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ABSTRACT

ith an ever-increasing number of vehicles roaming the streets and a general
intensification of ongoing daily traffic the current vehicular safety systems are
not able to reduce the number of traffic accidents further.

As the majority of severe or deadly traffic accidents nowadays is caused by human
error, car manufacturers and researchers alike focus on the self-driving vehicle as a
promising solution to this problem, as a machine is unaffected from human conditions
such as tiredness or drunk driving.

To enhance the overall achievable driving safety and comfort the self-driving vehi-
cles rely on an additional map database, besides the hardware sensor system installed
onboard.

The so-called High Definition Map (HD Map), a highly precise virtual model of the
actual real-world provides detailed information about the ongoing traffic situation
ahead of the car’s sensor ranges. Otherwise critical traffic situations can be resolved
by this a priori knowledge and if necessary, a handover of the driving control back to
a human driver can be triggered.

The maintenance of the HD Map is a major challenge, as due to the importance
of the map for the self-driving vehicle map updates have to be realized in much
shorter time (minutes instead of months) compared to established concepts common
for human-oriented digital navigation maps.

This thesis provides contributions in the areas of Distribution, Generation and Provi-
sion of such map updates, as the key communication challenges of the maintenance
procedure.

Our first contribution is the development, implementation and evaluation of a pro-
tocol that realizes the context-specific distribution of partial and incremental map up-
dates. The protocol has been designed with the prerequisites and requirements of a
self-driving vehicle in mind. To achieve the efficient dissemination of updates to all
cars the protocol relies on infrastructure-based (cellular) and ad hoc communication
(WLAN) between the vehicles. The performance of the protocol is evaluated based on
realistic traffic simulations and actual map content.

As our second contribution, we develop and implement an algorithm that detects
changes in the road infrastructure (e.g. induced by construction sides) based solely
on low-cost sensor information. This detection algorithm facilitates the succeeding
update generation of the map data in the identified area. We evaluate the capabilities
of the detection algorithm under a real-world data set in the example of a highway
construction site scenario.

To enhance the provision of map updates and vehicular sensor data via wireless
communication, we conduct our third and most comprehensive contribution. We fo-
cus on the design and enhancement of a variety of different techniques and concepts
to obtain broad knowledge about the serving wireless network to be provided in a sub-



sequent step as valuable information to related transmission scheduling algorithms.
These techniques and concepts include the measurement and prediction of the various
performance indicators of actual deployed cellular networks, via low-cost hardware
and software, as well as their further usage in simulation and network connectivity
maps, always with an emphasis on easy deployability and the reutilization of existing
components.

Overall, this thesis presents essential contributions, which in their collectivity sup-
port the realization of a robust, dynamic and reliable maintenance cycle of an HD Map
for self-driving vehicles.
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KURZFASSUNG

Durch die staindig anwachsende Zahl an Fahrzeugen auf den Strafien und die allgemei-
ne Intensivierung des tdglichen Verkehrs sind die aktuell verfiigbaren Fahrzeugsicher-
heitssysteme nicht mehr dazu in der Lage die Zahl der auftretenden Verkehrsunfille
weiter zu reduzieren.

Da die meisten schweren oder tédlichen Verkehrsunfélle heute durch menschliches
Versagen verursacht werden, forschen Automobilhersteller und Wissenschaftler glei-
chermafien an selbstfahrenden Fahrzeugen als vielversprechende Losung fiir dieses
Problem, da eine Maschine nicht von menschlichen Eigenschaften wie z.B. Miidigkeit
oder Alkoholisierung beeinflusst wird.

Um die insgesamt erreichbare Fahrsicherheit und den Fahrkomfort der selbstfahren-
den Fahrzeuge zu gewéhrleisten, kommt neben den an Bord installierten Sensorsyste-
men eine zusitzliche Kartendatenbank zum Einsatz.

Die so genannte High Definition Map (HD Karte), ein hochprazises virtuelles Modell
der realen Welt liefert detaillierte Informationen iiber die aktuelle Verkehrssituation
auflerhalb des Blickfeldes des Fahrzeugs. Mit diesem a priori Wissen konnen andern-
falls kritische Verkehrssituationen umgangen oder falls notwendig eine komfortable
Ubergabe der Fahrsteuerung an einen menschlichen Fahrer ausgelst werden.

Die Wartung der HD Karte ist ein offenes Forschungsfeld, da aufgrund der Bedeu-
tung der Karte fiir die selbstfahrenden Fahrzeugkarte Updates in wesentlich kiirzerer
Zeit (Minuten statt Monaten) realisiert werden miissen, als dies die etablierten Kon-
zepte fiir digitale Navigationskarten von menschlichen Fahrern im Stande zu leisten
sind.

Die vorliegende Arbeit liefert hierzu wesentliche Beitrdge in den Bereichen Generie-
rung, Verteilung und Bereitstellung solcher Kartenupdates, als die zentralen kommuni-
kative Herausforderungen in Bezug auf die Kartenwartung.

Unser erster Beitrag in diesem Zusammenhang ist die Entwicklung, Implementie-
rung und Evaluierung eines Protokolls, das die kontextspezifische Verbreitung von par-
tiellen und inkrementellen Kartenupdates realisiert. Das Protokoll wurde dabei unter
Berticksichtigung der spezifischen Voraussetzungen und Anforderungen eines selbst-
fahrenden Fahrzeugs entwickelt. Um eine effiziente Verbreitung von Updates unter
allen betroffenen Fahrzeugen zu realisieren greift es dabei wahlweise auf infrastruk-
turgebundene (zelluldre) oder ad hoc basierte (WLAN), drahtlose Kommunikation
zuriick. Die Performanz des Protokolls wird anhand realistischer Verkehrssimulatio-
nen und realer Karteninhalte bewertet.

Als zweiten Beitrag entwickeln und implementieren wir einen Algorithmus, der Ver-
dnderungen in der Strafleninfrastruktur (z.B. verursacht durch Baustellen) erkennt, der
ausschlieflich auf kostengiinstigen Sensorinformationen basiert. Der Erkennungsalgo-
rithmus ermdoglicht damit eine anschlieffende schnelle, da spezifische Aktualisierung
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des Kartenmaterials im identifizierten Bereich. Die Performanz des Algorithmus wird
am realen Beispiel einer Verkehrsbaustelle auf der Autobahn bewertet.

Um die Bereitstellung der genannten Kartenupdates und Fahrzeugsensordaten
durch drahtlose Kommunikation zu verbessern, leisten wir unseren dritten und umfas-
sendsten Beitrag. Dabei konzentrieren wir uns auf das Design und die Verbesserung
vielfdltiger Techniken und Konzepte, um ein breites Wissen tiber das zugrundeliegen-
de Netzwerk zur drahtlosen Kommunikation zu erhalten. Dieses wertvolle Wissen
wird dann in einem spédteren Schritt bereits existierenden Algorithmen zur besseren
Planung der Dateniibertragung bereit gestellt. Zu diesem Beitrag zdhlen die Messung
und Vorhersage einer Auswahl der verschiedenen Leistungsindikatoren der derzeit
(August 2019) eingesetzten Mobilfunknetze tiber kostengtinstige Hard- und Software,
sowie deren Weiterverwendung in der Simulation und der Generierung von soge-
nannten Verbindungskarten der Netzqualitdt. Der Fokus unserer Beitrdge liegt hierbei
auf der einfachen, grofiflichigen Anwendung unter der Nutzung bereits bestehender
Komponenten.

Zusammenfassend prisentiert diese Arbeit zentrale Beitrdge, die in ihrer Gesamt-
heit die Realisierung einer robusten, dynamischen und zuverldssigen Wartung einer
HD Karte fiir selbstfahrende Fahrzeuge wesentlich unterstiitzen.
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INTRODUCTION

ontinuous development of active and passive safety systems, for example ESP,
ABS, the airbag or the brake assist, has tremendously increased the safety of
motoring since the beginning of the car manufacturing.

However with a forecast of continuous increase of traffic in the near future [1, 2],
the number of severe and deadly traffic accidents is expected to rise again despite the
currently available safety features at hand. The reasons for this increase are manifold
like continuous urbanization and growth in city sizes, as well as the further aging of
the population and technical advancements such as smartphones [3].

These and other related trends lead car manufacturers and researchers to think
about new mechanisms on how driving safety can be further increased and how
nowadays drivers can be supported.

88% of all German traffic accidents were related to human driver’s fault in the year
2017 [4]. So self-driving and -communicating cars are seen as a major opportunity to
increase driving safety. Autonomously driving vehicles are not influenced by human
errors such as drunk or overtired driving. The idea for self-driving cars is nearly as old
as the car itself dating back to at least the first decades of the 20th century [5]. Besides
the overall improvement of safety and driving efficiency, the increase of comfort while
traveling is also seen as an important selling point for future customers [6].

Through several major recent advances in many different technological areas, such
as sensing systems and computational power, the self-driving vehicle is now about
to become a reality [7]. The autonomous car can rely on a multitude of sensors, for
example radar (radio detection and ranging), ultra sonic sensors, cameras, lidar (light
detection and ranging) as well as Global Navigation Satellite Systems (GNSS) [8] and
their intelligent fusion. As a result, it can predict and avoid critical driving situations,
while achieving reaction times and viewing capabilities that go far beyond those, any
human could possibly achieve.

However with all its sensing capabilities the self-driving vehicle still might experi-
ence dangerous or uncomfortable driving situations, that can only be properly avoided
with a foresight, that goes beyond the own sensor range of the car. A traffic jam or
an accident behind a corner or ice on the road ahead are just some of such examples.
To address such situations and to ensure the human safety and trust in the technical
systems, the self-driving vehicles also rely on an additional “virtual” sensor for their
driving task, the so called High Definition Map (HD Map) [9-12]. This map provides
detailed and critical information to the self-driving vehicles regarding their current
surrounding traffic situation and environment. The provided information is highly
accurate geo-referenced up to the sub-meter level of precision. In comparison nowa-
days, standard navigation map data only achieves a localization accuracy of several
meters. The HD Map thus can be seen much more as a highly precise virtual 3D rep-
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resentation of the actual real world [10, 13]. That way the self-driving car can compare
its own sensor-readings with a virtual reference, which facilitates the driving task
significantly.

Due to the high degree of precision and the time criticality of the contained informa-
tion the HD Map must be quickly updated. The general problem already present for
normal navigation systems map data [14] is amplified by several magnitudes [12]. The
self-driving vehicles have to be able to always rely on the most up to date map data to
properly execute driving decisions while on the road. As result the HD Map has to be
continuously maintained and updates must be delivered wirelessly to the self-driving
car as indicated in Figure 1. To obtain information regarding the current traffic situa-
tion from public authorities, such as the police, is not sufficient enough therefore. Also
the self-driving vehicles themselves are required to continuously collect information
about the current traffic situation. Without their sensor data being uploaded to a data
processing and aggregating entity, the sufficient generation of necessary map updates
might not be achieved. To develop and assess new methodologies to maintain this
data loop is the key contribution of this thesis as explained in the following.

1.1 MOTIVATION FOR DYNAMIC MAPS FOR HIGHLY AUTOMATED DRIVING

By relying on the HD Map the self-driving car increases its capabilities to gather intel
about the current traffic situation around itself and ahead along its track, beyond the
arearead by its own sensor’s range and capabilities. Besides safety relevant information
for the strategic planning of the driving task, the HD Map enhances the other on
board sensor’s performance by providing them with a virtual reference [12, 13, 16-18].
This reference can be used to compare the sensor’s readings with an expected value
(provided by the HD Map ) [11, 18, 19].

By combing all information the performance of the sensory results is improved.
In conclusion this yields a higher degree of comfort and performance under highly
automated driving. For example, the exact localization of the vehicle’s current position
on the street can be improved by fusing different sensor readings (GNSS, wheel ticks,
accelerometer, ...) together and combining their information based on the map data.
The camera of an automated vehicle for example can be used to identify landmarks
that are precisely geo-referenced within the map. These geo-referenced positions are
then fused into the car’s current position estimation (based on Global Navigation
Satellite Systems data) and improve the overall localization accuracy.

"Rather than having to figure out what the world looks like and what it
means from scratch every time we turn on the (driving Al) software, we
tell it what the world is expected to look like when it is empty (provided
through the HD Map ). And then the job of the software is to figure out how
the world is different from that expectation. This makes the problem a lot
simpler." (Andrew Chatham, the Google self-driving car team’s mapping
lead - 2014 [13])



1.1 MOTIVATION FOR DYNAMIC MAPS FOR HIGHLY AUTOMATED DRIVING

2. Sensor Data
Aggregation

1. Map Data
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Figure 1: General working principle of a high definition street map for highly automated
driving vehicles [15]. (Contains image ©Google')

To be able to fully rely on the provided information the self-driving vehicle requires
always the most up to date map data and traffic information (illustrated by Figure
1). A continuous loop of data exchange between the self-driving cars and an infor-
mation processing entity, such as a central backend server, is necessary to maintain
the reliability of the HD Map . Thus a robust wireless communication is further a key
requirement. The successful operation of the HD Map in the self-driving car addresses
similar requirements that have been present for previous digital navigation maps and

https:/ /digital.hbs.edu/platform-digit/submission/google-x-leveraging-data-and-algorithms-for-self-
driving-cars/ (Last accessed on August 1, 2019)
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INTRODUCTION

driver assistance features. However as the HD Maps main functionality is to provide
information to a machine (the self-driving vehicle) rather than a human driver, those
requirements are taken to a new level of mandatory performance not available by
currently existing technologies.

Assisting the human driver with digital map data and road guidance became pos-
sible with the advent of Global Navigation Satellite Systems, such as the American
Global Positioning System (GPS) [20]. The first digital navigation system has been in-
troduced in 1991 by Toyota [21]. The initial approach to maintain the consistency and
route guidance functionality of the map over time was a necessary full replacement
of the binary map data [22-24] after several months. This kind of update procedure is
still a common way till today for car navigation systems? [25]. With the introduction of
mobile communication functionalities inside the vehicles [26] more time efficient and
wireless updating mechanisms such as partial and incremental map updates [22, 23,
27,28] have been developed. These new updating technologies however now had to en-
sure the consistency and the road guidance functionality of the map [29] after a partial
update. The availability of wireless updates also enabled the provisioning of current
traffic information to the human driver [26, 30]. Over time these general concepts have
been further refined and enhanced resulting in more advanced technologies such as
an electronic horizon (e-Horizon) [30-35].

To leverage sensor data from static or (as in the chase of a self-driving car) mobile
sensors to derive meaningful information about their current environment is a well
established research domain. Many different terms [36] have been established to ad-
dress different aspects of this generalized concept. In the mobile domain, which is
most relevant for self-driving vehicles this includes the terms participatory sensing
[37], crowdsourcing [38], ubiquitos mapping [39] and floating car data [40]. The swarm
intelligence present in nowadays vehicular traffic can be used for many different appli-
cations by collecting and processing the vehicles onboard sensors data. This includes
the creation or the update of existing navigation map data [41-46] or to derive the
current driving behaviour and exact position of the car [47-51].

The fundamental basis to enable the described necessary data exchange and any
additional connected services for a self-driving vehicle is a set of reliable and efficient
wireless communication technologies. Over the years several different communica-
tion interfaces have been tested and deployed into cars, including systems relying on
communication infrastructure (Car to Infrastructure - C2I), such as cellular network
towers [52, 53] or WLAN-Road Side Units [54-56] and systems enabling direct com-
munication between the vehicles themselves (Car to Car - C2C) [57]. Performance and
reliability of the established connections always have been a major criteria to ensure
safety [58-61] as well as quality of experience of non-safety critical services for the
customer [62]. To support the vehicles in their task of data transmission, several differ-
ent technologies have been developed to provide them with performance indicators
of the current [63-74] and to be expected [75-80] network quality along their trip.

2 https:/ /us.support.tomtom.com/app/answers/minor_detail /a_id/9079/ (Last accessed on August 1,

2019)



1.2 RESEARCH CHALLENGES

The self-driving vehicle, as an important entity of the future massive and secure
machine type communication [52, 53, 80], now requires new performance advance-
ments in the afore mentioned technological research areas that had not been required
for human drivers before. Therefore, i) new methodologies have to be developed to
provide more frequent HD Map updates as data-efficient and as reliable as possible to
all self-driving vehicles. This includes as well ii) a constant verification of the existing
map data’s correctness based on a multitude of different sensor data providers, like
road authorities and the self-driving vehicles themselves. To ensure this data exchange
the iii) intelligent combination and evaluation of existing communication paradigms
and mechanisms specifically for the application requirements of a self-driving car is
an additional key aspect, as addressed in this thesis.

1.2 RESEARCH CHALLENGES

To ensure the functionality of the HD Map a continuous data loop of map update
downloads and sensor data uploads is established between the self-driving vehicles
and a data processing entity (e.g. a backend server in Figure 1). The wireless com-
munication infrastructure as a connecting medium therefore plays another important
role. A robust data communication has to be ensured throughout the whole trip of
the self-driving car. All these three components inside the data loop, the data-efficient
and timely provisioning of the map updates, the sensor data upload, as well as the
robust wireless cellular communication, pose new challenges:

Challenge: Reliable and Data-efficient Distribution of Map Data Updates

HD Maps contain a largely increased amount of highly accurate information compared
to common digital navigation map data of nowadays (2019). Due to this reason the
currently established provisioning concepts for digital map data are insufficient for
HD Maps in many ways. Common updating cycles of map data of several months [22,
23] have to be completed now in far less time to ensure the functionality of the HD
Map [18]. Update cycles of some hours to only minutes become necessary, depending
on the criticality of the update. Even advanced distribution concepts such as partial
and incremental updates of map data [22-24, 29, 81-83] still poses a huge overhead in
costly data transmission, as they have been developed for data required by humans and
not self-driving cars in mind. The HD Map’s main purpose, to provide guidance for
self-driving vehicles, now renders it necessary to think about more specific updating
concepts in terms of data efficiency and provisioning methods. A robust wireless
communication is a key requirement therefore. Existing wireless technologies, such
as cellular and Wi-Fi, all have their advantages and disadvantages in comparison
(e.g. transmission-costs, coverage, transmission-speed). To select the most suitable
technology requires a constant reconsideration of further influencing factors such as
traffic density and the overall destination of the vehicles.
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Challenge: Fast Road Infrastructure Change Detection

The reliable operation of the HD Map requires continues updates about the current
traffic situation. External entities, such as the police or federal agencies often might
require an insufficient amount of time to provide such necessary information. Also the
amount of self-driving vehicles in certain map areas might be too spare to successfully
rely on their sensor data alone. Low-cost sensors do not provide the same level of
sensor accuracy, but are ubiquitous available for example in current production vehi-
cles and aftermarket devices such as smartphones and wearables. These different data
sources with varying quality and accuracy require new techniques to combine their
information together to obtain a more accurate picture of the current traffic environ-
ment. Especially the initial detection of faulty map data is a time-critical and highly
safety relevant task necessary to warn affected self-driving vehicles of otherwise dan-
gerous traffic situations. In summary an intelligent aggregation and post processing
of as many different data sources as possible is necessary to keep the HD Map on the
highest possible level of functionality and performance.

Challenge: Reliable Data Provisioning Via Wireless Infrastructure-Based Commu-
nication

Due to the mobility of the self-driving vehicles, their experienced Quality of Service
(QoS), when using infrastructure-based network communication, for example the cel-
lular network, is constantly changing. Throughout a single trip, an (e.g. urban) area
of good network coverage (Fig. 2a) with high achievable data rates can quickly be
replaced by an (e.g. rural) area along the track with only poor network connection
or no available network at all (Fig. 2c). The available transmission technologies are
influenced by a variety of different factors. This includes static conditions such as the
amount of deployed network access points in the surrounding area, but also dynamic
and highly dynamic factors such as the amount of currently active users [65, 84] (Fig.
2b) or the current weather [85, 86]. Extreme situations such as crowded traffic during
rush hours or heavy rain can have a critical impact on the overall achievable network
performance. Additionally data services, like video or music streaming, that are re-
quested by the passengers of the self-driving vehicles, introduce another significant
load on the network. In this environment the maintenance of the HD Map requires
a reliable scheduling and transmission of map updates and vehicular sensor data.
Especially the vehicular sensor information generates significant amounts of data as
it has to be continuously uploaded to the processing server to verify the correctness
of the most recent HD Map data. For many wireless networks, such as the cellular
network, this becomes an even more challenging task, as they provide an asymmetric
connection for the vehicles [87]. For such media the achievable data rate in the upload
direction is multiple factors smaller than the one in the download direction. In con-
clusion this makes the maintenance of the HD Map for self-driving cars an especially
challenging task in terms of required network performance.



1.3 RESEARCH GOALS AND CONTRIBUTIONS
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Figure 2: Challenging influence factors in the cellular environment due to the vehicles
mobility.

1.3 RESEARCH GOALS AND CONTRIBUTIONS

The main goal of this work is to develop, realize and evaluate new mechanisms that
ensure the data-efficient and robust operation of the HD Map inside a self-driving car,
as described previously by the data loop in Figure 1. This objective is divided into the
following major research goals.

Research Goal 1: Efficient HD Map Update Distribution for Self-Driving Vehicles

To develop new data distribution mechanism for HD Map updates [15], which are
more efficient in terms of data transmission and more effective in terms of update
distribution than currently existing mechanisms. The focus of our research is thereby
centered on the specific requirements and present side conditions of self-driving
vehicles in contrast to human drivers. A self-driving car has to know its current route
from the beginning to the end of the track or otherwise has to assume a most-probable
path [35], which it will continue to follow. In contrast to a human driver this a priori
knowledge can be used to develop i) a new distribution concept for the HD Map
updates [15]. Furthermore the self-driving vehicle is expected to be equipped with
several wireless transmission interfaces (e.g. WLAN and cellular). This allows it to
ii) develop an intelligent selection mechanisms between the different transmission
technologies [88] to further improve the distribution of HD Map updates in terms of
overall network load and transmission costs.

Research Goal 2: Fast and Reliable Detection of Changes in the Road Infrastructure
Based on Low-cost Widely Distributed Sensor Data

To develop new, intelligent sensor fusion techniques that enable the fast and precise
detection of road infrastructure changes to ensure the reliability of the HD Map data
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and overall safety [89]. In our work we focused only on different kinds of low cost and
largely deployed sensors. This includes cheap sensors, which are already available
in most cars, but also in mobile devices such as smartphones and wearables, that
might be carried by the passengers. Such sensors are not in the main focus of on-
going research for self-driving vehicles, as they do not directly enable the self-driving
functionalities. However in our opinion the intelligent combination and the shear
amount of such sensors is a currently not used, huge potential to support the general
updating procedure of HD Maps. Not only in the initial phase, where only a minority
of vehicles will have the full sensor equipment required for self-driving functions, but
also in the long term, such sensors will provide meaningful insides into the relevant
traffic information to improve the timely performance and robustness of map updates.
The participation of older cars through mobile sensor devices can provide additional
helpful information to the drivers themselves. That way the overall traffic safety as our
combined research goal is further enhanced as well.

Research Goal 3: Robust, Optimized Provisioning of Data w.r.t Changing Environ-
mental Conditions

To combine existing technologies and mechanisms and develop them further to im-
prove the performance of network quality indicators provided to the self-driving
vehicle to be used for their planning of future data transmissions [90]. This includes i)
the identification of communication requirements for self-driving cars based on real-
world data obtained during the Ko-HAF® project from a fleet of self-driving vehicles
[91, 92]. As further contribution #i) the data-efficient creation of network quality maps
(so called Connectivity Maps) by intelligently utilizing the transmission of non-time-
critical data [93] is investigated. These obtained network quality indicators further are
leveraged iii) for location specific training of machine learning algorithms for future
throughput prediction [94, 95]. In all the developed techniques a special focus was
set on the possible future deployability in terms of installation and maintenance costs.
Furthermore iv) work on the combination of simulation and real measured data is
conducted to facilitate the development of future complex vehicular communication
simulation scenarios [96, 97].

In our work we specifically focus on the realisation of a robust and reliable data
exchange to maintain the HD Map data for self-driving cars, as illustrated by Figure
1. For the data processing entity we are assuming in the following a central backend
server entity, although we are well aware that the required functionality could also be
realized through other entities e.g. distributed systems in the cloud [98] or the edge of
the network [99]. A final decision therefore should be made especially with respect to
the requirements of an actual large scale deployment such as reliability and scalability,
but this is not the focus of this thesis. Furthermore in our work we focus on the
collection of network quality indicators and their further post processing to provide
meaningful background information for a subsequent data scheduling process. The
scheduling process itself however, is out of the scope of our work, as it has been
addressed comprehensively in previous work [90].

3 www.ko-haf.de (Last accessed on August 1, 2019)
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Following this brief introduction, we provide additional background on the different
levels of automation specified for self-driving vehicles, as well as the available variants
of communication technologies for them in Chapter 2. We discuss and classify related
work relevant for the realisation of the update loop of the HD Map based on its
identified three sub-components i) map update distribution, /i) map change detection
and iii) reliable wireless provisioning in Chapter 3. Based on our discussion of related
work on the map update distribution we introduce the Dynamic Map Update Protocol in
Chapter 4. It enables the data-efficient distribution of map updates to self-driving cars
based on their specific driving context as described in Section 4.1. The Dynamic Map
Update Protocol is then further enhanced in Section 4.2 by the so called HD Wmap
extension, that enables the self-driving vehicles to directly exchange data between each
other via ad hoc communication.

In Chapter 5 we develop an algorithm to detect lane course changes based on low-
cost sensor information. Its performance is evaluated on data obtained from a real
highway scenario.

In Chapter 6 we present and evaluate, based on simulations and real word measure-
ment data, new methodologies for the reliable provisioning of data in the context of
the HD Maps. We begin with the identification of the actual communication require-
ments of self-driving cars in Section 6.1, based on the evaluation of the actual test fleet
of self-driving vehicles of the Ko-HAF project on German highways. Outgoing from
these requirements we develop and evaluate the ICCOMQS framework in Section 6.3,
which obtains network quality information by leveraging the sent and received data
required for the operation of the HD Map data loop. This geo-referenced connectiv-
ity information is then used to significantly improve existing approaches for future
throughput prediction based on machine learning algorithms with a special focus
on a low-effort large-scale future deployability. Additional contributions of our work
focused on the development of fast and scalable simulation toolsets to support the
future creation and evaluation of complex vehicular communication scenarios.

The thesis is concluded in Chapter 7 with a brief summary of the core contributions.
Finally, we provide an outlook on potential future work.






BACKGROUND

N the following we provide an overview about relevant background information
for our contributions in the domain of HD Map supported self-driving cars as
motivated in Chapter 1. First we introduce the different levels of automation as keyed
by the German Assocation of the Automative industry in Section 2.1. Secondly we
provide an insight into the functionality of HD Maps and related Advanced Driver
Assistance Systems (Sec. 2.2). Subsequent we provide insides into the domains of
cellular network communication (Sec. 2.3), localisation (Sec. 2.4), mapping (Sec. 2.5)
and simulation (Sec. 2.6) in correlation to our own scientific contributions of the
upcoming Chapters.

2.1 SPECIFICATION OF AUTOMATION LEVELS

The German Association of the Automotive Industry (Verband der Automobilindustrie
- VDA) has defined five different levels to classify the degree of automation for self-
driving vehicles [2] (see Figure 70 in the Appendix). These levels range from Level
0: driver only, the driver has to perform all the common driving tasks himself, up
to Level 5: driverless, the vehicle itself can handle all the driving tasks, a human
driver is not required any more. Level 5 can be described as well with the term
of a robotic taxi and therefore is considered as the final stage of automation, that
can be reached. This degree of automation renders it possible for passengers, that
might not be able to drive a car by themselves (elderly, disabled or blind people, ...)
to participate in the vehicular traffic without relying on another person. True Level
5 autonomy however has not been reached until now (2019) from a technological
point of view. Even Google’s Waymo division, often considered as one of the most
advanced researching groups in the field of self-driving cars, did not yet reach that
point. Although recently launching their first self-driving taxi service in certain specific
areas of Phoenix Arizona, they currently still rely on a safety driver during their rides
[7]. Currently available in a commonly buyable production car are assistance systems
of the Level 2: partly automatized. A level 2 car takes responsibility of steering and
acceleration in certain driving environments. The driver however has to be fully aware
of the surrounding traffic and must constantly supervise the system itself. Going
further in terms of research all major participants, such as Google’s Waymo division,
ride-sharing-companies like Uber and the car manufacturers themselves, have reached
or are currently aiming at the automation Levels 3: highly automated or 4: fully
automated. Level 3 - highly automation means that the car can handle given driving
tasks itself if a set of conditions is fulfilled. This includes the cars sensory equipment to
work properly and the road conditions ahead on the vehicle’s track to be well known.
In the case of level 3 automation the human driver does not have to be constantly
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supervising the vehicle and the surrounding traffic. Instead the car has to inform him
when it identifies that the safe driving conditions cannot be guaranteed any more.
Then the driver is required to step in and take over the control of the wheel again. This
so called handover has to be initiated by the vehicle itself. A safe handover procedure
requires the vehicle to ensure safe driving for a certain period of time that the human
driver has enough time to react and get in control again. In contrast to Level 3 (highly
automation), where the driver is required to take over the wheel again, the self-driving
vehicle of Level 4 (full automation) also has to ensure a safe driving state, should the
driver not respond in time. This might include reducing the speed of the vehicle to
reach a safe driving state. As a last resort a full stop of the vehicle, for example on
the emergency lane of a highway, would be the consequence. In the following we will
use the technical term of Level 3 - highly automation, when speaking of self-driving
cars, as it is seen as the first level of automation that is truely providing benefits to
the human [2, 100], as he does not have to constantly monitor the surrounding traffic
environment.

To ensure comfortable driving and a safe handover back to the human driver if
necessary, the vehicles own on board-sensor equipment might not be enough for all
possible driving conditions. There might be otherwise dangerous or uncomfortable
driving situations, that can only be properly avoided with a foresight that goes beyond
the vehicles own sensor range. A traffic jam, an accident behind a corner ahead or ice
on the road are just some of such examples.

2.2 HD MAP AND RELATED ADVANCED DRIVER ASSISTANCE SYSTEMS

To address these issues the highly automated vehicle thus further relies on an addi-
tional “virtual” sensor for its driving task, the so called High Definition Map (HD
Map) [9-11]. This map provides highly accurate geo-referenced information (up to the
centimetre-level of precision) to the car in comparison to nowadays standard naviga-
tional map data (with a localization accuracy of several meters). The HD Map thus
can be seen much more as a highly precise virtual 3D representation of the actual real
world [13].

“Really, [our maps] are any geographic information that we can tell the
car in advance to make its job easier. ... We tell it how high the traffic
signals are off the ground, the exact position of the curbs, so the car knows
where not to drive. We'd also include information that you can’t even see
like implied speed limits.” (Andrew Chatham, the Google self-driving car
team’s mapping lead 2014 [13])

Asintroduced in Section 1 the HD Map as centralized data source shared between all
self-driving vehicles, e.g. via a central Backend Server, maintains its own functionality
by receiving a continuous stream of traffic information from different data sources.
This includes federal organisations, such as the police or road authorities, but also
the sensors of the self-driving vehicles themselves. By sharing their personal sensor
readings with the central HD Map the self-driving vehicles enable the generation of
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Figure 3: Different layers of the HD Map, with varying time and accuracy requirements.
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map updates on a much faster timely level, compared to the other available sources.
That way map updates can be provided with a high frequency to the vehicles internal
copy of the map. Furthermore the vehicles can incorporate information from other
vehicles into their driving task, which goes beyond the range of their personal sensors.
For example the first car detecting a new obstacle on the road ahead can quickly warn
all following vehicles, long before they reach the designated area, which as stated
enhances the traveling comfort and overall safety. As illustrated in Figure 4 the raw
sensor data obtained from the different components inside the vehicle (GPS, camera,
radar, lidar, ...) have to be pre processed, before they can be send to the Backend Server
(in the following called Safety Server, due to the safety related functionality of the
HD Map). The geo-referencing of the newly detected features in the vehicle’s onboard
HD Map allows the Safety Server to effectively detect changes in its own map data.
To efficiently access the various geo-referenced objects inside the map to update and
maintain them, the HD Map is structured in different layers (see Figures 3 and 4).
These different layers are organized in terms of the timely dynamics and the required
accuracy of the contained objects. Traffic events such as the change of a variable traffic
sign’s value or the release of the side strip for a temporary optimisation of the dense
traffic might change their own status just within minutes of time. Lane markings
require a precise localisation in the map down to the level of centimetre accuracy for
the self-driving vehicles to be able to localize themselves and steer correctly. Weather
conditions such as fog, rain or snow in contrast span over several kilometres of the
track and thus do not require such a high localisation precision. Further details about
the HD Map concept and an in depth description of an actual prototypical realization
are provided in Chapter A.2 of the Appendix.

In the domain of map based Advanced Driver Assistance Systems (ADAS) sev-
eral other technical terms, besides the HD Map, have been coined. This includes the
electronic Horizon (eHorizon) [35, 101], the ADAS Horizon [34, 102] and the Local Dy-
namic Map [30-33]. All of those terms poses a fluent transition between each other and
are often used synonymously. This makes it especially difficult to differentiate sharply
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Figure 4: Abstract working principle of the HD Map. The readings of the various sensors
inside the self-driving car are correlated with the vehicles present map data. That
way geo-refrenced features (e.g. detected lane markings and traffic signs) are
derived and wirelessly transfered to the map hosting server. The server itself takes
several of these features to generate updates for the map data, which then is
provided back to the self-driving vehicles. ©Ko-HAF*

between their conceptual emphases. To give the reader a better overview about such
map based Advanced Driver Assistance Systems and to put them into the context of
our own work, a short clarification of the different terms is provided in the following.
The key connecting component in all those systems is some kind of map data source,
which is used to facilitate the general driving task. This could be a normal navigation
map designed for human drivers, our as in our case HD Maps, specifically created for
self-driving vehicles and their driving task. In other words the HD Map can be seen
as fundamental basis, whose data is then further conditioned or enhanced to support
the aspect of safety during the ride. The electronic Horizon (eHorizon) and the ADAS
Horizon are two different terms for the same general technical concept, which are
used in parallel to each other. The Horizon emphasise the extraction and preparation
process of relevant traffic data out of a digital map specifically for the vehicles current
track. This map data is further combined and enhanced through the cars own on board
sensor readings, e.g. its current location and driving speed. The HD Map can be used
as such a map data source. If the electronic Horizon is used to provide specific traffic

4 https:/ /ko-haf.de/fileadmin/user_upload/media/abschlusspraesentation/14_Ko-HAF_Continuous-
Updating-of-Backend-HD-Map-Data.pdf (Last accessed on August 1, 2019)



2.3 IMPORTANCE OF THE CELLULAR NETWORK FOR SELF-DRIVING VEHICLES

information to a human driver, as supposed during its initial development phase, it
cannot assume a given route. Instead it is utilising a so called Most Probable Path
calculation [101, 102], to anticipate the most likely driving behaviour of the human
driver. This is in contrast to the self-driving vehicles (see our own contribution in
Section 4), which always requires a given specific navigation route for them to per-
form their driving task. The Local Dynamic map is an Advanced Driver Assistance
System standardized by the European Telecommunications Standards Institute (ETSI)
[30]. In contrast to the Horizon approach, that enhances the navigation data of the car
through additional sensor readings from the vehicle itself, the Local Dynamic map
further achieves an enhancement of the data through direct ad hoc communication
between the vehicles in close proximity. That way the cars are able to exchange relevant
information about the current traffic condition, including their own position, traveling
speed and driving direction. Similar to the different layers defined for the HD Map,
the ETSI has categorized real world traffic objects with different degrees of timely
relevance into four separating layers of data for the context of the Local Dynamic
Map. These four different layers are: i) permanent static data, map data, provided
from a map supplier, ii) transient static data, e.g. speed limits, iii) transient dynamic
data, e.g. weather situations and traffic information, iv) highly dynamic data, e.g. the
surrounding vehicles speed and driving direction. However the ETSI states that the
Local Dynamic Map itself does not contain any kind of information of the layer i).
This is due to the reason that navigational map data is not required by all Intelligent
Transportation Systems (ITS) applications. If required by an application, e.g. our con-
sidered self-driving vehicles, it is assumed to be provided by an interchangable map
data provider, which is not part of the standard specification. The data contained in
layer iv) is achieved through continuous information exchange between the vehicles,
regarding their current driving behaviour, via ad hoc communication using so called
Cooperative Awareness Messages (CAMs), that provide the vehicles current position,
driving speed and direction. This highly dynamic layer cannot be stored in the HD
Map and be provided through a back end entity (e.g. our Safety Server), as its timely
relevance is too short and the information is only relevant for the specific vehicle.
Consequently it is stored locally in the car, thus the name of Local Dynamic Map.

In conclusion the ETSI definition of the Local Dynamic Map does not include the
first layer of the HD Map data, but rather contains a further highly dynamic layer,
which is achieved via direct ad hoc communication between the vehicles.

2.3 IMPORTANCE OF THE CELLULAR NETWORK FOR SELF-DRIVING VEHICLES

In the perspective of the ongoing development of future 5G cellular communication
technologies [52, 53], the self-driving vehicle represents an important use case to
be considered. The 5G PPP consortium identifies three main 5G service types in
the Metis II project [52], all with different requirements regarding the achievable
network performance. As illustrated by Figure 5 they are: extreme mobile broadband
(xMBB), massive machine-type communications (mMTC) and ultra-reliable machine-
type communications (uMTC).
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Figure 5: Main 5G service types and representative use cases considered by the 5G PPP
consortium in the METIS II project. (Source: Fig. 1 in [52])

The requirements of self-driving vehicles supported by an operational HD Map lie
in the area of ultra-reliable machine-type communications (uMTC). Having similar
requirements as identified by the two use-case domains of “"Broadband access every-
where” and “Connected cars”, as self-driving cars might also roam in rural areas, with
a comparable sparely deployed cellular network infrastructure, requiring a continuous
data exchange to keep their HD Map operational. These two domains have a strong
emphasis in the requirement areas of network availability, mobility of the end devices
(the cars themselves) and reliable data transmission.

