em, En):

N (0)(Em) =
Ns
∑

n=1

D(Em, En)N(En). (4.9)

The response matrix D defined for the purpose of this work contains all physical
effects that take place inside a detector volume and create a finite energy deposition
in the volume. It assumes that the detector can resolve every single photon event
and therefore neglects signal pileup, which is indicated by the (0) superscript
(see below). The diagonal matrix elements D(Em, Em) give the intrinsic efficiency
εint of a detector for photons with an energy Em. For a detector with a perfect
energy resolution, the matrix elements D(Em > En, En) are exactly zero. Due to a
finite resolution, there can also be detected events with a larger energy than the
maximum energy of the original spectrum.

4.3.3. Pileup

At higher count rates, pileup effects (see, e.g., Sec. 17.V in [129]) can occur when
multiple electronic signals of the detector are counted as one because they are too
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close in time to each other. The top part of Fig. 4.1 shows two artificial electronic
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Figure 4.1.: Schematic illustration of the emergence of pileup in signal processing.
Each panel in the top row shows two artifical exponentially decaying
raw signals with a decay constant τ. From left to right, the distance
between the two signals decreases leading to pileup in the third panel.
The bottom row shows the signal after processing by trapezoidal
filters with three different settings of the shaping time ∆T . Only the
most narrow trapezoid is able, at the expense of an inferior energy
resolution, to resolve the double signal.

pulses which have a much larger (exponential) decay time than their rise time. This
behavior is typical for HPGe detectors (see, e.g., Sec. 12.III.C.2 [129]). Besides
the normal-distributed articial noise which was imposed on the spectrum, the two
pulses have identical properties. In the lower part, a trapezoidal filter [203] which
is commonly used in digital signal processing, has been applied to the signals. The
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filter function in the aforementioned publication has two parameters, the decay
time τ which has to be matched to the decay time of the signal, and the ’shaping
time’ ∆T that determines the width of the trapezoid. The latter parameter is used
to improve the energy resolution by sampling a larger part of the decay curve, at
the expense of pileup and increased dead time. From left to right, as the pulses get
closer to each other, not all filters are able to separate the two signals any more
and will report a single signal with about twice the height of a single pulse. The
spectrum N , which is actually observed in the experiment, will be composed of the
spectrum N (0) from Eq. (4.9) plus all pileup components N (p), where p denotes
the order of the pileup (two signals merged into one would be first order pileup,
and so on):

N(Em) = N (0)(Em) +
∞
∑

p=1

N (p)(Em) (4.10)

Pileup can be taken into account in a similar matrix-vector multiplication as the
detector response (Eq. (4.9)). The formalism was introduced by Cano-Ott et al.
[204] and specialized for the present type of experiments by Angell [205]. The
relation between the spectrum N (0), and its first-order pileup component N (1) is
given by [Eq. (1) and (3) in [205]]:

N (1)(Em) =
Ns
∑

n=1

M(Em, En)N
(0)(En) (4.11)

In this equation, the pileup matrix M has been introduced, which connects the bin
En of the spectrum with the bin Em > En of the first-order pileup spectrum. The
pileup matrix can be written as [Eq. (3) in [205]]:

M(Em, En) =
Ns
∑

o=1

P(Eo)P(Eo, En, Em) (4.12)

In the sum in Eq. (4.12), two expressions for probabilities appear: The symbol
P(Em) denotes the probability of measuring an event with the energy Em, which is
approximately proportional to the bin content of the spectrum N (0):

P(Em)≈ cN (0)N
(0)(Em) (4.13)
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The proportionality via the normalization constant cN (0) =
�∑

m N (0)(Em)
�−1 is only

approximate, because the spectrum N (0) is a statistical sample of the underlying
probability distribution. The symbol P(Eo, En, Em) denotes the probability of two
signals with energies Eo and En summing up to an energy Em. In general, it depends
on the shape of the signal pulses and the pulse sequence, but in the following it
will be argued that P(Eo, En, Em) can be approximated by:

P(Eo, En, Em)≈ δ [(Eo + En)− Em] (4.14)

Equation (4.14) means that if two signals with energies Eo and En pile up, then
they will always pile up to their sum energy. Due to the characteristics of the HIγS
beam, this is highly probable: With the chosen quasi-continuous wave operation
mode, the beam time structure consists of ’micropulses with sub-ns durations at
5.5796Hz’ [127]. Comparing the micropulse duration to the typical decay time of
an HPGe detector signal of about τ= 105 ns [see, e.g. Sec. 4 in [187], in particular
Fig. 4.7 a)], it becomes clear that if pileup within a single micropulse occurs, it
will almost certainly lead to the sum energy of both photons being recorded.

Since the approximation of Eq. (4.14) is well justified in this case, the pileup matrix
[Eq. (4.12)] can be simplified:

M(Em, En)
Eq. (4.14)
=

Ns
∑

o=1

P(Eo)δ[(En + Eo)− Em] = P(Em − En) (4.15)

Inserting Eq. (4.15) into the definition of the pileup matrix [Eq. (4.11)] yields:

N (1)(Em) =
Ns
∑

n=1

P(Em − En)N
(0)(En) (4.16)

Eq. (4.13)
≈ cN (0)

Ns
∑

n=1

N (0)(Em − En)N
(0)(En) = cN (0)N

(0) ∗ N (0)

The last equality in Eq. (4.16) shows that the first-order pileup spectrum can be
obtained from the pileup-free spectrum by a mathematical convolution of N (0)

with itself. For this, the spectrum needs to be zero-padded, i.e.:

N(Em<1)≡ N(Em>Ns
)≡ 0 (4.17)
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The convolution method, which can be implemented efficiently using the FFT
algorithm, can be used to impose pileup on simulated spectra by post processing
(see Sec. 4.5.4, note that the simulated spectra are pile-up free by design)8. Higher-
order pileup contributions with p >= 1 can be obtained from the recursive formula:

N (p) = cN (0)N
(p−1) ∗ N (0) (4.18)

4.4. Sensitivity Limit

Due to the different interaction processes of photons with matter (see Sec. 4.2),
the spectra of this work are composed of a continuous background on which
quasi-discrete lines can be identified (see , e.g., the spectra of the present work
in Sec. D). A quantitative criterium for the statistical significance of such a line,
which has been used consistently for all subsequent analysis steps, will be given in
this section.

4.4.1. Definition

In Sec. 3.VI of his textbook, Knoll [129] derives sensitivity limits under the as-
sumption that the probability distributions of all measured quantities are normal,
i.e. first-order (’Gaussian’) propagation of uncertainty can be applied. In the
derivation, it is assumed that two measurements are performed in which a total
number of events is counted in a detector. The first one is a background mea-
surement, and the second one is a measurement with potentially present artificial
radioactivity. In the background measurement, NB events are measured, while
in the second measurement N = NB + NS events are counted, which correspond
to the sum of the background events and the artificial activity. In a situation
where the determination of a sensitivity limit is necessary, it can be assumed that
NS � NB and NB ≈ N . Given an estimate for the standard deviation σNB

of NB

8The raw output of the Monte-Carlo simulations in this work contained the energy depositions by
every single primary particle. Therefore, instead of using the convolution of Eq. (4.16), the p-th
order pile up contribution was obtained by adding up p subsequent energy depositions by different
primary particles in the same detector crystal. This reduced the total number of events by a factor
of p.
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from the background measurement, the probability that statistical fluctuations of
the background activity are falsely interpreted as artifical activity in the second
experiment is less than 5%, if a threshold LC is set to [Eq. (3.61) in [129]]:

LC ≈ 2.326×σNB
= 2.326×

σNSp
2
≈ 1.645×σNS

. (4.19)

In the second equality of Eq. (4.19), the relation between the standard deviations
σNB

and σNS
[Eq. (3.60) in [129]] was inserted. If the randomness of σNB

is caused
by counting statistics only, the probability distribution for NB is Poissonian (see
Sec. 3.II and 3.VI in [129]), and σNB

=
p

NB.

The probability that excess counts have been caused by statistical fluctuations of
the background is lower than 5% if the threshold ND is determined by the ’Currie
equation’ [[206] or Eq. (3.67) in [129]]:

ND ≈ 4.653×σNB
+ 2.706≈ 3.290×σNS

+ 2.706 (4.20)

Equations (4.19) and (4.20) are therefore 95% confidence limits for the absence
and the presence of artifical radioactivity.

4.4.2. Spectroscopic Sensitivity Limit

Compared to the counting experiments discussed in Sec. 4.4.1, spectroscopy
provides additional information about the energy of the radiation. The goal is
to detect photons with quasi-discrete energies on a continuous background. The
discrete energies are blurred by the finite detector resolution into a line shape
(’peak’) that extends over multiple bins of the spectrum. Now the question arises
how to determine σNB

, σNS
, or NB in Eqs. (4.19) and (4.20). A commonly quoted

rule of thumb is to take NB to be the ’area below the peak’. But this rule is not well-
defined and can be exaggerated ad absurdum if one considers that the frequently
assumed Gaussian shape of peaks has an infinite range.

Assuming that the line shape is normal distributed and its location known, the Ger-
man Institute for Standardization (DIN) gives a definition of NB. It is recommended
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to determine the area below the peak as [207]:

NB(E0)≈
∫ E0+cDINFWHM/2

E0−cDINFWHM/2

NB,ΣB(E)dE. (4.21)

In Eq. (4.21), the symbol B(E) denotes the normalized probability distribution of
the background spectrum, which is proportional to the actual spectrum via the
total number of background events NB,Σ. Since B(E) is smooth, but the measured
spectrum contains statistical fluctuations, Eq. (4.21) is approximate. A parameter
cDIN times the full width at half maximum (FWHM) of the expected line shape is the
integration range. If the location of the peak is known, cDIN ≈ 1.2 is recommended.
The parameter E0 should be chosen to ’cover the line shape as symmetrically as
possible’ (translated from [207]).

The method of determining a detection limit followed by spectrum analysis pro-
grams like tv [208, 209] and hdtv [210, 211] is to perform a simultaneous weighted
fit of a background- and a line shape model. This has the advantage that the un-
certainties of the bin contents are automatically taken into account and manifest
in the fit uncertainty of NB,Σ and NS. The disadvantage of fitting is the increased
computational effort.

In Sec. A, an analytical expression for the spectroscopic sensitivity limit is derived
from few assumptions about the background and the line shapemodel. For a narrow
normal-distributed line shape with standard deviation (detector resolution) σ(E)
on a constant background, the factor σNS

in Eq. (4.19) and (4.20) is:

σNS
(E) = 〈σNB

(E)〉
√

√

2
p
π
σ(E)
∆EN

≈ 1.88× 〈σNB
(E)〉

√

√σ(E)
∆EN

. (4.22)

In Eq. (4.22), 〈σNB
(E)〉 denotes the average standard deviation of the number of

events in a single background bin with a width of ∆EN in the energy region of
interest.

In practice, the sensitivity limit was determined by the following procedure: The
quasi-continuous background in the spectra was interpolated at manually identified
points by a cubic spline [211] to obtain a smooth approximation of NB,ΣB(E)
[Eq. (4.21)]. A running average of NB,ΣB(E) (〈NB〉) was calculated by (FFT-)
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convolving it with a 4-bin wide rectangular function. This range is large enough to
reduce statistical fluctuations of single bins, but small enough to be able to consider
the background as constant. From 〈NB〉, 〈σNB

〉 in Eq. (4.22) was obtained. Using a
width calibration (see Sec. 4.5.3), σNS

was obtained, which can be used to calculate
the energy-dependent values of LC and ND in Eqs. (4.19) and (4.20). In all spectra
of Sec. D, the spline interpolation of the background is shown as a dashed line. The
ratios (NS−〈NB〉)/LC and (NS−〈NB〉)/ND are shown in comparison to the residuals of the
background interpolation and enable a straightforward identification of statistically
significant lines. The quantity NS(E) was determined in a similar way as NB,ΣB(E),
using the original spectrum instead of the smooth background interpolation.

4.5. Calibrations

This section introduces the necessary calibrations for the extraction of nuclear
properties from experimental observables.

4.5.1. Energy Calibration and Binning

An energy calibration is a mapping of the pulse-height spectra in units of ADC
channels m to photon-energy spectra in units of Em. The energy calibration is
based on known photon energies from ambient background, radioactive calibration
sources, or NRF reactions.

Recoil Correction

The energy Eγ of the observed photons is only equal to the energy difference ∆E
between excited states up to the recoil energy transferred to the nucleus due to
conservation of momentum in the absorption/emission process [120]. The recoil
correction is on the order of E2

γ/M(Z ,A)c2 [120], where M(Z , A) denotes the mass of
the nucleus. For an A= 82 nucleus at an excitation energy of 3MeV, this correction
is on the order of 0.1 keV and therefore significant at the precision level of the
present experiment (see below).
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The recoil corrections can be derived in relativistic dynamics from the conservation
of 4-momentum. Since the kinetic energy of the recoiling nucleus is much larger
than the binding energy of an atom in condensed matter, which is typically on the
order of few eV (see, e.g., chapter 20 in [212]), the atomic environment of the
nucleus can be neglected. For the emission of a photonray from a nucleus at rest,
which is the case for a radioactive source, the following relation holds:

∆E = M(Z , A)c2





√

√

√

1−
2Eγ

M(Z , A)c2
− 1



 . (4.23)

For an elastic NRF process, i.e. the absorption and subsequent transition directly
back to the ground state, the relation is approximately given by [Eq. (4.1) in
[213]]:

∆E = Eγ

�

1+
1
2

�

1− 2 cos (θ )
Eγ

M(Z , A)c2

�

+O
�

� Eγ
M(Z , A)c2

�2��

. (4.24)

In Eq. (4.24), the symbol θ denotes the angle between the incoming and the
outgoing photon.

Energy Calibration

One of the available calibration sources, 56Co, emits photons with energies that
cover almost the entire energy range of the present experiment [177]. However, a
run-by-run calibration using ambient background and known NRF transitions (if
available) was preferred to the calibration runs with the 56Co source, which were
done mainly before and after the experiment.

The need for a continuous readjustment of the energy calibration arose because, dur-
ing the more than three-week long experiment, the electronics showed considerable
(nonlinear) drifts. This can be seen in Fig. 4.2, which shows the time-dependent
centroid position of some background photons in units of ADC channels. First
of all, Fig. 4.2 shows that the order of magnitude of the drifts varies by about
two orders of magnitude for different detectors. HPGe 4 was the detector with
the most extreme absolute drifts. Considering that the ADCs have 214 = 16384
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channels, and the amplification was set to cover an energy range of roughly 5MeV,
this would mean that peak positions changed by up to 30 keV throughout the
entire experiment. However, at least the relative position of the peaks is visibly
stable for HPGe 4, which means that the drifts can be corrected approximately
by multiplication with a constant factor. HPGe 1, on the other hand, exhibits
comparably small, but nonlinear drifts. Obviously, the time dependence of the
shifts of the two detectors in Fig. 4.2 is correlated, which is an indication that the
problem was caused by the multichannel ADC or the crate to which both detectors
were attached.

For HPGe detectors, the relation between Em and m is usually linear with small
quadratic corrections (chapter 7.4 in [187]). Indeed, it was found for all detectors
in this work that the following relation was the best tradeoff between a good fit of
the calibration data and a robust extrapolation (see, e.g., the discussion in chapter
9.4 in [187] about linearity):

Em = p0 + p1m+ p2m2. (4.25)

Figure 4.3 shows an example for an energy calibration of a single detector in a
target run. At this beam energy, a transition of 37Cl was available as a high-energy
calibration point in addition to the ambient background.

