

Safer Level Crossings by improved Road-Rail Infrastructure Design

Dr. Annika Dreßler DLR – Institute of Transportation Systems

Background and Objectives

Circumstances of significant accidents in the European railway system

Victims in significant accidents in the European railway system

- Improve safety and minimize risks at and around level crossings (LCs)
 - ... by developing innovative solutions and tools to prevent incidents at level crossings
- Focus both on technical solutions and on human processes
 - ... to adapt infrastructure design to end-users
 - ... to enhance coordination and cooperation between stakeholders from different transportation modes
- Develop a toolbox integrating the project results and solutions
 - ... to help rail and road managers to improve safety at level crossings.

Approach

SVFER-IC

- Analyze LC safety systems
- Define needs and requirements of rail and road users for safer level crossings
- Develop innovative measures
 - Human-centered low-cost measures
 - Technical solutions
- Test and evaluate the measures
- Compile recommendations and guidelines
- Collect all results in a toolbox

Time: May 2017 – April 2020

Challenges in road-user behavior

Active LCs with full barriers

- Circumventing closed barriers (climbing over / below)
- Passing LC after pre-signaling has begun / while barriers are closing
 - Getting caught between the barriers
 - Getting stuck on the rails

Active LCs with half-barriers / light protection

- Circumventing closed half-barriers (swerving around, climbing over / below)
- Passing in spite of active light signals (e.g. flashing red light)
- Passing after pre-signaling has begun / while barriers are closing
- Getting stuck on the rails

Passive LCs

- Insufficient visual scanning of tracks for train
 - Insufficient adaption of approach speed to scanning needs

Peripheral blinking lights near the tracks

Safety effects on driver behavior

0/0	nartici	nante	fixating	vigual	ROI
70	partici	parito	плашту	viouai	NOI

LC safety layout		Left Periphery	Right Periphery	
	Standard passive LC	64,6	45,8	
	Periperal blinking lights	83,7	65,1	
	Rumble Strips	66,7	40,0	
9	Sign ← Is a train coming? →	80,0	46,7	

- peripheral blinking lights near the tracks
 - ...induced large increases in visual search for a train both to the left and the right side of the tracks
 - .. induced significant speed reduction on approach to the LC
 - ... gained high participant ratings on usefulness and moderate to high ratings on ease-of-use dimensions
- Test: driving simulator study (Silla et al., in prep.)

Auxiliary strobe light system for trains

ERTRAC Workshop "Road safety R&I: from challenges to solutions – the way forward", Brussels, 15th November 2019

Safety effects on driver behavior

- Trains equipped with auxiliary strobe lights
 - ... were detected earlier and more reliably than standard trains
 - ...were associated with earlier and stronger speed reduction on approach
 - ... gained high participant ratings on usefulness and ease-of-use dimensions
- Test: driving simulator study (Silla et al. 2019)

All pilot tests - overview

Simulation

	Testsites	Measures tested	
•	Traffic data simulation (VTT)	V2X messaging system between automated vehicles and passive level crossings	
	Road Driving Simulators (DLR, SNCF)	Rumble strips, RU-activated peripheral blinking lights, Sign ← Is a train coming? →, Blinking lights on train; Coloured road markings on LC approach, Funnel effect sticks, Rings upstream of LC, Traffic light, Speed bump and flashing sticks, Proximity message via in-car device	
	Test track with mock-up LC and rail vehicle (RWTH, CEREMA, UTBM, COMMSIGNIA, IFSTTAR, Geolog, neoGLS)	Smart Detection system, Smart Communication system, Early detection and hazard information by cooperative perception messaging and driver's warning	
	Test site for LC monitoring and remote maintenance (CEREMA)	Monitoring and remote maintenance	
7	Real-world rail environment at Rukkamaki, Finland (VTT)	Additional warning light system at locomotive front	
	Real-world LC at Braunschweig, Germany (Traffic data acquisition, DLR)	VRU-activated blinking amber light with train symbol, warning message written on road	
	29 real-world LCs at Thessaloniki, Greece (CERTH , TRAINOSE, DLR)	In-vehicle train and LC proximity warning	

Field

Outlook

- Aggregation of all results in web-based **SAFER-LC toolbox**, to be used by road and rail infrastructure managers, train operators, engineers, designers, scientists, policy makers and standardization bodies
- Content:
 - All collected safety measures
 - Empirical findings on effectiveness
 - Consideration of potential negative effects and restrictions
 - Recommendations for application
- Browsable according to specific problems and application contexts
- Consideration of the human factors that lead to errors and violations in road-user behavior is essential in finding solutions that are both effective and low-cost.

Thank you for your attention!

German Aerospace Center (DLR)
Institute of Transportation Systems

Dr. Annika Dreßler
Telephone +49 (0) 531 295 2109
Annika.Dressler@dlr.de

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723205.

SAFER LEVEL CROSSING BY INTEGRATING AND OPTIMIZING ROAD-RAIL INFRASTRUCTURE MANAGEMENT AND DESIGN

http://safer-lc.eu/

References

- Silla, A., Lehtonen, E., Virtanen, A., Mesimäki, J., Bialinska, K., Grippenkoven, J., & Dressler, A. (2019). Auxiliary strobe lights improve train visibility. *Proceedings of the 26th ITS World Congress, Singapore*, 21-25 October 2019
- Silla, A., Lehtonen, E., Virtanen, A., Boufidis, N.; Salanova Grau, J.M.; Dressler, A.; Grippenkoven, J.; Taillandier, V.; Khoudour, L.; Jacqueline, D.; Antoine, R.; Boukour, F.; Edelmayer, A.; Ruffin, C.; Kassa, E. & Korkmaz, C. (in prep.). Results of the evaluation of the pilot tests. *Deliverable D4.4 of the SAFER-LC project*