To map those general requirements on measurable quantities, several different key
performance indicators have been specified in the general domain of network commu-
nication as well as specifically for the cellular network communication itself. Section
A.3 provides details about the set of indicators relevant for our work as described in
Chapter 6.

2.4 POSITION DILUTION OF PRECISION OF GLOBAL NAVIGATION SATELLITE SYSTEMS

To know its exact location on the road is a highly important information for a self-
driving car. One of the most important sensor sources to solve this task is the mea-
surement data received from Global Navigation Satellite Systems (GNSS). The general
working principle of GNSS is explained in the following, as far as it is relevant for our
personal work presented in Chapter 5.
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Figure 6: Impact of the Dilution of Precision on the location estimate due to the constellation
of the visible satellites (green - low / red - high). (Inspired by [103] and %)

Each GNSS satellite circles around the earth in an exactly known orbit. Therewhile
it continously broadcasts a reference timing signal by relying on several inbuilt atom
clocks. The receiving end device’s sensor equipment then estimates the travel time At least four
between itself and all sending satellites it can obtain a signal from to derive its own  satellites are
position. This measurement can only be executed with a certain margin of error, the so ZVZZ;ZZ?;O :l
called User Range Error (see Figure 6). Through an increase in the number of received '
reference signals (more visible satellites), this error can be reduced by averaging out
the individual errors to each other. Besides the overall number of visible satellites also ... more
their relative position to each other is important for the achievable position estimation  #mprove
accuracy. This so called Dilution of Precision (DOP) is illustrated by Figure 6. The OUET,”
area, which has to be considered as the possible location of the receiver due to the z::;nl;:ion
User Range Error (e.g. the black vehicle in the image), is varying with the location  accuracy.
of the satellites. Satellites that are distributed in a favourable way (Figure 6a) achieve  Diution of
a low Position Dilution of Precision (indicated through the green, rectangular area).  Precision due
Satellites, which are very closely located to each other experience a high Position 0 position of
I . . . . . T satellites.
Dilution of Precision and thus only achieve a poor location estimation (indicated
through the red, rectangular area in Figure 6b).

2.5 GEOGRAPHIC LOCATION VIA GEOHASHES

The geographic localisation index referred to as Geohashes was first presented by
Niemeyer® [104] in 2008. It is a public domain geocoding system that enables the
efficient mapping of latitude and longitude coordinates (WGS 84) via a hash-function
into a string identifier. Depending on the size of the string (it’s amount of letters) the
Geohash represents a bounding box with a respective size that contains the specified
coordinates (Fig. 7). The size of the bounding box thereby ranges form several thousand

5 https://www.gps.gov/systems/gps/performance/accuracy/ (Last accessed on August 1, 2019)
6 https://web.archive.org/web/20080305223755 /http:/ /blog.labix.org/ (Last accessed on August 1,
2019)
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Figure 7: Example visualization of nearby Geohashes of different accuracy levels. The higher
accuracy is indicated by longer strings. Neighbouring strings start with the same
sequence of letters. (Source: https:/ /www.movable-type.co.uk/scripts/geohash.jpg
(Last accessed on August 1, 2019))

square kilometres down to only a few centimetres in size, which realizes a localisation
approach that satisfies various accuracy requirements. Geohashes are a furthermore
supportive indexing strucuture, as closely located areas share the same initial letters of
their defining string. Consequently Geohashes are used in various digital applications
related to georeferenced information, for example mapping and communication [105].

2.6 SIMULATION OF URBAN MOBILITY - TRAFFIC SIMULATOR - SUMO

SUMO (Simulation of Urban Mobility) [106] is a vehicular traffic simulation software
developed at the Institute of Transportation Systems at the German Aerospace Center
(DLR)”. SUMO enables the physically correct simulation of individual vehicles (ac-
celeration, braking, obeying speed limits and traffic rules, ...) of different classes (e.g.
sedans, trucks, bikes ..., as shown e.g. in Figure 8) at a large scale (several thousand
vehicles at once).

7 https://sumo.dlr.de/index.html (Last accessed on August 1, 2019)
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Figure 8: Visualisation of SUMO’s®capabilities to simulate various different vehicle types (e.g.
sedans, buses, trucks and bikes) on a per vehicle basis with correct movement
patterns (e.g. physically correct acceleration and braking as well as obeying the
traffic rules).

SUMO is applied in many related scientific contributions (e.g.[90, 107, 108]) as
the availability of various traffic scenarios provided by the scientific community (e.g.
[109],[110]), which resemble real world scenarios ° makes it a reliable and well accepted
software resource. As result we also rely upon SUMO for our simulation scenarios of
vehicular traffic for the scenarios (e.g. Sections 4, 6.3, 6.6.1 and 6.6.2, which we cannot
replicate through our actual real world tests due to scalability reasons (see Section
A.11 for further details regarding the simulated scenarios).

After this initial overview about the scientific terms relevant for the context of our
work we now present related scientific publications in Chapter 3.

8 https://sumo.dlr.de/index.html (Last accessed on August 1, 2019)
9 https://sumo.dlr.de/wiki/Data/Scenarios (Last accessed on August 1, 2019)






RELATED WORK

Accordingly to the working cycle of the HD Map as described in Section 1.1 and its
three main building blocks Generation, Distribution and Provision as described
in Section 1.1, we present related scientific contributions in the following.

Namely they are: i.) the distribution of digital navigation map updates (Sec. 3.1),
ii.) the aggregation of vehicular sensor data to generate map updates (Sec. 3.2) and
iii.) concepts to optimize the provision of both of these data streams via wireless
communication (Sec. 3.3). In Section 3.4 we provide a summarizing discussion of the
Related Work and outline the identified research gaps that are addressed in this thesis.

HD Maps are highly relevant to ensure safe and comfortable driving capabilities
of self-driving vehicles. Due to the density of the stored geo-referenced information
and its location accuracy (sub-meter level) the HD Map database needs to be updated
much more frequently compared to the update cycle of common navigation map ma-
terial to maintain its functionality. An HD Map for example requires updates in the
time frame of minutes to hours, e.g. to incorporate variable traffic signs and moving
construction works, whereas a normal navigation map receives updates only after
some months, for example to include more static road changes such as new perma-
nent speed limits. From the following overview about related scientific publications
for map updates we derive the necessity for new maintenance techniques to ensure
the successful operation of HD Maps.

3.1 MAP UPDATES FOR DIGITAL NAVIGATION SYSTEMS

There exist two major variants of navigation systems: offline and online. Offline navi-
gation systems on the one side are most commonly directly integrated into the vehicle.
These systems operate offline by storing their complete navigation map in a single
binary data file represented via an often propretary physical storage format (PSF).
The major advantage of such a propretary binary storage is its efficent accessebility
through specialized algorithms [24] to retrieve the desired route.

The binary data representation however, also is the systems major disadvantage.
The hierarchical structure of the data and the multilevel connectivity between nodes
and links, representing the street infrastructure and related points of interest (POI),
renders the map data incapable of gradual updates [24]. Consequently the binary
storage file always has to be completely replaced when introducing new updates into
the road infrastructure of the map database (e.g. new road kilometer, speed limits,
road directional signs, ...). In consequence several gigabytes of data [25] have to be
exchanged. The map replacement procedure is often a manual and time-consuming
process (e.g. several minutes up to an hour [25]), which in the meanwhile completely
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Figure 9: Amount of changes (e.g. new road kilometer, speed limits, road directional signs,
street names, turn restrictions, ...) introduced into Here’s digital navigation map for
the area of Germany over a time of 6 and 18 months (map data as of 14.01.2019).
©Here and Opel Automobile GmbH!!

disables the navigation system’s functionality. To reduce the amount of these complex
updating processes, mapping companies (e.g. TomTom!° and Here [25]) nowadays
are commonly gathering all new map changes over a period of several months before
they provide a map replacement to the customers. This delay of updates leads to a
degradation of the maps routing capabilities in the meanwhile, as the road network
is subject to continuous changes (e.g. construction work, new traffic regulations, ...).
Figure 9 illustrates the changes (green markings) introduced into map supplier Here’s
database of Germany over a time period of 6 and 18 months (see Section A.12 for further
details). During a period of six months (map data as of 14th January 2019) 119.479
kilometer of street including 363 sections of motorways and many further changes were
added or amended in the map database. After 18 months these numbers increased to
281.758 kilometer and 1.607 motorway sections respectively. Such numbers are similar
for other regions world wide, for example as described in the work of Ashara et al.
[29] for a common navigation map of Japan. Here itself claims to introduce about 2.7
million vehicular traffic related changes into their global map database each day [111].

Online navigation systems on the other side are mostly represented through ap-
plications installed on mobile devices, such as smartphones. These systems don't
permanently store their map data, but instead always obtain it via a wireless connec-
tion from a central map maintaining entity (e.g. a central server). Future requests of
the same route trigger the process anew, which results in redundant data transmis-
sion and additional (e.g. cellular) transmission costs. Furthermore, such systems are

https:/ /www.tomtom.com/en_gb/sat-nav/maps-services/map-updates/ (Last accessed on August 1,
2019)
http:/ /mapchanges.navigation.com/?app=opel (Last accessed on August 1, 2019)
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incapable of performing the routing task if no data connection is available, a possible
situation in our vehicular scenario.

In summary both concepts contain certain disadvantages for the application in our
considered vehicular scenario. To overcome these problems related scientific work has
been conducted as explained in the following Section 3.1.1.

3.1.1 Partial and Incremental Map Updates

To overcome the previously mentioned disadvantages of offline and online navigation
systems new techniques have been developed in various scientific contributions [22—
24, 28, 29, 81-83] to improve the previously described map updating process. The
two most prominent techniques in that domain are the partial and incremental map
updates.

To realize partial map updates (as described for example in [29, 81, 82]) the whole
area, which is covered by the map data, is split up into smaller individual tiles (see Fig.
12 for illustration). Each tile then is treated as a distinct separate map and in conse-
quence is updated individually from each other. In doing so the updating algorithms
have to ensure the routing consistency in between the different map tiles by updating
further surrounding map tiles if necessary. Specific algorithm to solve this problem
for example were developed by Asahara et al. [29] as well as proposed by researchers
of Hitachi [28]. Incremental, consecutive map updates [22, 23] in contrast to a full map
replacement enable the application of a sequence of updates to the currently present
map on the client’s side. Therefore a central map maintaining data server (or simi-
lar data processing entity) keeps track of the occurring road infrastructure changes,
which affect the map. Based on the current version of the map stored on the client’s
internal memory the central server then is able to generate a specific update file for the
client. This file has a comparable small data footprint, as only map changes have to be
communicated to the requesting client. Most commonly both techniques, partial and
incremental map updates, are used in combination. The individual map tile updates
are then provided from the central server via wireless communication to the request-
ing vehicles and stored in their internal database for further future usage. That way the
advantages of offline and online navigation (continuous available navigation function-
ality and always up-to-date map data) are combined together in one system. Most of
the presented approaches focused on the context of common navigation maps as used
in nowadays manual-driven, production vehicles. Only Bastiaensen et al. [81] men-
tioned self-driving cars as a possible usage scenario, but did not investigate specific
update concepts for such machine-driven vehicles.

Besides an infrastructure based communication, vehicles can also directly commu-
nicate with each other to exchange data of any kind. Enabling ad hoc communication
technologies and related scientific Work are described in the following Section 3.1.2.
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3.1.2 Ad Hoc Vehicular Communication for Data Exchange

To realize the physical communication channel between two adjacent vehicles there
currently exist several different technologies.

Most commonly the data exchange is either realized via WLAN (e.g. IEEE 802.11p
[112-115]) or cellular communication technology (summarized as C-V2X e.g. LTE-V2X
[116] and 5G-V2X [117, 118]).

A third concept currently investigated and discussed in the scientific community
is the usage of visible light communication [119-121] to exchange data in the vehic-
ular communication context. Therefore the LED front and rear lights of the vehicles
are used to exchange high frequent light pulses, which are then received by photo
detectors as receiving counter parts. All these technologies are for example used to
realize further advanced safety applications [58]. Therefore each vehicle exchanges in-
formation with its surrounding neighbors in close proximity via broadcast messages.
Common examples for messages to be exchanged in this context are the Cooperative
Awareness Message (CAM) [59] and the Decentralized Environmental Notification
Message (DENM) [60]. The DENM message is used for example to warn other vehi-
cles about road hazards, dangerous weather and obstacles on the road, e.g. debris.
Via the CAM message the vehicle shares for example its current position, type, speed
and heading direction. Besides driver warnings these messages can be used in the
context of maps to realize the so called “Local Dynamic Map” (LDM) [30], which was
standardized by the European Telecommunications Standards Institute (ETSI).

The Local Dynamic Map provides vehicles with detailed information regarding
their current surrounding traffic environment, such as the position and speed of all
neighbouring cars (via CAMs) or further ahead road obstacles (via DENMs). Depend-
ing on their dynamic and timely relevance the various types of data are grouped into
different map layers (see Figure 1 in [31] for illustration and [30] for further details)
However the ETSI did not further specify the properties of the base navigation map
to be used in the Local Dynamic Map, because all objects and events are locally refer-
enced by WGS 84 coordinates (latitude, longitude). In their proposal any digital map
is applicable to host the described dynamic layers on top. This circumstance lead to
several further research proposals, which addressed certain issues in the ETSI spec-
ification [32] or proposed a concrete implementation of the LDM [31, 33] (e.g. using
OpenStreetMap map data as base layer) often in combination with a performance
evaluation of the system itself. Besides the mentioned safety applications also a mul-
titude of scientific contributions exist, which address the more general task to offload
otherwise costly data transmission from the cellular network onto the free of charge
WLAN communication channel [54-57, 122-126].

Many of the proposed concepts thereby aimed at the task to share highly individual
data streams, such as video or audio streams, via ad hoc communication between the
vehicles. As a result several of the authors [54, 55, 123] claimed the necessity of further
infrastructure to enable the communication. Therefore additional so called Road Side
Units (RSUs) should be installed. These RSUs operate as data beacons to relay the data
streams between two cars, which would otherwise be out of communication range.
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Nagel et al. [79] propose a concept to predict the movement patterns of the vehicles and
develop a new wireless channel model to identify the possible best points for a data
exchange. Their approach is closely related to the concepts discussed in Section 3.3,
which aim to achieve similar improvements for the context of infrastructure-managed
wireless communication.

With the distribution of new map updates also arises the question, how such updates
can be efficiently generated to ensure the full operational cycle of the HD Map (Figure
1). This general problem and the related solution approaches are presented in the
following Section 3.2.

3.2 VEHICULAR SENSOR DATA AGGREGATION TO MAINTAIN MAP DATA

Initially HD Maps for self-driving vehicles are generated by dedicated mapping ve-
hicles [127, 128] (see Figure 10). Such cars can rely on a set of top of the line sensors
including lidar, radar, differential GPS and camera systems to build the HD Map. In
consequence they are costly to operate and only a few in numbers.

Due to the high precision (sub-meter level) and density of geo-located information
contained in the HD Map [11, 18, 129-131] the continuous changes of the road network
infrastructure (e.g. through construction works, accidents, new traffic regulations, ...)
[14] render the ongoing maintenance of the HD Map a much more challenging task
compared to common digital navigation maps used by human drivers. Self-driving
vehicles constantly rely on the HD Map to retrieve up-to-date traffic information,
which is often only valuable during a rather short period of time (e.g. the current
status of variable traffic signs, weather conditions such as black ice on the road, the
location of moving roadworks and the according change of the road curvature, ...)
to perform their driving tasks with high safety and comfort. Consequently, the small
amount of special mapping vehicles cannot solve the maintenance task alone, as the
appearance frequency of new traffic events is simply too high to be fully covered by
them. A large variety of concepts have been proposed and different sets of sensors
have been developed [132] to address the general problem of map maintenance. In our
research context of self-driving vehicles one of the most promising ideas addressed in
various scientific concepts to improve the required time to produce a map update is
to rely on sensor equipment, which is already available in cars. These different sensor
sources, which are moving around with the vehicles are summarized through the
technical term Floating Car Data (FCD) in the following.

Depending on the desired accuracy of the map updates (e.g. location accuracy on
road or lane level) the different approaches rely on a wide selection of sensors. The used
data sources range from low-cost sensors available in common production vehicles [44,
133] or mobile devices, such as smartphones [46, 134, 135] up to the high-end sensor
equipment used in self-driving prototype vehicles [128, 136], which is comparable to
the setup used by the dedicated mapping vehicles.

In the following, we provide an overview about the investigated Related Works
arranged accordingly to their achieved accuracy and used sensor equipment. The first
group of approaches achieves the generation of road accurate maps.
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Figure 10: Mapping vehicles used for the initial creation of the HD Map used during the
Ko-HAF Project. ©3D Mapping Solutions GmbH.

3.2.1 Road-level Map Generation with Floating Car Data

Briintrup et al. [137] and Niehofer et al. [134] independently from each other propose
both a client/server-based architecture to derive the road infrastructure of an unknown
area from a set of collected GNSS traces. The GNSS traces can either be provided by
vehicles themselves or through mobile phones transported in the cars. The traces are
initially preprocessed to remove outliers based on the achieved average speed and
acceleration. The proposed concepts are either used to (i) incrementally update and
refine an existing road or to (ii) create a completely new road in the map.

Cao et al. [138] present an approach, which realizes incremental updates of already
identified road center lines by calculating so called energy wells for the newly incoming
GNSS trace data. The authors thereby rely on a large fleet of taxi cars to obtain their
evaluation data set.

Davies et al. [139] present a similar framework to build road-level accurate maps
from Floating Car Data. Via a mathematical analysis the authors state that under the
assumption of an average standard deviation o of a common low-cost GNSS device
between 3.5 and 4.5 meter (based on the publications of McDonald [140] and Prasad
[141] and the central limit theorem) that at least 73 GNSS traces are necessary to
differentiate between two adjacent roads (not lanes) to compensate for the Gaussian
Noise inherent in the GNSS traces.

A comprehensive overview of the aforementioned approaches and further works
is presented by Ahmed et al. [142]. The authors provide Open Street Map benchmark
material and evaluate the runtime performance of the different proposed algorithms,
achieving times between several minutes and several hours.

The following contributions create lane-level accurate maps. From our working
experience in the German research project Ko-HAF (Cooperative Highly Automated
Driving) (see Section A.2) this accuracy level is considered as the bare minimum
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required for the HD Map data to ensure a safe localization and thus operation of the
self-driving vehicle within the ongoing traffic.

3.2.2 Lane Accurate Map Generation

Betaille et al. [143] generate lane accurate maps by fusing precise high accurate kine-
matic GPS (PPK) sensors with dead reckoning movement estimations of the vehicle.
By relying on the expensive kinematic GPS the authors achieve highly accurate results,
resembling the performance of the dedicated mapping vehicles.

Chen et al. [144] use a Gaussian Mixture Model to achieve lane-accurate results
in the clustering of collected GNSS trace data. Their initial concept to structure and
preprocess the data is illustrated by Figure 23a and described in detail in Section 5.1.1.
It is used similarly in several other works [46, 135, 145]. Chen et al. focused their work
on the lane accurate mapping of intersections. They evaluated their concept by relying
on GNSS data provided through a large fleet of 55 vehicles, which were equipped with
common GPS loggers (comparable to the ones available in nowadays mobile devices).
They did not investigate changes of the road network, but stated the necessity therefore
(e.g. for the detection of construction sides) as future work.

Uduwaragoda et al. [135] and Neuhold et al. [46] perform the same preprocessing
step of the GNSS traces, which they collect from smartphones transported inside cars.
In the following clustering procedure in contrast to [144] both authors chose the Kernel
Density Estimation algorithm to identify the center lines of each lane. To achieve lane-
accurate results the two approaches have to rely on a large set between 80 and 200
traces, depending on the investigated scenario and the used GNSS sensors. Neuhold
et al. [46] further assume side conditions based on federal regulations regarding the
necessary minimum width between two lane centers. These side conditions however
might not be fulfilled in all conceivable scenarios. A construction side for example can
necessitate the reduction of the available lane width.

Joshi et al. [128], Guo et al. [44] and Massow et al. [133] are three further examples
of approaches, which build lane accurate maps by relying on additional sensor data
to be fused with collected GNSS traces. This includes sensors like the camera [44, 133],
lidar [128] or radar [133], as well as information provided by orthographic images
[44] and coarse maps [128]. Massow et al. [133] further state the varying quality in
the achieved GINSS traces as a problem to be considered, but do not address it any
further in their work. Similar to the work of Betaille et al. [143], these publications [44,
128, 133] motivate the use of additional sensors data to be fused with GNSS traces
to improve the overall quality of the sensor data (reduce noise, remove outliers, ...).
Unfortunately due to the additional and sometimes very high costs of these sensors
they are currently not commonly included in all production vehicles. Especially older
vehicles, which still drive on the streets cannot provide such sensor readings. This
leaves out a large group of potential providers of safety relevant sensor information.
Furthermore several external influence factors can have a significant negative impact
on the achieved overall sensor performance. Chen et al. [48] stated several of them for
their camera based approach. This includes weather effects (e.g. sun blinding, rain,
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snow) and the day and night cycles. Similar influencing factors can be identified for
lidar and radar sensors.

The presented works in the following all have in common to rely on low cost sensors
to derive further knowledge about the vehicles current position and status on the road.
They are ubiquitously available in vehicles as well as mobile devices. Consequentially,
we see a huge potential in their further usage to maintain maps via Floating Car Data.

3.2.3 Lane Identification with Low Cost Sensors

Aly etal. [47] and Wu et al. [49] propose comparable approaches to identify the current
lane in which a traveling vehicle is located. By using the readings of inexpensive
accelerometer and gyroscope sensors, which are available in nearly all production
vehicles and mobile devices, the authors can identify the orientation of the vehicle
and detect the execution of lane changes. Through a series of such lane changes (see
for example Figure 24), the authors are able to identify the vehicles current lane.
Knowledge about the initial lane of the vehicle is not required. Instead a Markov
localization model or a Gaussian probability distribution is used to keep track of all
possible initial lane positions. Possible initial positions then get narrowed down with
an increasing amount of executed lane changes. In the end only a single possible
current lane remains. Aly et al. further suggest to rely on so called boostrap anchors
(conditions on the road - e.g. a pothole) and organic anchors (traffic rules) to improve
the performance of the detection algorithm. Both algorithms achieve a robust lane
identification performance between 80% and 86%.

As stated previously Chen et al. [48] identified several negative influencing factors
on camera-based sensor systems. In their work, the authors compared the performance
of a camera-based detection algorithm for steering maneuvers with an approach that
similarly to Aly et al. [47] and Wu et al. [49] relied on the accelerometer, the gyroscope
and the magnetometer as main source of sensor input. Through the comparison Chen
et al. were able to demonstrate the robustness of this approach, as it was not effected
by the stated weather effects, which hindered the camera-based algorithm.

Ahmed et al. [51] suggest that through the combination of the mentioned low-
cost sensors and the cars own on-board sensors via an On-board Diagnostic Interface
(OBD) driving maneuvers and the vehicles trip direction can be identified. The authors
evaluate their concept in an intersection scenario and achieve a detection performance
of 93% for the maneuver identification and 89% for the trip identification. The work of
Liu et al. [146] is another publication that supports the smartphone as reliable sensor
platform. Solely based on the sensor information provided by the smartphones of
bus-passengers the authors predict arrival times and draw further conclusions on the
currently ongoing traffic.

To retrieve map updates and send vehicular sensor data the car can rely on different
wireless data links. Most of them can be grouped into two different categories. On the
one side, the vehicles can directly communicate with each other via ad hoc communi-
cation, as introduced in the previous Section 3.1.2. On the other side, the self-driving
vehicles can rely on infrastructure-managed communication technologies. The cellu-
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lar network is probably the most prominent and well established example of this
kind. The Ko-HAF project for example relied on cellular network communication for
the maintenance of the HD Map data used in its self-driving prototype vehicles. The
general problem of a varying wireless connection quality in an infrastructure-based
cellular network is induced by the movement of the vehicles (Sec. 1.2). To address this
problem several Related Works have been published as summarized in the following
Section 3.3.

3.3 OPTIMIZED PROVISION USING INFRASTRUCTURE-MANAGED CELLULAR NETWORKS

Through our research study on the current Related Work we could identify three differ-
ent groups of approaches to improve the general provision of data via infrastructure-
managed cellular networks as explained in the following Sections. Namely, they are:
i) sharing of measured geo-referenced network performance indicators via a common
database, the so called Connecitivty Map, ii) online/live estimation of the currently ex-
perienced network performance parameters to predict their near future values and iii)
decoding of control channel information to retrieve information about the currently
active clients and their induced load on the used channel.

3.3.1 Connectivity Maps

The fundamental idea behind the Connectivity Map as presented in several publica-
tions [73, 75-78, 80] is always to share detailed information about the experienced and
measured network quality parameters between the vehicles. Therefore, the Connectiv-
ity Map is a central database, where the cellular network measurements are collected
from the various vehicles. In the following, this sensor data is aggregated and post-
processed to retrieve meaningful information about the overall network performance.
The crowd sourced data stored in the Connectivity Map then is distributed to the
vehicles and enables them to plan their data transmissions accordingly to the indi-
cated quality of the network along their traveling path [77, 80, 90]. Areas with a good
cellular network infrastructure for example can be used to retrieve large amounts of
data e.g. over-the-air system updates or the transmission of vehicular sensor data. In
areas of rather poor network performance the vehicles can keep the available networks
resources free for important HD Map updates and further safety traffic messages. An
active maintenance of the Connectivity Map through continuous measurements by the
vehicles is considered necessary by the investigated Related Work. The available infor-
mation from the network operators regarding their cellular networks capabilities (so
called network coverage maps - see for example Figure 11 and Section A.5 for further
examples) is stated to be often too imprecise. Network coverage maps are most com-
monly based on mathematical models - not real world measurements. Furthermore
they are not comprehensive compared to the Connectivity Map, as they only provide
information regarding the availability or absence of a certain network technology.
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The majority of the investigated Related Works focused on the possible applications
that can be realized with an existing Connectivity Map’s information. The addressed
optimization of the vehicle’s data transmission for example can be achieved through
the indication of geographic areas where the vehicle had to perform a handover
between the different available generations of network technologies [76] or through
the marking of areas with measured high average throughput values [73, 75, 78]. We
investigated further Related Work to identify possible concepts to optimize the initial
generation and further ongoing maintenance of the Connectivity Map. Several of the
identified works focused on an initial efficient distribution of otherwise stationary
network nodes [147, 148] in terms of costs, energy consumption and environmental
conditions. Approaches that researched mobile nodes [149, 150] to distribute their
personal measurements assumed to have the full control over them in terms of driving
course, direction and speed. All these requirements cannot be fulfilled in our scenario
of self-driving vehicles, as they are given by the passenger’s travel destination or
external factors such as the present traffic density. There exist various different key
performance indicators that describe the overall quality of the cellular network (see
Section A.3 and our own contributions in Section 6.1.4, e.g. Table 9). To unleash its
full potential as many of those key performance indicators as possible should be
stored in the Connectivity Map. Some of the indicators can be obtained free of charge
through interfaces of the communication hardware of the vehicles, e.g. the Reference
Signal Received Power (RSRP). Others can only be measured by transmitting actual
data packets over the network, which is directly related to cellular transmission costs.
This for example includes the latency of the connection or the achievable upload and
download throughput in the network.

12 https:/ /www.opel.at/onstar/onstar-verfuegbarkeit.html (Last accessed on August 1, 2019)
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Concept | Advantages Drawbacks

PASSIVE | -noadditional data trafficrequired | - no triggering of measurements
possible

- application bound bandwidth es-
timation

ACTIVE | - explicit triggering of measure-| - additional data for probing /
ments transmission costs / network load

- peak bandwidth estimation

Table 1: Comparison of the advantages and drawbacks of common active and passive
throughput estimation concepts based on our investigated Related Work.

To obtain this second kind of key performance indicators, there exist active and
passive measuring concepts, which we introduce in the following Section 3.3.2.

3.3.2  Passive and Active Measuring Approaches

The passive measuring approach as for example used in [151, 152] does not transmit
data on its own to probe the network. Instead it relies upon other applications, which
generate network traffic and thus saves additional transmission costs. The passive mea-
suring approach then calculates the various performance indicators, such as latency
and throughput, based on the incoming and outgoing traffic pattern of these other
applications (e.g. over-the-air system or HD Map updates, audio and video streams for
the passengers, ...). However, the measuring results obtained by the passive approach
don’t necessarily have to be equal to the cellular networks real capabilities. Most often
a certain application, e.g. a video stream, requires a certain network bandwidth, which
is, under normal or good network conditions more than fulfilled. In such situations,
the passive measuring approach can only indicate that the applications bandwidth
requirements are met by the cellular network. Furthermore, is the passive measuring
approach dependent on the data flow of other applications. If no data is transmitted
over the network, no measurements can be executed. In opposition to the passive mea-
suring approach stands the active measuring as used for example in [73, 75, 78, 80, 153].
By transmitting its own data patterns the active approach probes the cellular network
more accurately. This active probing of the network most commonly is realized by
the transmission of additional randomized data packets, with no further purpose (so
called dummy data). This consequently leads to additional transmission costs. Further-
more important the additional data introduces load on the cellular network, which
could otherwise be used to serve the end customer’s demands instead.

Table 1 summarizes the advantages and disadvantages of both techniques.

A very interesting approach to combine both of them together is proposed by
Papageorge et al. [154]. Their Measurement Manager Protocol (MGRP) piggy backs
existing application data upon cellular probing packets. That way it achieves the same
accuracy as the active measuring concepts by introducing way less data overhead
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Concept

Advantages

Drawbacks

Connectivity Map

transmission planning
for the whole track of the
vehicle

- solely based on historic
measurement data

Instantaneous Estimation

precise estimation of
short-term network qual-

- geographic features not
considered by Related

ity via continuous mea- | Work

surements

- approaches often rely on
specific hardware / soft-
ware / provider internal
information.

Table 2: Comparison of the advantages and drawbacks of the two network quality estimation
techniques Connectivity Map and Instantaneous Prediction based on our
investigated Related Work.

into the network, similar to the passive approaches. Besides the spatially distributed
influence factors, which can be identified via the Connectivity Map, there also exist
temporal ones affecting the cellular network’s quality as introduced in Section 1.2.

To anticipate these short term, temporal changes in the cellular network exists
another technical concept, the so called online or instantaneous estimation of the
network performance indicators as described in the following Section 3.3.3.

3.3.3 Online Estimation

Online estimation approaches [64, 6672, 74, 155] rely upon the communication equip-
ment (e.g. the LTE Modem and the connected antennas) installed inside of the mobile
device (e.g. a vehicle) to measure the instantaneously experienced network quality
parameters. With a small set of collected samples (e.g. over the last few seconds) the
different approaches then are able to estimate the future development of the network
quality (again for a short period of time in the range of only some seconds to minutes).
In consequence the online estimation concept can anticipate changes of the cellular
network’s quality (e.g. the increase or decrease of the experienced signal strength
along the traveled path) quite precisely within a short time horizon (see Table 2).
Commenly the proposed estimation concepts rely on machine learning techniques for
classification or regression and can be applied to each of the measurable performance
indicators of the network. Due to its overall importance for a reliable transmission the
throughput of the connection thereby is one of the most frequently estimated perfor-
mance indicators. Consequently we investigate it as example value in our personal
work (Sec. 6.4), too.

The amount of currently active clients in a serving cellular base station (see Fig-
ure 2b) cannot be accurately obtained through the two previous mentioned concepts



3.4 SUMMARY AND IDENTIFIED RESEARCH GAPS

(Connectivity Map and Online Estimation). Their impact and activity on the cellular
networks current capacity is an additional very important indicator that can be ob-
tained from control channel information of the network as described in the following
Section 3.3.4.

3.3.4 User Density Estimation

The cellular providers know the exact numbers of currently participating clients for
each of their cell tower. However, this information is highly unlikely to be shared with
third parties due to business confidentiality. For the LTE network infrastructure there
exist specialized and costly custom sensing hardware [84]. These hardware kits are
able to decode the control channel information provided by the currently serving LTE
cell tower to obtain detailed information regarding its capacity distribution between
all the active clients. Fortunately with the recent advancements in Software Defined
Radios (SDRs) the required hardware setup to realize this decoding functionality
became much cheaper and enabled the development of custom software that facilitates
similar decoding capabilities at only the fraction of the costs [84, 156-158]. Through
our investigation of Related Work in this domain we are aware of at least two open
source implementations: "LTE Eye” [156] and "Imdea OWL" [65, 84].

Not all possible communication scenarios can be evaluated through real world
tests (e.g. due to cost or time constraints). Such scenarios are instead simulated with
specialized software tool-kits as presented in the following Section 3.3.5.

3.3.5 Further Application In Simulations

Currently there exists a large variety of simulation software e.g. [159-162], which pro-
vide detailed models for vehicular communication scenarios. This includes various
plugins to extend the capabilities of the basic simulation software into various further
directions. For example the integration of vehicular movement models [106, 163], cellu-
lar based communication [107, 164-166] and vehicular focused ad hoc communication
[167-169].

3.4 SUMMARY AND IDENTIFIED RESEARCH GAPS

We previously discussed the Related Work accordingly to the three main building
blocks of the HD Map maintenance cycle: Generation, Distribution and Provision.
Accordingly, we briefly summarize our key findings in the following and highlight
the research gaps, which we address in our work.

Distribution of Digital Navigation Map Updates

To solve the disadvantages of common offline and online navigation systems the
concepts of incremental and partial map updates have been presented in Section 3.1.
This included Related Work to maintain the consistency of the maps after an update, as
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well as the wireless transmission of the map tiles from a central server to a requesting
client (e.g. vehicle).

We consider all of the mentioned scientific contributions as a valuable foundation
for our personal work, as these concepts can be applied to any kind of navigation
map. However, the identified Related Work mostly focused on navigation systems for
manual driven vehicles. Only in the work of Bastiaensen et al. [81] self-driving cars
were mentioned as an expected use case, but not investigated with a specific focus.

In comparison to maps, which were created for human drivers, HD Maps have a
much higher density and accuracy of geo-referenced static and semi-dynamic informa-
tion specifically designed for the application in self-driving vehicles. Self-driving cars
rely on the HD Map to drive safely and comfortable in otherwise difficult traffic situa-
tions, which a human driver could possibly anticipate and avoid without a map (e.g.
driving through a construction site). Furthermore the self-driving car always requires
a given route or otherwise has to follow along a most probable path (e.g. the current
street on which the vehicle is driving) based on the map data to perform the driving
task. Consequently we argue that these new preconditions and requirements justify
further research regarding new specific and more efficient map update concepts, to
keep the data foot print of HD Map updates on a similar level compared to those for
navigation maps for human drivers. Based on the related concepts and the require-
ments of the self-driving vehicles we develop a protocol that provides context-specific
map updates individually for each vehicle to further reduce the data transmission
footprint and along with it the costs of the update process.

Furthermore, we presented Related Works, which rely upon ad hoc communication
technology to share information directly between the vehicles. Many of the investi-
gated related publications focused on highly individual data streams such as video
streams to be shared between the cars, often with the assistance of additional Road
Side Unites. None of the investigated Related Works tested the application of ad hoc
communication on map data, a research gap which we address by our personal work.
As map data is relevant for all vehicles in the same geographic area we consider it as
a very suitable use case for the application of ad hoc communication.

Aggregation of Vehicular Sensor Data for Map Maintenance

In Section 3.2 we presented different approaches to generate or maintain map data
based on collected vehicular sensor data from participating vehicles (Floating Car
Data). Most common data source were GNSS traces of the vehicles, which then were
combined with further sensor readings such as accelerometer, camera, gyroscope or
radar data. Several of the discussed approaches thereby relied upon expensive sensor
equipment (e.g. [143]), which is not commonly available and hinders a large scale
deployment of the proposed concepts. The majority of the investigated Related Work
focused on the generation or maintenance of map data and a high accuracy in the
achieved results, which in consequence can often take a long time to process [142].
However a much more critical part in the maintenance cycle of the HD Map is the
detection of faulty map data to inform affected self-driving vehicles to take appropriate
actions, e.g. to handover the driving control back to their human passenger. We argue
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that for the detection of faulty information in a given reference map not the same
sensor accuracy is required compared to a full correction of this information. Instead
the reaction time to identify the changes is the most crucial metric.

As our contribution we propose and evaluate a detection algorithm of changes in the
road infrastructure to mark erroneous lane segments in the map accordingly. Therefore
the algorithm relies on sensor input from common and ubiquitously available, low-
cost sensor equipment, which is not only available in vehicles but also further mobile
devices (e.g. smartphones).

Optimized Wireless Provision

In Section 3.3 we presented Related Work to optimize the data transmission of self-
driving vehicles in infrastructure-managed cellular networks. All of the discussed
approaches have in common to provide information about the cellular network’s
performance and capacity to optimize the planning process of the data scheduler
inside the vehicles. Individually they target different aspects, which are influencing
the transmission process. Connectivity Maps provide geo-referenced network quality
measurements to plan the long-term data transmission. They address geographic
influence factors such as buildings and terrain. The majority of investigated Related
Work focused on the benefits that could be obtained from a given Connectivity Map.
The initial generation and especially the further maintenance of the information in
the Connectivity Map were not in the researchers focus. Existing active and passive
measurement approaches to be used for the maintenance of the Connecitivty Map
either induce additional unwanted load on the cellular network during the probing
process or do not necessarly measure the network’s performance to the full possible
extend. A very interesting approach presented by Papageorge et al. [154] requires an
active stream of application data to be piggybacked upon measurement packets to
reduce the additionally created load on the cellular network. If no data is available
their concept degrades to active probing.