For the determination of energies of unknown transitions, a weighted average over
all detectors of a setup was calculated, resulting in uncertainties on the sub-keV
level in most cases. Newly observed transitions with an energy Eγ were associated
with transitions between two nuclear states Ei and E j with E j > Ei using the Ritz
variation principle [216] with the boundary condition [similar to Eq. (18) in
[131]]:

�

�(E j − Ei)− Eγ
�

�≤
r

σ2
E j
+σ2

Ei
+σEγ +

E2
γ

M(Z , A)c2
(4.26)

The requirement in Eq. (4.26) is that the difference between E j − Ei and Eγ is
smaller than the combined uncertainties of both quantities plus a recoil factor (see
Sec. 4.5.1). For simplicity, only the first-order term of the recoil correction was
taken.
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Binning

A nonlinear energy calibration, as given by Eq. (4.25), will result in a spectrum
with non-equidistant centroid energies. However, some analysis steps perform a
fast Fourier transform (FFT) of the spectrum (see, e.g., Sec. 4.4), which is defined
for equally spaced intervals (see Sec. 6.2 in [217]). To be able to apply the FFT
and simplify other procedures as well, an equidistant binning of the spectra was
restored using the ’relocation’ algorithm proposed by Tsai, Mucciolo and Helene
[218]. This algorithm redistributes the observed events into new bins based on
a quasi-continuous interpolation of the original spectrum via an MC method. It
ensures that the statistical properties of the spectrum are not changed in the
process.

4.5. Calibrations 111



3

2

1

0

1

2

3

Pe
ak

 c
en

tro
id

 sh
ift

 m
m HPGe 1

71
0

71
3

71
4

71
6

71
8

72
9

74
4

74
5

74
6

74
7

75
2

75
5

75
7

Run number

100

50

0

50

100

Pe
ak

 c
en

tro
id

 sh
ift

 m
c

m
c HPGe 4

 511 keV
1461 keV
1764 keV
2615 keV

Figure 4.2.: Deviation of the centroid channel mc from its unweighted time average
〈mc〉, shown for four characteristic background lines at 511 keV (e−−e+

annihilation [2]), 1461 keV (40K decay [214]), 1764 keV (214Bi decay
[186]), and 2615 keV (208Bi decay [215]) for HPGe 1 (top) and HPGe
4 (bottom). The abscissa indicates the numbers of 13 runs, which
correspond to different energy settings in the 82Se experiment (see
also Tab. 3.1).
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tons at 511 keV (e−−e+ annihilation [2]), 1461 keV (40K decay [214]),
1764 keV and 2448 keV (214Bi decay [186]), 2615 keV (208Bi [215]),
and 3741 keV (37Cl NRF [175]). A quadratic model [Eq. (4.25)] was
fit to the experimental data. The uncertainty returned by the weighted
fit, denoted as statistical (’stat’), is shown as a dotted line. Systematic
uncertainties (’syst’) have been taken into account by the procedure
described in Sec. 4.1.3. The uncertainty band which includes both
contributions is shown in gray with a dashed boundary. The figure
shows the quadratic fit to the data (top left), and the projection of the
fit residuals on the energy (top right) and channel (bottom left) axis.
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4.5.2. Efficiency Calibration

Several steps of the analysis require knowledge of the energy-dependent photopeak-
or full-energy peak (FEP) efficiency ε(Eγ, r ) of the detectors, which is interpreted
in this section as:

ε
�

Eγ, r
�

=
# γ rays with an energy Eγ from the source at r counted by a detector

# γ rays with an energy Eγ emitted by an isotropic source at r .
(4.27)

Both in the numerator and denominator of Eq. (4.27), Eγ is assumed to take into
account limitations like the finite resolution of the detector. In the numerator,
’number of γ rays ... from the source’ implies that they can be separated from other
photons with the same energy. The parameter r will be dropped if it is clear from
the context where the source was located.

In Sec. 4.6, the ’differential efficiency’ will be used:

dε
dΩ′

�

Eγ,θ
′,ϕ′, r

�

=

# γ rays with an energy Eγ, emitted by a source at r

in a direction given by θ ′ and ϕ′ counted by a detector
# γ rays with an energy Eγ, emitted by a source at r

in a direction given by θ ′ and ϕ′ .
(4.28)

The quantity in Eq. (4.28) describes the full-energy peak efficiency of a detector
with respect to a beam of particles emitted from a point r into a solid-angle element
Ω′. Eq. (4.27) can be obtained from Eq. (4.28) by integrating the latter over the
entire solid angle.

In the present work, the efficiency from Eq. (4.27) with respect to the two target
positions was determined experimentally at a set of discrete energies Eγ,i using
radioactive 56Co- [177] and 152Eu [219] sources. Both sources emit photons with
well-known relative intensities Irel(Eγ). The energy range covered by the 56Co and
152Eu sources extends from 300 keV to about 3600 keV, which fits the range of the
present experiment relatively well. Information about the sources can be found
in Tab. 4.1. For the 152Eu source, the activity Ȧ(t) was known with a comparably
high precision [167], while Ȧ for the newly produced 56Co source was unknown at
that time. It was estimated by comparison to the 152Eu source (see Tab. 4.1).
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Table 4.1.: Information about the radioactive sources which were used for efficiency
calibrations and coarse energy calibrations in this work.
Isotope T1/2 Activity Reference

(Bq)
56Co 77.236(26) d 1.405(21)× 105 9 [177]
152Eu 13.517(14) y 3.5213(4)× 104 10 [219]

Compared to the dimensions of the setup, the sources were approximately point-
like. In the calibration runs, they were placed at the respective target positions in
the γ3 setup and the polarimetry setup. To be as close as possible to the actual
experimental conditions, the beamline was also evacuated in these runs. From
the observed number of counts A(Eγ) at a certain photon energy, the experimental
efficiency at this energy (εexp) was determined as:

εexp(Eγ) =A(Eγ)
ln(2)

T1/2Ȧ(tstart)Irel(Eγ)

�

1+
tdead

tstop − tstart − tdead

�

(4.29)

×
�

exp

�

−
ln(2)
T1/2

tstart

�

− exp

�

−
ln(2)
T1/2

tstop

��−1

.

Equation (4.29) was ’derived’ from Eq. (4.27) using A(Eγ) for the numerator and
the integral over the radioactive decay law (see, e.g., Sec. 1.I.A in [129]) for the
denominator. The symbols tstart and tstop denote the points in time which mark the
beginning and the end of the efficiency measurement. In the decay law, the half
life T1/2 of the radioactive source material is contained. Since the signal processing
takes a certain amount of time, data can not be recorded during the full time
interval tstop− tstart. This dead time tdead is taken into account by a correction factor
(see, e.g., Sec. 4.VII in [129]). For later use, note that the difference between the
real time and the dead time is called the ’live time’ (tlive).
9Determined relative to the known activity of the 152Eu source. Explicitly, runs 740 and 741 from
November 27 and 28, 2016, (see Tab. 3.1) were compared using all four HPGe detectors of the γ3

setup.
10Measured in January 2007. The label on the radioactive source said ’0.9517µCi’, so the uncertainty

was estimated to be on the order of the last digit. See also the electronic logbook [167].
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For an interpolation of the experimental efficiencies, there is the choice between
parametric phenomenological models, like the ones given by Knoll [129] [Eq.
(12.32)] and Jäckel, Westmeier, and Patzelt [220], or realistic simulations. By
design, the parametric models are superior for this purpose. However, since they
are generally based on exponential functions, corresponding to the characteristical
energy-dependence of the photon-matter interaction (see, e.g., [128]), they may
strongly diverge from the real underlying functional relation if extrapolated even
moderately beyond the data range. For the present experiment, the extrapolated
range was about 20% larger than the one covered by radioactive source data,
which called at least for a comparison to simulations. In any case, other analysis
steps depend on simulated quantities which implicity contain the efficiency, so the
efficiency simulations can be seen as a validation.

Explicitly, the energy dependence ε(Eγ) was simulated at discrete energy steps in
GEANT4 using a point-like, isotropic, monoenergetic photon source at the target
position. The simulated efficiency εsim(Eγ) was determined by comparing the
number of events where the complete energy of a photon was deposited in a single
detector crystal to the total number of simulated photons. For an interpolation of
the simulated values, the simple function

εsim =
�

a1E +
a2

E

�

exp
�

a3E +
a4

E

�

(4.30)

was fit to εsim via the four parameters a1 − a4. The fit residuals were on the order
of magnitude of the statistical fluctuations of the simulation, i.e. negligible.

On an absolute level, no simulated efficiency deviated from the data by more than
a factor of 50%. The largest contribution to this deviation is probably insufficient
knowledge of the geometry (in particular the interior of the detectors and the parts
closest to the target), since the photon interaction models of GEANT4 have been
shown to be more precise (see, e.g., [221] for a pure benchmark study, and [201]
for a dedicated NRF application). In order to test the energy dependence εsim(Eγ)
and to correct for the aforementioned factor, the simulations were fit to the 56Co-
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and 152Eu data by minimization of the quantity [see Eq. (4.6)]:

χ2
red =

1
N56Co + N152Eu − 2

(4.31)

×







N56Co
∑

i=1

�

p56Coε56Co,exp

�

E56Co,i

�

− psimεsim

�

E56Co,i

��2

�

p56Coσε56Co,exp

�

E56Co,i

�

�2

+
N152Eu
∑

i=1

�

ε152Eu,exp

�

E152Eu,i

�

− psimεsim

�

E152Eu,i

��2

σ2
ε152Eu,exp

�

E152Eu,i

�







.

In Eq. (4.31), NAX denotes the number of transitions of the source nucleus AX
which were used for the efficiency calibration. The reduced χ2

red is minimized
via the two parameters psim and p56Co, which represent a correction factor of the
simulated efficiency and a scaling factor due to the unknown activity of the 56Co
source, respectively11.

As an example, an efficiency calibration of HPGe 8 is shown in Fig. 4.4. It can be
seen that the energy dependence of the efficiency is reproduced well by GEANT4.
Therefore, an extrapolation of the simulation to about 4.2MeV was considered to
be reliable. For the detector in Fig. 4.4, the largest contribution to Eq. 4.31 was
the transition of 152Eu at 344.2785(12) keV. At such low energies, the impact of
uncertainties in the experimental geometry is expected to be largest, which can be
seen from a simple estimate: Consider the impact of the attenuation of photons in
the filters in front of the detectors. After travelling a distance z inside a material,
the initial photon intensity Nγ will be attenuated by a factor [Eq. (1) in Sec. 2 of
[128]]:

Nγ
�

Eγ, z
�

Nγ
�

Eγ, z = 0
� = exp

�

−µ
�

Eγ
�

ρz
�

(4.32)

In Eq. (4.32), the symbol ρ denotes the density of the material (which is assumed
to be homogenous for simplicity here) and µ(Eγ) denotes the energy-dependent
11Note that the uncertainties σε56Co ,exp need to be scaled consistently when the experimental values of

the efficiency ε56Co,exp are multiplied by p56Co. In the present work, it was also tried to scale the
simulated efficiency in the 56Co sum in Eq. (4.31) by two parameters, i.e. p′56Co

psimεsim, but the
present formulation was found to be numerically more stable.
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mass attenuation coefficient of the material. The latter quantity is well-known for
manymaterials [128]. Assuming that the uncertainty of the geometry is manifested
in the uncertainty σz of the z-dimension, and neglecting all other uncertainties,
one obtains by Gaussian propagation of uncertainty from Eq. (4.32):

σNγ(∆z)/Nγ(0)
≈
�

�σzµ
�

Eγ
�

exp
�

−µ
�

Eγ
�

z
��

� . (4.33)

For typical thicknesses of the lead filters, the proportionality factor between
σNγ(∆z)/Nγ(0)

and σz, i.e. the left- and right-hand side of Eq. (4.33), decreases by an
order of magnitude between 0.3MeV and 3MeV. The procedure from Sec. 4.1.3
was used to take into account such systematic uncertainties. If the scaling factor
due to the systematic uncertainty became too large, the low-energy calibration
points were sometimes omitted, since most transitions of interest were expected at
higher energies [138].
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Figure 4.4.: Efficiency calibration of HPGe 8 using source measurements with

a 152Eu source (run 740, see Tab. 3.1) and 56Co (run 741). (Top)
Absolute efficiency data in black and the scaled relative efficiency
data in red. A simulated energy dependence of the efficiency has
been scaled to the data. The statistical (’stat.’) uncertainty and the
combination of statistical and systematic uncertainty (’syst.’) of the fit
are indicated by dotted and dashed lines, respectively (see also Fig.
4.3). (Bottom) Residuals of the fit together with the two uncertainty
bands.
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4.5.3. Width Calibration

In order to determine a sensitivity limit (see Sec. 4.4) or to identify muliplets
of peaks, the expected line shape in a detector and its energy dependence must
be known. For HPGe detectors, the line shape can be described by a normal
distribution in a first approximation, due to the statistical character of the photon-
energy measurement (see, e.g. Sec. 6.1 in [187] and Sec. A.1 for a discussion of
corrections to the normal-distributed line shape). The line shape can therefore
be characterized by a single energy-dependent parameter, the standard deviation
of the normal distribution (’peak width’/’energy resolution’) σ(E). If a constant
electronic noise (e) is assumed to affect the resolution, in addition to the statistical
processes of charge production and charge collection (cp), the energy dependence
σ(E) is expected to be given by [Eq. (6.11) in [187], referred to as the model of
Debertin and Helmer due to Eq. (5.2) in [222]]:

σ (E) =
Æ

pe + pcp E (4.34)

Equation (4.34) contains two parameters to describe the three aforementioned
contributions to the width12. It was found that it described the energy-dependent
resolution of all detectors reasonably well.

Figure 4.5 shows an example of a width calibration for HPGe 1. Not all observed
photons can be used for a width calibration. Most notably the electron-position an-
nihilation photon at 511 keV [2] is broadened compared to the nuclear transitions,
since the e+/e− system may have a nonzero center-of-mass momentum before the
annihilation (see, e.g., Sec. 1.2.2 and 7.5.4 in [187]). The same argument holds
for the peak at 1022 keV, which is the result of pileup of two annihilationphotons
(see Sec. 4.3.3). Lastly, the widths of some background transitions were found
to be systematically larger than the expected square-root behavior and assumed
to be doublets. Such cases were always found at energies below 1MeV, where
the number of background photons, and therefore the probability for multiplets,
increases strongly (see Tab. C.3).

12Charge production and charge collection are assumed to have the same energy dependence in
Eq. (4.34). Gilmore [187] suggests, from empirical studies, that the process of charge collection
introduces an energy dependence proportional to E [Eq. (6.10) therein]. However, this was not
found to be necessary in the present work.
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Figure 4.5.: (Top) Width calibration of HPGe 1 at a beam energy of 3820 keV.
The experimental data points which are shown in red instead of
black were not considered for the fit because they were found to
deviate systematically from the underlying square-root dependence
of Eq. (4.34). Similar to Fig. 4.3, the statistical uncertainty and the
combination of statistical and systematic uncertainty are shown. In
this case, as in most width calibrations, the value of χ2

red was very
close to one, indicating the absence of systematic uncertainties. For
this reason, the two uncertainty bands cannot be distinguished here.
(Bottom) Residuals of the fit together with the two uncertainty bands.
Only the data which were used for the fit are shown.

4.5.4. Photon Flux Calibration

The photon flux Φ(Eγ, t), i.e. the number of photons with an energy Eγ which hit
target per time interval at a time t, is defined as the double differential of the total
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number of photons Nγ
13:

Φ(Eγ, t)≡
dNγ

dEdt ′
(Eγ, t). (4.35)

In the present work, knowledge of the quantity dNγ/dE is necessary for the de-
termination of absolute NRF cross sections [Eq. (2.4)] and derived quantities
(see Sec. 2.1.2). In experiments with bremsstrahlung-generated photons, flux
calibration targets with few well-known resonances are used to calibrate dNγ/dE at
discrete energies (see, e.g., Sec. ’Photon Scattering Set-ups’ in [119]). Since the
bremsstrahlung spectrum created by a charged-particle beam is well known (see,
e.g., [223] for analytical expressions and [224] for a recent validation, or [225]
for a validation of Monte-Carlo simulations), it is possible to interpolate dNγ/dE at
intermediate energies.

The present experiments with quasi-monoenergetic photon beams would require
large sets of calibration targets with well-known resonances at each beam energy,
which is impractical. Furthermore, the energy dependence of the flux distribution
(the ’beam profile’) is not known a priori. In this section, the reconstruction of the
photon flux by Monte-Carlo simulations will be described14. The determination of
the energy dependence dNγ/dE in arbitrary units and the total number of photons
Nγ will be performed separately.

Similar calibrations of the photon flux have been applied in recent studies (see,
e.g., [131, 197]) which could rely on known cross sections from NRF studies with
bremsstrahlung. The reliability of the simulations was found to be sufficient by
Savran and Isaak [194] to propose the application of the method for relative flux
normalization. The present work represents one of the first (see also [227, 228])
largely ’blind’ (i.e. without calibration to known resonances) analyses of this kind,
since it could only be constrained by a single data point [137].

13See also Sec. 4.6 for the assumptions that lead to the given definition of Φ.
14To circumvent the extensive use of Monte-Carlo simulations, it was originally planned to perform

experiments on 82Kr and 82Se with bremsstrahlung at the Darmstadt High-Intensity Photon Setup
[226] at the S-DALINAC [126] to determine absolute NRF cross sections. However, due to technical
problems with the accelerator, the experiments could not be performed in time.
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Reconstruction of the Beam Profile

As indicated in Sec. 3.1, the profile of the HIγS beam was recorded before each
run using a zero-degree HPGe detector15. For these measurements, the beam
intensity was reduced by a variable-size copper attenuator which was located
about 30m upstream of the target [168]. Due to the large distance and the small
variation of the attenuation coefficient of copper within the range of the beam
profile [128], the distortion of the momentum- and energy distribution of the beam
is negligible. The attenuation was chosen strong enough to keep the dead time
of the zero-degree detector below 10% of the total measuring time. Therefore,
pileup effects (see Sec. 4.3.3) were neglected in the reconstruction of the beam
profile. Such a reconstruction is necessary, since the spectrum recorded by the
detector will be affected by its response function (see Sec. 4.3.2).

The response matrix [Eq. (4.9)] of the zero-degree detector was obtained from
simulations of the setup (see Sec. 4.2). Explicitly, lines (D(Em, En)∀En) of the
response matrix were obtained by simulating the passage of a monoenergetic
photon beam with a circular cross section through the entire setup. The beam
diameter was chosen to be 10% larger than the collimator diameter to simulate
scattering on the collimator as well. It was assumed that the intensity distribution
of the beam is uniform over its cross section and that the initial momentum vec-
tors of the photons are parallel to the beam axis (see Secs. 4.6 and below for a
discussion of these two assumptions, respectively). Simulations were performed in
energy steps of 100 keV. For intermediate energies, the closest simulated energy
spectrum, shifted by the energy difference16, was used. In principle, the original
spectrum can be obtained by inverting the response matrix in Eq. (4.9). However,
a straightforward inversion may lead to the appearance of unphysical negative bin
contents in N due to statistical and systematic (energy calibration) uncertainties
(see, e.g., Sec. 4.1.1 in [229]). Therefore, the relevant bins of N were interpreted
as parameters with the constraint N(Em) >= 0, and a least-squares fit was per-
formed. This corresponds to the so-called Gold deconvolution [230, 231] (for
implementation details, see [232]). Another degree of freedom in the fit was the
15Note that, the NRF targets were still mounted during these beam profile measurements in order

to save time. This was also taken into account in the simulations of the response matrix of the
zero-degree detector.

16Note that this shift would prevent the reconstruction of fixed-energy structures, like background
photons. In this case, however, the photon beam was by far the dominant part of the spectrum.
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point where the beam hits the zero-degree detector. It is obviously inefficient to
hit the center of the detector where the copper cold finger is located. Therefore, it
was displaced from the beam axis by an amount ∆r which is only known up to
±5mm. Response matrices for different ∆r were tried, and the optimum fit was
determined to be the one with the lowest χ2 which did not produce a pronounced
left tail in the reconstructed spectrum. The latter requirement, which was checked
visually, prevents overfitting of the data. It is based on systematic experimental
[233] and theoretical [234] studies of the HIγS beam. The statistical uncertainty
of the reconstruction procedure was determined with the Monte-Carlo parameter
estimation method described in Sec. 4.1.2, by varying the bin contents of the
measured spectrum and the simulated response matrix within their statistical
uncertainty.

An example for a reconstructed spectrum is shown in Fig. 4.6. Due to the good
agreement of the simulated response with the experimental data, even far beyond
the fitted range, the enhancement factors for systematic uncertainties were always
close to 1 for the beam profile reconstruction17.

Absolute Gamma-ray Flux

The determination of the absolute photon flux in this work relies on the nonresonant
scattering of photons off the target and the surrounding material. A preliminary
version of this calibration, which used a different parameterization, is described
in [165]. The appeal of this approach is that the cross sections of such processes
are well known (see, e.g., [121]) and orders of magnitude larger than the NRF
cross section (see Sec. 2.1.1). Due to the availability of precise Monte-Carlo
particle simulation frameworks, multiple scattering processes and geometrical
effects can be taken into account in a straightforward way (see Sec. 4.2). Since
the low-energy part of the experimental spectra is completely dominated by these
nonresonantly scattered photons (see Sec. D), it is sufficient to consider only this

17For an even better control of the systematic uncertainties in the reconstruction of the beam profile,
the author would like to point the reader’s attention to the ’ab-initio’ method developed by Sun,
Wu, Rusev, and Tonchev [235], which relies on a simulation of the complete beam line at HIγS.
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range [194]18. In particular, this implies that the necessary simulation times are
considerably reduced. A drawback of using the nonresonant scattering is that it
may happen anywhere on the beam line, i.e. a precise knowledge of the geometry
and the properties of the detectors is required. For example, compare the results of
the beam profile reconstruction in this section and the efficiency calibration (Sec.
4.5.2): In the former beam-on-detector experiment, almost no distortion of the
beam by other parts of the setup is expected, therefore systematic uncertainties
are at a minimum (see Fig. 4.6). On the other hand, attenuation in insufficiently
well-known parts of the geometry contributed significantly in the latter case (see
Fig. 4.4).

Based on the aforementioned arguments, the following procedure was applied to
simulate the low-energy background: The nonresonant background was simulated
by propagating a photon beam through the virtual geometry, similar to Sec. 4.5.4,
but with the realistic energy distribution of the photon beam which was obtained
there. As in the previous section, the radius of the beam was chosen to be slightly
larger than the collimator radius. Using a number of Nγ,sim primary photons, the

simulation recorded the spectra N
(0)
sim,d(Em) of each detector d. As mentioned in

Sec. 4.3.3, the simulated spectra are a priori pile-up free, therefore the notation
with a bar diacritic. Furthermore, the number of photons Nγ,sim,target which hit the
γ3 target without undergoing any scattering process, i.e. which would be available
for NRF reactions, was determined. This was done by another simulation (with a
perfectly monoenergetic beam for simplicity) where the number of photons which
reached the target without energy loss was counted.

From the appearance of a peak at about 1022 keV (i.e. twice the energy of the
dominant annihilation photons at 511 keV) in all of the experimental spectra (see
Sec. D), it can be concluded that there was a non-negligible impact of at least
first-order pileup. Therefore, the experimental spectrum Nd

19 is described by the

18However, the fit range also should have a low-energy cutoff, since x-ray lines of some materials,
in particular lead, appear below about 100 keV (see, e.g., [236]). Furthermore, electronic noise
contributes at even lower energies, if it is not cut off by a threshold.

19It is assumed in this section that the off-beam background has been subtracted from Nd . In practice,
this was done by scaling a background measurement to the experimental run via the ratio of live
times.
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simulated spectrum N (0)sim,d plus the pile-up contributions:

Nd(Em) = pt

tlive,d

tstop − tstart



pd,0N (0)sim,d(Em) +
∞
∑

p=1

pd,pN (p)sim,d(Em)



 . (4.36)

Equation (4.36) contains an overall normalization parameter pt which takes into
account the different ’live times’ of the simulation and the experiment. The sum
inside the brackets contains all orders of pileup which contribute according to
their relative weights:

∞
∑

p=0

pd,p = 1. (4.37)

Note that the pile-up parameters are different for each detector since they have
different properties and shielding. In practice, it was found that already the second-
order pileup was negligible (see Fig. 4 in [165]), so Eq. (4.36) was simplified
to:

Nd(Em)≈pt

tlive,d

tstop − tstart

�

pd,0N (0)sim,d(Em) + pd,1N (1)sim,d(Em)
�

(4.38)

Eq.(4.37)
= pt

tlive,d

tstop − tstart

�

pd,0N (0)sim,d(Em) + (1− pd,0)N
(1)
sim,d(Em)

�

.

With the restriction 0≤ pd,0 ≤ 1, a simultaneous fit was performed for all detectors
of the γ3 (Dγ3) - and the polarimetry setup (Dpol) to minimize the quantity:

χ2 =
∑

d∈Dγ3

∑

m∈M

¦

Nd (Em)− pt
tlive,d

tstop−tstart

�

pd,0N (0)sim,d(Em) + (1− pd,0)N
(1)
sim,d(Em)

�©2

σ2
Nd
(Em)

(4.39)

+
∑

d∈Dpol

∑

m∈M

¦

Nd (Em)− pt pa
tlive,d

tstop−tstart

�

pd,0N (0)sim,d(Em) + (1− pd,0)N
(1)
sim,d(Em)

�©2

σ2
Nd
(Em)

.

In Eq. (4.39), the set M symbolizes the fit range of low-energy bins. Here,
0.1 MeV ≤ m ≤ 1.0MeV \ 0.50 MeV ≥ m ≤ 0.52 MeV was used. Note that the
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denominators in Eq. (4.39) do not contain the systematic uncertainty of the simu-
lation, which is expected to dominate this kind of simulation. From the parameters
pi, the original number of photons which hit the target can be reconstructed for
each detector separately:

Nγ,d = pt pa



pd,0 +
�

1− pd,0

�

∑Ns
m=0 N (0)sim,d(Em)

∑Ns
m=0 N (1)sim,d(Em)



Nγ,sim,target (4.40)

In Eq. (4.40), the relative contribution of the first-order pileup (i.e. the term
proportional to (1− pd,0)) is scaled by the ratio of counts in the simulated spectra
N (0)sim,d and N (1)sim,d , since they may have a different normalization. In this work, the
first-order pileup was obtained by adding two subsequent events of the simulation,
i.e. the ratio is exactly 2.

The peak at 511 keV was excluded from the fit for the following reason: It is
exclusively created by the pair production process and has a strong influence on
the overall magnitude of the parameters due to its high count-rate. However, the
cross section of this process at the energies of the present experiment is less well
constrained than the other electromagnetic processes (see, e.g. a review article
by Hubbell [237] or a recent investigation [238]). Therefore, it was preferred
to fit only the continuous part of the low-energy background, which contains
contributions by all nonresonant processes.

An additional parameter pa was introduced in Eq. (4.39) as a global scale of the
photon flux at the target in the polarimetry setup. Although the simulation takes
into account effects like the attenuation of the photon beam in the first target and
the different shapes/compositions of the targets, the fitted values were on the order
of pa ≈ 0.5 and were found to improve the results considerably. A possible reason
for the necessity of the correction factor is that the HIγS beam actually has a
non-negligible transversal divergence, which is increased by small-angle scattering
on the γ3 target. The impact of the divergence can be estimated from the projected
image of an alignment target at the γ3 setup, which is shown in Fig. 3.2. In
the projection, its radius appears to be about rapparent ≈ 14 mm, while its actual
radius was rtarget = 10mm. The distance from the γ3 target to the polarimetry
target position is about ∆zpol ≈ 1.5 m, while the distance to the BGO camera is
about ∆zBGO ≈ 2.5m. From the latter, an average relative beam divergence of
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�

rapparent − rtarget

�

r−1
target∆z−1

BGO ≈ 0.16 m−1 is estimated. Consequently, a beam which
completely covered the γ3 target will have spread out to 1.24 times its size at the
time it hits the second target, i.e. more than 50% of the photons which propagated
through the γ3 target will miss. This estimate is in good agreement with the
observed magnitude of the parameter pa.

Since a precise measurement of the level of the vacuum inside the beam pipe
was not possible at the time of the experiment, this parameter was, a priori,
unconstrained in the simulation. It is known (see, e.g., Sec. 3.2.1 in [229], in
particular Fig. 3.6) that nonresonant scattering off the air in the beam pipe can lead
to a siginificant increase of the nonresonant background. Due to the preference of
the dominant Compton scattering process (see Sec. 2.1.1) for small forward angles
at the energies of the present experiment (see, e.g. Fig. 2.19 in [129]), scattered
photons from further upstream are expected to distort especially the high-energy
part of the spectrum (see also Sec. 3.3). Nevertheless, simulations with different
levels of the vacuum in the beam pipe, quantified by the ratio ρair,pipe/ρair,0 of the
density of air inside the beam pipe (’pipe’) and at standard conditions (’0’), were
performed as a cross check.

As an example, the result of a simultaneous fit of the low-energy background, in
particular the impact of the vacuum, will be discussed in the following for the
runs at a beam energy of 2.98MeV. Figures 4.7 and 4.8 show the experimental
and simulated spectra after the χ2 minimization of Eq. (4.39). For Fig. 4.7, a
simulated ratio of ρair,pipe/ρair,0 = 1/10 was used, while the air was assumed to have
standard density (ρair,pipe/ρair,0 = 1) in the simulation for Fig. 4.8. At first glance, it
appears that the inferior vacuum does not affect the fits very much. The largest
impact can be seen for HPGe 4. This is expected, because it is the only one of
the 7 detectors which was mounted at a backward angle, and therefore exposes a
larger cross section of its crystal to small-angle scattered photons. Furthermore,
together with the non-functional HPGe 3 in this run, it serves as an additional
passive shielding for the detectors at θ = 90◦.

More generally, it can be seen from Figs. 4.7 and 4.8 that there are significant
discrepancies between the simulation and the experimental data, especially for
HPGe 6 and HPGe 9. The fit yielded extremely large values of χ2

red ≈ 104 because
of the non-quantifiable systematic uncertainty of the simulation. Therefore, both
figures show the quantity χ2

red,rel, which has been normalized to the largest value
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χ2
red,max for each setup. The values of χ2

red,max were in the same order of magnitude
for both setups.