In our personal contribution we address this problem through our own measuring
framework, which intelligently collects the vehicular sensor data and distributes the
map updates to actively probe the cellular data link, without using any dummy data.

Instantaneous estimations of the network focus more on information relevant for
the short-term data transmission affected by timely influence factors such as weather
conditions. Therefore the proposed approaches heavily rely on machine learning al-
gorithms to enable the estimation. The identified Related Works do not take the ge-
ographical influence factors into major consideration to adapt their training process
accordingly to them [64, 66-72, 74, 155]. Furthermore they often rely on special hard-
ware or software [68-70, 74] to obtain the training set. We propose a new technique
to use geographically specific training data to optimize the machine-learning based
estimation process and furthermore rely on ubiquitous available sensor equipment
for its collection.

Through decoding of the cellular control channel the influence of separate clients on
the shared cellular medium can be obtained. To the best of our knowledge all publicly
available tool-kits have not been evaluated in a moving environment (e.g. a vehicle),
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as the continuous changing network parameters results in further requirements for
the decoding process. In our contribution we combine network indicators such as the
currently relevant transmission frequency obtained from a smartphone to optimize
the decoding process and evaluated possible influence factors.

Furthermore we presented simulation frameworks for vehicular communication
scenarios and use cases that could not sufficiently be tested in real world setups, e.g.
due to cost reasons. Most of the discussed simulation tool-kits have a steep learning
curve and require significant computation power, while being limited in the size of
their scenarios. In our personal contributions we provide frameworks to easily setup
and simulate vehicular communication scenarios to address this research gap.

Through the discussed approaches and identified open challenges in the Related
Work we derived our own contributions presented in the following to: i) distribute up-
dates for HD Maps of self-driving vehicles (Chapter 4), ii) detect changes in the street
network to mark outdated map data requiring updates (Chapter 5) and iii) obtain
broad network performance information to enable a reliable data exchange between
the self-driving vehicles themselves and data processing entities via wireless commu-
nication (Chapter 6).
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In this Chapter we address our first research challenge (see Section 1.2): the reliable
and data-efficient Distribution of HD Map Data Updates. Through our investigated
Related Work we identified a research gap in the existing concepts for the distribution
of map updates. Most of the related approaches focused on digital navigation maps in
general, but did not address the particular requirements of navigation systems used
in highly automated vehicles (HAV). The Dynamic Map Update protocol as presented
in the following Section 4.1 addresses this gap. In it’s initial design and evaluation we
assume a cellular network as communication medium. In Section 4.2 we extend the
protocol to incorporate WLAN based ad hoc communication as well and evaluate the
additional performance gains.

41 DYNAMIC MAP UPDATE PROTOCOL

We designed, implemented and evaluated the Dynamic Map Update protocol for the
requirements and prerequisites of a self-driving vehicle to realize data efficient map
updates for HAV navigation systems. This includes a much higher frequency of map
updates as well as an initially given route to start the highly automated driving task.
Nonetheless the protocol can be also applied to map data of conventional navigation
systems, if these systems are actively used by the human driver (a selected route has
to be present at the beginning of the trip or otherwise a most probable path to follow
along has to be assumed).

41.1 Basic Example of Map Updates via the protocol

We commence our overview about the protocol with an example scenario, illustrated
by Figure 12, to highlight its fundamental properties.

In the scenario our considered map database is represented by six individual map
tiles (each spanning some square kilometers of area), which are updated indepen-
dently from each other. The map tiles currently stored in the internal memory of the
considered self-driving vehicle are indicated by grey color. The active route of the
vehicle (dotted line) spans from the ”Start” to the “Destination” location along the
present road network. To navigate to its destination, based on up to date map data,
the car exchanges information with a central map data server in the backend through
a wireless, cellular connection as explained in depth in Section 4.1.3.

In the example the central map server hosts an updated version of the map with
two different map tiles containing two affected road segments (black color).

Via the related map update approaches presented in Section 3.1.1 both of these map
tiles would now be provided by the server as partial and incremental map updates to
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Figure 12: Example scenario for the general working principle of the Dynamic Map Update
Protocol. The current version of the map stored inside the vehicle is marked by
grey color. Map updates provided by the central server are colored in black [170].

the car. Most of the presented approaches do only identify outdated map tiles in the
database and provide updates for them, even if they are not crossed by the current
route of the vehicle.

Considering a street map of Germany this could for example include map updates
of the area of Berlin, even though the end customer’s car is only driving in the area
around the city of Cologne.

A slightly more advanced update concept was proposed by Bastiaensen et al. [81]
as result of the ActMap project. Their update algorithm only provides map updates
for the tiles that are traversed by the vehicle on its trip. However in our considered
example scenario this would still lead to the provisioning of both map tiles as the
condition is also fulfilled.

As novel contribution our Dynamic Map Update protocol instead first identifies
the relevance of each individual map update for the currently selected route before
executing further steps. Therefore the protocol distinguishes between mandatory map
updates, which directly affect the vehicle on its current route, and optional map
updates, which do not immanently affect it, but are located in one of the map tiles that
is traversed by the car.

This for example could happen at a highway crossing section, where a construction
side only effects one of the two crossing highways with the vehicle only roaming on
the other one, staying completely unaffected.

As result the Dynamic Map Update protocol only issues the transmission of the
map tile flagged as mandatory in our example scenario. The second map tile instead is
indicated as optional update by the protocol to the navigation system of the car. Based
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Figure 13: Categorization of streets into highway (thick lines) and city layer (thin lines). The
example shows the city center of Berlin [170]. Map data ©OpenStreetMap
contributors

on the vehicles configured policy (e.g. to i) use as little cellular data as possible, ii)
receive as much updates as possible or iii) receive all updates for frequently traveled
areas) the navigation system of the car then can request the transmission of this
additional map tile from the server or skip it.

Based upon this motivational example we introduce our fundamental design deci-
sions of the Dynamic Map Update protocol in the following Section 4.1.2. The trans-
mission details of the protocol are then described in Section 4.1.3.

4.1.2 Fundamental protocol properties

On the basis of our initial idea to filter the map data accordingly to its relevance for
the current route, we developed techniques to integrate this concept already into the
map database’s storage structure.

Thereby we were inspired by the operation of modern routing algorithms as for ex-
ample described by Min et al. [24]. These algorithms group the various existing streets
into specific subcategories accordingly to their personal type (e.g. motorways and city
streets as shown in Figure 13). This hierarchical structuring allows the algorithms to
perform route calculations in only a short amount of time.

To reach for example a destination in Berlin from a starting position in Cologne,
the algorithms first identify the shortest route to the nearest motorway, as the street
of the most relevant category to reach two distant places quickly by car. Then the
algorithms only search the network of interconnected motorways to reach Berlin.This
saves a significant amount of computation time. The route calculation continuous on
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Figure 14: Exemplary visualization of a city street layer map tile (bold lines) in comparison to
a highway layer map tile (thin lines). The highway layer map tile reaches form the
city center of Berlin in the upper left to the outskirts of Berlin in the lower right
[170]. Map data ©OpenStreetMap contributors

the motorway layer until it reaches the outskirts of Berlin. Then urban streets are
considered again by the routing process to reach the final destination.

We transferred this hierarchical routing approach into the transmission of map
updates.

In contrast to the routing algorithms, which save time in the calculation process, our
updating algorithm reduces data that needs to be transmitted.

When the self-driving car requests a route the map update algorithm first inves-
tigates which different streets (e.g. highway or city streets) are used to reach the
destination position. The algorithm then only replies back to the car with the map tile
updates, which are relevant for the related layers of these streets.

For our performance evaluation of the protocol conducted in Section 4.1.5 we sub-
divided the map data into two different layers (highway and urban/city streets) as
shown in Figure 13. A further enhancement of this concept is easily applicable by
introducing additional road type categories into the street network.

The network of highway level streets (as visible in the Figure 13, indicated by blue,
thin colored lines) is more sparse in comparison to the dense network of city level
streets (bold, black lines).

We take this property into account by storing the different road types into map tiles
of different sizes as shown in Figure 14.

That way similar amounts of map data are transmitted when processing map tiles of
either of the two different layers. Furthermore the control data overhead required by
the protocol to index the different map tiles scales more efficiently with the traveling
distance covered by the given route.
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Figure 15: The map exchange sequence of the Dynamic Map Update protocol [170].

To realize this functionality we rely upon the geographic indexing concept of Geo-
hashes [104] as introduced in Section 2.5.

This allows our updating algorithm to interchange seamlessly between the different
layers of map tiles in various sizes, when following the given route for the identification
of possible updates.

Furthermore the Geohashes enable a possible future extension into more individual
map tile layers.

With these fundamental technical prerequisites present, we now designed the de-
tails of the data exchange to be executed via the Dynamic Map Update protocol as
explained in the following Section 4.1.3.

4.1.3 Protocol details

The main purpose of the Dynamic Map Update protocol is to provide mandatory and
if requested optional map updates to self-driving vehicles. That way the protocol en-
sures up to date map data for the vehicle to route on with only a small data footprint
for the update procedure, which keeps the transmission costs low. The procedure,
which we developed to achieve this goal is realized in a sequence of seven individual
steps as illustrated by the diagram of Figure 15. They are explained in the following
based on our initial example with further protocol details as shown in Figure 16.

1.) At the beginning of its trip the car starts the map update request. Therefore
it sends its start and desired destination position to the server. Based on these two
positions the vehicle then performs its personal route calculation using its currently
present (not updated) map data. From this calculated route it provides the server the
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Figure 16: Detailed example for the used sequence of map tiles [170].

information about the map tiles, which it has to traverse. The provisioning of this
information happens in a data efficient way. Only the ID of the initial (start) map tile
(ID 5741 in the example of Figure 16), as well as its layer type (e.g. 1 for highway and 2
for city streets) is transferred as a whole to the server. The following map tiles are then
only identified by one number with regards to their position related to the previous
one (ID 0 = south, ID 1 = east, ID 2 = north, ID 3 = west). If the car changes its layer in
the map tile this is as well indicated by an additional number. To simplify the drawing
we assume that the example vehicle stays on the layer 2 throughout its complete trip
(2 for city streets).

Furthermore the car has to provide the version number of each of the used map
tiles to the server (e.g. version 16 for the starting position’s map tile). As last initial
parameter the vehicle sends a unique hash code (e.g. 50414C4B4F2) to the server,
which is generated based on the exact route, which the car calculated. Therefore each
individual street segment is marked by a unique version ID (based on its location in
the map and the server-time this segment was last updated), which serve as possible
input to the correlated hash function.

2.) After having received all the information from step 1.) on the server side, the
server will start to calculate a route from the start to the destination position based
on its own up to date map data to avoid routing into traffic hazards. From this route
it also generates the correlating hash code. The server then compares its own hash
code with the one of the vehicle. If both hash codes do not match, the vehicle needs
to receive immediately mandatory map updates, which are affecting its current route.
This process is explained in the subsequent steps 3.) till 6.).
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If both codes match it means that at least for the current route the map of the
vehicle and the information in the map database of the server match. If this is the case
the server continues to identify possible optional map updates, which the car might
consider for an update, too. Therefore the server compares the version numbers of the
map tiles provided by the car with its own. If optional map updates are present the
server will send the related map tile IDs to the vehicle. Based on the car’s policy (e.g.
driving criteria or remaining cellular data volume) it requests or skips these further
updates from the server.

A furthermore possible case is that the map server uses completely different map
tiles than the vehicle to reach the selected destination. If this situation appears the
server provides the vehicle with its own route information. This also includes the
hash code for the calculated route, as well as the IDs and version numbers of all
crossed map tiles. This last step is necessary to ensure that the car does not find an-
other as well outdated alternative route in its own database after having received the
mandatory map updates.

3.) till 6.) In the following steps the car then has to finalize the updating process-
ing by comparing the information received form the server with its own database. It
checks the indicated map tiles of the server and if necessary requests the additional
required mandatory map updates. These as well as further requested optional map
updates are then transferred from the server to the car.

7.) In few occasions the provided map updates might not ensure an up to date route
calculation on the cars side. The vehicle still might find another outdated alternative
route after completing all map updates. The protocol however has to ensure that car
and server calculate the same route in the end. Consequently as a last step the car has
to recalculate its route with the updated map data and then again compare its new
hash code with the one of the server. If both codes still do not match, the process has
to be repeated with the new preconditions at hand.

Besides this update process we assume the map server to provide immediately fur-
ther map updates to the requesting vehicle, if new ones occur during the current trip
of the car.

After this in depth explanation of the working principle of the Dynamic Map Up-
date protocol, we conducted a performance evaluation of the protocol by simulating
different scenarios based on map data of the German city Berlin as described in the
following Section 4.1.4. The achieved evaluation results are then described in the
subsequent Section 4.1.5.

41.4 Map Update Simulation Scenario - Berlin example

To correctly evaluate the performance of the Dynamic Map Update protocol we require
an example map database with a sufficientamount of historic changes. Several different
map formats have been developed for the application in HD Maps. This includes for
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example the specifications of “OpenDrive” [171], the “Navigation Data Standard -
NDS” [172] and “lanelet” [173].

To the best of our knowledge there are currently (2019) only minor sample maps
of these formats!'®>!* available to showcase the functionality and the properties of the
map standards. In consequence they are not suited for our evaluation.

Due to these preconditions we instead decided to rely upon map data of the com-
munity driven, open source project “OpenStreetMap” (OSM) [174] for the evaluation.

Besides having a strong community driven database with daily conducted map
updates, the OpenStreetMap map data possesses several further properties that sup-
ported our evaluation task. The project for example makes the map data available
as database dumps at time intervals of one minute, one hour or one day, between
the most current material and its predecessor. It also categorizes the different streets
(motorway, trunk, primary, secondary, tertiary, ...), which allows us to group them in
our specified map layers (highway and city streets). Furthermore each street segment
is identified via a unique number, which allows the application of the hash function
for route calculation.

For our evaluation we chose a Geohash string length of four letters for the highway
street layer and five for the remaining streets on the city layer level. Thus the Geohashes
correlate with bounding box sizes of 39.1x19.5km?* and 4.89x4.89km? respectively.
Consequently a highway layer map tile covers the same area as 24 city street layer map
tiles (see Fig. 14).

To resemble the application scenario of an HD Map as closely as possible, we selected
the OSM map data of the German city Berlin and its surrounding regions (see Figure
89) for our evaluation process. This region of the OpenStreetMap receives frequently a
high number of updates, as the community of volunteer map maintainers is especially
strong in this area.

In our evaluation we compared the databases dumps of consecutive days, as well
as a period of two weeks in between each other to mimic the frequent changes of HD
Maps, which they likely achieve in far less time. To ensure the significance of these
tests we collected data sets of 30 consecutive days of OpenStreetMap database dumps
(1st till 31st August 2016). From these database dumps we then extracted changes
of the map data in between the different dates with periods of 1 and 15 days time
difference to simulate situations with a smaller and a larger amount of map changes.

Although we developed the Dynamic Map Update Protocol with HD Maps in mind,
the protocol itself can be applied on navigation map data with any given resolution.
The absolute amount of data to be saved will only scale accordingly to the amount of
introduced updates. Thus in consequence the relative relations between our chosen
reference algorithm [81] and the Dynamic Map Update protocol, as explained in the
following Section 4.1.5 are of higher importance than the actual measured numbers.

13 http://www.opendrive.org (Last accessed on August 1, 2019)
14 http://www.openlanemodel.org (Last accessed on August 1, 2019)
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41.5 Dynamic Map Update Protocol - Evaluation

For the performance comparison of the Dynamic Map Update protocol we selected
the concept of route calculation specified by Bastiaensen et al. [81] as our reference
algorithm. In the following we refer to Bastiaensen’s approach as simple map update
algorithm, as it triggers the transmission of all incremental map tile updates along
the current route of the vehicle. The Dynamic Map Update protocol in contrast shall
reduce this amount of data by identifying the mandatory and optional map updates
as described in Section 4.1.1 ff.

A study by Papageorge et al. [154] has shown that the average daily driving trip
length of a European is between 10 to 30 kilometers. We take these findings into account
for our evaluation by configuring 60 % of all our generated trips to be within this
distance range. The remaining 40% of the trips are divided up into half of them being
below and the other half being above this range. To generate the trips we randomly
selected start and destination points and identified the interconnecting route using
the Dijkstra algorithm.

To evaluate the performance of the Dynamic Map Update protocol in comparison to
the simple map update approach we selected two different metrics as discussed in the
following two sections. On the one side we compare the amount of map tiles, which
have to be processed on the server side to generate the incremental map updates for
the requesting vehicles (the server load). On the other side we compare the amount
of actual map objects that need to be transferred via the cellular connection from the
server to the requesting car (cellular data - costs). An excerpt of the detailed evaluation
results is shown in Table 3 for two simulation runs of consecutive days.

Load savings on server side

To evaluate the individual processing load induced by both protocols on the map
providing server we generated 10.000 individual trips as input for the evaluation.
For this set of trips and the map data of one day of updates, the simple map update
algorithm required to process a median of 18226.5 map tiles to identify all updates (see
Figure 17). The Dynamic Map Update protocol, which only provides the mandatory
map updates, needed to process a median of 807.5 map tiles. This is less than 5% of the
data of the reference algorithm. As expected with an increase in the considered time
difference (15 days) and consequently the amount of overall updates in the map tiles
this effect was slightly reduced. Still the Dynamic Map Update protocol only required
to process a median of 22% (9,798 map tiles) of the data that was investigated by the
simple map update approach (43,968.5 map tiles) to generate the incremental updates.

Data savings on client side

On the side of the vehicular client the amount of received data, which stands in
direct correlation to the transmission costs is considered by us as the most important
performance metric. To investigate these parameters we created an additional scenario,
which consists out of 100 cars. Each of these vehicles individually requested map
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Figure 17: Number of Map Tiles which have to be processed for transmission for 10,000
independent trip requests [170].

information for 100 consecutive trips. Thereby we assumed that the map information
from each preceding trip request is stored in the internal storage of the vehicle and thus
is available in the following. This resembles situations where for example important
interconnecting routes are often used and thus do not need to be updated over and
over again. We selected the amount of 100 consecutive trips to show possible saturation
effects in the map updating process. This is achieved, as the considered scenario of 100
trips in a temporal sequence only leaves around 5 minutes for the completion of a trip,
assuming 8 hours of drive time (e.g. a taxi driver). The obtained evaluation results are
shown in Figure 18 for map changes of 1 day time difference and in Figure 19 for 15 days
time difference, before the update is executed. Both series of boxplots (1 and 15 days)
clearly show that the Dynamic Map Update protocol in average always had to provide
far less map objects to the requesting vehicle, in comparison to the simple map update
approach. With reference to Papageorge [154] we expect that the majority of drivers
perform far less trip requests on average. For this situation the Dynamic Map Update
protocol is even more beneficial, as its provided amount of map objects increases much
more steadily in comparison to the simple map update approach when requesting
further trips. To verify the statistical significance of our evaluation, we furthermore
conducted a paired t-test on the obtained results. Therefore we specified the following



4.1 DYNAMIC MAP UPDATE PROTOCOL

Table 3: Exemplary excerpt of the achieved test results [170].

Execution Old New Dynamic Simple Tile Dynamic Simple  Object
Run Map Map Map Map Sav- Map Map Sav-
Date Date Update Update ings in Update Update ings in
Pro- Ap- % Pro- Ap- %
tocol proach tocol proach
Tile Up- Tile Up- Objects  Objects
dates dates with with
Changes Changes
1 1-8- 2-8-16 1,128 7,413 84.78% 30427 85734  64.51%
2016
2 2-8- 3-8-16 169 3,252 94.80% 597 9,567 93.76%
2016

Table 4: Obtained p-values of the paired t-test for the results of the second test [170].

number 10 20 30 40 50 60 70 80 90 100

of re-

quests

1 day 1.90e- 1.46e- 1.06e- 2.69e- 9.75e- 5.40e- 1.40e- 1.42e- 1.36e- 1.40e-
time 06 06 06 06 07 07 06 06 06 06
differ-

ence

15 8.60e- 3.96e- 1.36e- 7.14e- 1.3%- 1.69e- 3.43e- 2.12e- 4.14e- 8.03e-
days 09 09 09 11 12 13 11 10 11 11
time

differ-

ence

two hypotheses. The null hypotheses H,: "The two map update approaches distribute
the same amount of update data."

H, : HdynamicMap = Hsimple 1)

As well as the alternative hypothesis H;: "The Dynamic Map Update protocol trans-
mits less data than the simple map update approach.”

H;: HdynamicMap < Hsimple (2)

Where p is the mean of the number of updated map objects.

Table 4 shows the obtained p-values for the series of consecutive requests. These
p-values clearly indicate that we can reject our initially stated null hypotheses H, and
accept the alternative hypothesis H,.

To verify that the selection of 10 cars and their consecutive trips was not in favor of
the Dynamic Map Update protocol, we conducted a further evaluation, where we let
1000 independent vehicles perform 10 consecutive trips. We expect this scenario to be
more closely to an actual real world usage scenario. The obtained results therefore are
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Figure 18: Map objects provided after 10 to 100 consecutive requests. Databases with 1 day
difference [170].

shown in Figure 20 and show similar qualitative results. Also for only 10 consecutive
trips and a larger variety of vehicles the Dynamic Map Update protocol shows similar
data-saving capabilities.

In summary of this evaluation we could showcase the capabilities of our proposed
context-selective Dynamic Map Update protocol to reliably and data-efficiently dis-
tribute map updates for vehicular based digital navigation systems. In comparison
to existing distribution algorithms the protocol significantly reduces the amount of
data and workload necessary to realize the updates, which is an especially important
criteria in consideration of updates for HD Maps as used by self-driving vehicles.

4.2 HD-WMAP EXTENSION

In the initial design of the Dynamic Map Update protocol we considered the cellular
network to realize the wireless data transmission of our map updates. As introduced
in Section 3.1.2 however modern ad hoc communication technology enables the cars to
exchange directly information with all of their surrounding neighbors in the ongoing
traffic as well. We considered the usage of this communication technology as a great
possibility to further reduce the costs of the HD Map update distribution process.
As result we developed and evaluated the so called HD-Wmap extension, which
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Figure 19: Map objects provided after 10 to 100 consecutive requests. Databases with 15 day
difference [170].

incorporates these ad hoc communication features into our existing protocol’s process.

Our main design decision for the HD-Wmap extension was to realize all features by
completely relying on already existing ad hoc communication standards, e.g. in terms
of defined message types and transmission technologies. That way we enable an easy
and reliable future deployment of our proposed concept. As explained in Section 3.1.2
there currently exist various different physical communication technologies (e.g. IEEE
802.11p and LTE-V2X), which enable the ad hoc communication between adjacent
vehicles. The HD-Wmap extension works with any of those technologies. However for
our evaluation as shown in the following Section 4.2.3 we are considering the IEEE
WLAN standard 802.11p to realize the ad hoc communication between the cars, as
well as a cellular connection from the cars to the map server in the backend. That
way we are referring to the Related Work of Section 3.1.2 in terms of off-loading data
transmissions from the cellular to the WLAN network. In contrast to the Related Work
we did not consider dedicated Road Side Units for the performance evaluation of the
HD-Wmap extension, as we wanted to evaluate the possible performance gains based
purely on the inter-vehicle communication. In our opinion this approach is more likely
toberealized in the future due to monetary reasons. However the HD-Wmap extension
surely would benefit from a deployed infrastructure of Road Side Units as well. Several
of the message types, which have been defined for vehicular ad hoc communication
(e.g. CAM, DENM and SAM see Section 3.1.2). include optional information containers
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Figure 20: Map objects provided to 1,000 independent vehicles performing 10 consecutive
trips [170].

in their specification. We propose to use one of these optional containers to store the
additional information required to realize the map data sharing procedure between the
vehicles as explained in the following sections. For our evaluation in Section 4.2.3 we
assume the required data to be piggybacked upon some of the frequently broadcasted
CAM messages (Cooperative Awareness Message) [59] when requesting map updates.
That way we ensure a fast distribution of the messages to all neighboring vehicles.

4.2.1 Home zone concept

The Dynamic Map Update protocol realizes the concept of mandatory map updates
introduced in Section 4.1.1 on a partial and layer-based level. Consequently the vehicles
do not necessarily possess the similar map information (all layers of a map tile) as the
backend map server. To facilitate the individual sharing of map data between the cars,
we introduce the concept of the “home zone” with the HD-Wmap extension. Under
the technical term home zone we consider the map tiles, which are most frequently
roamed by each individual vehicle. These map tiles include for example areas such as
the local neighborhood, nearby towns or the commuting routes to work. As these map
tiles are most relevant for the considered vehicle, we propose that they are frequently
updated via a full update of all layers, instead of the common layer-specific update.
These full map updates can be scheduled to be executed for example at home when
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the car is parked in the garage via a WLAN connection. That way the home zone
concept realizes the prerequisites for an efficient ad hoc map distribution, as foreign
vehicles are more likely to meet a locally driving car when requesting a map update
of the upcoming areas.

4.2.2  Procedure of the HD-Wmap extension

With regards to the introduction of the Dynamic Map Update protocol in Section 4.1.1
we refer to its map section example to introduce the enhanced functionalities provided
by the HD-Wmap extension to the protocol. In the changed scenario as illustrated in
the Figures 21a and 21b we are considering not one, but two vehicles (a sedan and
a cabriolet), which are independently from each other requesting map updates for
their designated routes. In our example scenario both vehicles are assumed to possess
a home zone of two map tiles as indicated by Figure 21a. The single protocol steps,
which are enabling both cars to retrieve their map updates are summarized by the
Algorithm 1. As first protocol steps both vehicles start their route calculation and
request possible map updates as described in step 1.) of the common Dynamic Map
Update protocol (Sec. 4.1.3). By using the extended protocol the map server now does
not directly answer upon those requests with the provisioning of map updates. Instead
it only informs the vehicles of their mandatory and optionally required updates by
providing the related Geohashes and tile versions to the requesting vehicles. In our
example of Figure 21b this includes two map tiles with one mandatory map change
for each of the vehicles. First the cars try to gather these indicated updates via ad hoc
communication. To increase the chance to identify a suitable vehicle in the surrounding
traffic environment the requesting vehicle waits till a certain configurable driving
distance to the required map tile is reached (2.a). For our evaluation we assume
this to be the width of one map tile, which is reached when the car enters one of
the considered map tile’s neighbors. After this distance point is reached the vehicle
leverages the already periodically send broadcast messages to include the optional
information regarding the required map updates. Therefore the car has to provide
two identifiers in the optional container. Namely they are the Geohash ID and the
required version number of the specific map tile. The self-driving vehicles only can
provide full map tile updates to their requesting neighbors, as they cannot (as done
by the map server) store the complete history of the map tile in their own internal
storage space. In consequence depending on the size of the map tile such an update
can be a small number of megabytes [16]. The IEEE 802.11p standard [112] however
has been specifically optimized to transmit small amounts of data (several hundreds of
bytes). To address this circumstance we propose to split the individual map tiles before
their transmission into smaller data chunks, which are then sequentially transmitted
to the requesting vehicle. In correlation to the time, in which the sending and the
requesting vehicle are in the necessary close proximity of each other, several of those
data chunks can be transmitted. This furthermore allows the requesting car to retrieve
data chunks from several sources in parallel if more than one vehicle can provide
the required map data. If the reception of data chunks fails, the requesting vehicle
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Figure 21: Example scenario to further illustrate the ad hoc sharing of map data via
HD-Wmap [88].

sends further broadcast messages to retrieve the outstanding data chunks from other
surrounding cars. Only if the requesting vehicle is not able to retrieve all data chunks
via ad hoc communication before a certain minimum distance limit is reached it will
immediately request the remaining data chunks from the central map server via a
cellular transmission. In our evaluation this distance is reached when the vehicle
enters the map tile which requires the update information. This so retrieved full map
tile update will then be added to the internal storage of the vehicle as well and becomes
available for further sharing with the neighboring vehicles (3.)). If no map information
at all could be retrieved via ad hoc communication the vehicle requests again the same
map information from the map server stating the urgent need. This time the map
server generates and provides the required incremental map update to the requesting
vehicle. This situation is for example the case of the cabriolet as the sedan cannot
provide the required map data as it is not part of the sedan’s home zone.

Algorithm 1 : Actions performed in a map exchange via HD-Wmap [88].

1 HD-Wmap procedure actions:

2 1.) Check which updates are required for the current trip.
3 Gather necessary Geohashes and tile versions from the backend server.

4 2.a) If (request_distance >= vehicle distance to map tile > min_distance)
request map tile via ad hoc communication.

5 2.b) If (vehicle distance to map tile <= min_distance) immediately download
the required map update via the cellular network.

6 2.c) Else wait and do nothing.

7 3.) Answer requests, if data is available in the own internal storage,
8 e.g. recently downloaded or as part of the home zone.

Additionally to this baseline car to car sharing concept we thought about further pos-
sibilities to improve the overall ad hoc sharing quota of map tiles. As we did not want to
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introduce further Road Side Units into the process, due to their maintenance costs, we
thought of other possibilities to enhance the already existing mobile communication
partners. Public transport vehicles have the unique property to roam continuously on
the same streets in the same area throughout the entire day. In consequence they are
perfect candidates to provide map data to requesting vehicles in their proximity. This
lead us to the idea to enhance public transport vehicles such as buses or tram into
mobile data beacons, which are already equipped with the complete map data for
their full trip area to share it right from the start with the surrounding vehicles. This
modification can be realized with reasonable costs, as only the internal storage of such
vehicles has to be big enough to contain the additional data at once.

4.2.3 Evaluation of the HD-Wmap extension

In contrast to the initial evaluation of the Dynamic Map Update protocol, where we
assumed the constant availability of the cellular network, ad hoc communication is
affected by the continuous vehicular movement and the resulting connection and
disconnection of nearby communication partners. To evaluate the performance of the
HD-Wmap extension under these conditions, we relied upon the traffic simulator
SUMO, introduced in Section 2.6 to simulate realistic vehicle movement patterns. To
be able to investigate the influence of public transport on the sharing quota we changed
the simulated scenario from the city of Berlin to the area of Luxembourg. We did so as
the Luxembourg SUMO Traffic (LuST) scenario [109] in contrast to the Berlin scenario
provides a realistic simulation of daily traffic, that also includes public transport bus
lines (indicated by red color in Figure 91).

We relied upon the simulation environment Simonstrator.KOM [175] to connect the
SUMO traffic simulation with a realistic network environment realized through the
PeerfactSim network simulator [176].

Parameter Value

Transmission range 300 meter

Size of one complete map tile (assumed | 10 megabytes
to be independent of its layer)

Data chunks per map tile 30 (330 kByte per data chunk)

Shared ad hoc channel capacity 10 Mbit/s

Simulated amount of vehicles 5803 including 79 buses

Time of day 22 to 24 o’clock

Home zone of vehicles initial starting map tile for normal vehi-

cles / the complete route for buses, when
considered as data beacons

Table 5: Selected configuration parameter for the Luxembourg simulation scenario of the
HD-Wmap extension.
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To showcase the performance of the HD-Wmap extension even under difficult com-
munication conditions we created a rather restricted communication environment.
The selected simulation parameters are summarized by Table 5. This includes the
configuration of a conservative circular transmission range of 300 meters for the IEEE
802.11p standard in our city-based environment, as well as a maximum shared channel
capacity of 10 Mbit/s. In the Related Work [115] transmissions ranges of up to 1000
meters and 27 Mbit/s are discussed to be reachable with the 802.11p standard. Fur-
thermore we selected the simulation of a night time scenario between 22 to 24 o’clock,
where less cars are driving on the streets. Still 5803 vehicles including 79 buses were
present on the streets to reach their individual destinations on the map during this
time of the day. We conducted two different simulation scenarios to investigate the
possible influence when relying on public transport as mobile data beacons. Therefore
we compare the ad hoc sharing quotas, which could be reached when all public buses
were operating as normal vehicles in comparison to them behaving as data beacons
with an extended map data storage. Normal vehicles only were assumed to initially
contain the map tile of their starting position in their internal map storage. Each sce-
nario was conducted on sets of 30 days of OpenStreetMap map data from January
2018 to ensure the significance of our obtained results. With an optimization of the
mentioned parameters, e.g. an increase in the transmission range, channel capacity
or a higher vehicular traffic density to perform map exchanges we expect even better
results. The obtained evaluation results for the whole two hours of simulation run
time are visualized by Figure 22.

In the Luxembourg scenario the amount of data required to be transmitted via the
costly cellular connection could be reduced by 43.6 percent on average using ad hoc
communication between the vehicles when considering their initial starting points
map tile to be their home zone. The large variance in the box plots however shows
that the actual sharing rates highly depend on the selected routes and the updated
map data of each day. With favorable map data available the ad hoc sharing quotas
could reach up to 80%. The sharing quota achieved by deploying buses as data bea-
cons however did not show a significant difference compared to a scenario, where all
roaming vehicles behaved the same (see Table 18 in the Appendix for details). The
little influence is likely due to the small amount of buses (79 in total) compared to the
number of other vehicles (5,724) in the scenario. Furthermore we assume that with
a proceeding simulation also the map caches of the common vehicles are provided
quickly with shared and updated map data, which further diminishes the necessity
of the extended map caches in the public transport vehicles.

In summary the obtained evaluation results of the Luxembourg simulation scenario
showcase the beneficial usage of ad hoc communication to further improve the map
data sharing process of the Dynamic Map Update protocol, especially in terms of
transmission costs but also workload on the central server. These overall promising
positive results were achieved even without the deployment of additional Road Side
Units or the enhancement of participating mobile communication nodes (e.g. public
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Figure 22: Comparison of the sharing quotas between cellular and ad hoc communication
(~64,9% vs ~35,1% in median). All vehicles were initially configured with the map
tile of their starting position as already cached map data (their home zone).

transport vehicles).

Besides the data efficient distribution of the HD Map data, as addressed by our pre-
sented work of this chapter, also its continuous maintenance opens up new challenging
problems as addressed in the following Chapter 5.






ROAD INFRASTRUCTURE CHANGE DETECTION

IN this Chapter we focus on the second identified research challenge in the mainte-
nance cycle of the HD Map as described in Section 1.2 and illustrated by Figure 1:
the fast and reliable detection of road infrastructure changes. The changes have to be
identified to maintain the correctness of the related HD Map data and in consequence
ensure the safety and comfort of the self-driving vehicles. As our personal contribu-
tion in this research field we propose an algorithm to detect changed lane courses (e.g.
induced by a broken down vehicle, a construction site and other temporary road obsta-
cles). Through the algorithm related areas in the HD Map are marked as erroneous (to
trigger a subsequent update) and affected self-driving vehicles can take appropriate
actions (e.g. handover driving control) to avoid otherwise critical driving situations.

Based on our literature analysis we describe the initial idea for our work at the begin-
ning of the following Section 5.1. Subsequently we explain the individual components
and conceptual details of our algorithm. To test the algorithm no suitable test data was
publicly available. Consequently we generated our own evaluation data set through a
measuring campaign on actual German streets and highways as described in Section
5.2. For the data collection we used common smartphones, which were placed on the
dashboard inside the vehicle. Based on this data set, which we also made publicly
available, the evaluation of the algorithm in Section 5.3 is executed on a real highway
scenario with an ongoing construction site.

5.1 DESIGN OF THE LANE COURSE CHANGE DETECTION ALGORITHM

In the wide field of possible outdated map content we focused our research effort
on the identification of altered lane courses, as such information is highly relevant
for the automated vehicles driving performance and safety. Based on our literature
analysis (Section 3.2) we identified a huge and currently unused potential in the usage
of additional, ubiquitously available carry-on devices, with internal low-cost sensors
to detect such changes.

The most prominent example for that kind of devices are smartphones and wear-
ables, which we assume to be with the passengers inside of the vehicle. As a generaliza-
tion in our opinion any device that can provide geographically referenced information
should be taken into consideration to improve the performance of the time-critical de-
tection task. The GNSS location accuracy of one single, low-cost sensor alone is not very
precise and therefore as shown in the Related Work can only be compensated through
the aggregation of multiple sensor readings, which is a time consuming process. As
time is our major performance metric instead we propose an intelligent combination
of the individual readings and the fusion of different types of low-cost sensors as pre-
sented in the following Section 5.1.2. That way sufficiently precise information can be
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retrieved from much less sensor readings (less time) to identify changes in the course
of lanes as evaluated in Section 5.3.

By leveraging external sensor equipment available in the stated mobile devices,
also older vehicles, without any own internal sensors, get enabled to participate in
the data collection process. Therefore even with an assumed high market penetration
rate of self-driving vehicles the amount of time required to detect erroneous map
data can be improved, due to the redundancy of available sensor measurements.
Furthermore drivers and passengers of normal production vehicles can also benefit
from the generated change warnings, e.g. through an application on their smartphone,
which increases the overall driving safety.

Following this initial idea we present our concept for a fast and robust lane-level
change detection algorithm. As initial processing step in the context of the algorithm
we enhance the performance of a well established GINSS trace clustering approach
by fusing it with further information from additional sensors as explained in the
following Sections 5.1.1ff.. The clustering results are used to identify lane center lines,
which reflect the current course of the lanes. By comparing these results with past
ones our algorithm identifies the changes as described in Section 5.1.4.

5.1.1 Common Clustering Approach

A common clustering procedure to identify lane center lines, as illustrated by Figure
23a,is used throughout several Related Works [46, 135, 144] (Sec. 3.2.2). As described in
[144], the entirety of collected GNSS traces along one road direction is first segmented
equidistantly. Therefore, one trace out of the whole set is randomly selected as ref-
erence line. As next step equidistant, perpendicular lines are drawn to this reference
trace to intersect with all the other traces. The distance between the perpendicular
lines is configurable (e.g. every 50 meters).

The set of intersection points (blue color) of the GNSS traces on each of these lines
are then clustered. Different algorithms such as a Gaussian Mixture Model [144] or the
Kernel Density Estimation Algorithm [46, 135] are available for this purpose. Through
the initial intersection the degree of freedom is reduced from 2 dimensions (latitude
and longitude) to only 1 dimension (along the extend of the segmenting line), which
enables a faster calculation of the clustering results. The identified cluster centers
(intersection with dashed line) are then considered as the lane center points and
concatenated with each other to resemble the currently estimated lane curvatures.