Using Eq. (4.40), the number of incident photons was reconstructed for each
detector separately. The results are shown in Fig. 4.9 for three different values
of ρair,pipe/ρair,0. While the fits looked very similar for different vacuum levels, a
systematic difference between the reconstructed Nγ is obvious. This indicates
that an increase of ρair,pipe/ρair,0 mainly causes an overall increase of the nonresonant
background count rate at low energies, which can be compensated by the parameter
pt . As a logical consquence of this, the values of χ2

red,rel for each detector, shown
in the bottom part of Fig. 4.9, are independent of this parameter. It was found
that already an assumed vacuum level of one tenth of the density at standard
conditions reduced the background significantly. The reduction by another order
of magnitude changed the values of Nγ only slightly compared to the overall
discrepancy between different detectors. Based on this study of the effects of the
vacuum, all simulations for other beam energies were performed with a value of
ρair,pipe/ρair,0 = 1/10, since they also showed the best extrapolation behavior towards
higher energies (see, e.g., Fig. 5 in [165]20). The systematic uncertainty of Nγ was
estimated as the standard deviation of all values Nγ,d for a given setup, neglecting
the small difference between ρair,pipe/ρair,0 = 1/10 and ρair,pipe/ρair,0 = 1/100. For all beam
energies, this resulted in a relative uncertainty estimate on the order of 20%-
30%, which is practically independent of the measuring time differences between
different beam energy settings, since the statistical uncertainty of the low-energy
background is always negligible.

20In the publication, it is claimed that the density of the air was ’about two orders of magnitude’
[165] lower than the density at standard conditions. This estimate was based on simulations for
ρair,pipe/ρair,0 = 1, 1/100 and 1/1000 because the authors were more optimistic about the vacuum level.
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Figure 4.6.: Reconstruction of the incident beam spectrum by fitting a simulated
detector response. (Top) The experimental spectrum which was
recorded by the zero-degree detector and the reconstructed spec-
trum are shown in black and red, respectively. For better visibility, the
latter was scaled by a factor of 0.8. The fitted range is indicated by a
shaded area. Similar to Fig. 4.3, the statistical uncertainty and the
combination of statistical and systematic uncertainty are shown. In
this case, as in most beam profile reconstructions, the value of χ2

red was
very close to one, indicating the absence of systematic uncertainties.
For this reason, the two uncertainty bands cannot be distinguished
here. (Bottom) Residuals of the fit together with the two uncertainty
bands. Only the data which were used for the fit are shown.
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Figure 4.7.: Simultaneous fit of simulated background spectra (black) to exper-
imental spectra (other colors). Except for a small excluded region
around the 511 keV photons, the plotted range is equal to the fit range.
The spectra of the γ3 setup are shown on the left-hand side, the ones
of the polarimetry setup are on the right-hand side. Each of the spec-
tra has the same abscissa and ordinate. Note that HPGe 3 was not
used in these runs. For each setup, the reduced chi-squares statistics
have been normalized to the detector with the largest value. For the
simulations shown here, it was assumed that the density of air in the
beam pipe was 1/10 of the density at standard conditions.
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Figure 4.8.: Simultaneous fit of simulated background spectra (black) to exper-
imental spectra (other colors). Except for a small excluded region
around the 511 keV photons, the plotted range is equal to the fit range.
The spectra of the γ3 setup are shown on the left-hand side, the ones
of the polarimetry setup are on the right-hand side. Each of the spec-
tra has the same abscissa and ordinate. Note that HPGe 3 was not
used in these runs. For each setup, the reduced chi-squares statistics
have been normalized to the detector with the largest value. For the
simulations shown here, it was assumed that the density of air in the
beam pipe was equal to the density at standard conditions.
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Figure 4.9.: (Top) Total number of photons (Nγ,d) which hit the γ3 (left)- and the
polarimetry (right) target in the runs at a beam energy of 2.98MeV,
reconstructed from a simultaneous fit of simulations to the low-energy
part of the experimental spectra (see Figs. 4.7 and 4.8). Nγ,d was
obtained separately for each detector d using Eq. (4.40) and for three
different assumptions for the density (ρ) of the air in the beam pipe
with respect to the density at standard conditions (ρ0). Note that
HPGe 3 was not used in these runs. From the discrepancy of the
values for Nγ,d for different detectors (excluding ρ = ρ0), the system-
atic uncertainty (dashed lines) was estimated. (Bottom) Reduced χ2

statistics of the fits. For each setup, the χ2
red were normalized to the

largest value (HPGe 4 and HPGe 6 in this case). The colors of the bars
correspond to the three different values of ρ.
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4.6. Derived Quantities

The methodology of Sec. 4.1 and the calibrations of Sec. 4.5 are used in this
section to derive properties of the nuclei of interest from the observed transitions
in the spectra. In this introductory paragraph, the relation between the number of
detected NRF reactions and the NRF cross section [Eq. (2.4)] will be discussed,
which depends on several geometric factors21. Since only level sequences of the
type 0→ j → k (i.e. excitation from the ground state to a state i followed by a
transition to a state k) were considered in the present work, the calculations do
not show higher-order cascades.

Start by defining the photon flux density jγ(Eγ, r , t) in analogy to fluid mechanics
(chapter I, §1 in [240]), which describes the directional number of photons per
area and time unit with an energy Eγ at a space point r . Since the transversal
divergence of the beam is negligible on the order of magnitude of the target size
(see Sec. 4.5.4), it is assumed to be parallel to the unit vector in z direction, i.e.
jγ = jγ(Eγ, r , t)ez . The z dependence of jγ is given by the differential equation22:

d jγ(Eγ, r , t)

dz
= −

�

µ(Eγ) +σ0→ j(Eγ)
�

nt(r ) jγ(Eγ, r , t) (4.41)

In Eq. (4.41), the symbol σ0→ j(Eγ) = dI0→ j/dEγ [see Eq. (2.4)] denotes the cross
section for the resonant absorption of photons [Eqs. (3-11) in [120]], and nt(r )
denotes the number of target nuclei per unit volume at a point r . Using the
definition of jγ, the count rate dA j→k,d/dt in a detector d for a transition j → k,
associated with the NRF cascade 0→ j→ k, is given by:

dA j→k,d

dt
=

∫ ∞

0

dEγ

∫

dΩ′
∫

d3r
W0→ j→k

�

θ ′,ϕ′, Pγ
�

4π
dεd

dΩ′
(Eγ,θ

′,ϕ′, r ) (4.42)

×σ0→ j(Eγ)
Γ j→k

Γ j
nt(r ) jγ(Eγ, r , t)

21The heuristic derivation discussed here will starts from a more general expression than other
dissertations which are referenced in this work [164, 213, 239], because the non-cylindrically
symmetric 82Kr target was used.

22Heuristically reconstructed from Secs. 2.4 and 2.5 in [120] and Sec. 5 in [239].
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In Eq. (4.42),
∫

d3r symbolizes an integration over the entire three-dimensional
space to take into account the spatial extent of the target. For each position r
in the target, another integral over the entire solid angle Ω′ is executed to take
into account the angular distribution and the solid-angle dependent detection
efficiency dε/dΩ [Eq. (4.28)]. The fact that the decay transition is observed is taken
into account by a multiplication of the cross section with the branching ratio Γ j→k/Γ j.

If the target has a homogenous density distribution, i.e. nt(r )≡ nt , Eq. (4.41) can
be solved analytically, and the target shape can be taken into account by restricting
the integration in Eq. (4.42) to the target volume Vt :

dA j→k,d

dt
=

∫ ∞

0

dEγ

∫

dΩ′
∫

Vt

d3r
W0→ j→k

�

θ ′,ϕ′, Pγ
�

4π
dεd

dΩ′
(Eγ,θ

′,ϕ′, r ) (4.43)

×σ0→ j(Eγ)
Γ j→k

Γ j
nt jγ(Eγ, x , y, z0, t)

× exp
�

−
�

µ(Eγ) +σ0→ j(Eγ)
�

ntz
	

The factor jγ
�

Eγ, x , y, z0, t
�

in Equation (4.43) is determined by the initial condition
for the flux density at z0(x , y), which is assumed to be the x- and y-dependent
entry point of the beam into the target on the z axis. In the present work, it was
assumed that the transversal intensity distribution of the beam is homogenous. For
a precision determination of cross sections, this assumption introduces a systematic
error, since the intensity of the HIγS beam decreases significantly as one goes away
from the optical axis. This was extensively investigated by Sun and Wu [234].
From Fig. 5 therein, a full width at half maximum of the intensity distribution
of about 50mm is expected23. Since the present work was focused mostly on
branching ratios, which are independent of the absolute photon flux (see Sec.
4.6.2), and the reconstruction of the photon flux has a large systematic uncertainty
anyway (see Sec. 4.5.4), the approximation of the actual spatial distribution by its
average value has a negligible impact. Therefore, the following equations use:

jγ
�

Eγ, x , y, z < z0, t
�

≈ Φ(Eγ, t) ∀x , y (4.44)

23Compare also Figs. 3.1 and 3.2, but consider that there is no guarantee that the color intensity is
proportional to the beam intensity, and that the beam profile is distorted by the target in the latter
figure.
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The spatially uniform photon flux Φ was defined in Eq. (4.35).

For a sufficiently thin target or low density, the attenuation by nonresonant
processes and the self-absorption effect [µ and σ0→ j in the exponential term in Eq.
(4.43)] can be neglected. If the maximum spatial extent and the density of the
82Kr target are estimated to be 1.8 cm and 0.5 g cm−3 (see Sec. 3.3), the photon
flux is non-resonantly attenuated by less than 4% at 3MeV [128]. Furthermore,
even the largest values Γ0→ j measured in this work were on the order of 0.1 eV,
which leads to a maximum self-absorption effect on the order of 10%24. Therefore,
the following volume integral can be simplified considerably:

∫

Vt

d3r nt exp
�

−
�

µ(Eγ) +σ0→ j(Eγ)
�

ntz
	

≈
∫

Vt

d3r nt = Nt (4.45)

In Eq. (4.45), the quantity Nt denotes the total number of target nuclei.

The approximation in Eq. (4.45) can only be applied to Eq. (4.43) in a straight-
forward way, if the position-dependence of dεd/dΩ is negligible. This was verified
by comparing Monte-Carlo simulations (see Sec. 4.2) with a point-like source
and others where photons were emitted from realistic 82Kr and 82Se targets25.
Quantities of interest like the full-energy peak efficiency or the asymmetry were
only influenced on a level of less than 1% by the shape of the target.

Using the two approximations j(Eγ, x , y, z0, t) ≈ Φ(Eγ, t) and (µ+σ0→ j)� nt∆z,
the count rate is given by:

dA j→k,d

dt
=

∫ ∞

0

dEγ

∫

dΩ′
W0→ j→k

�

θ ′,ϕ′, Pγ
�

4π
dεd

dΩ′
(Eγ,θ

′,ϕ′, r = 0) (4.46)

×σ0→ j(Eγ)
Γ j→k

Γ j
NtΦ(Eγ, t)

In Eq. (4.46), the notation r = 0 symbolizes that εd is evaluated at the target
position. As a last simplification, the energy dependence of the HIγS beam profile

24Calculated in the formalism of [120] and Sec. 5 in [239] using a Debye temperature for elemental
krypton from [241].

25For a simple and fast geometrical estimate, analytical formulas for the solid angle of a disk-shaped
detector surface with respect to a point in space are given in [242].
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(see, e.g. Fig. 4.6) and the detection efficiency (see, e.g., Fig. 4.4) can be
neglected compared to the width of a Doppler-broadened (see Sec. 2.2 in [120])
NRF resonance on the order of ≈ 1 eV.

dA j→k,d

dt
=

∫

dΩ′
W0→ j→k

�

θ ′,ϕ′, Pγ
�

4π
dεd

dΩ′
(Eγ, j ,θ

′,ϕ′, r = 0) (4.47)

× I0→ j→kNtΦ(Eγ, j , t)

= 〈W0→ j→kεd(Eγ, j)〉I0→ j→kNtΦ(Eγ, j , t)

To obtain Eq. (4.47) from Eq. (4.46), the photon flux and the efficiency were
evaluated at the resonance photon energy Eγ, j and the energy integral over the NRF
cross section yielded the energy-integrated cross section from Eq. (2.4). In the last
equality of Eq. (4.47), the notation 〈W0→ j→kεd(Eγ)〉 was introduced for the solid-
angle integral over the product Wε. Due to the good agreement of the efficiency
simulations with source measurements (see Sec. 4.5.2, in particular Fig. 4.4), this
quantity was also obtained from Monte-Carlo simulations. It was assumed that the
scaling factors psim in Eq. (4.31), which were needed to reproduce the absolute
detection efficiencies, can be applied to 〈W0→ j→kεd(Eγ)〉 as well. Furthermore, the
linear polarization was assumed to be Pγ(Eγ) = 1 at all energies (see, e.g., [168,
234]). At last, the time dependence of the photon flux can be integrated out,
since only time-integrated quantities were considered. Note that the finite dead
time of detector d leads to an effectively reduced photon flux, which is taken into
account here by multiplying the time-averaged photon flux 〈Φ(Eγ)〉t with the live
time tlive,d . Therefore, the total number of counted events is:

A j→k,d =
dA j→k,d

dt

·

t
tlive,d . (4.48)

4.6.1. Quantum Numbers and Multipole Mixing Ratio

In order to determine angular momentum- and parity quantum numbers of excited
states and the multipole mixing ratios of the decay transitions, the dependence of
the photons’ angular distribution [Eq. (2.11)] on these quantities was used. The
experimental method proposed by Pietralla et al. [243] for parity measurements
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with polarized photon beams, which can be straightforwardly generalized to the
measurement of multipole mixing ratios (see, e.g. [244]), was used. It is based
on a determination of the asymmetry a0→ j→k,dd ′ of the number of counted events
associated with a transition from state j to state k between two detectors d and
d ′. In the literature (see, e.g., Sec. ’Parity Assignments, Polarization Observables’
in [119], and the two aforementioned publications), the proportionality

A j→k,d
∫

dΩεd(Eγ, j ,θ ,ϕ)
∝
∫

Ωd

dΩW0→ j→k(θ ,φ,δ0→ j ,δ j→k) (4.49)

is often assumed. In Eq. (4.49),
∫

Ωd
symbolizes an integration over the solid

angle covered by the detector d. However, for the close geometry of the present
experiments and the expected strong solid-angle dependence of the gamma-ray
angular distributions, neglecting the solid-angle dependence of the full-energy
peak efficiency (see, e.g., [245]) is not a good approximation.

Since the geometrical effects were taken into account by Monte-Carlo simulations
in the present work (see Sec. 4.6), a different definition of the asymmetry was
used:

a0→ j→k,dd ′ =
A j→k,d − A j→k,d ′

A j→k,d + A j→k,d ′
(4.50)

Eqs. (4.47), (4.48)
=

〈W0→ j→kεd(Eγ, j)〉tlive,d − 〈W0→ j→kεd ′(Eγ, j)〉tlive,d ′

〈W0→ j→kεd(Eγ, j)〉tlive,d + 〈W0→ j→kεd ′(Eγ, j)〉tlive,d ′
. (4.51)

Equations (4.50) and (4.51) connect the experimentally observable peak areas
to properties of excited states. In practice, J j, π j, and δ j→k were assumed to be
parameters of a χ2 minimization:

χ2 =
∑

d∈D

∑

d ′∈D>d

�

asim
0→ j→k,dd ′ − a0→ j→k,dd ′

�2

σ2
a0→ j→k,dd′

(4.52)

In Eq. (4.52), the symbol asim indicates the simulated asymmetry, using the defini-
tion of Eq. (4.51). For the quantities J j and πi , the most probable combinations 1±

and 2+ were tried. For the continuous quantity δ j→k, simulations were performed
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on a variable grid of values in the interval [−2,2] (including δ j→k = 0), where
it is expected to vary most strongly (see, e.g., Fig. 4 in [244]) due to the equal
contributions of both multipolarities. Simulations for values outside of this interval
were performed on a more coarse grid until a further increase of δ did not change
the expected asymmetry any more.

An example for the determination of the total angular momentum and parity of
the excited state of 82Se at 2981 keV is shown in Fig. 3 of [165]. Even if systematic
uncertainties of the simulations on the order of 10% are assumed, the results for
the γ3 setup are unambiguous. The polarimetry setup was not sensitive enough to
the distinction between J f = 1 and J f = 2 states, even for the ones with the largest
statistics. An example for a determination of the multipole mixing ratio is shown
in Fig. 4.10. In this figure, the determination of δ for the transition from the 1+2
state of 82Kr to the 2+2 state is shown, which indicates a strong admixture of E2
strength to that transition.

4.6.2. Branching Ratio

The extraction of precise branching ratios to low-lying excited states, or at least firm
constraints for their magnitude, were a major goal of the present study, since they
are sensitive to the evolution of nuclear shapes and their coexistence (see Secs. 1.2
and 2.3). They are determined from the ratios of count rates for decays of the state
j, which was excited from the ground state, to lower-lying states k. These count
rates are corrected for different angular distributions and detection probabilities of
the transitions j→ k and j→ k′. Explicitly, ratios of partial transition widths were
obtained from Eqs. (4.47) and (4.48) in the present work. It will be assumed in the
following that the reference transition is the ground-state transition 0→ j→ 0, and
that k > 0 ∀ k ∈ K. Since there was no case in which the ground-state transition
was not observed, this was always possible. First, Eq. (4.47) is solved for I0→ j→k,
and then the ratios of two different energy-integrated cross sections are calculated
for the same detector:

I0→ j→k

I0→ j→0
=
〈W0→ j→0εd(Eγ, j→0)〉
〈W0→ j→kεd(Eγ, j→k)〉

A j→k,d

A j→0,d

Eq. (2.4)
=

Γ j→k

Γ j→0
(4.53)
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A high degree of model-independence is reached due to the cancellation of the
photon flux, similar to Sec. 4.6.1. Ratios of Γ j→k/Γ j→0 were determined for all observed
branching transitions j → k of a detector. After that, an uncertainty-weighted
average value 〈Γ j→k/Γ j→0〉 of all detectors was calculated. From these, an upper limit
for the actual branching ratios was obtained as:

Γ j→k

Γ ′j
<

〈Γ j→k/Γ j→0〉
1+

∑

k′∈K〈Γ j→k′/Γ j→0〉
(4.54)

As indicated, Eq. (4.54) is an upper limit, since there may be other decay channels
of the state j, i.e. the true value of Γ j may be larger.

Due to the exponentially increasing nonresonant background towards lower en-
ergies (see Sec. D), a firm model-independent constraint of Γ j with the present
technique is challenging [131] and was not attempted here. Nevertheless, upper
limits for branching transitions to low-lying excited states of interest were deter-
mined by replacing A j→k,d in Eq. (4.53) by the corresponding sensitivity limit LC
from Eq. (4.19) at the energy where the branching transition would be expected.
For the determination of upper limits, lowest-order multipolarities were assumed
to dominate.

If multiple values for the multipole mixing ratio were available, the one closest to
zero was chosen. Note that this does not have a large impact on the branching
ratio, since the existence of multiple values implies that their angular distributions
were similar.

4.6.3. Cross section

Cross sections for NRF transitions were determined in the present work by solving
Eq. (4.47) for I0→ j→k for each detector and using the information from Secs. 4.6.1
and 4.6.2. The final results given in Sec. 5 represent a weighted average of the
cross sections measured in different detectors, potentially scaled due to systematic
uncertainties (see Sec. 4.1.3).

From the quantity I0→ j→k, transition widths, and ultimately reduced transition
strengths were determined using Eq. (2.4) with the assumption that the observed
branching transitions represent all branching transitions of the state of interest.
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Since the reduced transitions strengths are only a lower limit of the true transition
strengths B(σL; k→ j), they are denoted as B(σL; k→ j) similar to Ref. [131].
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Figure 4.10.: Determination of the multipole mixing ratio δ for the decay of the 1+2
state of 82Kr at 3815 keV to the 2+2 state at 1475 keV [138]. (a) Asym-
metry of the 1+2 → 2+2 transition for different detector combinations
dd ′, which are indicated on the x axis (’67’ means d = 6, d ′ = 7. See
also Fig. B.2). The experimental values are shown as black dots with
error bars. A set of simulated asymmetries for various assumptions
for δ is shown in various colors. (b) Value of χ2 for the different
values of δ. The inset plot shows all data points in the same colors as
in (a), while the containing panel shows a zoom into the minimum.
The region between the mininum χ2

min and χ2
min + 1 is highlighted.
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5. Results

The excited states of 82Kr and 82Se, whose decay behavior was characterized in the
present work, are shown in Tabs. 5.1 and 5.2. In the following, the content of the
different columns in the two tables will be described and references to relevant
section of this work will be given.

In general, a transition was considered to be ’observed’, if the number of events
NS surpassed the sensitivity limit ND given by Eq. (4.20) in at least one detector.
Due to the focus of this work on branchings to low-lying excited states (see Sec.
2.3), upper limits for transitions (i.e. branching ratios and reduced transition
strengths) to the known [138] 0+2 -, 2+1 -, and 2+2 states are given for both isotopes,
if the transitions were not observed. No transitions to higher-lying excited states
were observed. The upper limits were calculated using the threshold LC from Eq.
(4.19) and assuming a dominance of the lowest-order multipolarity.

All values given in Tabs. 5.1 and 5.2 are rounded according to recommendations
by the PDG (Sec. 5.3 in [2]). For values with an asymmetric shortest-coverage
interval, the larger of both limits determines the rounding digits, i.e. 1.000+0.456

−0.012
appears as 1.0+0.5

−0 . An exception to this rule are values where one of the limits was
infinity. In these cases, the larger of the most probable value and the finite limit
determined the rounding digits. This is why values like −2+0

−∞ appear.

In the first column, the energy E j of the excited state is given. Excitation energies
were determined from the energy calibration described in Sec. 4.5.1. If a level
energy reported in the ENSDF [138] was in agreement with the present study [see
Eq. (4.26)], but had a lower uncertainty, then the literature value is given.

The second column gives the level energy difference E j−Ek, which was determined
from the known excitation energies of the initial and final states E j and Ek of the
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decay transition. The Ritz variation principle [Eq. (4.26)], was the criterium for
assigning an observed photon to an energy difference between the states j and k.

The third column gives the total angular momentum- (J j) and parity (π j) quan-
tum numbers of the excited states, which were determined from an analysis of
angular distributions in Sec. 4.6.1. Since the polarimetry setup was optimized for
parity measurements, it was not always possible to distinguish between dipole-
and quadrupole excitations. Therefore, the alternative assignment of Jπ = 2+ is
indicated for 1+ states. Due to the expected two-fold dominance of the E1- over
the M2 character (see Sec. 2.1.1), the alternative 2−assignment is not shown for
1− states in accordance with the literature [119].

The fourth column gives the total angular momentum- (Jk) and parity (πk) quan-
tum numbers of the final states of the transition. They are well known [138] for
the transitions of interest.

The fifth column gives the branching ratio Γ j→k/Γ j, which was determined in Sec.
4.6.2. Note that the quantity Γ j includes only the observed transitions. Due to
the chosen definition of the branching ratio [Eq. (4.54)] and the Monte-Carlo
method for the propagation of uncertainty (see Sec. 4.1.1), the most probable
values for Γ j→k/Γ j usually did not add up to 1. This property was artificially restored
by adapting the value of the smallest branching ratio, which was always possible
within the given uncertainty limits.

The sixth column gives the elastic NRF cross section I0→ j→0 for an excited state
j as determined in Sec. 4.6.3. Note that there was no case where only inelastic
transitions from an excited states were observed. Due to the dominance of the
systematic uncertainty of the absolute photon flux calibration (see Sec. 4.5.4),
which has an unknown probability distribution, the shortest coverage interval was
assumed to be symmetric. For the case of 82Se, note that the cross section for the
state at 2981 keV was lower than the one measured by Werner [137] by a factor
of cVW = 0.55(9). The elastic cross sections of all observed dipole-excited states,
together with the sensitivity limit ND [Eq. (4.20)], are shown in Fig. 5.1 for 82Kr
and in Fig. 5.2 for 82Se.

The seventh column gives themultipolemixing ratio δ j→k for the transition between
states j and k which was determined via a χ2 minimization described in Sec. 4.6.1.
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Alternative intervals may be given for δ j→k since the χ2 statistic can have several
minima.

The eighth column gives a lower limit for the reduced excitation strength [B(σL; k→
j) < B(σL; k → j)] of the transition k → j as defined in Sec. 4.6.3. In general,
only the strength of the dominant multipole is shown. If the absolute value of the
mode of δ j→k was larger than 1, then the higher-order multipole was considered
the dominant one, because its associated partial transition width is larger [see
Eq. (2.10)]. The electromagnetic character and the multipole order is indicated
by the unit of B(σL; k→ j).
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Figure 5.1.: Elastic cross sections I0→ j→0 for dipole-excited states of 82Kr, which
were determined in the present work. The sensitivity limits ND from
Eq. (4.20) for M1 and E1 strength are indicated by dotted lines. The
lower part of this figure shows a zoom into the region of low cross
sections for better visibility. In cases where it was unclear whether
the observed states had dipole- or quadrupole character, the lower
multipole order was assumed.

150 5. Results



0
10
20
30
40
50
60
70

I 0
j

0 (
eV

b)

E1 (sensitivity limit)
E1
M1 (sensitivity limit)
M1

2000 2500 3000 3500 4000
Energy (keV)

0

5

10

I 0
j

0 (
eV

b)

Figure 5.2.: Elastic cross sections I0→ j→0 for dipole-excited states of 82Se, which
were determined in the present work. See also Fig. 5.2.
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6. Discussion

In this section, the results of the present work, which are tabulated and visualized
in Sec. 5, will be discussed. For the experiment on 82Kr/82Se, the origin of the
observed magnetic dipole strength will be the main point of interest. For the
experiment on 150Nd/150Sm, updated calculations in the framework of the IBM-2,
which include the new results, will be presented. Based on these results, predictions
for 0νββ-decay matrix elements are given.

6.1. 82Se and 82Kr

In the present work, precise data on the decay behavior of newly observed 1+

states of 82Kr and 82Se were obtained. No branching transition to a 0+2 state could
be observed. However, the corresponding branching ratios were constrained to
less than 2%, a value which is competitive with the study of Beller et al. [110] on
154Gd.

Obviously, the interpretation that 82Kr and 82Se are close to the SU(3) limit of
the IBM-2 according to their decay behavior (see Sec. 2.3) cannot be true if one
considers, for example, their small deformation parameters of β(82Kr) = 0.203(3)
and β(82Se) = 0.1920(15) [138], respectively. It is more likely that the assumptions
which go into the IBM-2 see Sec. 2.2.2 do not hold any more at these low mass
numbers. The interpretation of a single origin of the observed M1 strength is
further challenged by the fact that the excited states of 82Se at 2981 keV and
3824 keV exhibit a very different decay behavior.
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The observed discrepancies may be explained by an admixture of spin-M1 strength
to the low-lying 1+ states of both isotopes, because the ground-state decays of the
spin-flip one-particle one-hole excitations are not as inhibited as the ground-state
transitions of two-phonon mixed-symmetry states (see Sec. 2.3). To clarify the
’pureness’ of the observed M1 strength, a shell model calculation was performed for
82Se. The calculation used the JUN45 effective interaction proposed by Honma et al.
[101], which was found to give a satisfactory description of collective phenomena
like triaxiality and shape coexistence within the model space denoted as f5pg9 by
the authors. Note that the same interaction was also used by Sen’kov, Horoi and
Brown [68] for the calculation of 0νββ-decay matrix elements of 82Se. Using the
shell-model code NuShellX@MSU [246], it was possible to perform a calculation
of the first ten 1+ states, with all 26 valence nucleons (6 protons, 20 neutrons)
of 82Se with respect to the 58Ni core, in a reasonable time. For 82Kr, the more
even ratio between the number of valence protons and -neutrons circumvents the
Pauli principle and leads to a strong increase of the basis size. Calculations for
this isotope were tried with different truncation schemes, but no conclusive result
could be obtained. Two calculations were performed for 82Se, one with the bare
orbital g factors gπl = 1 and gνl = 0, and another one where both were set to zero
to obtain only orbital M1 strength.

The results of both calculations are compared to the experimentally observed
values of B(M1; 0→ j) in Fig. 6.1. The energies of the low-lying 1+ states are
reproduced well. Considering the excitation strengths, the lowest lying state
at 2981 keV is also in good agreement with the calculation, in particular if one
considers that no quenching factor was used. At higher energies, the shell model
predicts a larger fragmentation than exhibited by the experimental data. However,
the total calculated strength of 0.69µ2

N within the plotted energy range is in very
good agreement with the summed M1 strength of the data of 0.62(6)µ2

N.

As expected, the contribution of spin-M1 strength to the total strength is predicted
to be almost 50% even at the lowest energy of 2981 keV. From this analysis, it can
be concluded that for 82Se, the simple IBM-2 picture is not applicable, and further
microscopic calculations are necessary to clarify the situation. The same can be
expected for 82Kr.
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Figure 6.1.: Reducedmagnetic dipole strength B(M1; 0→ j) for the excitation from
the ground state of 82Se in the energy range of the present experiment.
The experimental values (which are actually lower limits B(M1) for
the transition strengths) of this work are shown in red, together with
the same sensitivity limit as in Fig. 5.2, which was converted from
a limit for elastic cross sections by neglecting branching transitions.
The black bars show a shell model calculation (see Sec. 6.1) of the
same quantity. Another shell model calculation in which the orbital
part of the M1 operator was artificially set to zero is shown in gray.
Both calculations returned the same energy values, but the gray bars
were shifted by 30 keV to the right for better visibility.

6.1. 82Se and 82Kr 155



6.2. 150Nd and 150Sm

In the theses of Jörn Kleemann [178, 179], branching ratios of the strongest
scissors mode fragments of 150Sm and 150Nd in the energy range of the beam could
be measured down to a few percent, similar to the 82Kr/82Se experiment. Probably
due to the location of both A= 150 nuclei in proximity of a shape phase transition,
decays to the 0+2 states could be observed.

The newly found experimental data were used to constrain parameters of the
IBM-2 Hamiltonian given by Eq. (2.35). A sizable change is expected, especially
for 150Sm, since the parity of the most strongly excited state in the energy range of
the experiment at 3082 keV was reassigned unambiguously to 1−. An intelligent χ2

minimization procedure was applied using different criteria to prevent overfitting
the data. The procedure is described in detail in Sec. 7 of [179]. Fig. 6.2 shows
the result of such a minimization procedure in comparison the the experimental
level scheme and transition strengths of 150Nd. From the comparison, it can
be concluded that the IBM-2 gives a very good description of the textbook-X (5)
nucleus 150Nd [112]. Parameter variations for 150Sm showed larger deviations from
the experimental level scheme (see Sec. 7.4 in [179]). In particular, there were
problems with the calculation producing mixed-symmetry states at unexpectedly
low excitations energies.