To require less GNSS traces (and consequently less time) to achieve the same level of
clustering quality as this base algorithm we annotate the GNSS points with additional
sensor information as explained in the following Section 5.1.2.

5.1.2 Proposed Weighted Clustering Approach

As the detection of a change in the course of a lane is a time-critical task, our first
goal was to reduce the high number of traces [46, 135], which are required to achieve
a reliable lane-accurate clustering result. Consequentially, we did not only rely on
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(@) The common clustering approach traits all (b) The proposed weighted clustering
location information equally (blue color). It approach extends the common approach,
identifies the lane centers only based on by including weighting parameters
the distribution of points. The exemplary regarding the accuracy of the collected
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Figure 23: Illustration of base line and proposed lane center calculation approaches [89].

the location information of the GNSS traces, but also on the associated quality pa-

rameters to enable a quality assessment of the different collected traces. Namely we

could rely on the amount of visible GNSS satellites during the recording of the GNSS

point as well as an accuracy estimation of its suggested position (Position Dilution of

Precision). Both information is provided to us via the API of the Android Operating

System installed on the used smartphones. Android thereby specifies the position

accuracy parameter as a one sigma (68%) reliability estimation of the radial horizontal

accuracy® (Horizontal Dilution of Precision - HDOP) (as explained in Section 2.4).

The calculation of this accuracy estimation however is at the discretion of the device
manufacturer and therefore can differ from device to device. To compensate a possi-

ble manufacturer specific influence, we relied in our evaluation on a set of multiple

different smartphones from different brands, as explained in Section 5.2. In contrast =~ GNSS traces /
to the previously described baseline clustering algorithm (Sec. 5.1.1) our extended  points
approach does not select a random trace as initial reference line. Instead the trace wez’gﬁlt.ed ;
with the highest quality out of the set of available traces is selected. We assume that Siisiitymg ’
this trace will resemble the overall course of the investigated road the best and thus

15 https://developer.android.com/reference/android /location/Location.html (Last accessed on August
1,2019)
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optimizes the segmentation procedure by creating more accurate segmentation lines.
Therefore the quality parameters of each point of the GNNS traces are taken and their
average is calculated. The trace with the highest average number of visible satellites
and the lowest average value of Horizontal Dilution of Precision is then selected as
reference trace. This is summarized in Formula 3, were x is the reference trace and M
is the set of all traces. Each trace has got its own number of N; GNNS points.

x is reference trace of M < Vy € M :

Zr]\ﬂfzo no. of satellites . > Ej‘:o no. of satellites ﬂ ZTT;ZO HDOP - ZTT\LIJ':O HDOP
N, Ny N Ny

®)

This weighting procedure is continued in the segmentation itself. Because not all
intersection points of the GNSS traces and the segmentation lines fall together with
actually measured GNSS points provided by the smartphones, virtual intersection
points with an artificial set of quality parameters have to be generated for those
intersection points. The quality parameters of these - not actually measured - virtual
points are derived from the values of their closest, actually measured preceding and
succeeding GNSS point as described by Formula 4.

metaValueintersectionPoint{@cc, no. of sattelites) =
metaValuepre * dpre + metaValuegyce * dsuce (4)

dpre +dsuce

The artificial parameters are calculated based on the actual values of each of the
points and weighted by their euclidean distance to the intersection point. That way
our subsequent clustering algorithm can rely on this newly generated set of quality
assessed intersection points.

The final cluster center, which represents the geographic position of the lane cen-
ter is then calculated based on a weighted mean calculation of the different GNSS
intersection points, as shown in Formula 5.

> (lat, lon) * f,(accuracy, no. of sattelites)
> allweights

clusterCenter(lat, lon) = 5)

The usage of this rather simple clustering algorithm aims at realizing shorter exe-
cution times compared to a more complex algorithmic approach such as the Kernel
Density Estimation and further allows an easy introduction of the weighting parame-
ters in the clustering procedure. We do not consider our selected quality parameters
(no. of satellites and HDOP) as a finite set. Further parameters can be included into the
actual weighting function of the GNSS points importance (f,,). We consider this as a
promising part of possible future work. A further extension of the weighting function
for example could be introduced by the consideration of the device name to identify
certain used hardware components with regard to their performance.
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Figure 24: Behavior of the accelerometer, when performing lane changes [89].

The impact of our selected parameters in different kinds of weighting functions is
evaluated in Section 5.3.3. That way we identify the most suitable weighting function to
achieve the best possible performance in our personal evaluation scenario, as presented
in Section 5.4.

The overall procedure is further illustrated in Figure 23b, where the quality of
each of the GNSS intersection points is indicated by their color and size. A red circle
with a large radius resembles a poor position estimation, whereas a green circle with a
smaller radius indicates a higher quality position estimation. By relying on this quality-
weighted clustering approach we achieve a lane-accurate clustering result with less
traces, compared to an approach, that only relies on the location information of the
GNSS data, as verified in our evaluation in Section 5.3.

5.1.3 Identification of Lanes

The exact identification of the currently available lane centers from noisy GNSS traces
still remains a difficult task, even with our additional quality parameters in use.

In the related clustering approaches the individual location error of each GNSS trace
has to be compensated through averaging out a large set of measured traces [135].

For our proposed algorithm we choose a different way to significantly reduce the
amount of required traces to identify the number of lanes for which the GNSS data
has to be clustered. We rely on an algorithm, which identifies the lane changes of the
vehicles during their trip, similar to the ones used in presented Related Work (Sec.
3.2.3). This initial lane identification enables a pre-mapping of the set of available
GNSS points upon the set of available lanes. In the following clustering step only the
lane-individual sets then have to be considered for the overall end result.
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As shown e.g. by the works of Aly et al. [47] and Wu et al. [49] it is possible to derive
the current lane ID of a vehicle only by using low-cost sensors, which are available
in a smartphone, namely the accelerometer and the gyroscope. Without knowing the
initial lane of the vehicle, the probability distribution (over all available lanes) of its
current lane position is narrowed down quickly over time through the detection of
consecutive lane changes. In the end only one possible lane remains.

The example Figure 24 shows the obtained sensor readings from the accelerometer
for several consecutive lane changes. The sampled sensor data is shown without any
noise filtering, showcasing the capabilities of this sensor. The lane change detection
itself is implemented rather simple, based on a static offset gate of the measured min
and max values per time interval.

In Section 5.3.2 we compare the performance of our algorithm-based lane identifica-
tion with a manually annotated ground truth collected through our custom android
application, as described in Section 5.2 from the driver’s input.

We achieve similar clustering performance results with both data sets (manually
annotated ground truth and algorithmic annotated), even though our algorithm’s lane
change detection performance could be further enhanced by the suggested additional
techniques of Section 3.2.3 (e.g. bootstrap and organic anchors such as traffic rules and
potholes).

Through the highly reliable performance results shown in the Related Work and
gained in our own evaluation, we consider the work of [47, 49] as a fundamental con-
tribution for our personal lane course change detection algorithm and an important
quality feature to reduce the amount of required traces for lane-accurate clustering
results. Through the identification of the correlating lane ID of each GNSS trace’s
segment, we are able to prefilter the data accordingly to its expected lane. In conse-
quence, the influence of the Gaussian Noise experienced by the GNSS receiver can
be heavily reduced in the clustering process, as shown in Section 5.3.1. This provides
our approach with a significant advantage over related clustering concepts, such as
the Kernel Density Estimation Algorithm, which rely on nothing else, but the GNSS
location information.

5.1.4 Detection Step for Lane Course Changes

Based upon the aforementioned enhancements of the clustering procedure the second
processing phase of our algorithm takes place: the detection. The detection of lane
course changes is realized as illustrated in Figure 25 by comparing the most recent
lane clustering result with the set of historic results. At the beginning each newly
incoming GNSS trace, annotated and pre-filtered for its specific lane as described
in the Sections 5.1.2 and 5.1.3, is added to the set of available GNSS traces. Initially,
this collection is empty. To ensure robust clustering results and in consequence a
reliable change detection, a minimum of X traces has to be collected initially, before
any further processing step can be executed. That way our detection algorithm reduces
the influence of negative impact factors, such as faulty sensors or Gaussian noise, down
to a reasonable level. Based on our working experience in the Ko-HAF project (see
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Figure 25: Deviation detection process [89].

Section A.2), we consider a clustering accuracy on lane-level as minimum requirement
to ensure the safety (not the level of comfort) of self-driving vehicles, which rely on an
HD Map. The exact number of required traces X is scenario-dependent and has to be
identified individually based on the accuracy requirements on the clustering results,
the overall quality of the used sensor equipment and the amount of incoming traces
over time.

For our personal data set a reasonable value for X is investigated in Section 5.3.5.
For each trace, which surpasses this limit X, the trace itself and the last X traces are
considered as input for a new cycle of our clustering process. The influence of the last
X traces thereby is weighted according to the time, when they were collected and their
overall quality, as shown in Formula 6.
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importance of trace t =

(timetr ace_t — tiTnenewest_trac e )2
degradation_factor (6)

Wmeta * e<

Each trace’s importance degrades over time, with the oldest traces being considered
the least valuable ones. The degradation_factor is configurable depending on the
frequency of newly incoming traces and required clustering accuracy. In our evaluation
we selected a degradation_factor through which one week old traces were only
treated with half of their initial importance. Besides the time factor, also the overall
quality of each of the traces is considered through a weighting function Wi etq. Again,
the influence of the different quality parameters in the weighting function should
be adapted individually on the used set of parameters and their overall impact on
the clustering algorithm’s performance. For our own set of quality parameters we
investigate various weighting functions in Section 5.3.3. That way we are able to find
one with high overall performance, considering our test scenario’s data set of GNSS
traces.

The clustering procedure is then executed by recalculating the lane-specific center
point of each lane segment along the track using this set of X + 1 traces. For each
individual lane, the consecutive sequence of its specific center points on each segment
represents the currently assumed curvature of the lane itself. On a two lane highway,
for example, two separate lane center points per segment have to be calculated. The
detection of lane course changes therefore can be visualized with an accuracy based
on the distance between the segments (see Figures 34 and 35).

As the next step to detect the changes along the route, the current set of center points,
which is still considered correct is compared with the newly generated center points
set. If both sets deviate from each other in one or more points by more than a certain
threshold T, the affected segments are identified to have changed. In this case, the old
set of lane center points is erroneous and gets replaced by the newly calculated one.
Afterwards, the old set of center points is stored away in a collection of historic lane
center point sets. If this collection is not empty, there exist other previous clustering
results, which might resemble the currently changed road course. In consequence, the
newly calculated set of center points is also compared with all of these sets. If one of
these sets matches with the newly calculated one, it is considered as the restored road
course. Such a situation can occur for example, when a construction site has changed
the overall road course, but was completed in the meantime. Then all the changes are
withdrawn to the road course, previously to the construction site, and the old trace
data becomes reusable. That way we enable our algorithm to not have to recollect the
amount of traces T over and over again. Instead it can generate more reliable results
quicker, as the old trace data can be reused if applicable. We consider this feature
especially useful if vehicles do not drive frequently in such areas and consequently
only a small amount of traces can be collected over time, compared to a dense traffic
environment.
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The exact selection of the threshold value T as the minimum accepted deviation

distance between two consecutive clustering cycles is subject to individual choices
regarding the required performance of the algorithm. For our personal evaluation
we assumed a value of 2/3 * normal lane width for T. We considered only 2/3 of the
lane width as reasonable threshold value, as the distance between the identified lane
center lines can be diminished under the influence of certain events on the road, e.g.
a construction site. The normal lane width is either regulated by federal authorities!®
as it is in our evaluated scenario (Sec. 5.3), or can be correlated with the average width
of a vehicle. Again this correlation should be made specifically for certain countries or
traffic scenarios (highways, city streets) as the common width of a lane can differ from
country to country (e.g. comparing German highways vs. highways in the USA).

Besides the longitudinal deviation along the course of the road also the latitudinal

extent of the detected road hazard has to be visualized. Only through a timely warning,  Average speed
ahead of the potentially dangerous road section, the safe operation of self-driving @ additional
vehicles can be maintained. Our algorithm realizes this goal by additionally calculating criteria
the average traveling speed derived from the collected GNSS traces for each of the
segments. As the traveling speed is regulated before and after a construction site,
e.g. from a maximum speed of 120 km/h down to only 80 or 60 km/h within the
construction site and back again to the previous value afterwards, it provides a good
indicator for the latitudinal extent of the road hazard. Our lane course change detection
algorithm only indicates changes if, besides a latitudinal deviation of the average speed,
also a longitudinal deviation could be detected. A deviation of speed for example
might also be caused by a traffic jam in the morning rush hour and therefore alone
is not a sufficient criteria. The change detection algorithm’s final visualization result
of the detected construction work is exemplary shown in Figure 34 for our evaluation
scenario .

5.2 CREATION OF TEST DATA SET

At the beginning of our work no suitable test data set for the evaluation of the change
detection algorithm was publicly available. To resolve this problem we conducted our
own measuring campaign, which spanned from April 2016 to January 2017, to collect
the required test data. Therefore several hundreds of test drives have been performed.

To mimic an actual large-scale deployment on low-cost after market devices, we
used several different smartphone models of different brands as measuring devices
throughout the campaign. Namely 30 different devices of 12 different types including
e.g. Nexus 4, Nexus 5, Blackberry Classic and Samsung Galaxy S7 were used. All these  Smartphones
different models contain sensory equipment of different quality levels. This resembles s low-cost
an actual future deployment phase where also various devices will provide their data. fest devices
During the measuring test drives the smartphones have been placed on the dashboard
of the test vehicles. No further sensor calibration was performed to resemble a realistic
application scenario of the end-customer. Through the usage of our custom built
Android application we were able to collect a data set of over 1.934.000 GNSS points.

16 https://www.forschungsinformationssystem.de/servlet/is/275112/ (Last accessed on August 1, 2019)
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Figure 26: Visualization of construction sites contained in the data set collected in test drives
from April 2016 to January 2017. The evaluated example construction site scenario
is marked in the map. The related satellite images were taken on the 5th May 2016.

Satellite image ©Google Earth, map data ©OpenStreetMap contributors

date hour accuracy longitude  latitude modelname device annotation  vehicle number lane ID
imei speed of satel-
[m/s] lites
04.05.2016  10:10:05:0184 11.0 8.43290705  50.00252679 Nexus 5 3521...1314.0 start 30.75 8 1
of  con-

struction
site

Table 6: Example of an annotated GNSS point out of our collected data set for the evaluation
of the lane course change detection algorithm.

Each GNSS point was annotated with our considered meta-information. Namely this
is the current lane of the vehicle, which is derived from the detected lane changes of
the vehicle based on accelerometer and gyroscope readings, the number of available
satellites, when the GNSS point has been estimated and the related GNSS position’s
accuracy value (HDOP). Furthermore we manually annotated the start and the end of
experienced construction sites with the push of a button throughout the different test
drives as reference for our evaluation. An excerpt of the data set is shown in Table 6.
That way we were able to collect GNSS trace data for over a dozen different con-
struction sites, located in urban, suburban and rural areas as shown in Figure 26. This
data was then stored in a database for the further processing steps. We made this data
set publicly available on Github'”. It provides reference and benchmark material for
future scientific work and related algorithms in this research field. The benchmark

17 https://github.com/florianjomrich/construction_side_traces_fjom (Last accessed on August 1, 2019)
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Google Earth

Bildaufnahmedat: 2016 9°55' .50" 0 Hohe O0m  sichthghe 109 m

Figure 27: Reference line created from satellite images of the center dashed line [89]. Satellite
image ©Google Earth

material contains, besides the device model name with which the specific GNSS data
point has been collected, further detailed information regarding the weather and the
temperature at the day, when the test-drive has been conducted. We did not include
those values as input into our presented evaluation process, but consider it as a highly
relevant source of data for future improvements of the achieved results. For example
the device specific filtering of the input data could improve the overall achievable
quality furthermore, this however possibly requires additional measuring campaigns
to retrieve an even more diverse set of data points.

The evaluation of the achieved clustering performance and the lane course detection
as expressed in the following Section 5.3 are based on a construction site on the German
highway A67 between the cities of Riisselsheim and Darmstadt, which is marked blue
in Figure 26. GNSS traces in both directions of the two lane highway have been collected
- 369 traces for the direction from Riisselsheim to Darmstadt and 292 in the opposite
direction from Darmstadt to Riisselsheim.

By using this bigger data set we ensured to have a sufficient high amount of GNSS
trace data to showcase the benefits of our approach in comparison to the Related Work
regarding the amount of required traces.

5.3 EVALUATION OF CLUSTERING PERFORMANCE

The performance of our proposed clustering process, described in Section 5.1.2ff., is
the fundamental base for the successful operation of our subsequent change detection
step (Sec. 5.4).

As previously stated we consider lane-accurate clustering results as the minimum
degree of accuracy that a clustering result has to achieve for our change detection to
work properly and to ensure the safe operation of highly automated vehicles.

Based on our literature analysis we selected the Kernel Density Estimation algorithm
(KDE) as our reference algorithm for the performance evaluation of our proposed
weight-based clustering concept. The KDE was selected as it is the most frequently used
common clustering approach in the investigated Related Work. It achieves results well
above the level of lane accuracy;, if sufficient amounts of traces are provided. To compare
the performance between the KDE algorithm and our own weighting algorithm, we
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relied upon a reference center line, which we draw based on satellite images (see
Fig. 27) of the investigated two lane-highway A67 (see Sec. 5.2). This evaluation setup
is motivated and inspired by the recent work of Pauls et al.[131], which state the
availability of high-resolution aerial images as a reliable and easily accessible source
for geo-referenced data, specifically for the verification of HD Map data. The reference
line overlies the course of the center dashed line, which separates both highway lanes
from each other as illustrated by Figure 27. Through this design choice the deviation
between the algorithmic estimated lane center lines and this reference line became
our performance metric for the achieved clustering results described in the following.
This initial evaluation was conducted on a section of the two-lane highway A67, where
no construction sites were present throughout the time of our measuring campaign.
That way we could rely on federal specifications to accurately evaluate the clustering
results. The common width of one lane on a German two-lane highway'® (see Sec.
5.14) is 3.75 meter.

In consequence of the lane width an optimal clustering algorithm thus would
achieve a longitudinal distance of 1.85 meters between all its calculated lane cen-
ter points and our reference line in the middle between the two lanes. This optimum
is indicated by the two dashed lines in Figure 28ff., one for each lane.

The x-axis of our plotted evaluation results (e.g. Figure 28) indicates the deviation
of the lane-clustering results from our reference line (thick center line). Thereby the
aggregates of all segment results are represented through box plots. A deviation from
the reference line to the left/right, for the algorithmic estimation of the left/right,
dashed lane center line, is indicated by positive/negative values in meter.

In a first evaluation step described in the following Section 5.3.1, we investigated
the impact of the lane ID, as only available meta information, on the overall achievable
clustering performance.

5.3.1 Impact of the Lane Annotation

The common clustering algorithms presented in the Related Work (Sec. 3.2.2) only
rely on a large amount of GNSS location information to achieve their clustering perfor-
mance. Our personal approach instead allows the lane-specific filtering of the GNSS
data before its further processing by the subsequent clustering algorithm.

In this subsection we investigate the performance impact of this design decision on
the required amount of traces, the correlated amount of time required for their col-
lection and the overall achieved performance of the final clustering results. Improved
clustering results provide the basis to increase the reliability of our personal change
detection algorithm.

For this initial performance comparison we relied on a simple mean calculation
as our clustering algorithm, not using any of the additional weighting parameters
and functions as investigated in Section 5.3.3. That way we were able to evaluate the
influence of the lane-specific pre-filtering on the final clustering results.

18 https:/ /www.forschungsinformationssystem.de/servlet/is/275112/ (Last accessed on August 1, 2019)
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Figure 28: Juxtaposition to identify the impact of lane-specific filtering of GNSS data on the
clustering results. Our compared algorithms are the chosen reference, the Kernel
Density Estimation algorithm (using the non-lane-filtered data set as input) and a
simple, non-weighted mean calculation of the center point (using the lane-filtered
data as input) [89].

In comparison we executed the Kernel Density Estimation algorithm on the non-
lane filtered data set and compared the achieved performances of both approaches
with each other as shown in Figure 28.

To achieve a clean separation of the different sub-segments of the GNSS traces onto
their related lane IDs, our clustering approach performs an initial cleaning step of the
GNSS data. Thereby all triplet sets of recorded GNSS location points, which have been
collected during, right before or right after a lane change of the vehicle, get removed
from the data set. That way our approach ensures to remove their potential negative
impact on the overall clustering performance.

For both lanes the achieved results clearly visualize the significant impact of our
initial lane-filtering step on the overall clustering performance. The variance of the
cluster centers identified by the Kernel Density Estimation Algorithm, as indicated by
the boxplots in Figure 28, is much higher than the one of the simple mean calculation,
which only had to identify a single center point for each of the given lane specific
data sets. Some instances of the Kernel Density Estimations cluster centers even lie
outside of our given lane boundaries, as specified by the federal regulations authorities.
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The results of our own lane-filtered mean in contrast achieved a much better overall
variance and stayed within the lane boundaries for all 225 investigated segments along
our considered track on the highway.

Against our expectations the obtained results for the identification of the right lane
center lines of both algorithms possessed a visible static offset towards the road center.
The average of the identified cluster center points for the left lane in contrast were
close to the actual center lane as expected by us.

To further investigate this phenomenon, we conducted 37 additional test drives, for
which the drivers were told to stay on the right lane throughout the whole time of
the trip. Afterwards, we used this newly generated data set as input to our clustering
algorithm. The obtained results therefore are shown in the lowermost plot in Figure
28. It is clearly visible that these results are very similar in terms of variance around
the lane center lines, compared to the results obtained for the left lane. In consequence
we suppose that the difference in the obtained clustering results for the right lane can
possibly be tracked back to a difference in the overall driving behavior throughout
the measuring campaign. As our investigated highway scenario posses two lanes,
this is probably due to the different average driving speeds, that can be achieved
on the individual lanes. The test drives have been executed via the usage of sedans
of the Opel fleet. The right lane however was mostly occupied by slower driving
trucks. In consequence the drivers passed these slower traffic participants on their
travel, due to their driving habit. Consequently our measuring vehicles stayed for a
much longer time straight in the left lane or quickly changed back and forth from
the right lane to overtake the slower traveling trucks. These quick overtaking changes
could have an effect on the obtained GNSS trace data, as the Android smartphone
itself is using a Kalman filter to smooth the obtained GNSS location points. In our
opinion the Kalman filter probably smooths out these quick location changes due
to the overtaking maneuvers. This in consequence then could lead to a shift of the
location data for the right lane data, which is separated from the rest of the trace due
to the lane changes. This identified aspect motivates future work in this area to further
improve the achievable trace quality and overall clustering performance. The speed
of the vehicles for example could be a good indicator to reduce the influences of lane
changes on the trace data. Slower moving trucks for example probably will stay in the
right lane and therefore should be prioritized for the clustering process of this lane.

In the following we present our evaluation results based on the data gathered from
the left lane of the highway. The similar results achieved for the right lane are shown
in Section A.7 of the Appendix.

5.3.2  Algorithmic vs. Manual Annotation

Besides the overall impact of the lane annotation on the clustering results, we also
wanted to compare the performance of our rather simple lane detection algorithm with
a ground truth data set. This comparison was conducted to verify the performance
and thus the possibility of a future large scale deployment of our proposed approach.
The ground truth data set thereby was generated through the manual push of the
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Figure 29: Performance comparison of our simple mean clustering algorithm relying on the
algorithmic annotated lane IDs in comparison to a manual annotated ground truth.
The shown results for both lanes are again obtained from all 369 available traces
collected on the highway A67 in the driving direction between Riisselsheim and
Darmstadt [89].

according buttons in our custom Android application, as explained in Section 5.2,
each time a lane change was executed. The obtained evaluation graph therefore is
shown in Figure 29. From the four plots it is clearly visible that both approaches
performed similarly well. There is no clear performance difference visible, as the
manual annotated data set performed slightly better on the left lane, with respect to
the average calculated lane center point (orange bar). On the right lane instead the
algorithmic annotated data set achieved a slightly better performance. We are very
pleased with these obtained results, as our own lane identification algorithm was
conducted via a rather simple implementation using static thresholds. Thus, we are
confident that these performance results can be further improved in future work. The
threshold values of the accelerometer to detect a lane change for example could be
adapted accordingly to the current speed of the vehicles to improve the performance.
Furthermore the proposed improvements of the Related Work (Sec. 3.2.3), such as
boostrap and organic anchors (e.g. traffic rules and pot holes on the street) should be
considered too.

Clustering
results of
algorithmic
and manual
annotation
similar
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5.3.3 Comparison of Different Weighting Functions

Motivated by these positive evaluation results, we investigated the performance of
several different weighting functions (Formula 5), to boost the quality of the final
lane clustering results even further. Our two further considered quality parameters:
the number of visible satellites and the estimation value of the horizontal dilution
of precision, thereby were considered either as single input values or as combined
sum for the different weighting function, as shown in Figure 30. The number of
satellites thereby was considered as proportional input into the weighting function,
as more satellites tend to achieve a better localization result. The estimation value of
the Horizontal Dilution of Precision instead was considered anti-proportional in the
weighting, as a smaller accuracy value resembles a better location estimate.

For the comparison of the different functions, we again considered our full data set
of GNSS traces as used in the previous Sections 5.3.1 and 5.3.2.

The obtained results, illustrated for the left lane in Figure 30, show that both quality
parameters improve the clustering quality best in terms of achieved variance and
average, if considered with high importance.

Out of the complete set of investigated weighting functions, NumberofSatellites3
and 2A¢C1TaY performed best upon our personal data set in terms of the achieved
average distance between the identified lane center point and the dashed reference
line. As 2/Accuracy 4chjeved an overall better variance, we selected it as our weight-
ing function of choice for the further evaluation, especially to optimize the possible
performance for our lane course change detection as evaluated in Section 5.4.

However we consider this investigation only as a first glance into the general consid-
eration of a suitable weighting function. Further optimization potential is considered
for future work, e.g. due to the selection and weighting of additional quality parame-
ters, such as the type of vehicle (sedan, truck, ...) or the used measuring device (cheap
or expensive available hardware equipment).

5.3.4 Effect of Weighting GNSS Points on Lane Filtered Data Set

In our next evaluation step we verify that our proposed meta information and our
weighting procedure further improve the clustering results beyond the point that was
achieved through the initial lane filtering step. To showcase their positive impact,
we compared the overall performance of our three distinct algorithms (mean, KDE
and the weighted mean) with each other. Each algorithm was executed on the full
lane-filtered data set.

The obtained clustering results for the left lane are shown in Figure 31. As expected,
the Kernel Density Estimation algorithm also performed better on the lane-filtered
data set, compared to its previous execution on the non-lane-filtered data set. The
Kernel Density Estimation algorithm however thereby performed similar as the much
simpler mean calculation, which achieved a much better execution time in comparison.

To our satisfaction the weighted mean achieved the best performance results of all
three algorithms executed on our GNSS trace data set. It outperformed the KDE and
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Figure 30: Comparison of different weighting functions (left lane data) [89].

the simple non-weighted mean in terms of the variance of the identified lane center
points and their average distance to the lane center reference line. We are well aware
that other Related Works might have achieved better overall clustering performance
results as they are highly dependent on the available GNSS receiving equipment.
However, through our extensive measuring campaign, we were able to verify the
positive impact of the proposed weighting process, even when relying on a large set
of different smartphones, which are equipped with various GNSS sensors of different
quality levels.

Furthermore our approach did not to rely on any additional side conditions regard-
ing the lane center points, e.g. as done by Neuhold et al. [46], which might not be
fulfilled in the considered scenarios, such as construction sites and accidents.

5.3.5 Performance of Weighted Clustering for Different Numbers of Traces

As stated previously time is the most crucial performance metric for our lane course
change detection algorithm. This stands in contrast to the investigated Related Work,
which focused mostly on a high overall clustering accuracy. To close this research gap
we evaluated the performance of our previously selected weighted clustering algo-
rithm under the consideration of different amounts of GNSS input traces. The impact
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Figure 31: Comparison between weighting and non-weighting algorithms using all available
pre-lane filtered traces (left lane data) [89].

of a steady increase of available GNSS traces upon the overall achieved clustering
accuracy is visualized by Figure 32 for the clustering results obtained on the left lane.

For the graphs we randomly and increasingly selected a small subset between 5 and
90 traces out of the full evaluation set of 369 available traces, as input data.

Due to our working experience in the Ko-HAF project, we consider a clustering
accuracy within the lane boundaries of the track as the minimum level of accuracy to
let our change detection algorithm ensure the driving safety.

The different boxplots of Figure 32 indicate that this level of accuracy was reached
by our weighted clustering algorithm reasonably fast at 25 randomly selected traces.
By increasing the amount of available traces even further up to 90 only a slight perfor-
mance improvement was achieved.

Through these achieved results we could verify the feasibility of our proposed
algorithm to enable a fast and reliable lane course change detection.

The overall achieved performance can be improved even further by a pre-selection
of only high quality traces out of the set of available data, as shown in the following
Section 5.3.6.
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Figure 32: Influence of different amounts of available input traces on clustering performance
(left lane data) [89].

5.3.6  Effect of Trace Selection

Motivated through the previously obtained results we further investigated the impact
of the overall quality of the available trace data upon the clustering results. For this
evaluation we conducted a test where we compared a subset of 70 randomly selected
GNSS traces with the 70 best traces out of our complete evaluation GNSS trace set
(see Figure 33). The number of 70 traces was selected, because the obtained clustering
results indicated a saturation in the performance above this amount of traces. Conse-
quently, we assumed a much higher amount of traces to be required to significantly
improve the clustering accuracy even further. Thus as time is a highly important pa-
rameter for our change detection algorithm we considered 70 traces as a reasonable
trade off between the required collection time for the traces and the overall achievable
clustering performance. However these assumptions should be reconsidered individ-
ually for a different GNSS data set, as the threshold values might differ for a different
scenario with different available measuring equipment. The subset of the 70 best traces
was selected based on the average accuracy value of their intersection points with all
225 created segment lines along the considered scenarios route. The trace with the low-
est sum of accuracy values is considered as the best trace of our data set. As expected,
the obtained results using the 70 best traces as shown in Figure 33 outperformed the set
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Figure 33: Performance comparison between randomly selected traces and the most accurate
available traces (left lane data) [89].

of 70 random traces significantly in terms of clustering performance. To our surprise
the 70 best traces even achieved a similar clustering performance to the reference case,
where we considered all 369 traces as input for the clustering process. This further
supports our initial assumption, that the quality of the GNSS traces plays a major role
in the achievable quality of the clustering results. Consequently, it might be worth
to consider only a high quality subset of GNSS traces for the clustering procedure in
future. If new incoming traces do not significantly differ from the currently present
clustering results and are also not better in terms of average quality compared to the
existing set of traces, they might as well be neglected in the future process. This as-
sumption however requires additional investigation in future work with a larger set
of traces to verify our initial observation.

5.4 EVALUATION OF CHANGE DETECTION - HIGHWAY CONSTRUCTION SITE SCENARIO

After the achieved promising performance results of our weighted clustering algo-
rithm, we continued our evaluation by the investigation of the lane course detection
performance of our algorithm.

Therefore we selected a different section of the highway A67, where a construction
site has been present during the May of 2016, as illustrated by the Figures 34 and 35,
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Figure 34: Correlation between the average vehicles speed (indicated by color) and the
location of the construction site (indicated by triangles). Speeds right before and in
the construction site range from 90 km/h down to 57 km/h (yellow - red). Before
and after the construction site normal driving speeds of around 125 km/h are
reached in average (green) [89]. Satellite image ©Google Earth

which are underlaid with satellite images provided by Google Earth. As explained
in Section 5.1.4, the deviation detection algorithm identifies a change in the course
of lanes in lateral and longitudinal direction. Figure 35 shows the lateral offset of the
assumed road course during the ongoing construction works (yellow) and after the
construction site was completed (cyan). The achieved clustering results show the great
performance capabilities of our deviation detection algorithm to accurately resemble
the current road course, even though the investigated scenario could only provide it
with a rather small amount of GNSS traces between 15 and 25 for each lane, during
the presence of the construction site event. The detection algorithm resembles the
entrance and the course of the construction site well by staying in the given lane
boundaries in each intersecting segment. Only at the exit of the construction site the
assumed distance between the two adjacent lanes, as indicated by the two yellow lines,
becomes unfeasibly small for a normal vehicle’s width. To avoid such situations, we
propose to rely only on a larger subset of traces, as investigated in Section 5.3.5 for our
personal data set. Furthermore to reduce the distance between two adjacent clustering
segments could improve the identification accuracy of the correct lane course in future
work.

Figure 34 completes the safety relevant detection of the construction site by pro-
viding the assumed longitudinal extension of the construction site. Therefore the
algorithm correlates the average achieved driving speed for all street segments along
the course with the previously identified lateral offsets in the clustered GNSS traces.
The identified location of the construction site is indicated by triangles on the map.
The correlating achieved average traveling speed is indicated by color. The color range
starts from green with average achieved speeds of 125 km/h and above over 90 km/h
down to the construction site area with as low as 57 km/h in average (yellow to red
color).

Overall, our evaluation results show the successful application of our proposed lane
course change detection algorithm in an actual highway scenario. To identify changes
it relies on a weighted clustering step, where it incorporates additional quality infor-
mation from the GNSS and further low-cost sensors. That way it requires less GNSS
traces as related clustering algorithms to achieve lane-accurate results. Through our
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extensive measuring campaign, where we relied exclusively on smartphones as mea-
suring devices, we verified the potential of ubiquitously available after-market devices
to improve the maintenance of HD Maps.

To realize a reliable data stream of vehicular sensor data and received map updates
for a self-driving vehicle requires comprehensive knowledge about the performance of
the used wireless transmission channel along the route of the vehicle. In the following
Chapter 6 we present several contributions, which address this problem for the cellular
network.



5.4 EVALUATION OF CHANGE DETECTION - HIGHWAY CONSTRUCTION SITE SCENARIO

(c) End

Figure 35: Sections of the investigated construction site (yellow) (5th May 2016) in correlation
with the situation after the completion (cyan) [89]. Satellite images ©Google Earth
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IN this Chapter we address our third research challenge (see Section 1.2): the reli-
able provisioning of data related to the maintenance of the HD Map via wireless
cellular networks. Besides ad hoc communication technologies as described in the
Sections 3.1.2 and 4.2, self-driving cars also rely on infrastructure-based wireless com-
munication, such as the cellular network, to keep their HD Map operational. Due
to the movement of the vehicle this connection is continuously affected by various
influence factors. As illustrated by Figure 2 this includes static factors such as holes in
the network coverage due to the lack of deployed cell towers and other geographic in-
fluences like mountains, woods or buildings. Dynamic influence factors include other
network user, which share the same resources and weather conditions such as rain or
fog that damp the cellular signal. All these influence factors lead to quickly changing
levels of Quality of Service along the vehicle’s route and make the robust transmission
planning and the exchange of data challenging tasks.

Our contributions to meet these challenges, explained in the subsequent sections,
are as follows:

i) Through our work in the course of the German research project Ko-HAF for self-
driving vehicles, we are one of the first to provide insights on the actual performance
requirements of self-driving vehicle’s communication. Therefore an investigation of
the present vehicular data streams is correlated with the cellular networks performance
in a requirements analysis.

ii) Additionally an extensive measurement campaign is conducted to obtain actual
performance data of the currently deployed cellular network infrastructure. Therefore
the campaign covers the area around Frankfurt am Main, Germany, which includes
all major highways and additional federal roads.

iii) We further investigated the creation of maps containing geo referenced key
performance indicators of the cellular network. We propose to use these so called
”Connectivity Maps” as an additional layer in the HD Map to be shared between all
the self-driving cars. That way the self-driving vehicles obtain meaningful information
regarding the network quality to be experienced in future. Based on this knowledge
areas of poor network performance and connection losses for example can be avoided
by preloading necessary HD Map data in advance. As our major contribution we
develop and evaluate a framework (ICCOMQS) to cost- and time-efficiently generate
such Connectivity Maps. Therefore we leverage the mandatory data transmissions
of the self-driving vehicles (download of map updates, upload of vehicular sensor
data) to probe the cellular network, without requiring any additional dummy data to
be transferred. Consequently we save upon additional transmission costs, which are
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otherwise present in similar active probing approaches as mentioned in the Related
Work (Sec. 3.3.2).

iv) As fourth contribution we improve the performance of the so called online pre-
diction (see Section 3.3.3), an additional technique to support the management of the
self-driving car’s data transmission with special focus on the currently experienced
network quality. Therefore we design and implement an Android smartphone ap-
plication, the so called “Connectivity Map Client” to collect additional performance
indicators of the cellular network infrastructure. From this dataset we derive specific
sets of geographically limited training data to train a machine learning based predictor
for the achievable throughput along the track. The algorithms prediction performance
outperforms common approaches, which only use a single training data set.

v)Furthermore we develop and evaluate simulation frameworks, which are config-
ured based on the obtained measurement data or further public available data sets.
That way we enable the creation of accurate and scalable communication simulation
scenarios. Compared to currently existing frameworks we achieve this without the
high initial learning effort to develop a deep understanding of the necessary configu-
ration process.

In the following Section 6.1 we perform our initial communication requirements
analysis. Therefore we first identify the necessary amounts of data to be exchanged
between the self-driving vehicles and the central backend entity, that hosts the HD
Map, based on the requirements of a fleet of actual prototype vehicles. Subsequently
we correlate those requirements with the theoretical and practical network capacities
currently deployed on German highways.