Nevertheless, the present parameter sets were used to recalculate 0νββ decay
matrix elements in collaboration with J. Kotila from the university of Jyväskylä.
Using the formalism for 0νββ decay derived in [247] and applied in [85, 248], the
results shown in Fig. 6.3 were obtained [249] for the nuclear matrix element. The
impact of taking into account more precise data for the scissors mode is qualitatively
the same as for the case of 154Gd [110]. While the predicted matrix element to
the ground state remains approximately the same, the increased sensitivity to
shape coexistence effects increases the matrix element to the excited 0+ state.
Qualitatively, the enhancement is not as strong as in 154Gd, probably because 150Nd
in particular was already described well by the IBM-2 parameterization of the
previous analysis on which the predictions in [248] were based.
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Figure 6.2.: Left: Low-lying level scheme of 150Nd, which includes all excited states
and transition strengths which were used for a minimization of the
parameters of the IBM-2 in [179]. The thickness of the arrows is
proportional to the M1 (red) and E2 (gray) transition strengths in
Weisskopf units. Middle: The same level scheme, as obtained from
a minimization of the parameters of the IBM-2 Hamiltonian. The
label x1 = 1/2 indicates, in the parameterization of [179], that the
parameters ξ1 and ξ3 were constrained to be equal. Right: For this
calculation, both ξ1 and ξ3 were allowed to vary independently from
each other to further improve the description of the experimental data.
Figure from [179].
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Figure 6.3.: Predictions for the nuclear matrix elements M (0ν) for the 0νββ decay of
150Nd to the ground state and the first excited 0+ state of 150Sm in the
framework of the IBM-2 [249]. The calculation labeled ’previous’ used
the same parameters as in Ref. [248], while the ’updated’ calculation
used the parameters from the study in [179].
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7. Summary and Outlook

In the present work, the decay characteristics of the nuclear scissors mode of
0νββ-decay candidate isotopes were studied. Exotic decay branches of the scissors
mode are expected to be sensitive to phenomena like nuclear shape evolution
along a chain of isotopes and shape coexistence within a certain nucleus, which
strongly influence the nuclear matrix elements in 0νββ-decay rate calculations.
Explicitly, the isotope pairs 82Se/82Kr and 150Nd/150Sm were of interest, since they
are promising candidates for future 0νββ decay searches.

The method of choice was NRF with quasi-monoenergetic, linearly polarized
photon beams, since it allows to investigate dipole-excited states with a high
sensitivity and model-independence. Branching ratios and multipole mixing ratios
of transitions to lower-lying excited states were measured with high precision or
firmly constrained. Cross sections for excited states, if not known beforehand,
were determined from Monte-Carlo simulations of the nonresonant background in
the spectra.

The data on the A= 82 nuclei were interpreted in the framework of the nuclear
shell model, which was in good agreement with the total observed strength and the
location of the resonances. This shell-model analysis suggested a more complicated
origin of the low-lying M1 strength than a pure scissors-like motion.

For the A = 150 nuclei, more precise parameter sets for the framework of the
interacting boson model could be determined from the new data by a careful
adjustment procedure. The updated parameters were used, in collaboration with
a theorist, to improve predictions of the 0νββ decay between 150Nd and 150Sm.
The new calculations expected a significantly larger branching ratio of this exotic
decay to an excited state of 150Sm.
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For future experiments, the problem of the photon-flux calibration should definitely
be adressed, even if it occurred in this work only because a follow-up measurement
could not be performed. For the calibration on the non-resonantly scattered photon
spectrum, it would have been helpful to mount a scattering target with a well-
defined shape and composition. Also, it was noticed that it is very helpful to have
at least one detector in each setup at a backward angle for a simple determination
of angular momentum quantum numbers.

The data on the A= 82 nuclei are now ready for more involved analyses in the
nuclear shell model, which could not be performed in the present work due to
restricted computing power. Furthermore, an investigation of their structure in the
framework of energy density functional theory (see Fig. 1.4) would be helpful to
understand the interplay of different shapes in these nuclei, which can be rather
complicated in this region of the nuclear chart.

For the A= 150 nuclei, a controlled addition of higher-order terms to the IBM-2
Hamiltonian might be beneficial to fix unexpectedly small values for the mixed-
symmetry states in 150Sm, which are a by-product of the parameter estimation.
Furthermore, considering the recent success of the Monte-Carlo shell model [146,
147], calculations for the A= 150 pair may already or soon be feasible and overcome
the limitations of the IBM-2.

At last, it was proposed to the author by P. von Neumann-Cosel at a conference
that another experimental probe, like inelastic proton scattering, could be used to
distinguish spin- and orbital magnetic dipole strength in the nuclei 82Se and 82Kr
(see, e.g., Sec. III.A in [89], in particular Fig. 5). It should be noted in general,
that the fascinating and complicated problem of nuclear shape evolution must be
tackled by various probes, otherwise many misinterpretations can be made.
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A. Spectroscopic Sensitivity Limit

In Sec. 4.4, it was mentioned that the general method of determining a sensitivity
limit in spectroscopic experiments, implemented by spectrum analysis programs
like tv [208, 209] and hdtv [210, 211], is to perform a least-squares fit of a
two-component function

Nfit(Em) = NB,ΣB(Em, {pB}) + NS P(Em, {pP}), (A.1)

weighted by the uncertainties σN of the spectrum bins, to a part of the spectrum.
In Eq. (A.1), B(Em, {pB}) is a model for the energy dependence of the continuous
background, while P(Em, {pP}) describes the line shape. Both functions have the
number of events associated with the background (NB,Σ) and the peak (NS) as a
scaling factor. Furthermore, both have additional sets of parameters pB and pP ,
which are fixed by experimental constraints. For any set of valid parameters p, the
functions B(Em) and P(Em) are assumed to be normalized:

1
∆EN

∫ ENs

E1

P(E)dE→
Ns
∑

m=1

P(Em)≡ 1. (A.2)

1
∆EN

∫ ENs

E1

B(E)dE→
Ns
∑

m=1

B(Em)≡ 1. (A.3)

Equations (A.2) and (A.3) are only valid if the bin limits are equidistant, at least
locally. However, an equidistant binning can always be obtained by rebinning
the spectrum. Therefore, the validity of these equalities will be assumed in the
following discussion.
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In the following, well-founded assumptions will be made to simplify the general
fitting procedure and derive a definition of the ’area below the peak’ which can be
computed efficiently. Start by making the following assumptions which hold in the
vicinity of the peak:

• The background function is constant:

NB,ΣB(Em, {pB})≡ ÑB,Σ (A.4)

In Eq. (A.4), the proportionality constant has been absorbed into the parame-
ter NB,Σ. This is certainly valid for measurements with high-resolution HPGe
detectors. For example, in the spectrum of the 82Kr/82Se experiment of this
work at a beam energy of 3.95MeV, the background decreased exponentially
with a decay constant of about λ≈ 10−3 keV−1. This causes a relative change
of the background from the low- to the high-energy side of a peak with a
width of 5 keV by only a few per mille.

• The set of parameters {pP} of the peak function can be determined from
experimental constraints, and the only parameter left is NS:

NS P(Em, {pP})≡ NS P(Em) (A.5)

In the current experiment, this could be achieved by fixing the standard
deviation (σ) parameter of a Gaussian line shape with a width calibration,
and the mean value (µ) by the known or expected energy of a transition.

• The line shape is narrow, i.e. there exists a range
�

Em1
, Em2

�

with m2 > m1
so that:

m2
∑

m=m1

P(Em, {pP})≈ 1

m2
∑

m=m1

1� Ns

N(Em1−1)≈ N(Em2+1)

(A.6)

The first and the second condition state that the majority of the peak area
should be contained in a small range of bins compared to the total spec-
trum size. The third condition repeats the requirement from above that the
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background function is assumed to be constant.

• The peak is much smaller than the background, even within the narrow
range given in the previous assumption, i.e.:

NB,ΣB(Em, {pB})� NS P(Em, {pP}) ∀Em ∈
�

Em1
, Em2

�

. (A.7)

This assumption makes the determination of a sensitivity limit necessary in
the first place.

With these assumptions, the function

Nfit(Em) = ÑB,Σ + NS P(Em) (A.8)

has become linear with two parameters ÑB,Σ and NS. The fit of the model from
Eq. (A.8) to the spectrum N in an energy range

�

Em1
, Em2

�

aims to minimize the
squared deviation of the fit function and the data (’least-squares fit’):

argmin
ÑB ,NS

¨ m2
∑

m=m1

[N(Em)− Nfit(Em)]
2

«

. (A.9)

Note that no weighting with the uncertaintiesσN (Em) needs to be applied due to the
assumption of a constant, dominating background, which makes the uncertainties
of all bins approximately equal.

In the case of a linear model, the minimization problem can be solved analytically
([250], see also [251]). It will be assumed in the following that the fit succeeded.
For the residuals ∆N(Em), defined by:

∆N(Em) = N(Em)− Nfit(Em), (A.10)

a successful fit means that their sum is approximately equal to zero:

m2
∑

m=m1

∆N(Em)≈ 0 (A.11)

The standard deviation of the fit parameter NS can then be expressed as (Eq. (39)
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in Sec. 2.2 of [250]):

σNS
=

√

√

√

sy y − NSsx y

(m2 −m1 − 2) sx x
(A.12)

In Eq. (A.12), the symbols si j are defined as:

sx x =
m2
∑

m=m1

[P(Em)− 〈P〉]
2 (A.13)

sy y =
m2
∑

m=m1

[N(Em)− 〈N〉]
2 (A.14)

sx y =
m2
∑

m=m1

[P(Em)− 〈P〉] [N(Em)− 〈N〉] (A.15)

The notation with angle brackets for an energy-dependent quantity in Eq. (A.13)
denotes its average value:

〈N〉 ≡
1

m2 −m1

m2
∑

m=m1

N(Em). (A.16)

For the quantities N(Em) and P(Em), the average values are:

〈N〉=
1

m2 −m1

m2
∑

m=m1

N(Em)

Eq. (A.10)
=

1
m2 −m1

m2
∑

m=m1

ÑB,Σ + NS P(Em) +∆N(Em) (A.17)

Eq. (A.11)
= ÑB,Σ + NS〈P〉

〈P〉 ≡
1

m2 −m1

m2
∑

m=m1

P(Em). (A.18)

In the first step of Eq. (A.17), the definition of the residuals has been inserted. In
the second step, the fact that the sum over all residuals vanishes [Eq. (A.11)] was
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used. Equation (A.17) anticipates the definition of 〈P〉 in Eq. (A.18) which can
not be simplified further without assuming a specific line-shape model.

In Eq. (A.12), another simplification can be introduced by comparing the mag-
nitude of the quantities sy y and NSsx y in the numerator. As a consequence of the
third assumption [Eq. (A.6)], a fit range

�

Em1−∆m, Em2+∆m

�

can be chosen with
1≤ m1 −∆m� m1 and m2� m2 +∆m≤ Ns, such that:

m=m2+∆m
∑

m=m1−∆m

NS P(Em) =
m1−1
∑

m=m1−∆m

NS P(Em) +
m2+∆m
∑

m=m2+1

NS P(Em)

︸ ︷︷ ︸

≈0

+
m2
∑

m=m1

NS P(Em)

︸ ︷︷ ︸

≈NS

≈
m2
∑

m=m1

NS P(Em)�
m2+∆m
∑

m=m1−∆m

∆N(Em). (A.19)

From this inequality, it follows that

NSsx y =
m2+∆m
∑

m=m1−∆m

NS [P(Em)− 〈P〉] [N(Em)− 〈N〉]
︸ ︷︷ ︸

≈∆N(Em)

�
m2+∆m
∑

m=m1−∆m

∆N(Em)
2 ≈ sy y . (A.20)

Therefore, the term NSsx y will be neglected in the following. Furthermore,

m2+∆m
∑

m=m1−∆m

N2
S [P(Em)− 〈P〉]

2� sy y , (A.21)

follows immediately from the previous equation.
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With the definitions and simplifications from above, σNS
can be calculated explicitly:

σNS

Eq. (A.20)
≈

√

√ sy y

(m2 −m1 − 2) sx x
=

√

√

√

√

∑m2

m=m1
{∆N(Em) + NS [P(Em)− 〈P〉]}

2

(m2 −m1 − 2)
∑m2

m=m1
[P(Em)− 〈P〉]

2

=

√

√

√

√

∑m2

m=m1
∆N(Em)2 + 2∆N(Em)NS [P(Em)− 〈P〉] + N2

S [P(Em)− 〈P〉]
2

(m2 −m1 − 2)
∑m2

m=m1
[P(Em)− 〈P〉]

2

≈

√

√

√

√

∑m2

m=m1
∆N(Em)2

(m2 −m1 − 2)
∑m2

m=m1
[P(Em)− 〈P〉]

2 (A.22)

Eq. (A.4)
=

√

√

√

(m2 −m1) 〈σN 〉2

(m2 −m1 − 2)
∑m2

m=m1
[P(Em)− 〈P〉]

2

(m2−m1)�2
≈

σN
Ç

∑m2

m=m1
[P(Em)− 〈P〉]

2

In the fourth equality in Eq. (A.22), the numerator is significantly simplified: The
term proportional to NS vanishes due to the following general property of the
average value:

m2
∑

m=m1

[P(Em)− 〈P〉] = 0. (A.23)

The term proportional to N2
S can be neglected due to Eq. (A.21). In the next-to last

step, the fact that all residuals are approximately equal in the given energy range
was used to simplify the sum over m, and the notation 〈σN 〉 was introduced for
the average standard deviation of a bin content in the region of interest. In the last
approximate equality in Eq. (A.22), it was assumed that the number of bins over
which the line shape is spread is large enough, so that the difference by 2 in the
denominator can be neglected. In summary, an equation was derived that relates
σNS

, the fit uncertainty of the peak area which will be an input for Eqs. (4.19) and
(4.20), to the statistical fluctuations of the background via a known line-shape
model.
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A.1. Evaluation for Theuerkauf Lineshape Model

The sum in the denominator of Eq. (A.22) will be evaluated in the following for
the so-called Theuerkauf line-shape model PT (Em) which is used by the nuclear
spectrum analysis tools tv [208, 209] and hdtv [210, 211]1:

PT (Em,µ,σ, t l , t r) =NT (σ, t l , t r) (A.24)

×











exp
¦

t l [(Em−µ)+tl/2]
σ2

©

if Em −µ < t l

exp
¦

−t r [(Em−µ)−tr/2]
σ2

©

if Em −µ > t r

exp
¦

(Em−µ)
2

σ2

©

else

NT (σ, t l , t r)≡

�

σ2
exp

�

−t2
l/2σ2

�

t l
+σ2

exp
�

−t2
r/2σ2

�

t r
(A.25)

+
s

π

2
σ erf (t lσ/

p
2) +

s

π

2
σ erf (t rσ/

p
2)
�−1

The Theuerkauf model is a continuous stepwise-defined distribution which consists
of a left tail that increases exponentially, a central normal-distributed part, and
a right tail that decreases exponentially. Left tails of peaks are mostly caused
by imcomplete charge collection or particles escaping from the detection volume
(see chapter 12.III in [129]), while right tails can be caused by pileup (see Sec.
4.3.3 and chapter 17.VII in [129]). The central normal distribution provides
the parameters µ (mean value, here: peak position) and σ (standard deviation,
here: detector resolution). The (positive) distance to the left (right) of the peak
position, where the normal distribution turns into an exponential increase (decay),
is denoted as t l (t r). Equation (A.25) defines the normalization factor which
depends on σ, t l , and t r . A normal distribution can be obtained by taking the limit

1A more general version of the Theuerkauf model exists, which includes an arctan-shaped background
contribution. It models incomplete charge collection in the detector crystal, which leads to a
quasi-constant increase of the background to the left of a peak (denoted ’long-term tail’ in chapter
12.IV of [129]). Note that this effect appears in addition to the left tail which is included in Eq.
(A.24). The step is neglected here since the peak, and therefore the influence of its long-term tail,
was assumed to be small compared to the background.
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where t l and t r are infinite:

lim
t l ,t r→∞

PT (Em) =
1

p
2πσ

︸ ︷︷ ︸

limtl ,tr→∞ NT (σ,t l ,t r )

exp

�

−
(Em −µ)

2

2σ2

�

(A.26)

In the limit of a large number of bins and a large fit range ∆E , the calculation of
the denominator in Eq. (A.22) can be performed in the continuum and 〈P〉 can be
set to zero:

m2
∑

m=m1

[PT (Em)− 〈P〉]
2

(m2−m1)�1
======⇒

1
∆EN

∫ µ+∆E/2

µ−∆E/2

[PT (E)− 〈P〉]
2 dE

∆E→∞
====⇒

1
∆EN

∫ ∞

−∞
PT (E,µ,σ)2dE

=N2
T∆EN

�

exp

�

t2
l − 2t lµ

σ2

�∫ −t l

−∞
exp

�

2t l E
σ2

�

dE

+

∫ t r

−t l

exp

�

−
(E −µ)2

σ2

�

dE

+exp

�

t2
r + 2t rµ

σ2

�∫ ∞

t r

exp
�−2t r E
σ2

�

dE

«

(A.27)

=NT (σ, t l , t r)
2∆EN

�

exp

�

−t2
l − 2t lµ

σ2

�

σ2

2t l

+
p
πσ

2

h

erf
�µ+ t l

σ

�

+ erf
� t r −µ
σ

�i

+exp

�

−t2
r − 2t rµ

σ2

�

σ2

2t r

�

.

Note that an additional factor of ∆E2
N needs to be multiplied to the continuous

Theuerkauf model in the third equality to fulfil Eq. (A.2). Equation (A.27) is
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the most general form for non-infinite t l and t r . Taking the limit of a normal
distribution as in Eq. (A.26), one ends up with the simple expression:

lim
t l ,t r→∞

m2
∑

m=m1

[PT (Em)− 〈P〉]
2 Eq. (A.27)

=
∆EN

2
p
πσ

(A.28)

(A.29)

Using the result of Eq. (A.28) in Eq. (A.22) yields:

σNS
= 〈σN 〉

√

√

2
p
π
σ

∆EN
≈ 1.88× 〈σN 〉

√

√ σ

∆EN
(A.30)

This is in good agreement with the value of σDIN
NS

, which can be obtained from the
DIN recommendation [207] in Eq. (4.21) (using cDIN = 1.2):

σDIN
NS
=
p

2σDIN
NB
=
p

2〈σN 〉
√

√1.2× FWHM
∆EN

=
p

2〈σN 〉

√

√

√1.2× 2
p

2 ln (2)σ
∆EN

(A.31)

≈ 2.38× 〈σN 〉
√

√ σ

∆EN

In Eq. (A.31), the relation FWHM = 2
p

2 ln (2)σ for a normal distribution has
been used.
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B. Schematic Detector Setups
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Figure B.1.: Schematic detector arrangement in the γ3 setup (a) and the polarime-
try setup (b). This represents the first configuration, used from run
707 to run 726 (for an overview of the runs, see Tab. 3.1). See also
the second configuration in Fig. B.2. The coordinate system is defined
at the bottom right of each part of the figures. In terms of these coor-
dinates, detectors at intermediate angles of ϕ = 45◦, 135◦, 225◦ and
315◦ were mounted at a backward angle of θ = 135◦. The polarization
axis of the HIγS gamma-ray coincides with the x-axis, as indicated
by the central two-sided arrow, and the direction of propagation of
the beam is in the positive z-axis. The detector colors are identical to
the colors of the colored residual bands in the spectra of Sec. D. In
(a), additional detectors in the γ3 setup, which were not used in this
work, are shown as as empty shapes with dashed lines.
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Figure B.2.: Schematic detector arrangement in the γ3 setup (a) and the polarime-
try setup (b). This represents the second configuration, used from run
727 to run 770. The arrangement of the detectors in the γ3 setup is
identical to the first configuration. See also the description of the first
configuration in Fig. B.1.
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C. List of Gamma Energies

Table C.1.: Reference list of 82Kr photon energies which are relevant in the
82Kr/82Se experiment. The photon energies are sorted by the initally
excited states from which they are emitted. A new initial state is indi-
cated by a line without an ID number in which the level’s excitation
energy and quantum numbers are shown. It may be followed by la-
belled photon energies of transitions to the given lower-lying states.
The IDs in the first column are used as labels for the spectra of this
appendix (Sec. D).

ID Energy Initial state Final state Reference
(keV)

776.526(8) 2+1
K0 776.511(10) 0+1 [138]

1474.900(8) 2+2
K1 1474.895(10) 0+1 [138]

K1_0 698.361(10) 2+1 [138]

1487.70(5) 0+2
K2_0 711.09(7) 2+1 [138]

3254.36(24) 1−1
K3 3254.36(24) 0+1

K3_0 2477.84(24) 2+1
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Table C.1.: (Continued).
K3_1 1779.46(24) 2+2
K3_2 1766.66(25) 0+2

3770.4(8) 1+1
K4 3770.4(8) 0+1

K4_0 2993.9(8) 2+1
K4_1 2295.5(8) 2+2
K4_2 2282.7(8) 0+2

3815.25(7) 1+2
K5 3815.25(7) 0+1 [138]

K5_0 3038.72(7) 2+1 [138]
K5_1 2340.35(7) 2+2
K5_2 2327.55(9) 0+2

3918.7(5) 1−2
K6 3918.7(5) 0+1 [138]

K6_0 3142.1(5) 2+1
K6_1 2443.8(5) 2+2
K6_2 2431.0(5) 0+2

3958.05(14) 1+3
K7 3958.05(14) 0+1 [138]

K7_0 3181.52(14) 2+1
K7_1 2483.15(14) 2+2
K7_2 2470.35(15) 0+2

4055.8(5) 1+4
K8 4055.8(5) 0+1

K8_0 3279.2(5) 2+1
K8_1 2580.9(5) 2+2
K8_2 2568.1(5) 0+2
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Table C.2.: Reference list of 82Se photon energies which are relevant in the
82Kr/82Se experiment. See also the description of Tab. C.1.

ID Energy Initial state Final state Reference
(keV)

654.71(16) 2+1
S0 654.7(5) 0+1 [138]

1410.22(17) 0+2
S1_0 755.60(10) 2+1 [138]

1731.51(10) 2+2
S2 1731.50(10) 0+1 [138]
S2_0 1076.40(10) 2+1 [138]

2494.7(5) 1
S3 2494.8(5) 0+1 [137]
S3_0 1840.1(5) 2+1 [137]

2980.56(10) 1+1
S4 2980.56(10) 0+1 [137]
S4_0 2325.87(9) 2+1 [137]
S4_1 1570.34(20) 0+2
S4_2 1249.05(14) 2+2

3034.1(4) 2+3
S5 3034.1(4) 0+1 [137]
S5_0 2379.4(4) 2+1 [137]
S5_1 1623.9(4) 0+2
S5_2 1302.6(4) 2+2

3244.64(14) 1+2
S6 3244.64(14) 0+1
S6_0 2589.93(21) 2+1
S6_1 1834.42(22) 0+2
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Table C.2.: (Continued).
S6_2 1513.13(17) 2+2

3342.89(17) 1−1
S7 3342.89(17) 0+1
S7_0 2688.17(16) 2+1
S7_1 1932.67(24) 0+2
S7_2 1611.38(20) 2+2

3632.0(4) 1+3
S8 3632.0(4) 0+1
S8_0 2977.3(4) 2+1
S8_1 2221.8(4) 0+2
S8_2 1900.5(4) 2+2

3806.63(18) 1−2
S9 3806.63(18) 0+1
S9_0 3151.50(10) 2+1
S9_1 2396.41(24) 0+2
S9_2 2075.12(20) 2+2

3823.90(26) 1+4
S10 3823.90(26) 0+1
S10_0 3168.66(8) 2+1
S10_1 2413.68(31) 0+2
S10_2 2091.79(12) 2+2

4061.9(5) 1−3
S11 4061.9(5) 0+1
S11_0 3407.13(24) 2+1
S11_1 2651.7(5) 0+2
S11_2 2330.4(5) 2+2
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Table C.3.: Reference list of background photons which are relevant in the
82Kr/82Se experiment. Compared to the lists of NRF photons in this
section (see, e.g., Tab. C.1), this one only shows photon energies and
the process in which they have most probably been created.

ID Energy Origin Reference
(keV)

0 328.16(7) unknown
1 338.48(15) unknown
2 352.10(16) unknown
3 409.85(22) unknown
4 443.42(9) unknown
5 463.09(8) unknown
6 510.9989461(31) e+ − e− annihilation [2]
7 583.1870(20) Decay 208Tl→ 208Pb [215]
8 609.316(4) Decay 214Bi→ 214Po [186]
9 665.447(9) Decay 214Bi→ 214Po [186]

10 678.34(19) unknown
11 688.20(16) unknown
12 727.25(9) unknown
13 768.360(5) Decay 214Bi→ 214Po [186]
14 778.43(16) unknown
15 786.35(14) Decay 214Bi→ 214Po [186]
16 788.742(8) Decay 138La→ 138Ce [173]
17 794.95(6) unknown
18 806.180(9) Decay 214Bi→ 214Po [186]
19 810.63(14) unknown
20 835.73(7) unknown
21 860.557(4) Decay 208Tl→ 208Pb [215]
22 866.94(20) unknown
23 911.204(4) Decay 228Ac→ 228Th [252]
24 934.056(6) Decay 214Bi→ 214Po [186]
25 963.86(15) unknown
26 968.974(17) Decay 228Ac→ 228Th [252]
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Table C.3.: (Continued).
27 977.19(10) unknown
28 1001.07(4) unknown
29 1021.997892(6) e+ − e− annihilation pileup [2]
30 1085.42(18) unknown
31 1111.56(20) unknown
32 1120.249(6) Decay 214Bi→ 214Po [186]
33 1155.210(8) Decay 214Bi→ 214Po [186]
34 1238.122(7) Decay 214Bi→ 214Po [186]
35 1280.976(10) Decay 214Bi→ 214Po [186]
36 1377.669(8) Decay 214Bi→ 214Po [186]
37 1385.310(13) Decay 214Bi→ 214Po [186]
38 1401.515(12) Decay 214Bi→ 214Po [186]
39 1407.988(11) Decay 214Bi→ 214Po [186]
40 1435.795(10) Decay 138La→ 138Ba [173]
41 1460.820(5) Decay 40K→ 40Ar [214]
42 1495.90(6) unknown
43 1501.90(10) unknown
44 1509.210(10) Decay 214Bi→ 214Po [186]
45 1523.70(27) unknown
46 1538.53(5) Decay 214Bi→ 214Po [186]
47 1543.34(5) Decay 214Bi→ 214Po [186]
48 1575.68(29) unknown
49 1583.204(15) Decay 214Bi→ 214Po [186]
50 1588.190(30) Decay 228Ac→ 228Th [252]
51 1594.75(7) Decay 214Bi→ 214Po [186]
52 1599.37(5) Decay 214Bi→ 214Po [186]
53 1620.73(4) unknown
54 1630.627(10) Decay 228Ac→ 228Th [252]
55 1638.39(14) unknown
56 1661.274(16) Decay 214Bi→ 214Po [186]
57 1684.012(20) unknown
58 1692.93(24) unknown
59 1729.595(11) Decay 214Bi→ 214Po [186]
60 1764.491(10) Decay 214Bi→ 214Po [186]
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Table C.3.: (Continued).
61 1810.23(32) unknown
62 1838.36(4) Decay 214Bi→ 214Po [186]
63 1847.429(16) Decay 214Bi→ 214Po [186]
64 1963.62(12) unknown
65 2103.44(17) unknown
66 2086.64(31) unknown
67 2118.514(19) Decay 214Bi→ 214Po [186]
68 2179.52(18) unknown
69 2204.059(22) Decay 214Bi→ 214Po [186]
70 2230.78(35) unknown
71 2447.700(30) Decay 214Bi→ 214Po [186]
72 2614.511(10) Decay 208Tl→ 208Pb [215]
73 2690.4(4) unknown
74 2741.9(4) unknown
75 2761.5(4) unknown
76 2939.86(26) unknown

Table C.4.: Reference list of photon energies of 13C which are relevant in the
82Kr/82Se experiment. See also the description of Tab. C.1.

ID Energy Initial state Final state Reference
(keV)

3684.507(19) 3/2−1
C0 3683.921(23) 1/2−1 [253]

Table C.5.: Reference list of photon energies of 35Cl which are relevant in the
82Kr/82Se experiment. See also the description of Tab. C.1.
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Table C.5.: (Continued).
ID Energy Initial state Final state Reference

(keV)

1219.29(11) 1/2+1
C5_0 1219.30(20) 3/2+1 [174]

1763.04(7) 5/2+1
C5_1 1763.13(10) 3/2+1 [174]

2693.75(8) 3/2+2
C5_2 2693.60(10) 3/2+1 [174]
C5_2_0 1474.80(30) 1/2+1 [174]
C5_2_1 930.90(20) 5/2+1 [174]

3002.30(30) 5/2+2
C5_3 3002.4(4) 3/2+1 [174]

3918.49(17) 3/2+3
C5_4 3918.4(6) 3/2+1 [174]
C5_4_0 2155.1(1.5) 5/2+1 [174]

Table C.6.: Reference list of photon energies of 37Cl which are relevant in the
82Kr/82Se experiment. See also the description of Tab. C.1.

ID Energy Initial state Final state Reference
(keV)

3086.12(7) 5/2+1
C7_0 3086.20(20) 3/2+1 [175]

3741.19(10) 5/2−1
C7_1 3741.05(10) 3/2+1 [175]
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Table C.6.: (Continued).

Table C.7.: Reference list of photon energies of the 56Co source which are relevant
in the 82Kr/82Se experiment. See also the description of Tab. C.3.

ID Energy Origin Reference
(keV)

CO0 846.7700(20) [177]
CO1 1037.843(4) [177]
CO2 1175.101(4) [177]
CO3 1238.2880(30) [177]
CO4 1360.212(4) [177]
CO5 1771.357(4) [177]
CO6 2015.215(5) [177]
CO7 2034.791(5) [177]
CO8 2113.14(6) [177]
CO9 2212.944(4) [177]
CO10 2598.500(4) [177]
CO11 3009.654(4) [177]
CO12 3202.029(8) [177]
CO13 3253.503(4) [177]
CO14 3273.079(4) [177]
CO15 3451.232(4) [177]
CO16 3548.05(6) [177]

Table C.8.: Reference list of photon energies of 56Fe which are relevant in the
82Kr/82Se experiment. See also the description of Tab. C.1.

ID Energy Initial state Final state Reference
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Table C.8.: (Continued).
(keV)

846.7778(19) 2+1
F0 846.7638(19) 0+1 [177]

3369.95(7) 2+4
F1 3369.84(4) 0+1 [177]
F1_0 2523.06(5) 2+1 [177]

3448.41(6) 1+1
F2 3448.0(0) 0+1 [177]
F2_0 2601.0(0) 2+1 [177]

3600.21(7) (1,2+)
F3 3600.0(0) 0+1 [177]
F3_0 2753.0(0) 2+1 [177]
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D. Spectra

This section presents the sum spectra of all detectors from all unique experimental
runs. They are sorted by the photon-beam energy from low to high. Measurements
at the same beam energy, but with empty targets, follow the actual experimental
runs. At the very end of this section, a background measurement is shown.