6.1 COMMUNICATION REQUIREMENTS OF HIGHLY AUTOMATED VEHICLES

The necessary amount of data to be exchanged to successfully operate a HD Map
is subject of current research [17, 18, 136, 177, 178]. To produce HD Map updates,
various companies and research teams are using different vehicular sensor sources,
which in conclusion produce varying amounts of raw sensor data. For this data to
be actually used for the maintenance of the HD Map it needs to be transmitted to a
central entity in the backend where further processing of the data is taking place. To
derive meaningful knowledge from the raw sensor data to generate those updates is a
subsequent challenging research task at the moment [18, 136].

Through our own research [92] conducted in the Ko-HAF project, to the best of
our knowledge we are one of the first, to provide evaluation results regarding the
communication requirements to operate a HD Map, based on an actual prototype
implementation and extensive field tests as explained in the following Sections 6.1.1ff..

6.1.1 Investigated Roadway Scenarios

For our investigation we could rely on HD Map data for two different interconnected
test areas as illustrated by Figure 36. The full combined track length thereby reached
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Figure 36: Overview of the complete Ko-HAF testing area. It includes sections of three
motorways around Frankfurt am Main, Germany (A3, A5 and A661), the federal
highway B45 and the Opel proving ground in Rodgau-Dudenhofen. ©Ko-HAF, 3D
Mapping Solutions GmbH, Map data ©OpenStreetMap Contributors

about 275 km. This includes sections of the motorways A3, A5 and A661 and the federal

highway B45 around Frankfurt am Main, Germany, as indicated by Figure 36. That way

the fleet of self-driving prototype vehicles could operate in a challenging busy traffic  Fleet of twelve
environment with high quotas of commuting traffic. Additionally the closed off areal ~ self-driving
of the Opel proving ground in Rodgau-Dudenhofen allowed the self-driving vehicles ZZZZ;Z f ¢

to evaluate advanced and otherwise dangerous driving scenarios. This includes for

example the detection and the safe bypass of lost cargo on the road. The testing ground

as shown in the Figure 37 is a 4 kilometer track, resembling a four lane highway, with

possible traveling speeds of up to 130 km/h.

6.1.2 HD Map Data Download and Sensor Data Upload

As a common concept explained in the Related Work (see Section 3.1) the full HD Map
data was split up into smaller parts, so called map tiles, to be provided individually
to the vehicles. The area that is covered by each map tile is one square angular minute,
which is about 2.20 km? (1, 190m * 1.850m?) in the considered geographic region
of Germany. Depending on the complexity of the contained map data, the size of
each individual map tile is varying. The individual sizes per map tile range from
12 KByte up to 373 KByte. The largest map tile, as shown in Figure 38, represents

19 http:/ /auto-presse.de/newssys/galerie /380981 /380981_8_1000x.jpg (Last accessed on August 1, 2019)
20 http://www.iaktueller.de/exx.php (Last accessed on August 1, 2019)
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Figure 37: Aerial image of the highway section on the Opel proving ground in
Rodgau-Dudenhofen. ©Opel Automobile GmbH!

the complex situation at the “Frankfurter Kreuz” the major intersection between the
highway A3 and A5 near the Frankfurt Rhein Main airport. As the available HD Map
data specifically covers highway like streets, these data quantities are expected to be
even larger in more complex areas, such as inner city street networks. Considering the
overall average of 66 kBytes of data for a map tile requires a constant data downstream
of approximately 55.5 kByte/km per vehicle, assuming a vehicle driving in parallel
to the meridian of the earth and thus traveling about 1.19 km in one map tile (for
calculation details see Section A.9 in the Appendix).

The amount of sensor data that is uploaded from the self-driving vehicles to the
HD Map maintaining server, heavily depends on their available sensory equipment
and the reported objects. In our analysis the self-driving vehicles reported objects
including: street signs, boundary lines, lane markings and reflector posts (see Figure
38b). The amount of used data to describe such an object also heavily varies with the
achieved sampling resolutions of the sensory equipment of the vehicle. The figures
39a and 39b for example show two different examples of aggregated sensor samples of
lane lines, with a varying sampling rate. Each measured sampling point is represented
by 90 Bytes of data in the SENSORIS data exchange format [179, 180]. As consequence
the different vehicles, produced a varying amount of sensor data per driven kilometer.
The vehicle of Figure 39a produced between 170 - 252 kByte of sensor data per km,
whereas the vehicle of Figure 39b collected data in the range of 578 - 1035 kByte per
kilometer. This situation of varying data rates is expected to become even more diverse
in future with the further development and research in the areas of sensor technology
and data aggregation techniques.

In summary the required amount of data to be uploaded to the server is larger than
the required amount to be downloaded. This is due to the fact, that the map changes
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(b) Map representation of the “Frankfurter Kreuz” intersection, with all the associated
objects along the track.

Figure 38: Visualization of the high degree of information contained in a single map tile of
the HD Map. ©3D Mapping Solutions GmbH, Ko-HAF

can be described rather data efficient by only providing the changed information to
the self-driving vehicles. The uploaded data however cannot be pre-filtered in the
same way by the vehicle itself. For example a self-driving vehicle could overlook a still
existing traffic sign, due to its occlusion by a truck nearby. Thus the map maintaining
central server requires a constant verification of the correctness of the HD Map data,
to detect and discard such false negative detections. Otherwise a several times not
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(a) low sampling rate (250 kByte /km) (b) high sampling rate (1035 kByte/km)

Figure 39: Varying data rates according to the sampling rates used by the different
self-driving protoype vehicles to detect objects and landmarks [92]. Sample data
©Ko-HAF, photo source?!

detected street element in the map data could then over time lead to a false update
information from the server.

6.1.3 Throughput Capacity Analysis

Having derived the data requirements for the HD Map of a prototypical self-driving ve-
hicle we now perform an initial analysis of the transmission capacities of the currently
(2019) deployed cellular network infrastructure in the designated test area (Figure
36). Therefore we investigate an example scenario of one cell tower in the following.
In terms of the operational functionality of the HD Map, as the main focus of our
work, the available upload and download bandwidth of the wireless connection as
well as it’s predictable availability for necessary data transmissions are highly impor-
tant. As illustrated by Figure 40 the identified data requirements for the HD Map in
the upload direction is significantly higher than in the download direction. This is
in contrast to the capabilities of the cellular network [87, 181], which provides higher
available data throughput capacities in the downlink, than in the uplink. This holds
true for all currently deployed cellular network technologies (e.g. LTE, HSPA, UMTS
and EDGE) as well as for the currently specified future 5G network technologies. The

http:/ /tinytanksunblocked.club /mindestgeschwindigkeit-auf-deutschen-autobahnen/ (Last accessed
on August 1, 2019)
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Figure 40: Comparison of the data requirements of one single self-driving prototype vehicle,
used in the Ko-HAF project, and the data throughput capacities on the air
interface of one example cell tower, as encountered in the test area. ©Ko-HAF, 3D
Mapping Solutions GmbH, photo source??

reasons therefore include a reasonable and efficient power management for mobile,
battery powered devices, such as smartphones (see Section A.3 for further background
knowledge). LTE as the currently most advanced, deployed network technology for
example uses a different multiple access scheme for the data transmission in the up-
load direction (Single Carrier Frequency Division Multiple Access - SC-FDMA) and in
the download direction (Orthogonal Frequency Division Multiple Access - OFDMA).
SC-FDMA in comparison to OFDMA is a more robust multiple access scheme, which
is able to realize a stable transmission connection with less transmission power and
thus less (battery) energy required. As a trade-off therefore SC-FDMA achieves a lower
peak-data-throughput in comparison to OFDMA. The energy efficient data transmis-
sion on the client site (e.g smartphones) is further supported by the specification of
the LTE frequency bands (see Table 2, 3 and 4 in [182]). Most of the defined operating
bands have their uplink band in a lower frequency range, than their downlink band,
as the lower frequencies possess better signal propagation properties, which allow the
client device to use comparable less (battery) energy for the transmission. This also
holds true for our own obtained measurements of the cellular network around Frank-
furt (see Tables 19 and 20 in Section A.8 for more details). Only for the experienced
operating band 20 this correlation is inversed.

To investigate the impact of these general correlations on the achievable through-
put, Figure 40 illustrates an example calculation of the theoretical achievable peak
bandwidths for a typical communication scenario as experienced by the self-driving
vehicles in the test area around Frankfurt am Main. For the required background

http:/ /tinytanksunblocked.club /mindestgeschwindigkeit-auf-deutschen-autobahnen/ (Last accessed
on August 1, 2019)
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knowledge on LTE see Section A.3. For the example scenario we assume one supply-
ing cell tower with a transmission frequency in the range of 800 MHz (LTE Band 20)
and a maximum available frequency bandwidth of ten MHz (as owned by all three
German cellular network providers in that area of spectrum?® at the time of writing
this thesis). Furthermore we assume a perfect signal reception between the cell tower
and the self-driving vehicle, as our receiving client, which enables them to use the
highest Modulation and Coding Scheme (MCS) for their transmission. In correlation
to the used vehicular communication hardware (see Figure 73), which contains a LTE
modem of category 3 (LTE release 8) this allows them to exchange data in the down-
link direction using the 64 QAM Modulation and Coding Scheme and a two antenna
array on client side for a 2x2 Multiple Input Multiple Output (MIMO) data exchange.
Assuming those network parameters and a full utilization of all its network resources
(Packet Resource Blocks - PRBs) the cell tower achieves a theoretical peak download
transmission speed of 73,7 Mbit/s (already excluding protocol overhead). In the op-
posite upload direction the self-driving vehicle can only achieve a transmission speed
of 36.7 Mbit/s for the user data, using 16 QAM as the highest available Modulation
and Coding Scheme in the uplink direction. Besides the different access schemes and
Modulation and Coding schemes also the usage of only one transmission antenna
in the upload direction (Single Input Single Output - SISO), due to a more efficient
energy utilisation on the mobile client side, is a key reason therefore. The usage of
only one single transmission antenna holds true for all devices categorized under the
LTE releases 8 and 9. Within the LTE release 10, which is considered the first of the
category LTE Advanced, the MIMO technology also has been introduced in the up-
link direction (see page 15 in [182]). However the ratio of higher downlink and lower
uplink speeds also holds true for such devices, too.

The assumed transmission frequency is reasonable for a vehicular communication
scenario on a highway, as lower transmission frequencies correlate with a better signal
propagation [183] and thus a larger coverage area. In the past the network providers
tend to deploy cell towers with higher transmission frequencies and more available
bandwidth (1800 MHz, LTE Band 3 and 2600 MHz, LTE Band 7%3) [184, 185] mostly in
urban areas, like big cities. With the providers focus on revenue those investments in
cell towers with a correlating smaller coverage area, were only justified by the density
of available paying customers. In conclusion their focus on revenue and also federal
regulations [184, 186] steered the deployment of infrastructure into the direction of a
large coverage of the German population, not a large geographic area as required for
self-driving vehicles on the streets [185]. These literature based assumptions are further
supported by our measured throughput values. 66.41 percent of all measurements
where conducted via cell towers with a transmission frequency of 800 MHz and 33.59
percent in other frequencies as shown in Table 7. Recent proposed federal regulations
[185] in Germany aim to improve this situation by imposing the cellular providers to
deploy more infrastructure along the central highways and roads.

We are well aware, that the identified data rates, which are required to maintain the
HD Map of one single self-driving vehicle, should theoretically be easily achieved by

23 https:/ /www.spectrummonitoring.com/frequencies /#Germany (Last accessed on August 1, 2019)
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Network Type Range of Frequency [MHz] No of Measurements Percentage

UMTS 2100 348,534 9.78
LTE 800 2,365,948 66.41
LTE 1800 261,913 7.35
LTE 2100 128,034 9.78
LTE 2600 458,090 12.86

Table 7: Overview about the different technologies and frequency bands measured by the
fleet of self-driving prototype vehicles. See tables 19 and 20 for an even more detailed
listing.

modern day cellular technologies such as LTE. However these calculated maximum
throughput capacity values have to be shared between all participating vehicles in
one cell tower. In consequence our derived requirements towards the cellular net-
work infrastructure capacities have to be scaled up for several hundreds of vehicles
in parallel to correctly evaluate worst case scenarios, such as a morning rush hour.
Furthermore we are well aware that technological improvements like Carrier Aggre-
gation, more transmission antennas, higher modulation and coding schemes, higher
transmission frequencies, ... (see Section A.3), raise the previously stated absolute
throughput values. Compared to the vehicular communication hardware used during
the Ko-HAF project such higher values can be achieved by more advanced cellular
communication devices. However the calculated peak throughput values of LTE in our
example scenario have to be put into the perspective of real world conditions. Several
influencing factors such as the weather or the transmission distance between the self-
driving vehicle and the cell tower, degrade the transmitted signals quality and thus
lead to a reduction in transmission speed. Additionally the requirements regarding
mobile data consumption are also expected to rise in future simultaneously [187-189],
with the advancing development of the cellular technology. The self-driving vehicle
itself, as a new data consumer and producer, enables further data consumption by its
passengers, e.g. through streaming or video conferencing services. Those additional
services thus also have to be taken into consideration, when evaluating the general
data consumption of a self-driving vehicle [90].

The previously mentioned complex influencing factors cannot be easily incorpo-
rated into our initial analysis of the cellular network performance. Instead we per-
formed an extensive measuring campaign of the cellular network to evaluate their
impact. Therefore we relied on the fleet of twelve available prototype vehicles as mea-
suring probes. Our obtained results for the highways around Frankfurt are described
in the following Sections 6.1.4f.. The similar results for the Opel proving ground in
Rodgau-Dudenhofen are described in Section A.10.
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driven test kilometers 8435 km

period of conducted measuring cam-| 2nd November 2017 - 17th November
paign 2018

pure driving time 243 hours

amount of cellular data traffic used to
probe the network

upload 163.44 gigabyte
download 330.12 gigabyte
total 493.56 gigabyte

Table 8: General information about the cellular network measurements performed during the
test drives in the Ko-HAF project.

6.1.4 Measuring Campaign - Setup description

All vehicles were equipped with the same set of transmission antennas as well as
communication hardware (COM-Box), which allowed us to compare all conducted
measurements with each other, without the necessity to consider various hardware
influences. The COM-Box hosted an LTE modem of the category 3. Thus the theoretical
peak throughput speeds, that the box could achieve were 100 Mbit/s in the downlink
and 50 Mbit/s in the uplink. The cellular measurements were conducted through ad-
ditionally transmitted probing packets (the so called dummy data), strictly separated
from the actual necessary data transmissions required to exchange HD Map updates
and vehicular sensor data. That way we could ensure that the gained measuring results
were not influenced by different patterns of underlying data traffic on the client side.
To conduct the throughput estimations of the cellular network, data chunks of four
megabytes in size were downloaded and uploaded via the HTTP protocol, relying on
the TCP protocol as reliable transmission protocol. The data amount of four megabytes
was selected based on extensive initial test measurements to ensure that the obtained
measuring results were not influenced through insufficient resource allocations from
the serving cell tower or influences from the TCP transport layer protocol (e.g. the ini-
tial slow start phase at the beginning of a data transmission). To ensure that the map
servers networking capacities were not creating a bottleneck during our throughput
estimation we limited the amount of possible conductible test to only one at a time, by
limiting the amount of possible HTTP requests to one. Further incoming requests by
the other cars during the execution phase of the estimation were neglected.

As the cellular measurements were executed in parallel to the test drives, we
achieved a run time of our measuring campaign spanning over nearly the full ac-
tive testing phase of the Ko-HAF project. In the end cellular data could be collected
over a period of more than one year of test drives (2nd November 2017 - 17th Novem-
ber 2018 - see Table 8). A total track length of 8435 km has been covered during a
period of 243 hours of pure driving time. During this time a total of 493.56 gigabyte
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measurable through

) _ cellular network type, Reference Signal Received
provided interfaces

Power (RSRP), Received Signal Strength Indicaton
(RSSI), Signal to Noise Ratio (SINR), Reference Sig-
nal Received Quality (RSRQ), cell ID, cell frequency

measurable through active
data transmissions

upload and download throughput [Mbit/s],
Round Trip Time (RTT) [ms]

additional data vehicle ID, vehicle position, vehicle speed, times-
tamp

Table 9: Collected communication-related parameters from the Ko-HAF vehicle fleet.

of cellular data have been used to conduct throughput estimations in the uplink and
the downlink direction.

To describe the self-driving vehicles experienced network quality comprehensively,
several further key network performance parameters have been captured through
the COM-Box (see Table 9). Besides the data throughput measurements also latency
estimations of the current connection have been actively measured. Therefore we ex-
ecuted ping measurements, by measuring the required time for the TCP connection
establishment, via the SYN/ACK packets, as well as the tear down of the TCP con-
nection at the end of the data transmission for the active throughput probing, via
the FIN/ACK packets. Additionally the Ko-HAF COM-Box provided several further
performance indicators through its available interfaces. Those values did not require
the active transmission of data over the cellular channel. This for example included im-
portant performance indicators regarding the currently available signal strength (e.g.
the Reference Signal Received Power (RSRP), the Received Signal Strength Indicaton
(RSSI), the Signal to Noise Ratio (SINR) and the derived Reference Signal Received
Quality (RSRQ) value. Furthermore to identify the different serving cell towers, along
the way around the test tracks, their correlating cell ID and their individual transmis-
sion frequency was logged. All these collected values are stored in a large database as
a geo referenced data set that can be correlated with the vehicles position, its speed
and the general time, when each measurement was conducted. This geo referenced
database represents the “Connectivity Map” of the test area as introduced by the Re-
lated Work of Section 3.3.1. It allows us to investigate the experienced network quality
and available infrastructure as described in the following Section 6.1.5.

6.1.5 Measuring Campaign - Frankfurt

Figure 41 summarizes the achieved mean of all four major key performance indicators
in the test area. They are throughput in the uplink and downlink, as well as the
Round Trip Time (RTT) and the Reference Signal Received Power (RSRP). Each dot
on the map thereby represents the aggregated result of a circular segment of 500
meters in diameter on the test track. The color of the dot thereby represents the mean
of all the measurements conducted within its range (from green to red / good to
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poor performance). The mean upload and download throughput are shown in Figure
41a and 41b, whereas the RTT and the RSRP are represented in Figure 41c and 41d
respectively.

The gained measuring results clearly showcase real-world examples for our initial
statement of varying geographic cellular network performance as explained in Section
1.2. Along the investigated highways exist several areas with significantly higher or
lower achieved performance values of the four indicators compared to the overall
average of the complete map. Similar results were obtained for the proving ground
in Rodgau-Dudenhofen as shown in Section A.10. These geographically referenced,
rather good or poor areas for a possible data transmission justify the development of
further techniques to improve the overall user-experienced transmission performance
as described in the following Sections 6.2ff..

In the subsequent evaluation step, explained in the following, we put our gained
measurement results into the context of an actual deployment scenario of self-driving
vehicles in daily traffic.

Correlation with Daily Vehicular Traffic

To investigate a possible worst case communication scenario we obtained detailed
information about the daily average vehicular traffic on the highways in our test area
from the German Federal Road Research Institute (BASt) [190]. The area with the
highest vehicular traffic is located on the motorway Ab near the off ramp of Frankfurt-
Niederrad as indicated by the red rectangle of Figure 41a. Due to the dense commuting
traffic into and out of Frankfurt an average of 156,000 vehicles roams in this area on
a daily basis. To identify the time of the day with the highest possible load upon the
cellular network we investigated the hourly averages of vehicular traffic. As expected
the vehicular traffic peaks in the morning and evening rush hours (8-9 o’clock and 17-
18 o’clock). The highest number of considerable mobile clients in the cellular network
is achieved around 8 o’clock in the morning with 15,158 vehicles/per hour crossing
the area. To put these numbers in correlation to a detailed perspective of the networks
capacity the boxplots of the Figures 42 and 43 visualize the measured performance
values (throughput, RTT and RSRP) of the cellular network along the aggregated
segments of the track. Most important for our evaluation are the achieved upload
and download throughput values, as indicated in Figure 42a. Each boxplot thereby
indicates the distribution of all measured values in the perimeter of the specified road
kilometer along the x-axis (see Figure 41a for comparison). For this specific scenario
comparable higher data rates at the beginning and at the end of the track correlate with
higher measured RSRP values. An evaluation result which showcases the impact of
the different Modulation and Coding Schemes that are applied based on the received
signal strength (as explained in Sec. 6.1.3). However a sole measuring of the RSRP value
is not sufficient enough to derive the network’s throughput performance. Both values
have to be collected individually. In terms of the throughput this consequently requires
active probing of the network. Figure 44 shows two example locations that verify this
statement, as there is no direct correlation between the throughput and the RSRP
value visible. The first location is nearby the Frankfurt Rhein Main airport located in
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Figure 41: Overview about the different measured key performance indicators of the LTE
network on the Ko-HAF testing area around Frankfurt [92]. Map data
©OpenStreetMap contributors

the southwest of the area. The other location is nearby the city of Obertshausen in the
east of the testing area. As stated in Section 1.2 the achieved throughput values are
influenced by many different factors. For the area around the Frankfurt Rhein Main
airport probably a dense active user basis shows its impact on the LTE network as a
shared medium.

In comparison to the theoretical possible throughput values as calculated for one
exemplary cell tower in Section 6.1.3 the actual achieved throughput values in the test
area are considerably lower. This clearly shows the significant negative impact on the
cellular connection that results from the various influencing factors in an actual real
world environment. For the download direction the majority of the achieved speed
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Figure 42: Overview about the different measured key performance indicators of the LTE
network on the designated section on the motorway A5 near Frankfurt-Niederrad
[92].

values largely varies between values as high as 35 Mbit/s and as low as only 1.75
Mbit/s. In correlation to our statements of Section 6.1.4 the achieved upload speeds
reach even smaller values between 12.5 Mbit/s and 1.75 Mbit/s. Especially these large
variances in the achieved throughputs have to be considered for a robust HD Map
update process.

To be able to put the daily traffic and the achieved data rates into perspective to each
other we furthermore had to investigate the deployed cellular network infrastructure
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Figure 43: Continued overview about the different measured key performance indicators of
the LTE network on the designated section on the motorway A5 near
Frankfurt-Niederrad [92].
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Figure 44: Comparison of the Reference Signal Received Power to the achieved download
throughput in selected areas along the test track [92]. The indicated areas
showcase, that a direct correlation between the received signal strength and the
achieved throughput is not always present. Further influencing factors such as the
number of active clients require active probing to obtain the cellular network’s
throughput. Map data ©OpenStreetMap contributors

in the marked area. Based on our measurement data we identified that at each point
along the route near Frankfurt-Niederrad the investigated provider Vodafone had
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Upload data rate each cell tower has to provide for:

Download data rate each
cell tower has to provide
for:

Vehicular sensor data up-
load at 250 kByte/km per
vehicle

Vehicular sensor data up-
load at 1035 kByte/km
per vehicle

Map data download at
55.5 kByte/km per vehi-
cle

4.49 Mbit/s

18.59 Mbit/s

0.997 Mbit/s

Table 10: Mandatory network throughput capacity each cell tower has to provide for all
self-driving vehicles in the worst case communication scenario near
Frankfurt-Niederrad.

deployed two cell towers to provide its costumers. Furthermore we measured an
average cell transmission range of 3.2 km. This transmission range is comparable to
the values achieved for a similar urban scenario described in the Related Work of
Afric and Pilinsky [191]. In their scenario the authors stated that the average achieved
transmission range of an LTE cell tower was around 5.5 km. Assuming a similar
deployed network infrastructure for the two remaining cellular network providers in
Germany (Telekom and O2) at the time of the measuring campaign, we considered an
amount of 6 cells in total to be available in our evaluation scenario to equally serve the
present vehicles. Furthermore we assumed an equal timely distribution of the 15,158
vehicles passing through the considered area during the rush hour. The traveling
speed of each vehicle was assumed to be 100 km/h as an average over the speeds
of slower trucks (speed limit of 80 km/h [192]) and faster sedans (average speed of
125 km/h [193]). The upload and download data rates were set accordingly to the
achieved values during the Ko-HAF project (two different upload data rates: i) 250
kByte/km and ii) 1035 kByte/km, as well as a download data rate of 55.5 kByte/km).

With all this information at hand we calculated the required upload and download
network capacities that each of the cell towers had to full fill as worst case scenario. The
achieved results are summarized in Table 10. For calculation details see Section A.9 in
the Appendix. When comparing the calculated values with the measured upload and
download throughput values of Figure 42a especially the required upload data rates
show a critical impact on the available network resources. Even assuming only the low-
est data rate to provide the vehicular sensor information already comes close to the
average mean provided upload data rates of the network. Considering the scenario of
a high upload data rate the available network resources are even exceeded. In compar-
ison the necessary download data rates can be more easily served. However there are
still certain critical segments along the investigated track between street-kilometer 173
and 182, where the gap between available resources and required data rates becomes
very close. Additionally the download direction also has to be considered to serve fur-
ther additional services with a significant impact, such as audio and video streaming
in parallel, which further fortifies the load on the cellular network. For further details
regarding their possible impact we refer to our related publication [92].



6.2 MEASUREMENT CAMPAIGN CONCLUSIONS - CONNECTIVITY MAP AS HD MAP LAYER

In conclusion we could identify that even with a very conservative data foot print, as
required by the examined self-driving vehicles, significant additional traffic load is go-
ing to be introduced into the deployed cellular network to maintain the HD Map. This
additional load is especially critical in the upload direction, as the cellular networks
capacity is optimized for the provisioning of content in the download direction.

6.2 MEASUREMENT CAMPAIGN CONCLUSIONS - CONNECTIVITY MAP AS HD MAP
LAYER

The cellular network measurements, conducted in the Frankfurt test area clearly visu-
alize our initial statement of Chapter 6: The available quality of the cellular network
is quickly changing along the route of the self-driving vehicle due to several external
influencing factors according with the high mobility of the vehicle itself.

Based on our initial thoughts for this research area, we do not consider the Connec-
tivity Map as some kind of external information source, as introduced in the Related
Work. Instead we propose its integration into the HD Map, as an additional, distinct
and dynamic layer, as shown in Figure 45. That way the maintenance application
of the Connectivity Map in all self-driving vehicles can rely on the same interfaces
and techniques that are already available to exchange the further traffic information
located in the other layers of the HD Map. This ensures technological robustness and
enables an easier future dissemination of the technology.

To enable the efficient maintenance of this distinct HD Map layer we propose a
specialized framework as described in the following Section 6.3.

6.3 CONNECTIVITY MAP CREATION FRAMEWORK - ICCOMQS

The major contribution of the Intelligent Cellular Communication Quality Sensing
framework (ICCOMAQS) in contrast to all Related Work lies in the generation of the cel-
lular probing data and its intelligent dispersion to efficiently cover a large geographic
area. In contrast to the work of Papageorge et al. [154] we do not piggyback our sensor
data upon dummy data packets for the probing process. As explained previously, this
might in the worst case degrade down to the level of active measuring by sending
nearly pure dummy data. The ICCOMQS framework instead only uses the data to be
send anyway in mobile sensor networks as probing units. In contrast to a passive mea-
suring approach ICCOMQS schedules the amount of data to be send for probing and
its transmission time completely on its own. Thus it achieves the same performance
results in terms of measuring accuracy as an active probing mechanism, without its
additional costs. To achieve all these benefits ICCOMQS relies on the fundamental
property of transmission delay tolerance for certain types of data to be exchanged
between the sensor nodes and a data processing backend entity (e.g. a central server)
as explained in the following. Obviously there exist different kinds of data types, with
varying time requirements. Thus extremely time critical events such as accident warn-

24 https:/ /ko-haf.de/fileadmin/user_upload /media/abschlusspraesentation/14_Ko-HAF_Continuous-

Updating-of-Backend-HD-Map-Data.pdf (Last accessed on August 1, 2019)
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Figure 45: Proposed integration of the Connectivity Map as an important additional layer of
dynamic information into the HD Map for the self-driving vehicles. The layers
information can be shared similar to the traffic information on the other layers,

ensuring robustness in the deployment. ©Ko-HAF?**

ings ahead on the road have to be excluded from the following sketched scheduling
procedure and instead be sent right away. The remaining data, however posses a cer-
tain time frame (delay tolerance) of minutes to hours to be collected or processed to
achieve reasonable information quality in the backend to be used in the subsequent
applications. This condition allows ICCOMQS to delay the transmission of this kind
of data, within its given time constraints, on client or server side as illustrated by Fig-
ure 46. ICCOMQS then schedules the transmission of the useful data into geographic
areas where information about the cellular network quality shall be collected, without
introducing any additional transmission costs. The sensor data provided by a self-
driving vehicle to a central data processing backend server and the received HD Map
updates are a key example for such a kind of delay tolerant data. To be able to provide
a reliable map update, the data processing algorithms in the backend first have to
receive enough sensor data on the changed traffic situation from the vehicles. How
much sensor data actually is required to successfully maintain a HD Map, depends
on the information that needs to be updated and is still subject of ongoing research.
Klejnowski et al. [136] for example investigated this question for the update use case
of changed lane markings. In the work of Beringer et al. [18] the authors describe a
system (Elektrobit robinos) to aggregate sensor data and to provide HD Map updates
based on this sensory information. Elektrobit robinos thereby provides updates of
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Figure 46: General working principle of the ICCOMQS framework [93].

the map data on a daily basis. A similar degree of delay tolerance is also given for
the provisioning of the finalized map update to the self-driving vehicle. The car itself
has to receive the data before it reaches the certain geographic area of its relevance
(see Section 4.1). This gives the ICCOMQS framework’s entity on the side of the data
providing backend (see Figure 46) a certain time window, in which the transmission
can be scheduled. The ICCOMQS framework in general abstracts from this described
specific use case in the domain of self-driving vehicles. It was designed by us to be
applied upon any mobile sensor network’s data, which posses a similar property of
transmission time tolerance.

The detailed functionality of the framework and the design decisions, which lead
to its final composition are described in the following Section 6.3.1.

6.3.1 Design Requirements Analysis

Our major concern in the design and specification phase of ICCOMQS was to develop

the framework, with the aforementioned key functionalities, without being limited

to a single type of wireless network or a single type of exchangeable data in mind.

Instead the framework had to be capable to operate with any given wireless network

and data source, to ensure a reliable further usage by researchers or engineers in as

many as possible usage scenarios. Consequently ICCOMQS has been developed with  Generaliza-
generalization and flexibility in mind. Figure 47 illustrates its detailed design concept  tion and
for the envisioned practical scenario of a client sever architecture to probe the cellular flexivility
network as example of a wireless network. However the only assumption we made

to realize the framework’s capabilities described in the previous Section 6.3, was that

two network entities (indicated as client and server in the Figure 47) communicate

through a wireless network (the cellular network in our usage scenario) with each

other. The entities were envisioned to provide either sensor data (the client) or to

store and process the data (the server) and forward an aggregated result back to the

other communicating entities. To address the problem of diversity in the data to be
exchanged, we decided to use Google’s Protocol Buffers (protobuf?’) as common data

format (PB_*) to interface with any given data source on both communicating entities.

25 https:/ /developers.google.com/protocol-buffers/ (Last accessed on August 1, 2019)
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Figure 47: Design of the ICCOMQS framework [93].

Protobuf provides several key functionalities that led to this design decision. First of
all the data format can contain any kind of data (simple data types as well as complex
data objects and lists of them) and provides common interfaces for several different
programming languages (e.g. C++, Java and Python), which get automatically gener-
ated from the formats specification files. This ensures robustness and high flexibility
for the easy integration of existing subsequent applications. Additional data variables
for example can be easily added without the necessity of manual altering all interface
functions. The program interfaces are automatically updated by the protobuf compiler,
when the common data format gets altered. As second design consequence we could
not assume a certain operating platform on which the ICCOMQS software is executed.
Furthermore we required fast and accurate timing performance of the framework itself
to realize reliable active cellular measurements (e.g. latency and throughput estima-
tions). As a result and to stay as close as possible to the used hardware’s capabilities
we decided to implement the framework in the programming language C++. C++
provides us with features such as object orientation and hardware optimized code
execution for reliable timings during the measurements. Furthermore a variety of
compilers is available to run the framework on nearly all existing operating platforms
(e.g. Microsoft Windows, Linux, Mac OS) as well as different architectures (e.g. ARM
and x86). To ensure the efficient operation of the ICCOMQS framework based only
on the provided user data, we had to design its measuring process of the wireless
network as data-efficient as possible. To achieve this goal, we did not rely upon the
Transmission Control Protocol (TCP), as used in the Related work of Papageorge et
al. [154]. TCP assumed to be used in one of its most common configurations inside
the mobile nodes uses congestion control mechanisms. This includes techniques such
as slow start and congestion avoidance. Thus it uses significant amounts of data in
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Figure 48: Exemplary investigation of the minimum amount of data required to probe an LTE
celltower with a transmission bandwidth of 10 MHz (LTE Band 20 - 800 MHz). By
using an LG Nexus 5 smartphone as measuring device the theoretical maximum
throughput that can be achieved under perfect signal conditions, including the
protocol overhead is 51.5 Mbit/s (50 resource blocks, QAM 64). At the position of
the stationary measurement the connection speed saturates around 45 Mbit/s,
close to the theoretical capacity limit, using only about 1 MByte of probing data.

the transmission process before reaching the network’s peak bandwidth, which shall
be included as key performance indicator in the Connectivity Map. Similar to most
of the presented active probing algorithms of Section 3.3.1f. we relied upon the User
Datagram Protocol (UDP) instead, as it gives us the full control about the pattern of
data to be send over the network to reach its capacity limit as quickly as possible. Xu
et al. [153] especially have shown the capabilities of UDP to reliably probe the limits
of modern cellular networks with only a very small amount of available probing data
(only several kilobytes to some megabytes). The authors thereby could not identify
any difference (e.g. introduced by artificial regulation rules of the cellular providers)
in the obtained final measuring results when using TCP or UDP.

To ensure the application of these results upon our personal network infrastructure
we conducted own performance tests in our investigated LTE infrastructure with
similar results. Figure 48 exemplary illustrates the amount of data required to probe a
cell tower with a transmission bandwidth of 10 MHz or 50 resource blocks respectively
(see Sec. A.3 for details). For the probing process we used a LG Nexus 5 smartphone,
which is capable of using 64 QAM as highest modulation and coding scheme, but no
MIMO technology. In summary the theoretical throughput speed limit of this device
being served by the cell tower is 51.5 Mbit/s in the downlink (including the protocol
overhead). At the site where the stationary measurements were conducted we could
identify a saturation of the throughput estimation at around 45 Mbit/s, which could
be achieved by using about 1 MByte of probing data and is close to the cells capacity
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limit considering normal signal conditions. The cell site was hosted by provider B as
referred to in the following Section 6.4.1, one of the three providers hosting cell sites
in Germany at the time of writing this thesis (2019). Similar results were also obtained
for the other two providers.

However ICCOMQS can be easily adapted to use TCP instead of UDP for the prob-
ing mechanism, if the achieved measuring results should differ for service providers
in other countries or the established flow control mechanisms on the provider’s side
should change in future. In the final configuration and the prototypical implementa-
tion of the ICCOMQS in an Android client (see Section 6.4.1 for further details) we
used an adaptive measuring algorithm, which increased and decreased the amount
of sensor data used for the cellular probing to stay as close as possible to the networks
transmission limits. In contrast to the techniques used in TCP, we thereby relied on
the directly measured network quality indicators (e.g. the currently available trans-
mission bandwidth in Hertz), as well as the ones stored in the Connectivity Map
to achieve a faster adaptation rate. Similar Quality of Service indicators can also be
collected for other wireless transmission networks. Based on our personal conducted
measurements (see the previous Section 6.1) we additionally agree with the further
statement of Xu et al. [153], that measurements of the cellular network should be con-
ducted as quickly as possible, not to be affected by certain long term effects, such as
the introduction of additional load on the channel introduced by further applications.
To ensure a reliable transmission of the valuable user data via the unreliable UDP, we
further introduced an additional TCP control channel. That way the client or server
side can initiate the retransmission of lost packets if necessary. Instead of using two
different transmission channels (one for the probing data and one for the control in-
formation) also the use of the QUIC protocol [194] is considered for future work, as
it also relies on UDP on the transport layer of the network stack and provides further
potential for network specific adaptation through the control mechanisms provided
on the application layer.

6.3.2 The Scheduler

The key functionality of the ICCOMQS framework resides in its Scheduler compo-
nent, which exists in the same fashion in all the communicating network entities, as
illustrated by Figure 47 for the client and server. Its main purpose is to achieve the
previously described geographic coverage through different scheduling strategies, ex-
plained in the following Section 6.3.3 as our second major contribution in the design
and implementation of ICCOMQS . To enable these intelligent probing strategies the
Scheduler, shown in detail in Figure 49, has to collect and store the incoming user
data to be exchanged between the communication parties. Figure 49 illustrates all the
designated steps of the necessary processing pipeline in the upload direction between
a data source on client side and the backend database on the server side. The general
principle to probe the wireless channel’s performance however stays the same for both
directions (upload and download). As the first step in the pipeline the Data collection
subcomponent inside the Scheduler packs any incoming data accordingly to their tim-
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Figure 49: Processing chain within the scheduler module of the framework for the upload
direction from client to server [93].

ing requirements together to fit into the desired size of a probing packet. That way the
Data collection component packages data until the critical mass for a network mea-
surement is reached and then informs the Trigger component as the following entity.
It also extracts further relevant information (e.g. the measured geographic location)
out of the user data to provide it to the Trigger. The Trigger component then plans
on which position along the vehicles track the measurement of the wireless network
is going to be executed. The chosen side conditions for this planning process can be
configured freely, e.g. by the extracted information of the provided user data. For our
probing algorithms as proposed in Section 6.3.3 and evaluated in Section 6.3.4ff. we
only assumed to be provided with the localization information of the mobile nodes.

6.3.3 Intelligent Probing Strategies

Our second major contribution in the context of the ICCOMQS framework is the
design and the investigation of different probing strategies to improve the geographic
dispersion of measurements of the cellular network to be stored in the Connectivity
Map. To the best of our knowledge we were the first to focus on this kind of aspect
within the creation of the Connectivity Map, as all other investigated works (see
Sections 3.3.1 and 3.3.2) either had a different focus on the dispersion of network tests
or relied on different prerequisites for the probing procedure. In the following we
discuss the four different probing strategies, which we designed for the application in
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Approach Time of Measurement Example

-

&, &, )( )(

Trivial Executed as soon as the
data for one measurement
is ready:.
e ®
(. 7.9
Aimed Random Executed randomly in the

time frame between two
possible trivial measure-
ments.

Local Map Planned accordingly to
the white spots in the con-
nectivity map and the ve-
hicle’s route.

Shared Map As local map approach,
but the planned measure-
ments are shared between
all vehicles for an even bet-
ter coverage.

Table 11: Investigated probing strategies in the ICCOMQS framework.

the ICCOMQS framework. They are summarized and further illustrated by Table 11.
We implemented these four strategies in our prototype of the ICCOMQS framework,
which is based on Android clients and a Linux backend server, as described and used
for our following works in Section 6.4.1. Furthermore we evaluated these strategies in
a large scale simulation scenario as described in Section 6.3.4 to show the performance
of the ICCOMQS framework in a scaled up environment to resemble a later real
world deployment of the system. The traffic simulation is based on the SUMO traffic
simulator used throughout our previous contributions of Chapter 4. The individual
strategies are summarized in Table 11 and described in ascending order in correlation
with their complexity as follows:

Trivial Approach

The most simple approach and our assumed baseline with which we want to compare
our other proposed concepts is the Trivial approach. It executes one measurement
of the wireless network, as soon as enough probing data (e.g. one megabyte) could
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be collected in the Scheduler unit. Thus the approach only relies on the amount
of incoming data and requires near to no additional implementation effort. As it
does not involve any further logic to improve the overall dispersion of the simulated
test measurements, we assume it to perform as a lower boundary in the following
Evaluation described in Section 6.3.4ff..

Aimed Random Approach

If we assume a scenario with a nearly constant rate of incoming data on each vehicle
also the time interval for the next transmission of the Trivial approach is nearly con-
stant. In consequence this effect might lead to a poor dispersion performance of the
algorithm’s designated measurement positions. To address this problem of the Trivial
approach with only a bit more implementation effort we propose the Aimed Random
approach. In contrast to the Trivial approach the Aimed Random approach randomly
schedules the execution of the data transmission between the two time points when a
new set of measurement data becomes available. Thus it shall achieve a better overall
dispersion performance, with only slight implementation adaptations.

Local and Shared Measurement Map Approaches

The Local and the Shared Measurement Map approach are our true recommenda-
tions for well-performing probing algorithms to effectively built up and maintain the
Connectivity Map. Therefore we extend our proposal to integrate the Connectivity
Map as an additional layer into the HD Map, as described in the beginning of Section
6.2 and Figure 45. Besides the Connectivity Layer itself we also propose to integrate
an additional layer into the HD Map, where the information regarding the already
executed and planned measurements of the cellular network shall be stored.

This measurement planning layer is initially partitioned in equally spaced areas. The
initial segment size is individually configurable and gets refined over time as explained
in the following. The ICCOMQS framework schedules the execution of the measure-
ments accordingly to the remaining segments of the map where no measurements
have been already executed (white spaces) under consideration of the time constraints
of the available user data. If no more white spaces are available or if the sensor data to
be send cannot be delayed this far in time to reach the remaining white spaces another
suitable grid with the lowest number of already executed measurements is selected.
This segment then gets divided up into two smaller segments creating a smaller white
space that is then scheduled to be filled with a new measurement’s information. This
process is repeated until a certain minimum segment size is reached. This minimum
is configurable as well and depends on the assumed necessary spacing between each
individual measurement to appropriately resemble the measured information (e.g. as
in our chase the performance indicators for the cellular network) in the Connectivity
Map. In our evaluation we assumed an initial segment size of 5km, which then gets
reduced down to a minimum segment size of 10 meters between each individual
measurement (see Table 13). The lower boundary of 10 meters was selected due to
the measurement inaccuracy of currently available low-cost GNSS sensors (e.g. GPS
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or Galileo), which the vehicles use for their personal localization and thus also the
planning of the measurements along their trip. This boundary value however might be
further reduced in other scenarios if a more precise localization of the measurements
is possible. Depending on the preferred degree of data protection and privacy, this
general concept can be implemented in a Local or a Shared Map approach. Through
the Local Measurement Map approach the measuring vehicle ensures its privacy, by
only relying on the information about its personally executed measurements to plan
the future ones. The Shared Measurement Map approach in contrasts shares all the
planned and executed information between all vehicles and thus is assumed to achieve
the highest degree of geographic dispersion as our considered performance metric for
an effectively operating Connectivity Map.

Time Dependancy and Degradation over Time

As stated in the introduction of Chapter 6 and illustrated in Figure 2, not only the
spatial refinement of our connectivity layer has to be considered. Through the several
mentioned influencing factors also temporal changes have an effect on the overall
achieved network quality. A very good example in our considered scenario therefore
are the varying traffic patterns over the time, with dense traffic in the rush hours
and only spare traffic in the off-peak hours. Another example are the changes intro-
duced due to the network extensions of the cellular providers. Consequently older
test-results have to be degraded by a time factor, to ensure the actuality of the Connec-
tivity Map’s information. In our opinion huge changes in the achieved measurement
results therefore should be weighted stronger and trigger more follow-up measure-
ments to quickly update the connectivity layer in such areas. The exact impact of
these time influence factors however might be heavily dependent on the investigated
scenario (e.g. as shown in Section 6.1 for the different areas considered in the Ko-HAF
project) and consequently should be based on an extended measurement campaign
to cover possible long term effects. Thus we consider the inclusion of such time pat-
terns as future work to further improve the performance capabilities of the currently
existing ICCOMQS framework. In the current status of the framework we focused on
the optimization of the geographical coverage of the Connectivity Map as shown in
the following evaluation. We argue that a sophisticated geographic dispersion of the
network measurements will provide a larger benefit to the users of the Connectivity
Map, due to a larger spatial variance of the cellular network measurements compared
to their temporal variance, as presented in the Related Work of Yao et al. [195].

To evaluate the performance of the proposed probing strategies of the ICCOMQS
framework in a large scale deployment we conducted a SUMO simulation similar to
the ones described in Section 4.2.3 for the evaluation of our proposed Dynamic Map
Update protocol and its HD-Wmap extension.
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ratio of sensing vehicles in all road users | 1/1000

simulated consecutive working days 20

required data for measurement [byte] 1000000
sensor data rate [byte/s] 5000

sensor data variance [byte/s] +250

Table 12: Default simulation parameters for commuting scenario [93]

6.3.4 Simulation Scenario and Configuration

We selected the TAPASCologne SUMO dataset for our simulation (see Figure 90 in
the Appendix for details). It represents the traffic in and around the German city of
Cologne. The scenario was selected, because it is known currently as the biggest traffic
scenario available for SUMO as of the writing of this work (2019). Consequently it
represents our requested large scale deployment excellently. The following evaluation
results are based upon the dataset of the morning rush hour between six and eight
o’clock with a peak of 40.000 commuting vehicles around 7 o’clock. The simulation
was executed in twenty consecutive runs, to resemble the pattern of commuting traffic
during the work days in and around Cologne for a whole month. We simulated
for this long period of time to reach possible saturation effects of the geographical
dispersion achieved by the different probing strategies, which would then require
further probing strategies focusing on the time degradation of the data. The detailed
settings used during the simulation are summarized in Table 12. From the full set of
vehicles we assumed 1000 to be capable to share their sensor data with the ICCOMQS
framework. Further we specified the amount of one megabyte of data necessary to be
collected to execute a measurement in resemblance of our conducted measurements.
Furthermore we assumed the sensor data collecting vehicles to achieve a data rate of
5000 byte/s. We achieved similar rates with our own prototypical implementation of
the ICCOMQS framework, which we used throughout our subsequent contributions
to collect the thereby required sensor data (see Section 6.4.1 for details). The achieved
data rate values however might change over time, depending on the type of collected
sensor data and experienced environmental changes. An example therefore are the
different amounts of lane markings that are detected in different traffic environments,
e.g. highway or city streets. Thus we further implemented a variance of £250 byte/s
in our generated data stream to resemble this influencing factor in our simulation as
well.

6.3.5 Initial Graphical Evaluation

As our first evaluation step we performed an initial graphical comparison between
the different proposed probing strategies to identify their achieved coverage of ge-
ographic area, as our introduced performance metric. Therefore we calculated heat
maps of the complete scenario area for each proposed strategy, shown in Figure 50.
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The colorization of each heat map is scaled individually to match with the related
approach’s dispersion density of measurements. Red segments identify areas with a
high density of executed measurements, whereas yellow sections represent areas with
a lower density of measurements. About 5% of all executed measurements are located
in the light yellow areas, with an increasing number towards the dark red zone. Larger
areas of the same color correlate with a more equally dispersion of the measurements,
thus they indicate a better performing probing strategy. For the creation of the images
and the required initial calculation steps we relied on the free Geographic Information
System QGIS?. Figure 50 shows the achieved results.

The Trivial approach as illustrated in Figure 50a achieved a total coverage area
of about 324 km? after the simulated period of 20 consecutive days with the same
pattern of commuting traffic (see the Graphs in Figure 52 for further reference). In
total our considered set of 1000 vehicles generated probing data for 67588 cellular
measurements. The Trivial approach used all of the data as it sends it out right away.
The other three proposed probing strategies conducted less measurements throughout
the simulation, as they scheduled the transmission of data in comparison to the Trivial
approach. Less probing data to cover the same area of the map is beneficial in a way that
the remaining data can be used for either other areas or for the intelligent maintenance
of the Connectivity Map over time. The Aimed Random approach as visualized in
Figure 50b conducted 60298 measurements in the same time and covered an area of
around 317km?2. Consequently the approach could cover nearly the same geographic
area (only 2% less) as the Trivial approach, by using 11% less data. In contrast to the
aforementioned concepts the Local Map and the Shared Map approach performed
significantly better. The Local Map probing strategy shown in Figure 50c could cover
an area of 548 km? with only 51644 conducted measurements. This is an increase
of 69% in covered area and a reduction of 24% in probing data required therefore
compared to the Trivial approach. As expected the Shared Map approach visualized
in Figure 50d achieved the best coverage performance of 801 km? with 47290 conducted
measurements. This is an increase in the covered geographic area of 147% compared
to the Trivial approach, with a reduction in the required measurement data of about
30% respectively.

Besides the shown visualizations of the complete scenario area we furthermore per-
formed an in-depth graphical evaluation between the different approaches. Therefore
we selected a small, designated area in the city center near the Cologne Cathedral and
the main station as indicated by Figure 51.

The four individual graphics show the dispersion of measurements for each pro-
posed strategy. Figure 51a clearly visualizes that the Trivial approach conducted most
of its measurements on the busy main streets. Large areas of less frequented side
streets where nearly skipped. Thus the Trivial approach leaves out important connec-
tivity information of those areas. The Aimed Random (Figure 51b) and the Local Map
approach (Figure 51c) achieve a similar improved performance compared to the Trivial
Approach. Both approaches include several additional side streets into their coverage.

26 http:/ /www.qgis.org/en/site/ (Last accessed on August 1, 2019)
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(a) Trivial - 324km? (b) Aimed random - 317km?
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(c) Local map - 548km?

Figure 50: Heatmap of the dispersion of 95% of the simulated measurements after 20
consecutive days of commuting [93]. Map data ©OpenStreetMap contributors

The Shared Map approach (Figure 51d) furthermore outperforms these two concepts,
with a very evenly distributed field of measurements over all covered streets.
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(c) Local map (d) Shared map

Figure 51: Detail comparison of the different measurement dispersion approaches in the
inner city area of Cologne near the main station [93]. Map data ©OpenStreetMap
contributors

6.3.6  Statistical comparison

In our second evaluation step, to compare the different dispersion strategies on a re-
liable numerical basis, we calculated the Nearest Neighbour Index (NNI%) as perfor-

27 http:/ /www.geoib.com/nearest-neighbor-index.html (Last accessed on August 1, 2019)
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Parameters Day

Ap- Data Meas- 1 5 10 15 20
proach | rate uring

vari- dis-

ance tance

[byte/s] | [m]
Trivial 4250 - 0.457 0.026 0.014 0.009 0.007

42500 - 0.454 0.157 0.120 0.099 0.084
Aimed | £250 - 0.450 0.279 0.229 0.202 0.181
random
Local +250 5000 -| 0.530 0.353 0.297 0.265 0.244
map 10
Shared | +£250 5000 -1 0.796 0.528 0.435 0.388 0.360
map 10

Table 13: NNI over twenty days for examined approaches [93]

mance metric. The NNI describes the spatial dispersion of the executed measurement
points in a defined geographic area. It is calculated as described by Formula 7.

NNI=2%Dx*+/N/A
D = average distance between each point and its nearest neighbour = Z d/N

d = each points individual distance to each other @)
N = number of studied points

A = size of studied area

The NNI thereby spans between the values of 0 and 2.15. In our chase 0 is consid-
ered as the worst achievable value that one of our dispersion concepts could reach,
as it represents one single clustered area of data points, whereas 2.15 is equal to a
regularly dispersed pattern of points, the best case in consideration of a beneficial,
large geographic coverage. An NNI value of 1.00 indicates a random dispersion of all
considered points.

For our evaluation we calculated the NNI for each of the probing algorithms after
every period of five consecutive days (resembling a full working week) using QGIS.
QGIS directly calculates the NNI values from a provided geographical dispersion of
the vehicles, which we obtained through our SUMO simulation. The obtained NNI
results are presented in Table 13 and Figure 52.

After the first simulation day the Trivial and the Aimed Random probing approach
achieved comparable NNI values of 0.457 for the Trivial and 0.450 for the Aimed Ran-
dom approach. The Local Map and the Shared Map approach, as expected, performed
significantly better with achieved values of 0.530 (Local Map) and 0.796 (Shared Map).
As of the first day no previous measurements have been conducted and thus all four
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Figure 52: Plot comparing scheduling approaches considering number of measurements and
NNI over twenty days [93].

approaches achieve comparable high values of the NNI with slightly improved per-
formance results of the map based probing concepts over the other two suggested
algorithms. In the following days the NNI decreases continuously, as more and more
traveled roads get covered more densely with an increasing number of cellular mea-
surement points. This rate becomes less and less over time as the new incoming
measurements have less impact on the overall density of the dispersion of the set of
already conducted measurements, as visualized through the gradients of the curves
in Figure 52. As initially assumed the Aimed Random approach always achieved a
better performance than the Trivial base line concept. We consider the low variance
of only £250 byte/s in our simulated data stream as one major negative influencing
factor on the Trivial probing. The low variance lets the Trivial approach schedule its
measurements very closely near to each other every day of the car’s commuting trip.
We further investigated this aspect by increasing the data variance received by the
trivial approach up to £2500 byte/s. As result the Trivial approach’s performance
increased. However it still remained below the one of the Aimed Random approach
with less variance in its data stream, as plotted in Figure 52. This justifies our initial as-
sumption that the Aimed Random approach outperforms the Trivial approach by only
requiring a slight additional implementation effort. The two map based approaches
(Local and Shared) in comparison outperformed the Aimed Random approach over
the full twenty days of simulation. At the end of the simulation the Shared Map con-
cept achieved an NNI nearly twice as high compared to the one of the Trivial approach,
as expected the best overall performance result.

To summarize our evaluation results a decision for one of the probing strategies
has to be based not only on the achieved performance results, but also on the defined
side conditions. Overall the Shared Map approach achieved the best performance
results. However if a reduction in the communication overhead is desired or privacy
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concerns are present the Local Map approach is the most suitable one. If furthermore
computation capabilities or storage space on the client side are an important criteria
the Aimed Random approach is a suitable choice. It outperforms the Trivial probing
concept, with nearly no implementation overhead.

Besides our extensive simulations we furthermore implemented an actual working
prototype of the ICCOMQS framework as a combination between an Android based
smartphone client and a linux based backend server as discussed in detail in the fol-
lowing Section 6.4.1. This prototype was used as a fundamental prerequisite for our
subsequent contributions.

In summary the ICCOMQS framework enhances the performance of a Connectivity
Map in the anticipation of geographic variances in the quality of the cellular network.
Therefore the framework efficiently and intelligently conducts cellular network mea-
surements. The successfully maintained Connectivity Map itself then improves the
overall data transmission performance of the self-driving vehicles.

From the achieved promising evaluation results of this work, we now shift the
focus of our research upon the anticipation of temporal influencing factors on the
performance of the cellular network (e.g. weather effects or the maintenance of a cell
tower) in the following Section 6.4.

6.4 CONNECTIVITY MAP SUPPORTED ONLINE THROUGHPUT ESTIMATION

As expressed in Section 3.3.3 of the Related Work, the concepts currently at use to
estimate the cellular network performance under temporal influences most commonly
rely on machine learning techniques. Therefore the required network performance
indicators are directly collected (online) from the communication devices, which are
installed in the vehicle. This data is then fed as input into a trained machine learning
algorithm. That way the various proposed algorithms predict the nearby networks
future quality for some seconds till a few minutes ahead on the trip. We focus our
contributions on the estimation of the achievable throughput as we consider it the
most important criteria to ensure a reliable functionality of the HD Map. The major
disadvantages of the investigated Related Works are summarized as follows:

i) Many of the Related Works [68-70, 73, 74] rely upon specialized measuring hard-
ware or software tools (e.g. QUALCOMM'’s eXtensible Diagnostic Monitor) to obtain
their training and testing data for the used machine learning algorithm. This further-
more often includes provider internal information, which is otherwise not publicly
available. As result the mentioned aspects especially hinder a possible future large-
scale deployment of the proposed concepts as considered by us for the context of
self-driving vehicles.

ii) When training their machine learning algorithms the proposed approaches con-
sider the amount of collected network performance measurements, which correlate
with the achievable throughput, as one single set [64, 66-72, 74, 155]. Many of the
Related Works do not even consider a mobile application scenario in their evaluation.
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Based on our contributions in the context of Connectivity Maps, we consider this
global training set as a major drawback in the estimation process, as it likely obfus-
cates the spatial features of the environment and the deployed infrastructure in the
training process.

To overcome these disadvantages we performed scientific contributions as follows:
We proposed and verified upon real world data a concept to subdivide the gathered
training data into cell-specific training sets (Sec. 6.4.1). That way the machine learn-
ing algorithms are able to include the spatial features of the cellular network in the
learning process on a per cell tower level (see for example Fig. 54a) similar to the
working principle of a Connectivity Map. Thus we achieve a much higher prediction
accuracy compared to the mentioned global training data set, which is common for
the related online estimation concepts. To compare our proposed locally trained on-
line estimator with the common globally trained estimators of the Related Work, we
chose the Random Forest regression algorithm as used by Samba et al. [69] as our
reference algorithm. As one of the most recent Related Works Samba et al. achieve
highly accurate estimation results by using this algorithm.

6.4.1 Android Measurement Application and Mobilelnsight Extension

For the in depth investigation of our proposed online throughput estimator, based on
localized training data, we further extended the capabilities of our custom Android
application, which we developed during the work upon the ICCOMQS framework
(see Sec. 6.3 and Fig. 53). That way we were able to rely upon common smartphones as
our measuring probes, instead of the hardware used during our previous measuring
campaign (Sec. 6.1.4). By relying upon such cost-efficient devices, which provide a
similar set of various network quality indicators compared to the built-in communi-
cation hardware (see Table 15), we support the future research in this domain. As we
make our obtained network measurements freely available on GitHub?® we provide
a valuable public benchmark set to the research community. That way future works
can easily compare their own achieved performance results on a common and afford-
able hardware basis. Furthermore by deploying our measuring application on several
smartphones of the same kind we were able to measure the three cellular providers in
parallel (in the following identified as providers A, B and C), which maintained LTE
networks in Germany, during our test drives (May 2018). That way we could exclude
additional influencing factors from our collected data set such as variations in the
device internal hardware, as well as the time or the location when a measurement was
conducted.

Based on the ICCOMQS prototype, our Android application, illustrated in Figure 53,
is able to periodically measure the throughput of the current cellular network in the
upload and download direction. Therefore the application sends sensor data from the
smartphone to a central server and vice versa by using the UDP protocol. The server

https:/ /github.com/florianjomrich/cellularLTEMeasurementsHighwayA60 (Last accessed on August
1,2019)
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itself was hosted at the Technical University of Darmstadt, to ensure a sufficiently high
network capacity on the server’s side, making the cellular network the bottleneck of the
end-to-end channel. By using the UDP protocol we ensure that the measurement of the
cellular network is not somehow influenced by protocol induced behavior, such as slow
start or congestion control as it is the case when using the standard configuration of the
TCP protocol. The collected throughput estimations and their measured correlating
network performance indicators are then stored in a PostgreSQL database for further
processing towards their usage as training or testing data in our online estimator.
To ensure a reproducible probing of the cellular network at its capacity limit we
enhanced the existing upload and download sending process by relying upon the
cellular networks performance indicators (e.g. the available transmission bandwidth)
obtained from the smartphone itself as described in the following (see Sec. 6.4.1 and
Sec. A.12 in the Appendix). With this information at hand in correlation with the
detection of packet loss during the transmission process we ensured to always utilize
the cellular network’s full available capacity by adapting (increasing or decreasing) the
transmitted payload size accordingly. This for example is beneficial after a handover
between two different cells (with respectively different capacities) has been executed.
Based on the lower layer information our application can adapt itself much quicker to
probe the new cell tower at its capacity limit, compared to for example the TCP protocol
that can only rely on the detection of packet loss to adapt its transmission process. This
consequently saves probing data, which is especially useful in consideration of our
vehicular use case, where such cell changes frequently happen.

As stated previously a major concern during the design of our online estimator and
the implementation phase of the Android-based measuring application was an easily
possible future large-scale deployment of our proposed concept (in contrast to the
Related Works). Consequently our first proposed mechanism (1.)) as visualized in Fig-
ure 53 works ”out-of-the-box” simply by installing the application on the considered
smartphone. In consequence this first approach obtains its complete set of network
quality indicators (Tab. 15a) used for the later online throughput estimation via the
publicly provided APIs of the Android operating system.

To investigate the impact of additional cellular network performance indicators
on the achievable throughput estimation performances, which were not obtainable
from the Android API during our test drives (May 2018) we developed our second
mechanism (2.)) visualized in Figure 53. This set of features for example included the
availability of Carrier Aggregation or MIMO along the selected highway segment. For
this required extension however we did not want to spend further money on additional
hardware or software licenses, as for example required for the utilization of QUAL-
COMM'’s eXtensible Monitor Software (QXDM), which is frequently used throughout
the Related Work. By investigating further Related Work we came across the so called
MobileInsight Android application developed by Li et al. [196]. MobileInsight is a free
and open source application, that provides nearly the same network quality features as
the QXDM toolkit. Mobilelnsight achieves this by decoding the provided information
of the same interface on the LTE modems chipset (the QUALCOMM debug port). Our
measuring application then received these decoded network quality parameters via
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Figure 53: Extension of the ICCOMQS frameworks prototype application to obtain cellular
network performance indicator information via two different sources [95]. Namely:
1.) The performance indicators are obtained through the public and open Android
API (Android 7.1.2). 2.) The performance indicators are obtained via Android
Broadcast messages from the Mobilelnsight application developed by Li et al.
[196]. The Mobilelnsight application itself decodes the information related to the
end devices experienced current network quality directly from the device’s LTE
modem using the chipset’s debug port interface.

Android Broadcast messages. The extended list of network performance indicators,
which could be collected by us this way are stated in the Tables 15b and 15c. The
only disadvantage of this second approach compared to our first proposition is the
fact, that Mobilelnsight requires root access on the smartphone to operate. However
compared to the investigated Related Works (e.g. [68-70, 73, 74]), which relied either
on special hardware or costly licensed software to obtain the same network features
for the prediction process, we consider our approach a rather easily deployable and
cost efficient way to obtain the required performance indicators. With the further de-
velopment of the mobile operating systems (e.g. Android and iOS) also more and
more features naturally get included directly into the platforms and do not require
specialized software such as Moblielnsight. The indication of the availability of Carrier
Aggregation is such an example. During our evaluation, as explained in Section 6.4.1,
we relied upon Nexus 5X smartphones running Mobilelnsight on an Android 7.1.2
platform. With the introduction of Android 8.1 the availability of Carrier Aggregation
is also now indicated through one of the public APIs of the operating system.

A full list of all the parameters related to the cellular network’s quality, which our
custom Android application was able to obtain through the two different interfaces, is
presented in Section A.12. Not all of those parameters were directly used during the
machine learning process, but were necessary to create the initial training data set for
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the global and the localized training approach as described in the following Section
6.4.1.

Highway Evaluation Scenario

In opposition to many of the Related Works, we focused our own measuring campaign
especially upon a mobile scenario. Namely a highway scenario, as highly automated
driving functionalities most likely will become first available in such traffic environ-
ments (see for example the test area in Section 6.1.1).

To be able to obtain a sufficient amount of labeled throughput measurements in a
reasonable amount of time to train and test our proposed machine learning concept,
we selected a section of the highway A60 nearby Riisselsheim as our test site (Fig. 54). In
total we conducted two different measuring campaigns, one for each of the previously
explained approaches (Sec. 6.4.1). For the collection of the throughput estimations we
exclusively focused on the LTE network, which was available along the highway as
the most advanced cellular network. We ensured our collection process by forcing the
modems of the used smartphones in an LTE exclusive mode. Hence no other network
technology was used.

The first campaign focused on the evaluation of the proposed estimation approach,
that relied upon the Android API as source of the network quality indicators. During
this first campaign of ten days of test drives, we were able to obtain over 74.000 sets
of throughput estimations and correlated network quality parameters (for further
details see [94]). Based on the obtained results of our first campaign we rethought
our estimation concept and developed our second proposed mechanism. Afterwards
we conducted a second measurement campaign over a period of three consecutive
days. In this campaign we compared our first approach (Android API), with our
second proposed mechanism. This second mechanism is based upon the network
quality information directly obtained from the smartphone’s LTE modem using the
Mobilelnsight application [196]. To compare the performances of both approaches
we collected the network quality parameters provided by the Android API (Tab. 15a)
in parallel to the data provided by the Mobilelnsight application (Tab. 15b and 15c),
while executing our test measurements. All measurements of the second campaign
have been conducted using Google Nexus 5X smartphones (running on Android 7.1.2).
We used the Nexus 5X smartphone as our device of choice, as it is capable of using 2-
way Carrier Aggregation and 2x2 MIMO, advanced LTE features, which were available
on our highway test section. We consider those features as described in Section A.3,
highly important for our proposed local training concept, as they are available only
at certain areas along the highway test segment. Figure 54b illustrates this for the
availability of Carrier Aggregation for provider A along the track.

During this second campaign we obtained over 45.000 throughput estimations via
the Android API and over 540.000 estimations from the Mobilelnsight application for
the training of our Random Forest throughput estimator. See Table 14 for an in depth
view on the data set regarding each of the three providers. The different amounts of
collected throughput estimations result from the varying sampling interval provided
through the Android API and the Mobilelnsight application (see Figure 55).
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(a) Measurements colorized accordingly to the serving cell towers unique ID (Cell ID), that
was used for the data transmission.
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(b) Measurements with available Carrier Aggregation of Provider A

Figure 54: Visualisation of the 5km long Section of the German highway A60 near
Riisselsheim where our measurement drives have been perfomed [95]. Map data
©OpenStreetMap contributors

As the second campaign included the first investigated approach as well in its
evaluation, we will focus on its results exclusively in the following Section 6.4.2. For
the similar evaluation results obtained in the first campaign see [94].

Provider A B C
Download | 8369 | 8571 | 6027
Upload 8367 | 8566 | 6002
Overall 16736 | 17137 | 12029
(a) Collected Android Data Points
Provider A B C
Download | 100920 | 105377 | 50506
Upload 149166 | 89847 | 46653
Overall 250086 | 195224 | 97159

(b) Collected Mobilelnsight Data Points

Table 14: Amount of throughput estimations with correlating network performance
indicators collected during the second measuring campaign [95].

Used Features for Machine Learning

As common initial step in the machine learning process the measured data set has to
be split into a training set to train our selected Random Forest estimator and a testing
set to verify its learned estimation capabilities in the subsequent evaluation (Sec. 6.4.2).
As common for a supervised machine learning task we divide our collected data set
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up into 70 % training and 30 % testing data. The collected network quality parameters,
which we obtain via the Android API and the Mobilelnsight application, which are
used as features for the machine learning estimation process are summarized in Table
15.

RSRP, RSSI, RSRQ, Longitude, Latitude, Speed of the Vehicle, Timing Advance

(a) Machine learning features provided by the Android APIs for Upload and Download
direction

RSRP, RSSI, RSRQ, Longitude, Latitude, Speed of the Vehicle
CQJ, Carrier Aggregation Availability, Modulation and Coding Scheme, MIMO

(b) Machine learning features provided by Mobilelnsight for the Download direction

RSRP, RSSI, RSRQ, Longitude, Latitude, Speed of the vehicle, CQI
Modulation and Coding Scheme

(c) Machine learning features provided by Mobilelnsight for the Upload direction

Table 15: Machine learning features provided by the Android approach (a) and the extended
Mobilelnsight approach (b, c) using Nexus 5X smartphones [95].

When using the Android API as our choice of data source, we can concatenate each
of our active throughput measurements of the cellular network with one correlating
set of network quality indicators, which are passively measured during the same time
interval. This is possible due to the rather low sampling rate of the Android API (about
one second per set of indicators) in correlation with a fast completion of the full data
transmission (less than one second). This exact one on one mapping however is not
possible, when considering the network quality data provided by the Mobilelnsight
application due to its increased sampling rate of only a few tens of milliseconds be-
tween each set of network quality values. Figure 55 exemplary showcases the sampled
values of the Reference Signal Received Power (RSRP) over a measuring period of 11
seconds. During this time the Mobilelnsight application provides about 281 samples
for the RSRP value, whereas the Android API only achieves 6 sampled values in the
same amount of time. Furthermore Figure 55 showcases the high timely variance in
the cellular networks quality, which is exposed much better through the Mobileln-
sight interface in comparison to the Android API. We assumed a huge potential in this
higher time accuracy to improve the prediction capabilities of our throughput estima-
tor. To maintain this time accuracy, we had to find a different solution, as a mapping of
each obtained Mobilelnsight value onto our latest achieved throughput measurement
result is incorrect and obfuscates the timely performance fluctuation in the cellular
network. Consequently to achieve a correlating higher time resolution regarding the
current throughput of the connection, we rely upon the value of the transport block
size, which the serving cell tower allocates during the measuring interval for the client
device. This additional value is provided through the Mobilelnsight interface as well.
Thereby, the transport block size is derived from two further values (as described in
detail in Section A.3): i.) the amount of allocated resource blocks out of the set of all
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Figure 55: Comparison between the measurement accuracy of the Reference Signal Received
Power (RSRP) between the stock Android API and Mobilelnsight. Clearly visible is
the highly increased timely resolution of Mobilelnsight in contrast to the Android

API [95].

available resource blocks, which the serving cell tower assigns every millisecond anew
between all its clients and ii.) the current modulation and coding scheme, which the
client uses based on its currently received channel quality (a stronger signal allows a
higher modulation and coding scheme). By dividing the allocated transport block size
through the MobileInsight measurement interval of some milliseconds, we are able to
calculate a throughput estimation of the current connection for this time interval. This
process however is only executed to obtain a labeled training data set for our machine
learning process. We do not include the amount of allocated resource blocks or the
resulting transport block size as features in our training data set as they are directly
correlated with the throughput value. Furthermore, to obtain these values requires an
active data transmission to be already present during the estimation process (as for
example considered by Yue et al. [155]). For our investigated context of self-driving
vehicles, the estimation algorithm instead shall enable the instantaneous decision pro-
cess, whether or not data should be transmitted at the currently reached position along
the track, without wasting any data during the process itself. These same prerequisites
regarding an instantaneous throughput prediction were considered by Samba et al.
[69] as our chosen reference work.

6.4.2 Performance Comparison

To compare ourselves with the achieved performance of the estimator generated in
the work of Samba et al. [69] we rely upon the same performance metric: the R value
as described by formula 8. In the formula § is the average of all considered through-
put measurements, y; is the current throughput estimation and {; is the predicted
throughput value. Consequently, a higher R* value indicates a better estimation perfor-
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mance. An R* value of one would resemble a perfect estimation, where each estimation
U1 is exactly the currently measured value y;.

Y i (01 —yi)?
Zl1(g - Ui)z

In the following, we exemplary showcase the achieved evaluation results for provider
A. However the results obtained for provider B and C are similar as shown in Section
A.13 in the Appendix. Consequently, we are able to generalize our statements de-
scribed in the following for all three cellular providers.

As a first evaluation step we investigated the overall distribution of the conducted
throughput measurements in Section 6.4.2. Therefore we compared the measured
results using our Android application with the obtained throughput values provided
directly by the LTE chipset via Mobilelnsight. The results for provider A are presented
in Figure 56.

R*=1—

(8)

Throughput Histograms

By comparing the histograms of the upload and download data rates measured by
the Android Application as shown in Fig. 56a and 56c with the values of the Mobile
Insight API in Fig. 56b and 56d the diverse distribution of the values is clearly visible.
The histograms of the Android measurements show a drop in the distribution of the
achieved throughput values at an upload speed of about 25 Mbit/s and a download
speed of around 75 Mbit/s respectively. The distribution of the throughput values
provided by the Mobilelnsight interface in comparison is even more diverse. This is
likely correlated to the higher time accuracy provided by Mobilelnsight as discussed in
Section 6.4.1 and illustrated by Figure 55. The throughput values of the Mobilelnsight
application are derived from the allocated resources in the investigated LTE network.
These resources are quickly reassigned by the providing cell tower between all its
active clients after each period of milliseconds.

Android and Mobilelnsight Performance Comparison

In the following evaluation step, we compare the prediction performance of our chosen
Random Forest estimator, when being trained with the Android data set compared
to the Mobilelnsight data set. To be comparable to the performance results obtained
during the Related Work of Samba et al., the training process therefore is conducted
in the same way with the full set of all collected measurements available as global
training data set. The achieved results are shown in Figure 57.

The Android API based estimator, with its comparable low time resolution of col-
lected network performance indicators, achieves positive R* performance results peak-
ing at about 0.4. These evaluation results clearly indicate, that a practical estimation
of the throughput value is possible even when relying only on publicly available inter-
faces, which work ”out-of-the-box” and will only be improved in the future through
continuous development and the addition of further quality parameters.
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Figure 56: Histograms of the distribution of throughput measurements obtained from
Android and Mobilelnsight [95].

Our estimator based on the data provided by Mobilelnsight in comparison achieves
similar performance results for the R* metric as the estimator in the work of Samba et
al. [69]. Depending on the transmission direction our throughput estimator achieves
R? values of about 0.9 for the upload and 0.8 for the download direction. The highest
R? value achieved by the estimator of Samba et al. for the download direction is 0.85
as indicated in Figure 6 in [69]. However to achieve these results, the authors rely
upon features in the training data, which are only available through the back end
of a cellular network provider. This was only possible through additional support in
their evaluation as such information is not commonly available. Our approach achieves
similar results, but instead only relies on features, which are directly obtained from the
user end devices. In our opinion, this fact is a major advantage for a future large-scale
deployment of our proposed estimation technology.

By comparing the two estimation approaches with each other, the comparably fast
saturation in the prediction accuracy of the Android based approach becomes visible.
The Android API based estimator saturates at a training data size between 2500 - 3500
samples, most likely due to its comparable coarse resolution in time. The Mobilelnsight
based estimator instead benefits much more from an increase in the training data,
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Figure 57: Performance comparison between Android and Mobilelnsight [95].

indicating a better prediction model. Even at an evaluated training data size of 20.000
samples, no clear saturation of the models performance became visible.

Localized vs Globalized Training Based on Mobilelnsight Data

To evaluate the main contribution of our work, the proposed localized training ap-
proach in comparison to the commonly used globalized training, as shown in the pre-
vious Section 6.4.2, we had to conduct further preparation steps. For each measured
cell, we created a cell-specific local training set, which only contained the measure-
ment samples obtained from the specific cell itself. The remaining measurements then
formed the related global training set, which is not location-specific.

The obtained R? values for the estimation of the upload and download throughput
of the four most frequently measured cells of the investigated provider A (identified as
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Figure 58: Performance comparison between localized and global training data of the first
and second most often measured cells of provider A [95].

A-D) are presented in Figure 58 and 59. As our main evaluation result, we can state that
for all investigated cells, the localized training approach significantly outperformes the
common globalized training approach. This behaviour is visible for both transmission
directions (upload and download).

This difference in the estimation performance is already noticeable by using a subset
of only 1500 measurement points (or even less for some of the cells) and fortifies itself,
when using more samples for the training process.

As an additional result, the overall achievable estimation performance clearly varies
between the different cells, which further justifies the usage of a location specific set
of training data to improve the overall achievable estimation performance.

To identify possible reasons for these cell-specific performance results, we investi-
gated the correlation between the used prediction features and the related estimation
of the two throughput values on a per cell basis as summarized in Table 16. For a
detailed visualization of the achieved correlation parameters for our first and second
measuring campaign see Section A.14 in the Appendix.