The colors of the spectra in this section correspond to the colors in Sec. B. As
described in Sec. 4.4, the continuous background in each spectrum was inter-
polated to determine the sensitivity limit. The interpolating curve is shown as a
dashed line in each spectrum. The positions of all background lines and all NRF
lines which could have been excited by the beam are shown. In particular, the
transition energies of decays to the excited states 0+2 , 2+1 , and 2+2 are shown for
82Kr and 82Se. Sometimes, there was not enough space for all labels of transitions.
In this case, background labels are simply not shown. The bottom panel of each
spectrum shows the residual of the background-subtracted spectrum, compared to
the sensitivity limits LC and ND from Sec. 4.4.1. It was normalized to the quantity
ND for better visibility.
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Figure D.1.: Spectra of the 82Se target in the γ3 setup at a beam energy of 2.40MeV
between 300 keV and 1100 keV.
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Figure D.2.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.40MeV between 300 keV and 1100 keV.
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Figure D.3.: Spectra of the 82Se target in the γ3 setup at a beam energy of 2.40MeV
between 1100 keV and 1900 keV.
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Figure D.4.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.40MeV between 1100 keV and 1900 keV.
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Figure D.5.: Spectra of the 82Se target in the γ3 setup at a beam energy of 2.40MeV
between 1900 keV and 2700 keV.
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Figure D.6.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.40MeV between 1900 keV and 2700 keV.
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Figure D.7.: Spectra of the 82Se target in the γ3 setup at a beam energy of 2.40MeV
between 2700 keV and 3500 keV.
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Figure D.8.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.40MeV between 2700 keV and 3500 keV.
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Figure D.9.: Spectra of the 82Se target in the γ3 setup at a beam energy of 2.50MeV
between 300 keV and 1100 keV.
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Figure D.10.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.50MeV between 300 keV and 1100 keV.

195



C5_2_0C5_0 C5_1 S3_031
33 34

35

36
37

38
39

41
42
43

46
48

49
50

53
56

57
58

59

60
61

62

63

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

1250 1400 1550 1700 1850
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.11.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.50MeV between 1100 keV and 1900 keV.
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Figure D.12.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.50MeV between 1100 keV and 1900 keV.
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Figure D.13.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.50MeV between 1900 keV and 2700 keV.
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Figure D.14.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.50MeV between 1900 keV and 2700 keV.
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Figure D.15.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.50MeV between 2700 keV and 3500 keV.
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Figure D.16.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.50MeV between 2700 keV and 3500 keV.
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Figure D.17.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.65MeV between 300 keV and 1100 keV.
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Figure D.18.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.65MeV between 300 keV and 1100 keV.
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Figure D.19.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.65MeV between 1100 keV and 1900 keV.
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Figure D.20.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.65MeV between 1100 keV and 1900 keV.
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Figure D.21.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.65MeV between 1900 keV and 2700 keV.
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Figure D.22.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.65MeV between 1900 keV and 2700 keV.
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Figure D.23.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.65MeV between 2700 keV and 3500 keV.
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Figure D.24.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.65MeV between 2700 keV and 3500 keV.
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Figure D.25.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.80MeV between 300 keV and 1100 keV.
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Figure D.26.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.80MeV between 300 keV and 1100 keV.
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Figure D.27.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.80MeV between 1100 keV and 1900 keV.
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Figure D.28.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.80MeV between 1100 keV and 1900 keV.
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Figure D.29.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.80MeV between 1900 keV and 2700 keV.
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Figure D.30.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.80MeV between 1900 keV and 2700 keV.
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Figure D.31.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.80MeV between 2700 keV and 3500 keV.
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Figure D.32.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.80MeV between 2700 keV and 3500 keV.
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Figure D.33.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 300 keV and 1100 keV.
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Figure D.34.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 300 keV and 1100 keV.
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Figure D.35.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 1100 keV and 1900 keV.
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Figure D.36.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 1100 keV and 1900 keV.
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Figure D.37.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 1900 keV and 2700 keV.
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Figure D.38.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 1900 keV and 2700 keV.
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Figure D.39.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 2700 keV and 3500 keV.
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Figure D.40.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 2700 keV and 3500 keV.
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Figure D.41.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 300 keV and 1100 keV.
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Figure D.42.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 300 keV and 1100 keV.
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Figure D.43.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 1100 keV and 1900 keV.
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Figure D.44.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 1100 keV and 1900 keV.
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Figure D.45.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 1900 keV and 2700 keV.
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Figure D.46.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 1900 keV and 2700 keV.
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Figure D.47.: Spectra of the 82Se target in the γ3 setup at a beam energy of
2.98MeV between 2700 keV and 3500 keV.
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Figure D.48.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 2.98MeV between 2700 keV and 3500 keV.
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Figure D.49.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.10MeV between 300 keV and 1100 keV.
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Figure D.50.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.10MeV between 300 keV and 1100 keV.
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Figure D.51.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.10MeV between 1100 keV and 1900 keV.
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Figure D.52.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.10MeV between 1100 keV and 1900 keV.
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Figure D.53.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.10MeV between 1900 keV and 2700 keV.
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Figure D.54.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.10MeV between 1900 keV and 2700 keV.
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Figure D.55.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.10MeV between 2700 keV and 3500 keV.
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Figure D.56.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.10MeV between 2700 keV and 3500 keV.
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Figure D.57.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.20MeV between 300 keV and 1100 keV.
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Figure D.58.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.20MeV between 300 keV and 1100 keV.
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Figure D.59.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.20MeV between 1100 keV and 1900 keV.
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Figure D.60.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.20MeV between 1100 keV and 1900 keV.
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Figure D.61.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.20MeV between 1900 keV and 2700 keV.
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Figure D.62.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.20MeV between 1900 keV and 2700 keV.
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Figure D.63.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.20MeV between 2700 keV and 3500 keV.
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Figure D.64.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.20MeV between 2700 keV and 3500 keV.
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Figure D.65.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.35MeV between 300 keV and 1100 keV.
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Figure D.66.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.35MeV between 300 keV and 1100 keV.
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Figure D.67.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.35MeV between 1100 keV and 1900 keV.
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Figure D.68.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.35MeV between 1100 keV and 1900 keV.
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Figure D.69.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.35MeV between 1900 keV and 2700 keV.
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Figure D.70.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.35MeV between 1900 keV and 2700 keV.
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Figure D.71.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.35MeV between 2700 keV and 3500 keV.
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Figure D.72.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.35MeV between 2700 keV and 3500 keV.
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Figure D.73.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.35MeV between 3500 keV and 4300 keV.

258 D. Spectra



0.0

2.0

Co
un

ts
(1

01  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

Co
un

ts
(1

01  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

Co
un

ts
(1

01  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

Co
un

ts
(1

01  k
eV

1 )

3650 3800 3950 4100 4250
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.74.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.35MeV between 3500 keV and 4300 keV.
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Figure D.75.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.50MeV between 300 keV and 1100 keV.
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Figure D.76.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.50MeV between 300 keV and 1100 keV.
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Figure D.77.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.50MeV between 1100 keV and 1900 keV.
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Figure D.78.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.50MeV between 1100 keV and 1900 keV.
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Figure D.79.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.50MeV between 1900 keV and 2700 keV.

264 D. Spectra



F1_0 F2_064 65
66

67

68
69

70

71
72

73

0.0

0.5

1.0

Co
un

ts
(1

03  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

03  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

03  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

03  k
eV

1 )

2050 2200 2350 2500 2650
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.80.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.50MeV between 1900 keV and 2700 keV.
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Figure D.81.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.50MeV between 2700 keV and 3500 keV.
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Figure D.82.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.50MeV between 2700 keV and 3500 keV.
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Figure D.83.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.50MeV between 3500 keV and 4300 keV.
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Figure D.84.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.50MeV between 3500 keV and 4300 keV.
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Figure D.85.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.65MeV between 300 keV and 1100 keV.
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Figure D.86.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.65MeV between 300 keV and 1100 keV.
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Figure D.87.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.65MeV between 1100 keV and 1900 keV.
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Figure D.88.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.65MeV between 1100 keV and 1900 keV.
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Figure D.89.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.65MeV between 1900 keV and 2700 keV.
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Figure D.90.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.65MeV between 1900 keV and 2700 keV.
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Figure D.91.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.65MeV between 2700 keV and 3500 keV.
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Figure D.92.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.65MeV between 2700 keV and 3500 keV.
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Figure D.93.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.65MeV between 3500 keV and 4300 keV.
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Figure D.94.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.65MeV between 3500 keV and 4300 keV.
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Figure D.95.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.80MeV between 300 keV and 1100 keV.
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Figure D.96.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.80MeV between 300 keV and 1100 keV.

281



C5_1
S2

31
33

34
35

36
37

38
39

41
42
43
44

46
48
49
50

53
56

57

58

59
60

61
62

63

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

102

103

Co
un

ts
(k

eV
1 )

1250 1400 1550 1700 1850
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.97.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.80MeV between 1100 keV and 1900 keV.
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Figure D.98.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.80MeV between 1100 keV and 1900 keV.
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Figure D.99.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.80MeV between 1900 keV and 2700 keV.
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Figure D.100.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.80MeV between 1900 keV and 2700 keV.
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Figure D.101.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.80MeV between 2700 keV and 3500 keV.
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Figure D.102.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.80MeV between 2700 keV and 3500 keV.

287



C0 C5_4
C7_1S8

S9
S10

0.0

0.5

1.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

0.5

1.0

Co
un

ts
(1

02  k
eV

1 )

3650 3800 3950 4100 4250
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.103.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.80MeV between 3500 keV and 4300 keV.
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Figure D.104.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.80MeV between 3500 keV and 4300 keV.
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Figure D.105.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.82MeV between 300 keV and 1100 keV.
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Figure D.106.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.82MeV between 300 keV and 1100 keV.
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Figure D.107.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.82MeV between 1100 keV and 1900 keV.
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Figure D.108.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.82MeV between 1100 keV and 1900 keV.
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Figure D.109.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.82MeV between 1900 keV and 2700 keV.
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Figure D.110.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.82MeV between 1900 keV and 2700 keV.
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Figure D.111.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.82MeV between 2700 keV and 3500 keV.
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Figure D.112.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.82MeV between 2700 keV and 3500 keV.
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Figure D.113.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.82MeV between 3500 keV and 4300 keV.
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Figure D.114.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.82MeV between 3500 keV and 4300 keV.
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Figure D.115.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.95MeV between 300 keV and 1100 keV.
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Figure D.116.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.95MeV between 300 keV and 1100 keV.
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Figure D.117.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.95MeV between 1100 keV and 1900 keV.
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Figure D.118.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.95MeV between 1100 keV and 1900 keV.
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Figure D.119.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.95MeV between 1900 keV and 2700 keV.
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Figure D.120.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.95MeV between 1900 keV and 2700 keV.
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Figure D.121.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.95MeV between 2700 keV and 3500 keV.
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Figure D.122.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.95MeV between 2700 keV and 3500 keV.
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Figure D.123.: Spectra of the 82Se target in the γ3 setup at a beam energy of
3.95MeV between 3500 keV and 4300 keV.
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Figure D.124.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 3.95MeV between 3500 keV and 4300 keV.
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Figure D.125.: Spectra of the empty selenium target in the γ3 setup at a beam
energy of 3.95MeV between 300 keV and 1100 keV.
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Figure D.126.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.95MeV between 300 keV and 1100 keV.
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Figure D.127.: Spectra of the empty selenium target in the γ3 setup at a beam
energy of 3.95MeV between 1100 keV and 1900 keV.
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Figure D.128.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.95MeV between 1100 keV and 1900 keV.
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Figure D.129.: Spectra of the empty selenium target in the γ3 setup at a beam
energy of 3.95MeV between 1900 keV and 2700 keV.
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Figure D.130.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.95MeV between 1900 keV and 2700 keV.
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Figure D.131.: Spectra of the empty selenium target in the γ3 setup at a beam
energy of 3.95MeV between 2700 keV and 3500 keV.
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Figure D.132.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.95MeV between 2700 keV and 3500 keV.
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Figure D.133.: Spectra of the empty selenium target in the γ3 setup at a beam
energy of 3.95MeV between 3500 keV and 4300 keV.
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Figure D.134.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 3.95MeV between 3500 keV and 4300 keV.
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Figure D.135.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 300 keV and 1100 keV.
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Figure D.136.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 4.10MeV between 300 keV and 1100 keV.
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Figure D.137.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 1100 keV and 1900 keV.
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Figure D.138.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 4.10MeV between 1100 keV and 1900 keV.
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Figure D.139.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 1900 keV and 2700 keV.
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Figure D.140.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 4.10MeV between 1900 keV and 2700 keV.
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Figure D.141.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 2700 keV and 3500 keV.
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Figure D.142.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 4.10MeV between 2700 keV and 3500 keV.
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Figure D.143.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 3500 keV and 4300 keV.
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Figure D.144.: Spectra of the 82Kr target in the polarimetry setup at a beam energy
of 4.10MeV between 3500 keV and 4300 keV.
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Figure D.145.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 300 keV and 1100 keV.
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Figure D.146.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 4.10MeV between 300 keV and 1100 keV.

331



C5_1
S2

31
33

34
35

36
37

38
39

41
42
43
44

46
48
49
50

53
56

57

58

59
60

61
62

63

101

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

101

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

101

102

103

Co
un

ts
(k

eV
1 )

-1
 0
 1

(N
S

N
B

)/N
D

101

102

103

Co
un

ts
(k

eV
1 )

1250 1400 1550 1700 1850
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.147.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 1100 keV and 1900 keV.
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Figure D.148.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 4.10MeV between 1100 keV and 1900 keV.

333



C5_4_0 S11_1S11_264
65

66
67

68
69

70 71
72

73

0.0

2.0

4.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

4.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

4.0

Co
un

ts
(1

02  k
eV

1 )

-1
 0
 1

(N
S

N
B

)/N
D

0.0

2.0

4.0

Co
un

ts
(1

02  k
eV

1 )

2050 2200 2350 2500 2650
Energy (keV)

-1
 0
 1

(N
S

N
B

)/N
D

Figure D.149.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 1900 keV and 2700 keV.
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Figure D.150.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 4.10MeV between 1900 keV and 2700 keV.
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Figure D.151.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 2700 keV and 3500 keV.
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Figure D.152.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 4.10MeV between 2700 keV and 3500 keV.
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Figure D.153.: Spectra of the 82Se target in the γ3 setup at a beam energy of
4.10MeV between 3500 keV and 4300 keV.
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Figure D.154.: Spectra of the empty krypton target in the polarimetry setup at a
beam energy of 4.10MeV between 3500 keV and 4300 keV.
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Figure D.155.: Spectrum of the background at the γ3 setup between 300 keV and
1100 keV (Run 742).
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Figure D.156.: Spectrum of the background at the polarimetry setup between
300 keV and 1100 keV (Run 742).
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Figure D.157.: Spectrum of the background at the γ3 setup between 1100 keV and
1900 keV (Run 742).
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Figure D.158.: Spectrum of the background at the polarimetry setup between
1100 keV and 1900 keV (Run 742).
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Figure D.159.: Spectrum of the background at the γ3 setup between 1900 keV and
2700 keV (Run 742).
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Figure D.160.: Spectrum of the background at the polarimetry setup between
1900 keV and 2700 keV (Run 742).
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Figure D.161.: Spectrum of the background at the γ3 setup between 2700 keV and
3500 keV (Run 742).
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Figure D.162.: Spectrum of the background at the polarimetry setup between
2700 keV and 3500 keV (Run 742).
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Figure D.163.: Spectrum of the background at the γ3 setup between 3500 keV and
4300 keV (Run 742).
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Figure D.164.: Spectrum of the background at the polarimetry setup between
3500 keV and 4300 keV (Run 742).
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