In our first measuring campaign, where we focused on the investigation of the An-
droid API based throughput estimation, the Reference Signal Received Power (RSRP)
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Figure 59: Continued performance comparison between localized and global training data of
the third and fourth most often measured cells of provider A [95].

as one of the measured key performance indicators showed the highest correlation
with the estimated throughput values and therefore was considered as our most im-
portant estimation feature used by the Random Forest algorithm. For details see Figure
95. With the extended feature set obtained via the Mobilelnsight application interface
during our second measuring campaign further key performance indicators were inte-
grated into our evaluation. To the best of our knowledge we are the first to perform this
comparison for such a large set of different network performance parameters. Samba
etal. [69] and Yue et al. [155] for example, two of the most recent works, do not consider
the availability of Carrier Aggregation as feature for their machine learning process.
As shown in Table 16, a different set of performance features could be obtained via
Mobilelnsight for the estimation of the Upload and the Download throughput. This is
due to the capabilities of the Nexus 5X smartphone, which we selected as our reference
device. The Nexus 5X can only use the technological feature of Carrier Aggregation
for the transmission of data in the Downlink. The same holds true for the usage of
multiple antennas for the data transmission (MIMO) to save precious battery energy.
Consequently the relevance of the different measured parameters for the estimation
algorithm not only varies between the different investigated cells, but also for the two
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Cells | RSRP | RSRQ | CQI | Carrier Aggregation MIMO Modulation and
availability availability | Coding Scheme
All | -0.012 | 0.187 | 0.446 0.6 0.406 0.483
A 0.59 | 0.342 | 0.662 -0.00514 0.521 0.599
B 0.804 | 031 | 0.789 -0.0084 0.526 0.682
C 0473 | 0123 | 0.42 0.743 0.379 0.46
D | 0279 | -0.0177 | 0.35 0.368 0.248 0.385

(a) Download - Correlation of Throughput with passive measurement values

Cells | RSRP | RSRQ | RSSI CQI | Modulation and
Coding Scheme
All | 0.61 | 0.245 | 0.576 | 0.635 0.662
A 0.108 | 0.0651 | 0.0877 | 0.0124 0.294
B 0.564 | 0.441 | 0.507 | 0.584 0.469
C 0.471 | 0.202 | 0.446 | 0.372 0.346
D | 0.846 | 0.223 | 0.766 | 0.731 0.76

(b) Upload - Correlation of throughput with passive measurement values

Table 16: Results obtained for the correlation between the achieved throughput and the other
passive measured values using Pearson’s Correlation Coefficient. The values are
showcased for both transmission directions for all the measured cells together (All)
and for data, which was only obtained from one of the four most frequently
measured cells (A-D) in our dataset [95].

transmission directions (upload, download). When predicting the upload throughput,
the Reference Signal Received Power remains a highly important measured feature.
This statement holds true when considering the collected samples of all cells, as well
as each individual cell’s data for the training process. A similar result compared to the
evaluation of our first measurement campaign. For details see Figure 99f..

When the Random Forest estimator is trained to predict the download throughput,
this correlation changes. Based on the dataset of all four major cells (All), the availabil-
ity of Carrier Aggregation becomes the most important estimation factor. For details
see Figure 96 and 97f.. Supporting our initial proposition to use cell-specific training
data, the importance of Carrier Aggregation availability, as a location specific feature,
highly varies between individual cells. Its importance is high in the cells C and D
along the track, where we measured most of the samples with Carrier Aggregation
being present as shown in Figure 54b. In the cells A and B we could only obtain a
few samples, where the technology was enabled. Consequently, the Random Forest
estimator could not improve its prediction performance through this feature for the
specific estimation process conducted in these two cells.
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Figure 60: Interconnection between the Connectivity Map Client application and the
SDR-based LTE network sniffer Indea OWL to enable mobile LTE control channel
decoding. That way an estimation of the number of active clients in the current cell

tower shall be achieved, while the car is traveling.

In conclusion we could showcase through our evaluation that a cell-specific training
set significantly improves the performance for the selected Random Forest throughput
estimation process.

6.5 MOBILE ESTIMATION OF ACTIVE CLIENTS USING LTE CONTROL CHANNEL DECOD-
ING

By combining the information provided by the two previously introduced techniques:
Connectivity Map and Online Estimation, self-driving vehicles as our considered mo-
bile network clients, receive detailed information about the network quality in their
close proximity and further along their track. Both approaches however cannot pro-
vide information about the impact of neighboring active clients (e.g. further vehicles or
smartphone users), which might in parallel and independently introduce additional
load on the cellular network. To acquire an overview about all currently served clients
and their network activities in the range of an LTE cell tower, there exist expensive spe-
cialized hardware and software tool sets as stated in Section 3.3.4. These tools realize
their functionality through the continuous detailed decoding of the so called Control

127

Clients have
to share
cellular
network
capacity



128

Challenging
application in
mobile
environment

OPTIMIZED DATA PROVISION FOR HIGHLY AUTOMATED DRIVING

Channel information, which is continuously transmitted by the LTE cell tower to as-
sign its available network resources each millisecond anew between all its requesting
clients. With recent advances in the development of Software Defined Radios, cheap
hardware became available, that in combination with custom build decoding software
[84, 156-158] is capable to realize similar functionalities. Unfortunately, for our consid-
ered mobile application scenario all investigated related and freely available software
tool sets [84, 156] of that specific kind have only been tested in a static environment
with a fixed distance to the serving cell tower. The main challenge for these so called
LTE network sniffers in a mobile application scenario is the continuous change of
the currently serving cell tower (executed through the handover process between two
adjacent towers in the network) along the path of the vehicle. The currently available
tool kits have to be manually reconfigured each time this happens, which renders
them unusable for a mobile context. A further difficulty is the resulting varying expe-
rienced signal strength. Based on our personal measurements with the LTE network
sniffer Indea OWL [84] we can state that the successful decoding process can only be
executed under good signal conditions. In rather poor signal conditions the network
sniffer often could not identify a possible neighboring cell, although a smartphone’s
data connection to the same cell tower was stable. As Imdea OWL is one of the most ad-
vanced open source LTE network sniffer, based on our literature research, we decided
to investigate and evaluate possible concepts to enable its application in a vehicular
environment. To start the decoding procedure of the LTE control channel Imdea OWL
initially requires the transmission frequency of the currently serving cell tower as
input to setup itself accordingly. Therefore, the network sniffer provides a function to
scan the complete spectrum of possible transmission frequencies, to identify the sur-
rounding cell towers. To complete this process however takes up to several minutes.
This is feasible for the mentioned static environment as investigated in the Related
Work. For our considered mobile application scenario however the cellular environ-
ment is changing too frequently, leaving no time for the process to complete with
usable results. From our personal measurements conducted in the previously men-
tioned highway scenarios we can state that a mobile end device such as a smartphone
can perform multiple handovers between consecutive cell towers in just some seconds
of time, when being transported inside a vehicle (see for example Figure 54a). Our fun-
damental idea to solve this problem was to enhance the capabilities of Imdea OWL by
coupling it with our Android based Connectivity Map Client application as illustrated
by Figure 60. The application installed on a smartphone thereby provides Indea OWL
always with the relevant transmission frequency of the smartphone’s current serving
cell tower. Given this transmission frequency the time intensive initial search process
of OWL does not have to be executed. Instead the actual decoding process can directly
be started and is completed in only four to five seconds. That way Imdea OWL can
be quickly reconfigured to decode another cell tower, when a handover procedure is
indicated by the smartphone. The correct decoding performance of Indea OWL is ver-
ified via the Mobilelnsight application on the smartphone. A correct decoded Imdea
OWL result has the same values (C-RNTI and allocated Resource Blocks) as the results
provided by Mobilelnsight directly from the smartphone. This functionality enables
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various new research applications in our considered mobile scenario. To verify the
proposed mechanisms we conducted a first performance evaluation of the described
new setup, which is presented in detail in Section A.15.

6.6 FURTHER USAGE OF MEASUREMENT DATA IN SIMULATION

Motivated by our scientific work in the domain of real world cellular network infras-
tructure we investigated possibilities how our personal contributions could be further
applied in the context of vehicular simulations. Not all vehicular communication sce-
narios can be cost-efficiently tested under real world conditions through a prototypical
realization of the proposed concepts. Therefore simulation software provides a rea-
sonable cost-effective alternative. The various currently existing network simulators
as introduced in Section 3.3.5 often rely upon complex mathematical models to accu-
rately simulate the different available communication channels. Due to the complexity
of these models numerous configuration parameters are required to be setup correctly
to achieve reasonable simulations results. This for example includes the assignment
of several designated parameters for each access point, as well as the selection of a
suitable signal propagation model and its associated parameters to achieve reasonable
data rates and latencies of the connection. In consequence the process requires pro-
found background knowledge of the different involved communication technologies
(e.g. WLAN and cellular) and especially a steep learning curve to fully understand the
used simulation environment.

Our first contribution the RACE Framework as described in the following Section
6.6.1 addresses this exact problem by providing a simple configurable graphical user
interface to setup complex vehicular communication scenarios based on real world
cellular network environments. The complexity of the underlying simulation models
however does not only require human expertise, but also serious compute power and
time. This especially holds true if the considered communication scenarios involve
hundreds or thousands of communicating vehicles to identify possible scaling effects.
Good examples for such situations are our personal simulations conducted in the
context of map update distribution as explained in Chapter 4.

To address this general problem of the simulations in terms of required compu-
tational power and calculation time we investigated the possibilities of the technical
concept of the Connectivity Map as researched upon in several of our own contribu-
tions (Sec. 6.1 and 6.3) to be further leveraged in the simulation context, as described
in Section 6.6.2.

6.6.1 Rapid Cellular Network Simulation Framework for Automotive Scenarios (RACE
Framework)

The initial design goal of the Rapid Cellular Network Simulation Framework (RACE
Framework) was to create a simulation environment where the applying user could
quickly setup and simulate own complex vehicular communication.
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Location of one of the cells of a distinct tower (latitude/longitude)
Download and Upload frequencies described by the EARFCN LTE channel numbers

Transmission bandwidth and transmission power

Antenna height, gain, beam width and sending direction angle

Table 17: Parameters to configure each cell of the cell tower infrastructure in ns-3 [96].

Due to our personal obtained background knowledge in the domain of cellular
networks, especially the LTE network, as investigated for example in Sec. 6.1 and A.12,
we focused our efforts to find a suitable basis for RACE on the investigation of related
network simulators that could simulate LTE as physical communication layer.

To be able to simulate realistic vehicular communication scenarios, we defined three
different requirements that our framework had to satisfy: i.) It should be highly config-
urable in terms of network parameters and network load to closely resemble the cellu-
lar network infrastructure as for example experienced in our previous contributions.
ii.) It had to provide the possibility to simulate complex vehicular traffic environments,
with multiple cars driving around on various tracks. iii.) The framework should assist
the human user as much as possible, e.g. through a high degree of automatism where
possible, in the scenario creation process. Following the guidance of the framework
the user should be able to directly rely upon the created communication scenario for
his personal work. No further post processing steps from his side should be required.

By comparing the various available network simulators (Sec. 3.3.5) we identified
two promising candidates, the Network Simulator 3 (ns-3) [160] and Omnet++ [159]
for the simulation of vehicular communication scenarios.

According to our three stated requirements we selected the ns-3 simulator as most
suitable candidate to base our further work upon. At the time of implementation of the
RACE framework it provided the more advanced LTE communication stack compared
to the one provided by Omnet++.

The currently present LTE stack inside of ns-3 was implemented as part of work of
the LENA project?. LENA thereby enables a profound configuration of the different
cell towers performance criteria, which are summarized in Table 17.

Furthermore LENA was one of the first implementations to simulate the X2 han-
dover procedure of the LTE communication layer. Thereby two different cell towers
exchange the serving duty between each other for a unique client. We consider this
handover as a highly important feature in our simulations, as it is frequently per-
formed by the roaming vehicles due to their high mobility. This handover feature
for example was only integrated later in time in the SimuLTE simulator [166], which
provides the fundamental basis for the simulation of LTE networks for the Omnet++
network simulator.

Our second design criteria, the sophisticated vehicular movement simulation, is
satisfied by both simulators (ns-3 and Omnet++) by interfacing with the vehicular
movement simulator SUMO [106], as already used by us in our previous contributions

29 http:/ /networks.cttc.es/mobile-networks/software-tools/lena/ (Last accessed on August 1, 2019)
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(Sec. 4.1, 4.2 and 6.3). Still the creation of cellular communication scenarios in ns-3  RACE enables
requires profound background knowledge and time to correctly setup and configure  easy setup of
all required parameters. Thereby the most difficult step in the process is to obtain Z;fkig
detailed information about the cellular network infrastructure that shall be simulated. ;55,0
In Germany for example the exact infrastructure of the cellular network is intellectual  vehicular
property of the cellular providers and not publicly available. Some of the required  movement
parameters for ns-3 (Tab. 17) such as the cells transmission frequency and bandwidth model
can be obtained directly from measurement data similar to our collected information
(e.g. Tables 9 and 21ff.). Other parameters, such as the location of a cell tower, the
installation height of its antennas and the sending angle can be retrieved by cross
correlating the measured data with other publicly available data sources, provided by
either federal authorities such as the Federal Network Agency (Bundesne’czagentur)30
or open crowdsourcing projects such as ”“Cellmapper”3!. However, the remaining
parameters such as the beam width, the transmission power and the gain of the
sending antenna require either much more specialized measuring equipment or can
only be approximated by commonly used values (e.g. a gain of the sending antenna of
16 dB and a transmission power of about 40 Watts/46 dBm for the cell tower [105]). To
solve this major problem the RACE framework instead relies upon a dataset provided
by the Canadian Organisation of Innovation, Science and Economic Development
(ISED)*. In Canada in contrast to Germany the cellular operators are forced by law to
provide the ISED with all the information about their cell tower infrastructure. Thus
this dataset enables the proper simulation of the whole real world infrastructure of all
Canadian network providers, such as Telus, Rogers and Bell33.
To satisfy our third criteria, the high usability, we developed RACE to host a highly
intuitive user interface to filter and process the provided data of the ISED’s dataset.  Graphical
As first step in the scenario configuration process the user specifies the extend of the  user interface
simulated area by providing the name of a close by city. Initialized by this informa- ]: ‘Z;ZZT”O
tion RACE provides a graphical map representation of the cities surrounding area
to the user as shown in Figure 61 at the example of the Canadian city of Winnipeg.
In this map representation the user then can specify the routes and amounts of the
simulated vehicles simply by defining the start and end positions of the various trips
by mouse clicks (Fig. 62). Given this information, the RACE framework then selects
the celltowers most closely located nearby to the defined routes to be simulated in the
ns-3 communication scenario. The resulting scenario provided by the RACE frame-
work then could be directly simulated in ns-3. Fig. 63 for example shows the Radio
Environment Map of the cell towers located nearby the example highway scenario of
Fig. 62.
The RACE framework is not limited to the ISED’s dataset and can be extended in
future with additional scenarios, for example via data sets collected from smartphones
(e.g. via our Connectivity Map Client application).

30 https://emf.bundesnetzagentur.de (Last accessed on August 1, 2019)

31 www.cellmapper.net (Last accessed on August 1, 2019)

32 http:// sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010.html (Last accessed on August 1,2019)
33 https:/ /www.ertyu.org/steven_nikkel/cancellsites.html (Last accessed on August 1, 2019)
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Figure 61: Overview of the LTE infrastructure of provider TELUS Communications Inc. for
the city of Winnipeg [96]. Map data ©OpenStreetMap contributors
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Figure 62: Example highway scenario for the Trans Canada Highway near Winnipeg [96].
Map data ©OpenStreetMap contributors

In conclusion the RACE framework tremendously simplifies the complex task of
vehicular communication scenario generation. Still this contribution did not solve
the further remaining problem of high requirements of computational power and
simulation time for large scale simulations, as it is bound to the LTE simulation model
provided by ns-3 through the LENA project. We address this problem with our further
contribution in the domain of simulation as described in the following Section 6.6.2.

6.6.2 An Efficient Heat-Map-Based Wireless Communication Simulation Model for Om-
net++

Very often the testing of the communication capabilities of a specific application does
not require the exact simulation of the physical properties of the communication layer
through a complex mathematical model (e.g. calculating the transmission signals
fading behavior) as it is for example the case for the described ns-3 LTE layer provided
by the LENA project. Instead for a proper performance evaluation of the application
the simulation of network properties such as throughput and latency on a system
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Figure 63: Radio Environment Map plot of the example highway scenario [96].

level perspective is much more important. This especially holds true for vehicular
communication scenarios as considered in our personal work (e.g. Sec. 4.1, 4.2 and 6.3),
where several hundreds to thousands of vehicles drive in a large area and continuously
exchange information between each other. Due to their size such scenarios require
immense simulation time or compute power to be evaluated using the existing complex
communication models. Consequently we considered possible ways how a further
simplification of the present simulation models could be achieved to significantly
decrease the required computational power and time necessary for the simulation. As
our main contribution we developed the “"Heat-Map-Based Wireless Communication
Simulation Model” and compared it with a state of the art communication model
of the network simulation framework Omnet++ INET. We selected Omnet++ as our
simulation framework of choice, as we could thereby rely on an already existing
communication scenario with known performance values to compare ourselves with
[197]. The concept of the Heat Map is thereby inspired from our previous work focusing
on the generation of a Connectivity Map. Instead of predicting the future networks
performance parameters for a certain vehicle’s route by relying on the Connectivity
Map we now leverage its contained geo referenced network quality information to
describe the networks performance parameters in each area of the simulated scenario.
Related to our thoughts Ikuno et al. [198] propose the offline pre-generation of fading
parameters for a system-level LTE network simulator. Through this pre-generation the
computational time required to simulate the physical LTE layer is also heavily reduced.
Consequently Ikuno et al. motivate the feasibility of abstraction for a system-level
simulation as considered by us. In contrast to them our personal contribution further
abstracts from the used communication technology (e.g. cellular or WLAN). Instead it
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Figure 64: Heat Map modules: tower and client [97]

simulates the networks performance parameters on a per grid based approach, which
we refer to as the Heat Map. By replacing the complex simulation model of Omnet++
INET, the Heat Map model not only achieves a tremendously simplified simulation
setup phase, but also heavily improves the required simulation time, as described
and evaluated in the following Sections. The design of the transmission model, which
enables the wireless communication between the different roaming mobile nodes (e.g.
vehicles) and the backend systems (e.g. data processing servers as considered in the
Ko-HAF project) is explained in the following Section.

Transmission Model

The Heat Map transmission model is integrated into the ISO OSI layer 2, the data link
layer of Omnet++. By handling common Ethernet frames, it enables the usage of all up-
ward internet network protocols without further modification. The routing on the link
layer is performed by using MAC addresses. The wireless transmission of all ongoing
traffic of one specific network is performed through a central processing base station,
the Heat Map tower, that is connected to the backbone network and acts as a transceiver.
By initializing several base stations the simulator is able to simulate different wireless
networks (e.g. the networks of different cellular providers) through different Heat
Maps. To enable the communication, all mobile nodes have to be equipped with a
communication counterpart, the Heat Map client. The exact structure of both the Heat
Map tower and client is described by Figure 64. The two entities exchange data for
the processes of connection and disconnection through their respective management
modules (Client Management, Tower Management), as described by the sequence di-
agram in Figure 65. Therefore the Omnet++ signalling interface, based on common
C++ functions, is used to directly exchange the necessary information. In summary
the initialisation of clients and their disconnect is handled without transmitting mes-
sages over the actual simulated network channel, which significantly improves the
simulation’s performance. The actual characteristics of the network channel used to
transmit the upper layer protocol messages are managed by the Heat Map tower entity
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and not as otherwise common by the detailed lower layers of Omnet++. This results
in two major advantages of our approach to simulate large scale scenarios, which are
only investigated towards their system-level performance. First of all the designers of
the simulated scenario do not have to model the complex environmental conditions
of the scenario to their full extend to create the desired network characteristics implic-
itly. Instead the desired parameters such as latency, throughput, drop rate, Maximum
Transmission Unit (MTU) and buffer sizes are directly specified through the different
layers of the underlying Heat Map. Furthermore this direct specification design allows
the network’s characteristics to be configured much more precisely for the possible
test cases. As second major advantage the simulation time significantly decreases, as
the Central Processing Unit (CPU) does not have to compute the complex processes
on the lower layers of the Omnet++ INET framework. In our evaluated scenario, as
described in the following, we indeed identified that 80% of the total simulation time
are spent to perform calculations on these lower layers.

Scenario Creation Process

As introduced at the beginning of this Section our Heat Map model realizes the simu-
lation of network performance characteristics such as the achievable throughput on a
per grid level. Therefore the complete simulation scenario is divided into several small
grids of equal space. For each grid the described network performance value is the
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Figure 66: Evaluation Scenario 2: Fulda area, Germany. Extraction from shown Vodafone
mobile network availability map [97]. ©Vodafone GmbH & Navteq®

same for all clients. In terms of the throughput the Heat Map tower thereby splits the
achievable maximum data rates between all active clients in the same grid. The specific
size of each grid depends on the required simulation accuracy and the available infor-
mation about the network. The information regarding the performance of the network
for example can be provided by a Connectivity Map as obtained in our previous works
(e.g. Sec. 6.1 and 6.2). However the collection of accurate performance measurements
as explained in our previous contributions requires significant additional efforts. Con-
sequently data in this highly detailed form might not always be available, but possibly
also not required for the considered test scenarios. For certain applications for exam-
ple it might be sufficient to simulate the large performance changes introduced by the
handover between different network technologies (e.g. 2G, 3G and LTE as visualized
in Fig. 66 for an example scenario of the German provider Vodafone). Thus to simplify
the process of simulation configuration even further we developed a graphical user
interface, as shown in Figure 67. With the help of the so called “"Heat Map Converter”
the user is able to configure the performance of the network by simple specification of
different colors in an image. The related performance value of each grid is thereby rep-
resented through the color of it’s related describing pixels. The Heat Map Converter
then transforms these values into a configuration file, in which the performance values
of each grid are represented as numeric values. This file is then directly processed by
the Heat Map model for the simulation. In the example image of Figure 67 the color
black achieves the highest possible throughput, whereas the color white indicates no

34 https:/ /www.vodafone.de/hilfe/netzabdeckung.html (Last accessed on August 1, 2019)
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Figure 67: Graphical user interface of the Heat Map Converter [97]

network coverage. This visual based design concept allows the user to rely on further
publicly available data sources, such as the coverage maps of the cellular providers as
shown exemplary in Figure 66 or similar open data sources such as OpenSignal® or
Cellmapper?® to create realistic communication scenarios very fast.

Heat Map Evaluation

For the in-depth performance comparison of our Heat Map communication model

with the existing wireless communication layers of the Omnet++ INET framework

we selected an already existing WLAN network scenario. The scenario covers an

area near Frankfurt am Main, Germany, with motorways, suburban and urban areas
involved, as indicated in Figure 68. The simulated network infrastructure consists of

nine common WiFi access points simulated in Omnet++ and was previously used to

analyse performance characteristics of the mobility management protocol MoVeNet

[197]. From this WiFi based simulation we derived our describing Heat Map scenario.  Reference
From a screenshot of the scenario we derived the location of each access pointrelatively ~ scenario
to each other. Each access point’s network characteristics were then described through

circular shapes at the identified positions on the Heat Map, which faded out to their
specificborders. Each access point thereby describes an independent network and thus

nine descriptive Heat Maps were stored separately for the simulation (one for each of

the access points). As following step we generated the distinct Heat Map configuration

35 http://www.opensignal.com (Last accessed on August 1, 2019)
36 http:/ /www.cellmapper.net (Last accessed on August 1, 2019)
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Figure 68: Evaluation Scenario 1: Frankfurt am Main, Germany. Redefinition of an existing
scenario with Heat Map tools [97]

files via the Heat Map Converter using the nine given image sources. That way the
whole setup process of the Heat Map based simulation could be completed in under
five minutes. For the evaluation of the Heat Map model we compare its runtime
performance with the corresponding runtime of the default Omnet++ INET WiFi
models for our chosen scenario. We execute the simulation with one single mobile
node representing a transmitting vehicle and vary its sending data rate (the amount
of transmitted data) throughout the evaluation. Similar to our previous evaluation
(e.g. Section 4.1.5) each simulation run is repeated 30 times to ensure the significance
of the achieved evaluation results. Throughout each simulation run UDP packets are
send in both transmission directions (upload and download). Thereby we varied the
achieved data rates between 1 Mbit/s and 64 Mbit/s to investigate the different model
performances under different amounts of network load. 64 Mbit/s was selected as
upper boundary of the evaluated data rate to experience the effects of the saturation
of the wireless channel. Figure 69 represents the achieved performance of the Heat
Map model as a black line.

The Omnet++ WiFi reference model is indicated by a blue dashed line. Both axis of
the graph have a logarithmic scale. Thus we observe that both models achieve a linear
correlation between the number of packets and the required computational time of
the simulation. The required simulation time doubles for the Omnet++ WiFi model,
when quadrupling the number of transmitted packets. The Heat Map model achieves a
significant better performance, with initially comparably low simulation times. These
times double when the network time is doubled. In consequence both lines converge
at one point, where the simulation of the upper layers outweighs the simulation of the
physical layer. We analyze the absolute gain in simulation time savings to investigate
this effect in depth. This absolute gain is indicated by the magenta dashed line in Figure
69. It shows that the simulation time gain saturates correlating to the wireless channels
saturation at a data rate of about 16 Mbit/s. The convergence behavior between the two
investigated models is shown by the percentage-based performance gain, indicated by
the cyan stems in the graph of Figure 69. The scale of the percentage-based performance
gain is linear and associated with the right side of the figure. For the simulated data
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Figure 69: Simulation duration comparison over data rate [97]

rate of 1 Mbit/s we observe a gain of approximately 500% in simulation time between
the common WiFi model and the Heat Map model. In consequence more than 80% of
the simulation time of this scenario was required by the CPU to calculate lower layer
processes. Doubling the transmitted data rate to 2 Mbit/s reduces this gain less than
linear. The performance gain then converges to zero with the further increase of the

data rate. This is due to the saturation of the wireless channel at around 16 Mbit/s.

After this point any additional packets are dropped at the wireless interface. However
the rest of the networks layers still fully processes these packets, which leads to an
increase. Consequently the impact of the Heat Map model on the overall simulation
time decreases, which then leads to the identified convergence of the two compared
models.

In summary we could show a significant advantage of the Heat Map model over the
common Omnet++ WiFi model in terms of simulation time (up to 500%), especially in
scenarios where the wireless transmission is the most computation intensive part of
the simulation.
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SUMMARY, CONCLUSIONS, AND OUTLOOK

: I 'o conclude our work, we summarize the content of the previous Chapters and
state our main contributions in the following. We then draw conclusions based
on our obtained results. Finally, we discuss open issues and potential future work.

7.1 SUMMARY OF THE THESIS

In Chapter 1, we motivated the benefits of a High Definition Street Map (HD Map)
for self-driving vehicles. The HD Map provides highly precise geographic referenced
location information to improve the overall driving safety and comfort of the cars.
Following this motivation we described in detail the research challenges related to
the necessary, continuous maintenance of the HD Map using wireless communication
links as the focus of this thesis. Namely they are i) the Reliable Distribution of Map Data
Updates for all self-driving vehicles ii) a Fast Road Infrastructure Change Detection to
incorporate such areas as updates into the map and maintain its usability over time as
well as iii) the Reliable Provision Via Wireless Communication of those two data streams
(map updates and vehicular sensor data) towards and from the self-driving vehicles.
Based on our description of related background information in Chapter 2 and our
analysis of the state of the art in Chapter 3 we presented the following contributions
in our thesis.

7.1.1 Contributions and Conclusions

The presented work identified research challenges in the three major building blocks
(Distribution, Generation and Provision) of the maintenance cycle of the High Defi-
nition Map (HD Map). Our proposed contributions to resolve them and the drawn
conclusions are grouped accordingly in the following.

Reliable and Efficient HD Map Update Distribution for Self-Driving Vehicles

Following our study of Related Work regarding existing concepts of partial and incre-
mental map updates we identified further optimization potential in the distribution
process of the map updates considering the requirements and prerequisites of self-
driving vehicles. In consequence we proposed our first contribution the Dynamic Map
Update protocol [170] as described in Chapter 4. The protocol enables the context specific
selection and wireless transmission of mandatory map data from a central backend
entity (e.g. a server) to all requesting self-driving vehicles via the cellular network.
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Additionally to the centralized update mechanism we conducted experiments on
the impact of WLAN-based vehicular ad hoc communication to distribute already
received map updates between the vehicles [88] themselves. Therefore we extended
the initial specification of the Dynamic Map Update protocol to further reduce the
otherwise necessary and costly cellular network traffic, as well as the processing load
on the central map maintaining backend entity. We evaluated the performance of the
protocol using the traffic simulator SUMO on actual map data of the German city
of Berlin and the area of Luxembourg. Based on our evaluation results we showed
that the distribution process of map updates can be significantly optimized via an
intelligent context specific preselection of mandatory and optional updates. Thereby
we achieved the same effectiveness in road guidance with only a fraction of transmitted
map updates compared to related existing concepts. We furthermore showcased the
positive impact of ad hoc communication on the distribution process by offloading
necessary data transmissions from the cellular network, which further reduced the
processing load on the central server, as well as the overall transmissions costs.

Fast and Reliable Detection of Changes in the Road Infrastructure Based on Low-cost Widely
Distributed Sensor Data

In the research context of the application of vehicular sensor data for the maintenance
of the HD Map we identified a research gap in the detection of changes in the road net-
work. We addressed this gap by our lane course change detection algorithm [89] presented
in Chapter 5. To achieve a fast and reliable detection of changes, the algorithm leverages
low-cost sensor information (GNSS location information, as well as accelerometer and
gyroscope readings) from ubiquitously deployed aftermarket end devices (e.g. smart-
phones). At the example of a real highway construction site scenario we verified that
our approach achieves a fast and reliable detection of changed lane courses using only
the described low-cost sensors, which are integrated into smartphones. The algorithm
clearly designated the construction area that changed over time with a sub-lane-level
accuracy. This accurate detection showed the great potential of ubiquitously available
after market devices to enhance the generation speed of HD Map updates. The intelli-
gent combination of the different sensor sources was missing in Related Work, which
either relied upon expensive sensor equipment or only investigated the benefits of one
sensor source at a time.

Robust, Optimized Provisioning of Data w.r.t Changing Environmental Conditions

As major research focus of our thesis we investigated techniques to optimize the wire-
less provision of the previously mentioned data (HD Map updates and vehicular
sensor data) for the maintenance of the HD Map using the currently established cellu-
lar network infrastructure as described in Chapter 6. We focused our research efforts
on the intelligent and data efficient collection of performance measurements of the
cellular network and the prediction of the related key performance indicators. That
way a broad overview about the network quality parameters in close and far proximity
to the vehicle’s current track is obtained. This valuable information then is assumed
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to be forwarded to existing related scheduling algorithms, which incorporate it to
optimize their data transmission planning. This planning process itself is out of the
focus of this thesis.

As initial contribution we analyzed the communication requirements of self-driving
cars based on actual prototype vehicles [92]. To put the vehicle’s requirements in
correlation to the surrounding vehicular traffic and the cellular network’s capacity
limits we conducted a requirements analysis as well as an extensive measuring campaign
of the deployed LTE network infrastructure on various highways and country roads
around Frankfurt am Main, Germany.

Especially the initially assumed challenging high variance in the performance of
the cellular network due to various geographic influence factors could be verified.
Furthermore we identified a high demand of the self-driving cars towards the upload
bandwidth required for the transmission of vehicular sensor data. This demand stands
in contrast to the provided capacities of the present cellular network infrastructure,
which are much higher in the download direction compared to the upload.

To maintain this gained temporarily knowledge about the quality of the cellular net-
work over a longer period of time and especially larger areas we developed the Intel-
ligent Cellular Communication Quality Sensing framework (ICCOMQS). ICCOMQS
enables the data-efficient participation of all self-driving vehicles in the measuring
and sharing of network quality and performance parameters via a distinct layer in the
HD Map. The framework achieves this performance by intelligently scheduling the
anyway necessary data transmissions (e.g. map updates and vehicular sensor data)
to execute measurements in areas where no information about the performance of
the cellular network currently is available. In consequence no further costly dummy
data for the probing of the network is required anymore. That way the framework
achieves the same measuring accuracy as related active probing approaches at the
level of data-efficiency of related passive probing approaches. Through an intelligent
selection of future measuring points ICCOMQS furthermore achieves a much better
coverage of area in comparison to the immediate sending of data.

As following contribution the capabilities of the framework, which were initially
evaluated through simulation, were implemented in an actual prototype. The prototype
was realized via a smartphone based client and a Linux based server. Using this setup
we conducted additional series of measurements and collected a further extensive
set of geo-referenced cellular network performance indicators. The measuring results
obtained from the common smartphones were similar to the ones collected from the
fleet of prototype vehicles and furthermore encouraging comparable to results of a ref-
erence measurement conducted by a German provider. These correlations showcase
that a broad knowledge about the performance of the surrounding cellular network
can be obtained and shared between vehicles and smartphones a like.
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Using the dataset obtained via the ICCOMQS prototype we enhanced the vehi-
cle’s short term knowledge (up to several seconds of time) about the experienced
surrounding network to further improve the data transmission. Therefore we lever-
aged the collected network quality measurements to exemplary enhance an existing
machine-learning based throughput prediction algorithm by training it on sets of
exactly geo-located data [94, 95]. The obtained evaluation results outperformed com-
parable approaches in the Related Work, which commonly rely on one single training
data set and therefore do not consider the location as an important training criteria.

Furthermore we enabled the application of the ImdeaOWL LTE control channel
decoder in a moving vehicle by coupling it with our smartphone based ICCOMQS
framework. That way even further detailed information about the current capacity
and the amount of active clients in the LTE network can be obtained via test drives.
Previously this information could only be obtained in a stationary position.

In summary we improved the combined provision of long term and short term
cellular network quality information to be used by scheduling algorithms inside the
self-driving vehicle for an efficient and reliable data transmission.

As our final contribution we investigated further concepts to leverage the obtained
data set of cellular network performance parameters in simulations. As result we
contributed the Rapid Cellular Simulation framework (RACE), that in comparison to
related simulation frameworks allows a much easier and quicker setup of realistic
vehicular communication scenarios. Additionally we implemented and evaluated a
communication model, which directly incorporates actual measured cellular perfor-
mance parameter in its own configuration. It outperformed an existing mathematical
communication model in terms of run time and thus is suited for large scale scenarios,
which could otherwise not be simulated in a reasonable amount of time.

7.2 OUTLOOK

The contributions and achieved results presented in this thesis motivate further re-
search upon the ongoing optimization and improvement of the High Definition Map,
as commonly shared knowledge base of self-driving vehicles. Even with an expected
steady increase of automated driving capabilities in vehicles over the upcoming years
[199, 200] there will be always “extreme” situations, where the car’s artificial intelli-
gence fails to select a suitable driving maneuver on its own. The High Definition Map
as presented in this thesis helps to solve such situations, in which for example a hu-
man driver also would be uncertain (e.g. "Is the water shallow enough to safely drive
through?"), to ensure a high level of safety and comfort. For a proper maintenance of
the map we especially consider the verification and aggregation of the various sensor
sources provided by different vehicles as a challenging task for future research. To
aggregate different sensor readings into a correct and verified model of the ongoing
traffic environment requires further research. The generation and processing of the
required data streams for self-driving vehicles also motivates further research in the
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domain of wireless communication to fast and reliably exchange data. In our opinion
the most relevant performance parameter for the self-driving vehicle are the latency
and throughput that can be achieved via a communication channel. In consequence
related research areas such as ad hoc communication [26], tele operation [201], edge
computing [202] or beamforming [203-205], provide large research potential in the
application context of self-driving vehicles. In summary we consider any additional
sensor and technology, that provide further reliable information to a self-driving ve-
hicle to make safe and reasonable driving decisions a worthwhile consideration for
future research.
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APPENDIX

Al DEFINITION OF AUTOMATION LEVELS

The following two Figures 70 and 71 illustrate the definition of the various automation
levels specified through the German Association of the Automotive Industry (Verband
der Automobilindustrie - VDA) and through the Society of Automotive Engineers -
SAE. Both definitions have to be carefully considered separately from each other when
speaking of the different automation levels, as they do not associate the same degree
of automation with the same specified level. In the presented work the definition of
the VDA is considered as the reference. Furthermore we assume a level 3 - highly
automated (hochautomatisiert) vehicle when using the term of a self-driving vehicle.

Automatisierungsgrade des automatisierten Fahrens

l Fahrer - Automatisierungsgrad der Funktion

STUFE 1 STUFE 2 STUFE3

T TEIL- HOCH-
ASSISTIERT
AUTOMATISIERT AUTOMATISIERT

Fahrer fiihrt dauerhaft Fahrer muss das Fahrer muss

Léngs- oder System dauerhaft das System nicht
Querfiihrung aus. tuberwachen. mehr dauerhaft
tiberwachen.

Fahrer muss potenziel
in der Lage sein,

HYNNYIISILYINOLNY

System tibernimmt

Léngs- und
‘System iibernimmt Querfiihrung
-~ diejeweils andere : ineinem spezifischen
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* Anwendungsfélle beinhalten Straentypen, Geschwindigkeitsbereiche und Umfeldbedingungen

Figure 70: Overview of the Levels of Driving Automation for On-Road Vehicles as defined by
the German Association of the Automotive industry (Verband der
Automobilindustrie - VDA) (Source: page 15 in [2]). ©VDA
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Figure 71: Overview of the Levels of Driving Automation for On-Road Vehicles as defined by
the SAE International (former Society of Automotive Engineers) [100]. ©SAE



BIBLIOGRAPHY 171

A.2 PROTOTYPICAL IMPLEMENTATION OF AN OPERATIONAL HD MAP - EXAMPLE OF
THE KO-HAF PROJECT
Vehicle Safety Server
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Figure 72: Overview about the prototypical realization of a functional HD Map with data
exchange, as conducted in Ko-HAF. ©Ko-HAF¥

To give a better insight into the general working principle of an operational HD Map
we describe its prototypical realization in the German government founded research
project Ko-HAF (Cooperative Highly Automated Driving) in the following. Based on
this realization our own research contributions have been conducted. Several major
participants of the German automotive industry took part in the Ko-HAF project [91,
92], including OEMs (Audi, BMW, Opel) and Tier 1 suppliers (Bosch and Continental).
All of them rely on different sensor equipment within their cars to realize the driv-
ing functionality. Consequently a common communication interface between them
and the central Safety Server, which hosts and maintains the HD Map data, had to
be developed as one of Ko-HAF’s major contributions. The final realization of this
communication and processing work flow is described by Figure 72. The two com-
munication entities, on the one hand the self-driving vehicle, on the other hand the
central Safety Server, are connected through a cellular interface with each other. To
realize the required data exchange between the different vehicles and the server an
identical communication unit (COM-Box), as shown in Figure 73, was installed in
the fleet of twelve participating cars. To reliable exchange the sensor and map data
between the vehicles frontend and the COM-Box inside the car, a common interface
was defined using Ethernet connections. The data packets containing the sensor data
of the vehicle, e.g. the detection of lane markings and traffic signs (see e.g. Fig 39),
were further enriched by additional sensor data provided by the COM-Box regarding
the currently available quality of the cellular network transmission (see Section 6.1
for further details). To ensure the availability of the HD Map data required for the
following few track kilometers, even if the cellular connection might become unstable,
the COM-Box possesses an internal map cache in which always the map data for a
few road kilometers ahead is stored. Should the car not be able to download further

https:/ /ko-haf.de/fileadmin/user_upload /media/abschlusspraesentation/13_Ko-HAF_Creation-and-
Deployment-of-HD-Map-Data.pdf (Last accessed on August 1, 2019)
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Figure 73: The common communication box installed in all twelve vehicles, that participated
in the Ko-HAF Project. The box provided communication functionalities via all
cellular network technologies (4G, 3G and 2G), that were deployed during the
duration of the Ko-HAF project (September 2015 - November 2018). ©Ko-HAF,
Opel Automobile GmbH*

map data this cached part of the map ensures enough time for a safe handover back
to the human driver. The sensor data itself represented through the SENSORIS car-to-
cloud universal data standard [179] is serialized before its transmission using Google
Protocol Buffers®. The map tiles provided from the Safety Server to the vehicles are
transferred using Google Protocol Buffers, too. That way we ensure an overall very
data-efficient transmission process. All the incoming sensor data provided by the self-
driving vehicles and other 3rd parties are then stored first inside an input buffer in
the Safety Server. If a reliable amount of data was collected that way, a downstream
aggregation process was executed to update the layered map. The required amount
of such sensor data to maintain the HD Map itself is still part of ongoing research.
We conducted own research contributions in that domain to quickly identify map
changes to ensure the safety of the self-driving car (see Chapter 5). Furthermore we
identified the areas of poor network quality (see Chapter 6) to provide the self-driving
vehicle with additional knowledge regarding the cellular infrastructure to schedule
its personal data transmissions [66, 67, 80, 90] accordingly.

38 https://developers.google.com/protocol-buffers/ (Last accessed on August 1, 2019)
39 https:/ /ko-haf.de/fileadmin/user_upload /media/abschlusspraesentation/14_Ko-HAF_Continuous-
Updating-of-Backend-HD-Map-Data.pdf (Last accessed on August 1, 2019)
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A.3 KEY PERFORMANCE INDICATORS OF THE CELLULAR NETWORK

In the following we give a detailed explanation of all cellular key performance indi-
cators (KPI), which are relevant for our personal work described in Chapter 6. The
listed key performance indicators are directly related to the LTE cellular network [206].
Most of them can either be applied directly on other wireless network technologies
(e.g. cellular network technologies of second, third or fifth generation) or mapped on
similar parameters.

A3.1 Reference Signal Received Power - RSRP

The Reference Signal Received Power - RSRP is defined as the linear average of the
power amount of the resource elements (RE), which carry the cell-specific reference
signals accordingly to the currently used frequency bandwidth.

The common range for measurable values of the RSRP is between -140 dBm and -50
dBm. The higher the value the better.

A3.2  Received Signal Strength Indicaton - RSSI

The Received Signal Strength Indicaton (RSSI) is a measurement for the power present
in all of the received radio signal, including forms of noise. Common RSSI values of
LTE range between -90 dBm and -120 dBm. The higher the value the better.

A.3.3  Reference Signal Received Quality - RSRQ

The RSRQ is a value derived from the RSRP and RSSI value as defined in Formula
9, where N is the number of resource blocks related to the currently used frequency
bandwidth. It commonly ranges between -3 dB and -20 dB. The higher the value the
better.

RSRQ[W] = NxRSRP[W]/RSSI[W] (9)

In combination with the RSRP value the RSRQ provides and indicator to identify
the best possible position and orientation of the mobile end device (UE) towards its
currently serving celltower.

A3.4 Channel Quality Indicator - CQI

The Channel Quality Indiator (CQI) is estimated by the mobile end device (UE) to
inform its currently serving cell tower about the currently experienced signal quality.

Based on the CQI and its current load the celltower then selects a suitable Modulation
and Coding Scheme for the UE.
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A3.5 Carrier frequency as EARFCN

The E-UTRA Absolute Radio Frequency Channel Number (EARFCN) is an indicator
for the currently used transmission frequencies in the uplink and the downlink. The
EARFCN numbers also can be mapped on one of the defined LTE bands. During
our cellular measurements as described in Section 6.1 we experienced transmission
frequencies of the three German providers in the LTE bands 1 (2100 MHz), 3 (1800
MHz), 7 (2600 MHz) and 20 (800MHz)*.

A3.6 Carrier Aggregation

Carrier Aggregation is an LTE-Advanced feature first introduced in LTE Release 10%!.
The technique allows the network operators to combine different separate physical fre-
quency bands into one single “virtual band”. This allows to reach higher bandwidths
for the transmission of data, as the operator’s available spreaded spectrum in the dif-
ferent frequency bands (e.g. 10 MHz in LTE Band 20 [800 MHz] and 20 MHz in LTE
Band 7 [2600 MHz] combined to a virtual 30 MHz band) would allow individually. It
allows the operators to utilize their owned spectrum more efficiently, as most of them
don’t have large, coherent frequency bands at their disposal. The increase in available
bandwidth directly correlates with a higher achievable bandwidth.

A.3.7 Multiple Input Multiple Output - MIMO

Through the usage of several distinct transmission and receiving antennas the mobile
end device (e.g a smartphone) and the cell tower, to which it is connected, can ex-
change data over different physical data streams in parallel on the same transmission
frequency. On the receiving side, the various streams are differentiated through the re-
ceived signal strength of each individual signal at the receiving antennas. This concept
is called Multiple Input Multiple Output or short MIMO and is not only common for
cellular transmission techniques, but also other wireless transmission techniques such
as WLAN. MIMO can significantly improve the realizable coding rate of the signal
and thus the overall achieved transmission speed.

A.3.8  Modulation and Coding - Scheme

The achievable data throughput in LTE cellular networks correlates with the received
signal strength at the site of the mobile end device. The smartphone for example in-
forms its serving cellular tower about its currently experienced signal quality via the
so called Channel Quality Indicator (CQI). Based on the received CQI the cell tower
then decides which Modulation and Coding Scheme (MCS) it should use to transmit
data to and from the end device to ensure a robust connection under the conditions

40 https:/ /www.spectrummonitoring.com/frequencies/#Germany (Last accessed on August 1, 2019)
41 https:/ /www.3gpp.org/specifications/releases (Last accessed on August 1, 2019)
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of the experienced signal quality. Depending on the LTE device’s category and its
currently received signal strength modern day LTE modems (e.g. Qualcomm’s Snap-
dragon X24 LTE modem?*? as representative of a device in the LTE Category 20) are
able to upload or download data via four different modulation methods (QPSK, 16
QAM, 64 QAM and 256 QAM). In correlation with the selected Modulation an accord-
ing Coding Scheme is selected, which enables through error correction techniques a
fast and robust data transmission.

A.3.9 Resource Blocks and Transport Block Size

In the LTE protocol a Resource Block is considered as the smallest unit of data that
can be transmitted. Therefore the available frequency spectrum of the transmission
channel (between 1.4 MHz and 20 MHz for a single carrier) are assigned different
numbers of Resource Blocks. 10 MHz of bandwidth for example represent 50 Resource
Blocks and 20 MHz resemble 100 Resource Blocks. Each cell tower schedules the
transmission of data every 1 ms. Within this time period it reassigns it’s available
Resource Blocks between all its connected clients. In correlation with the currently
selected Modulation and Coding Scheme (Sec. A.3.8) one Resource Block thus can
transmit a certain amount of data within this 1 ms time period. This amount of data
then is represented by the Transport Block Size (TBS). The Transport Block Size thus
directly correlates with the achievable throughput of the cellular data connection.

42 https:/ /www.qualcomm.com/products/snapdragon-x24-lte-modem (Last accessed on August 1, 2019)
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A4 MAP CHANGES IN DIGITAL NAVIGATION MAP DATA OF HERE

The following graphics 74 and 75 illustrate the amount of road infrastructure changes
in Here’s navigation map data of Germany over different periods of time (6, 12 and 18
months).
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Figure 74: Amount of changes in the standard navigational map data provided by Here for
navigation systems of Opel’s production vehicles for the area of Germany over
various time periods (map data as of 14.01.2019). ©Here and Opel Automobile

GmbH*

43 http:/ /mapchanges.navigation.com/?app=opel (Last accessed on August 1, 2019)
44 http://mapchanges.navigation.com/?app=opel (Last accessed on August 1, 2019)
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Figure 75: Continued amount of changes in the standard navigational map data provided by
Here for navigation systems of Opel’s production vehicles for the area of Germany
over various time periods (map data as of 14.01.2019). ©Here and Opel

Automobile GmbH**
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A5 NETWORK COVERAGE MAPS OF CELLULAR PROVIDERS

In the following network coverage maps for the Opel OnStar Cellular Service in differ-
ent regions in Europe are presented. Clearly visible are the assumed circular regions
of service coverage, which likely do not resemble the actual availability of the service.

45 https:/ /www.opel.at/onstar/onstar-verfuegbarkeit.html (Last accessed on August 1, 2019)
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A.6 DETAILED LISTING OF THE EVALUATION RESULTS OF THE HD-WMAP EXTENSION
OF THE DYNAMIC MAP UPDATE PROTOCOL

Table 18 summarizes the detailed evaluation results of our HD-Wmap extension. The
impact of buses behaving as data beacons, which already have the complete map data

for their route, in comparison to them behaving like normal vehicles, is only marginal.

configured ad hoc shar- | ad hocsharing | necessary necessary cel-

scenario ing quota | quota median | cellular trans- | lular transmis-
mean [%] [%] mission quota | sion quota me-

mean [%] dian [%]

buses as nor- | 43.6 35.1 56.4 64.9

mal vehicles

buses as data | 44.3 35.3 55.7 64.7

beacons

Table 18: Achieved ad hoc sharing quotas of the HD-Wmap extension, when considering
buses either as normal vehicles or as data beacons with an extended initial map
data storage.
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A.7 RIGHT LANE EVALUATION RESULTS OF THE LANE COURSE DETECTION ALGO-
RITHM

In the following the evaluation results for the right lane data of our proposed lane
course detection algorithm (see Chapter 5) are presented.
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Figure 77: Comparison of different weighting functions (right lane data) [89].
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Figure 78: Comparison between weighting and non-weighting algorithms using all available
pre-lane filtered traces (right lane data) [89].
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A.8 DETAILED LISTING OF THE CELLULAR NETWORK MEASUREMENTS CONDUCTED
DURING THE KO-HAF PROJECT

In Table 19 and 20 details for our dataset of the LTE* and UMTS¥ cellular networks,
which we collected during the Ko-HAF project are summarized.

Band Name Earfcn Downlink Earfcn Uplink No. of

DL fre- UL fre- measure-
quency quency ments
(MHz) (MHz)

1 2100 0 2110.0 18000 1920.0 126,707

1 2100 8 2110.8 18008 1920.8 502

1 2100 10 2111.0 18010 1921.0 55

1 2100 16 2111.6 18016 1921.6 77

1 2100 27 2112.7 18027 1922.7 74

1 2100 38 2113.8 18038 1923.8 145

1 2100 48 2114.8 18048 1924.8 474

3 1800+ 1300 1815.0 19300 1720.0 191

3 1800+ 1444 1829.4 19444 1734.4 3

3 1800+ 1600 1845.0 19600 1750.0 223

3 1800+ 1801 1865.1 19801 1770.1 208,249

3 1800+ 1836 1868.6 19836 1773.6 53,247

7 2600 2850 2630.0 20850 2510.0 458,090

20 800 DD 6200 796.0 24200 837.0 16

20 800 DD 6300 806.0 24300 847.0 2,365,760

20 800 DD 6400 816.0 24400 857.0 172

Table 19: Overview about the different LTE frequency bands, measured during the test drives
performed in the Ko-HAF project.

46 http:/ /niviuk.free.fr/lte_band.php (Last accessed on August 1, 2019)
47 http:/ /niviuk.free.fr/umts_band.php (Last accessed on August 1, 2019)
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Band Name Uarfen
DL

1 2100 10564

1 2100 10588

1 2100 10612

Downlink Uarfcn

fre-
quency
(MHz)

2112.8
2117.6
21224

UL

9614
9638
9662

Uplink
fre-

quency
(MHz)

1922.8
1927.6
1932.4

No. of
measure-
ments

304,991
34,487
9056

Table 20: Overview about the different UMTS frequency bands, measured during the test
drives performed in the Ko-HAF project.
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A9 DETAILED CALCULATION FOR FRANKFURT-NIEDERRAD SCENARIO

In the following the detailed calculations of the data rates required for our considered
worst-case communication scenario in Frankfurt-Niederrad are conducted.

Preconditions:
Map tile size = 66 kByte
Map tile dimensions*® =

1 degree latitude * 1 degree longitude in Germany ~ 1,190 m (latitude) * 1,850 m (longitude)

We assume all 15,158 cars during the rush hour to travel at a speed of 100 km/h
and simplify the driving direction by assuming only traveling in parallel to the earth
meridian. In the designated area 6 individual cells provide their network capacity in
parallel to each other to the clients/cars.

Calculation:
Required download data rate:

66 kByte/1.190 km ~ 55.5 kByte/km

Required upload data rate:
low sampling rate:
250 kByte/km

high sampling rate:
1035 kByte/km

Vehicles per cell in 3600 s =

15,158/6 = 7579/3

Time required for one car to traverse the cell area=

3.2 km *3600s/100 km = 115,28

Amount of data generated / required per vehicle during the traverse of one cell =

3.2 km x* data rate of vehicle [kByte/km]

48 http:/ /www.iaktueller.de/exx.php (Last accessed on August 1, 2019)
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Required data rate per vehicle =

3.2km * data rate of vehicle [kByte/km]/115,2 s

Number of vehicles in parallel in one cell at any given time =
15, 158 vehicles /6 * 115,2 5/3600 s ~ 80.84 vehicles

=

Required data per cell tower =
3.2km * data rate of vehicle [kByte/km] /115,25 *80.84

=

Required download data rate =

3.2km *55.5 kByte/km /115,25 *80.84 ~ 124.6 kByte/s ~ 0.997 Mbit/s

Required upload data rate:
low sampling rate:

3.2km * 250 kByte/km /115,25 *80.84 ~ 561.4 kByte/s ~ 4.49 Mbit/s

high sampling rate:

3.2 % 1035 kByte/km /115,25 *80.84 ~ 2324.15 kByte/s ~ 18.59 Mbit/s
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A.10 EVALUATION OF OPEL PROVING GROUND IN RODGAU-DUDENHOFEN

(b) HD Map representation in Open Drive
format ©Ko-HAF, 3D Mapping Solutions
GmbH

(c) Visualisation of Laser Scanner data used
for HD Map generation - ©3D Mapping
Solutions GmbH

Figure 81: Opel proving ground in Rodgau-Dudenhofen.

The Opel proving ground in Rodgau Dudenhofen as described in Section 6.1.1
and further illustrated by the images of Figure 81 is our second environment for
which we collected cellular network quality information from a fleet of self-driving
prototype vehicles. In contrast to the highways around Frankfurt the cell tower, which
was dedicated to serve the Opel proving ground, as shown in Figure 83, was only
equipped with 3G network technology at the start of the Ko-HAF project. An LTE signal
could only be obtained occasionally when being served by one of the surrounding

49 https:/ /ko-haf.de/fileadmin/user_upload/media/abschlusspraesentation/14_Ko-HAF_Continuous-
Updating-of-Backend-HD-Map-Data.pdf (Last accessed on August 1, 2019)



BIBLIOGRAPHY 187

(a) Skidpad in the north of the track (b) Steep turn in the south of the track

Figure 82: Aerial images of the north and the south section of the highway areal on the Opel
proving ground in Rodgau-Dudenhofen. ©Opel Automobile GmbH>

cells. To improve the network’s capacity for the successful testing of the self-driving
prototype vehicles the cell tower site was upgraded to the LTE technology during the
runtime of the Ko-HAF project (at the weekend between 26.01.2018 and 28.01.2018).
As highly interesting evaluation result in consequence we were able to collect cellular
measurements before and after this grid extension. The overall impact of the grid
extension on the network’s throughput performance is summarized in Figure 84.
The obtained measurement values for the Round Trip Time (RTT) and the Reference
Signal Received Power (RSRP) are presented by the Figures 85 and 86 respectively. As
expected all aggregation results show a significant positive impact on the achieved
performance of all network quality indicators. However there are still variations in
terms of the performance. This is furthermore note worthy considering the rather
small area of the test site in comparison to the area around Frankfurt investigated
previously.

The achieved throughput values and the received RSRP value for example are better
in the area around the skid pad in the north (Fig. 82a) and rather poor in the area
of the steep curve in the south of the track (Fig. 82b). Possible reasons therefore
likely include environmental conditions as described in Section 1.2. The skid pad
represents a large flat tar area, without any obstructing buildings or similar objects,
which provides nearly perfect reception conditions for the cellular signal. The steep
curve in the south of the track in contrast is surrounded by high trees, which might
significantly damp the received cellular signal especially when the leafs of the trees
are wet. A further indicator supporting this assumption is the experienced rather poor
GNSS localization capabilities of the self-driving vehicles in this area as reported by
the Ko-HAF project partners during the test drives. As for example the GPS system
is using similar frequencies (L1-band ~ 1.57 GHz, L2-band ~ 1.23 GHz) [103] it likely
experiences similar damping factors.

50 https:/ /www.auto-medienportal.net/artikel /detail /37152 (Last accessed on August 1, 2019)
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(a) Central location of the serving LTE cell ~ (b) Aerial view of the cell tower’s location with

tower on top of a chimney near the gas the indicated main transmission directions
station on the proving ground. ©Opel of its antennas. © Aerowest GmbH
Automobile GmbH®!

Figure 83: Location of the LTE cell tower on the Opel proving ground in
Rodgau-Dudenhofen.

In parallel to our personal measurement campaign Vodafone also conducted their
own reference measurements of the Reference Signal Received Power at the Opel
proving ground after the executed grid extension. To our satisfaction the obtained
measuring results of these test drives as summarized by Figure 86c are closely resem-
bled by our own measurements (compare with Figure 86b). Additional measurements
of the complete proving ground are shown in Figures 87 and 88.

We consider this as a strong emphasis in support of the related and our personal
scientific work that vehicular probes can be used to collect reliably cellular network
quality information to be further used for the optimization of the overall achieved
network quality experience as described in Section 6.2.

51 https://awrmagazin.de/wp-content/uploads/2016/09/foto-opel-dudenhofen-6.jpg (Last accessed on
August 1,2019)
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Figure 84: Comparison of mean average download and upload bandwidth of the provider
Vodafone as measured at the Opel proving ground in Rodgau Dudenhofen before
(07.11.2017-29.01.2018) and after (29.01.2018-20.09.2018) the LTE grid extension.
Map data ©OpenStreetMap contributors
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(a) Mean round trip time before grid (b) Mean round trip time after grid extension.

extension.

Figure 85: Comparison of the achieved Round Trip Time values before (07.11.2017-29.01.2018)
and after (29.01.2018-20.09.2018) the LTE grid extension. Map data
©OpenStreetMap contributors
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(b) Measured Reference Signal Received
Power at the last day of the measuring
campaign on the site (20.09.18)

(a) Measured Reference Signal Received Power
at the first day of the measuring campaign
on the site (07.11.17).
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(c) Reference measurements of the RSRP value of the LTE network conducted for Vodafone
after the grid extension (12.04.2018).

Figure 86: Comparison of the Reference Signal Received Power measured at the first and the
last day of the cellular data collection campaign in comparison to the reference
measurements conducted by Vodafone after the grid extension. ©Vodafone GmbH
and FMB Engineering GmbH, map data ©OpenStreetMap contributors
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(a) Complete Opel proving ground - GSM (PSCH)

vvvvv -

(b) Complete Opel proving ground - LTE 800 (RSRP)
: - ot |

(c) Highway section on the Opel proving ground - GSM (PSCH)

Figure 87: Reference measurements of the experienced signal strength of the various
available network technologies (GSM, UMTS, LTE) on the complete Opel proving
ground in Rodgau-Dudenhofen. The measurements were conducted by Vodafone

after the LTE network expansion (12.04.2018). ©Vodafone GmbH and FMB
Engineering GmbH
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(RSRP)

Figure 88: Continued reference measurements of the experienced signal strength of the
various available network technologies (GSM, UMTS, LTE) on the complete Opel
proving ground in Rodgau-Dudenhofen. ©Vodafone GmbH and FMB Engineering
GmbH
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A1l SIMULATED SUMO SCENARIOS

The following figures illustrate the extend of several scenarios, which have been simu-
lated in this thesis. Namely they are Berlin (Fig. 89), Cologne (Fig. 90) and Luxembourg
(Fig. 91).

T

Figure 89: Visualization of the extend of the OpenStreetMap data of Berlin used for the
evaluation of the Dynamic Map Update protocol. ©OpenStreetMap contributors®

52 http://download.geofabrik.de/europe/germany /berlin.html (Last accessed on August 1, 2019)



BIBLIOGRAPHY

(a) Overview about the scenario of the TAPAS Cologne dataset .

50000

40000

30000

vehicles

20000

10000

vehicles

0
3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 39600 43200 46800 50400 54000 57600 61200 64800 68400 72000 75600 79200 82800 86400

time (s)

(b) Overview about the traffic pattern distribution over the full 24

Figure 90: Visualization of the TAPAS Cologne dataset for the traffic simulator SUMO. The
dataset covers a full day of traffic in and around the city of Cologne Germany. For

hours of the TAPAS Cologne dataset.

our simulation in Section 6.3.4 we relied on the traffic pattern between 6 and 9

o’clock in the morning. (Source:

https://sumo.dlr.de/wiki/Data/Scenarios/ TAPASCologne (Last accessed on

August 1, 2019))
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Figure 91: Visualisation of the LUST dataset [109] of the area of Luxembourg for the traffic

simulator SUMO. The streets where buses are roaming in the map are indicated by

red color. (Source:
https:/ /github.com/lcodeca/LuSTScenario/blob/master/docs/img/LuST_busCoverage.png

(Last accessed on August 1, 2019))
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A.12 DETAILED LIST OF CELLULAR NETWORK QUALITY PARAMETERS COLLECTED
THROUGH THE CUSTOM ANDROID MEASURING APPLICATION

Our custom Android application relies on two different interfaces to retrieve cellular
network quality parameters: i.) the open Android APIs and ii.) the quality information
directly retrieved from the smartphones LTE chipset through the Mobilelnsight appli-
cation. The following Tables 21 and 22 for Android and 23 and 24 for Mobilelnsight
summarize all these parameters.

Provided by Android APIs

measurementtime Time when the measurement was exe-
cuted

ci CellID of the currently serving cell tower
(eNodeB)

pci Physical cell ID of the serving antenna

(cell) of the current eNodeB (cell tower) -
commonly an eNodeB is equipped with
three distinct antennas to achieve a 360°
coverage of the surrounding area.

tac Tracking Area code - identifying an area
of several eNodeBs

networktype Current used cellular technology, e.g.
LTE, UMTS, HSDPA, EDGE, ...

mcc Mobile Country Code - identifying the

country of where the operating cell
tower is located (262 - Germany)

mnc Mobile Network Code - identifying the
cellular network operator of the cur-
rently serving cell tower

earfcn Evolved-UTRA Absolute Radio Fre-
quency No. - specifying a particular car-
rier transmission frequency - without
clarification of the used bandwidth

Table 21: List of parameters provided to the Connectivity Map Client by the Android APIs.

197



198 BIBLIOGRAPHY

asulevel

timing advance

provider
signalstrength

rsrp
rsrq

rssnr
cqi

speed
longitude/latitude

tep rtt

throughput
device name

imei

packetloss

ASU level of the currently serving cell
tower

timing advance value for LTE - value
to ensure timely syncronisation of the
transmission process between cell tower
and end device

Human readable name of the currently
serving provider

Signal strength of the current connection
in dBm

Reference Signal Received Power in dBm
Reference Signal Received Quality
Reference Signal Signal-To-Noise Ratio
Channel Quality Indicator

Current traveling speed of the vehicle

Location of the smartphone in WGS 84
coordinates (longitude and latitude)

Round Trip Time estimation of the TCP
connection of the control channel as a
measure related to the latency of the con-
nection

Measured throughput of the current con-
nection

Device name - used for device specific
filtering

International Mobile Equipment Iden-
tity - unique identification number if sev-
eral devices of the same type are used
throughout the measuring process

Amount of lost packets during the send-
ing process - retrieved from packet se-
quence number identification

Table 22: Continued list of parameters provided to the Connectivity Map Client by the

Android APIs.




Provided via the Mobilelnsight application
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qualitytimestamp
cellid

mcsindex

tbs
rbs
throughput

rsrp
rsrq

rssi

cqi
earfcn

speed
longitude/latitude

Time when the value was provided by
the chipset

CellID of the currently serving cell tower
(eNodeB)

Modulation and Coding Scheme Index
- identifying the currently used Modula-
tion and Coding Scheme of the connec-
tion (e.g. QPSK, 16 QAM, 64 QAM)
Transport Block Size

Resource Block Size

Calculated throughput estimate based
on the time between two received values
and the received Transport Block Size
Reference Signal Received Power in dBm
Reference Signal Received Quality
Received Signal Strength Indication
(RSSI) in dBm

Channel Quality Indicator
Evolved-UTRA Absolute Radio Fre-
quency No. - specifying a particular car-
rier transmission frequency - without
clarification of the used bandwidth
Current traveling speed of the vehicle

Location of the smartphone in WGS 84
coordinates (longitude and latitude)

Table 23: Complete list of parameters provided to the Connectivity Map Client by the
Mobilelnsight application for both the uplink and downlink similarly.

Additionally to the same values as provided in the upload direction further provided
parameters in the download direction are as follows.
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mimo

mti

caindex

MIMO index - indicating wether or not
Multiple Input Multiple Output data
transmissions using several antennas
was available at the time the value was
retrieved

C-RNTI - a unique identifier used
for identifying RRC Connection and
scheduling which is dedicated to a par-
ticular user end device (UE)

Carrier Aggregation Index [0,1] - indicat-
ing wether or not Carrier Aggregation
was available at the time the value was
retrieved

Table 24: List of additional parameters provided to the Connectivity Map Client by the

Mobilelnsight application only for the downlink.
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A.13 LOCALIZED VS GLOBALIZED TRAINING BASED ON MOBILEINSIGHT DATA FROM
PROVIDER B AND C

The following Figures 92, 93 and 94 show our evaluation results for the throughput
prediction using either globalized or localized training data of the Providers B and C.
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Figure 92: Performance comparison between localized and global training data of the first
and second most often measured cells of provider B.
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Figure 93: Continued performance comparison between localized and global training data of
the third and fourth most often measured cells of provider B.
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Figure 94: Performance comparison between localized and global training data of the four
most often measured cells of provider C.
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A.14 DETAILED CORRELATION PLOTS FOR THE ONLINE ESTIMATION

In the following the detailed correlation matrices (Pearson correlation coefficients)
between the measured throughput values and the network performance parameters,
which are used as prediction features for our online estimator are summarized. Shown

are the obtained values for the four most often measured cell IDs (A-D).

First measuring campaign
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Figure 95: Achieved correlation coefficients for the cells A and D in the download direction in
the first measuring campaign.
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Second measuring campaign
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Figure 96: Achieved correlation coefficients for the download and the uplod direction in the
second measuring campaign, when considering the complete measurement data
as one training set.



206 BIBLIOGRAPHY

Throughput RSRP RSRQ cal CA_index MIMO_index MCS_index

0.02- o - cd - ~
001- 0.59 0342 0.662 -0.00514 0.521
0.00-

R Y L X H
- Fi i Corr Co Co Co Carr z
100~ i 0.327 0.604 0.0113 0.28 0.345 El
120-4 8 ° 0®C®
.
Co S
.
o : — . : .
] ] =
50 J ?
- = e e e ———— e - = = - =
25- I}
15- &
1) - e— L. - - e - - - -om - - sescessveenese o - - - .. - - - . L - - - ‘X
0 20 40 60 -120 -100 -80 -60 -30 -20 -10 4 8 12 000 025 050 075 100100 125 150 175 20010 15 20 25 30
(a) Correlation coefficients for the download direction - data set of cell A
Throughput RSRP RSRQ cal CA_index MIMO_index MCS_index
0021 Corr. Corr. Co Co Co H
001 0.804 031 0.789 -0.0084 0526 H
oz -
b Y rl
a0 C G G i
100 ! 277 74 kS
. 5
C . Z_ B
nis Pt i . . ;
175~ %
1.50- I_
125- é
100 - —— - —— - —— ¢ sssesssssse . R
o - — : . . -
- ————— e e e e : : : /\ # &
15- é
1.0 c— T T - - — . % b @ — ¢ tesssseesses L L =

0 20 40 B0 -120 -100 -80 -60-30 -20 -10 4 8 12 000 025 050 075 100100 125 150 175 20010 15 20 25 30

(b) Correlation coefficients for the download direction - data set of cell B

Figure 97: Achieved correlation coefficients for the download direction in the second
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Figure 99: Achieved correlation coefficients for the upload direction in the second measuring
campaign, when considering only cell specific training sets.
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measuring campaign, when considering only cell specific training sets.



210

BIBLIOGRAPHY

A.15 MOBILE TEST OF IMDEA OWL CONNECTED TO CONNECTIVITYMAP CLIENT IN
VEHICLE

To test and evaluate the decoding performance of Imdea OWL in a mobile scenario, we
used our Connectivity Map Client application to execute throughput measurements,
while the measuring equipment is moving inside of a vehicle. To validate the per-
formance of OWL the Connectivity Map Client transmits fixed amounts of data (500
packets, each with a size of 1500 byte) over the network. Before starting the transmis-
sion process the application retrieves the currently used transmission frequency of the
cell tower and uses this information to start the Imdea OWL decoding process. During
the execution of the throughput measurement Imdea OWL continuously retrieves the
number of currently active clients (identified via their assigned C-RNTI number) and
their present network activities through the scheduled amount of resource blocks (Sec.
A.3.9) per client. We selected a rather small amount of 500 data packets, with a total
size of about 732 kByte, to ensure that the data transmission was completed using
only one unique C-RNTI In consequence, in a correct and unobstructed decoding
procedure our test measurements should be mapable upon one specific C-RNTI and
related to the correct transport block size (Sec. A.3.9) required for the transmission of
our specified amount of data payload. For the verification of these two numbers we
relied upon the Mobilelnsight interface used in our previous work (Sec. 6.4). Via the
Mobilelnsight application we were able to retrieve the current C-RNTI, as well as the
allocated transport block size of the smartphone under test. To identify issues in the
decoding process related to poor signal reception, the Connectivity Map Client fur-
thermore provides current signal strength readings (e.g. the Reference Signal Received
Power) and GNSS location information to be stored with the correlating OWL LTE con-
trol channel decodings. With this configuration setup inside a vehicle, as shown in
Figure 103, we performed an initial performance evaluation. We started our tests close
to a cell tower as indicated by the black and white double circle in Figure 101 and 102.
In total we conducted 28 measurements driving in the area around the cell tower at
different distances. Accordingly we experienced different Reference Signal Received
Power values during the decoding procedure. The evaluation results are summarized
in Table 25. The measurements were conducted at the LTE transmission frequency of
2100 MHz.

Out of the 28 total measurements 11 measurements were identified to have matches
between the decoding results of IndeaOWL and the information retrieved by Mo-
bileInsight from the LTE chipset of the smartphone. Figure 101 visualizes the positions
of successful (green) and unsuccessful (red) measurements around the cell tower. In to-
tal we could identify 61 scheduled [system frame, subframe] combinations having the
same C-RNTT and allocated transport block size. The allocation of resources was also
indicated by OWL throughout the measurements graphically (see e.g. Fig. 103) and
correlated with our conducted throughput tests. The achieved results showcase that
through our made adaptations IndeaOWL can be quickly configured to be applied in
a mobile, vehicular environment.
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Total conducted measurements 28

Identified measurements with matches | 11
of C-RNTI, system frame number, sub
frame number and transport block size
in them

Total identified complete matches be-| 61
tween ImdeaOWL and Mobilelnsight
(same C-RNTI, system frame number,
sub frame number, transport block size)

Reference Signal Received Power range | -108 to -61 dBm
in which the measurements where con-
ducted

Table 25: Evaluation results for the decoding comparison of IndeaOWL and Mobilelnsight.

In our opinion the possible causes for the remaining 17 measurements having no
direct correlation between the decoding of ImdeaOWL and Mobilelnsight are not
related to the present signal strength conditions during the 28 measurements. The
measurements cover a range of Reference Signal Received Power values between -108
dBm and -61 dBm, visualized in Figure 102. Compared to our received RSRP values
in Section 6.1.5 these values indicate a medium to good signal quality. However the
measurement executed under the poorest signal conditions (-108 dBm) indicated a
successful match between the decodings of IndeaOWL and the information obtained
by Mobilelnsight. For the measurement executed at the best signal conditions (-61
dBm) we could not identify such a match. Further measurements to cover a wider
signal strength range is suggested to indicate an upper limit for a successful decod-
ing with ImdeaOWL. By investigating the detailed decoding results of ImdeaOWL
and Mobilelnsight we identified that both sources were missing out several system
frame numbers in the row of consecutive decoded frames. These are possible missing
candidates for further matches. Possible reasons therefore could lie in the decoding
speed of Mobilelnsight being limited on the tested smartphone and thus missing out
important information. In consequence we advise further investigative future work to
identify possible optimization potential of both software tool Kkits.
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Figure 101: Indication of measurements with a successful (green) and unsuccessful (red)
matching between the decoding results of IndeaOWL and Mobilelnsight. The
position of the serving cell tower is indicated by the black and white double circle
in the north of the map. Map data ©OpenStreetMap contributors

\ @ - oy QRO
........ ‘~ O
\
o
o % \
\ i &
- ¢ O o
Q. ‘
® A~ 5
D @
R

Figure 102: Visualization of the experienced Reference Signal Received Power (RSRP) values
at the positions of our measurements. The RSRP values range from -108 dBm
(red/poor) to -61 dBm (green/good). Map data ©OpenStreetMap contributors
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Figure 103: Setup of the IndeaOWL network sniffer running on a laptop interfacing with a
bladeRF SDR with its receiving antenna mounted on the car roof. The laptop is
connected via USB to our test smartphone running an adapted version of our
Connectivity Map Client application to receive signal, location and frequency
readings to evaluate and trigger the decoding of the LTE network channel via
ImdeaOWL. Each time the smartphone executes a test measurement, Imdea OWL
is triggered to decode the LTE control channel.
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A.16 LIST OF ACRONYMS

BASt

CAM
CPU

CQI
C-RNTI
DENM
EARFCN
EDGE
ETSI
E-UTRA
GNSS
GPS

GUI

HD Map
HSPA
HTTP
ICCOMQS

ISED
Ko-HAF

LDM
LTE
MCS
MIMO
mMTC
MTU
NNI
OFDMA
QAM
QPSK
QUIC
QXDM

German Federal Road Research Institute (Bundesanstalt Fiir
Straflenwesen)

Cooperative Awareness Message

Central Processing Unit

Channel Quality Indicator

Cell Radio Network Temporary Identity
Decentralized Environmental Notification Message
Evolved-UTRA Absolute Radio Frequency No
Enhanced Data Rates For GSM Evolution
European Telecommunications Standards Institute
Evolved UMTS Terrestrial Radio Access

Global Navigation Satellite Systems

Global Positioning System

Graphical User Interface

High Definition Map

High Speed Packet Access

Hypertext Transfer Protocol

Intelligent Cellular Communication Quality Sensing Frame-
work

Canadian Organisation Of Innovation Science And Eco-
nomic Development

Cooperative Highly Automated Driving (Kooperatives
Hochautomatisiertes Fahren)

Local Dynamic Map

Long Term Evolution

Modulation And Coding Scheme

Multiple Input Multiple Output

Massive Machine-type Communications
Maximum Transmission Unit

Nearest Neighbour Index

Orthogonal Frequency Division Multiple Access
Quadrature Amplitude Modulation
Quadrature Phase-Shift Keying

Quick UDP Internet Connections
QUALCOMM'’s EXtensible Monitor Software
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RSRP
RSRQ
RSSI
SAE
SC-FDMA
SINR
SISO
TBS
TCP
UDP
uMTC
UMTS
VDA

WiFi
WLAN
xMBB

Reference Signal Received Power

Reference Signal Received Quality

Received Signal Strength Indicaton

Society Of Automotive Engineers

Single Carrier Frequency Division Multiple Access
Signal To Noise Ratio

Single Input Single Output

Transport Block Size

Transmission Control Protocol

User Datagram Protocol

Ultra-reliable Machine-type Communications
Universal Mobile Telecommunications System

German Association Of The Automotive Industry (Verband
Der Automobilindustrie)

Wireless Fidelity
Wireless Local Area Network
Extreme Mobile Broadband
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