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Abstract: Vehicle-to-vulnerable road user (V2VRU) communications have the ability to provide 360 degrees of awareness to both
vehicles and vulnerable road users (VRUs) to prevent accidents. An accurate V2VRU channel model in critical accident scenarios
is essential to develop a reliable communications system. Therefore, extensive wideband single-input and single-output (SISO)
channel measurement campaigns at 5.2 GHz were carried out in open-field and urban environments. Accident prone scenarios
between a vehicle and a cyclist as well as between a vehicle and a pedestrian are considered. In this paper, locations of the
scatterers in the propagation environment are estimated. We propose a method to extract specular MPCs from the estimated time-
variant channel impulse response (CIR) based on the density of neighboring MPCs. The specular MPCs are then tracked using
a novel tracking algorithm based on the multipath component distance (MCD) approach. Each path is then related to a physical
scatterer in the propagation environment by employing a joint delay-Doppler estimation. According to the results, single and double
bounce reflections from buildings and parked vehicles are identified in line-of-sight (LoS) situation. In non-LoS (NLoS) situation,
scattering from nearby trees as well as reflections from traffic signs and lampposts beneath the trees canopy are identified.

1 Introduction

Globally, around 1.35 million people die on roads, and more than
50 million are injured every year [1]. Almost 50 % of the victims
are vulnerable road users (VRUs) i.e., pedestrians, cyclists, and
two-wheelers. In the most critical scenarios, where the highest per-
centage of accidents occurs, the line-of-sight (LoS) between vehicles
and VRUs is blocked by obstacles such as buildings and parked
vehicles [2]. Therefore, in these scenarios, collision avoidance sys-
tems that rely on vehicles on-board sensors such as radars, cameras,
and laser scanners are not able to detect VRUs. Direct vehicle-to-
vulnerable road user (V2VRU) communications can overcome the
limitations of sensor-based systems and provide 360◦ of awareness
for both vehicles and VRUs. V2VRU communications is part of the
V2X communications family, which also includes vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communications. How-
ever, contrary to V2V and V2I [3, 4], V2VRU has not yet received
similar attention from researchers.

Accurate channel models are required for developing reliable
communications systems. Therefore, a well-founded V2VRU chan-
nel model is necessary. To the best of our knowledge, no dedicated
channel model for V2VRU communication in critical scenarios is
proposed so far. In order to develop a well-founded channel model
for V2VRU applications, it is required to conduct wideband channel
sounding measurements. Thus, we performed two extensive single-
input single-output (SISO) wideband channel measurement cam-
paigns considering vehicle-pedestrian and vehicle-cyclist collision
scenarios.

Three main approaches for channel modeling can be found in
literature: deterministic, stochastic, and geometry-based stochas-
tic channel models (GSCM). Deterministic approaches, on the one
hand, are well known for their accuracy since they are based on
detailed modeling of the environment e.g., buildings, vehicles, veg-
etation and other urban structures. Still, they are in general com-
putational expensive. On the other hand, stochastic channel models
depend on channel statistics like Doppler spread or root mean square

(RMS) delay spread to model the channel. Such approaches can
represent the statistics of the channel. However, they are not able
to describe the underlying geometric relations of the propagation
channel accurately. The third channel modelling approach achieves
a trade-off between accuracy and computational cost. The GSCM
approach combines the geometrical and statistical elements provid-
ing accurate geometrical relations with a minimal computational
burden. In this approach, scatterers are placed randomly according to
a distribution. Then, each physical scatterer is associated to a prop-
agation path. A wideband channel model is therefore represented
by contributions of all scatterers. The aforementioned trade-off
motivates the selection of the GSCM approach for modeling the
V2VRU channel. Additionally, due to the movement of the transmit-
ter (Tx), the receiver (Rx) and the scatterers, the V2VRU channel
is non-stationary [5]. Thus, the preferred approach to model the
V2VRU channel is the GSCM approach as it is based on geometrical
consideration [6].

In our GSCM channel modeling approach, dominant propaga-
tion paths are modeled deterministically by using the corresponding
scatterers locations. These locations are drawn from statistical dis-
tributions, which in turn are obtained by analyzing the channel
measurement data. Therefore, localizing the scatterers not only pro-
vides a deep understanding about the propagation channel, but also
it is an essential step towards designing the channel model. The raw
measurement data obtained from channel sounding cannot be used
directly for a detailed characterization of the propagation channel
when a GSCM approach is targeted. Therefore, a super resolution
estimation algorithm can be employed to estimate the parameters of
the MPCs. Few algorithms can be found in the literature like the
snapshot-based RIMAX [8], and the space-alternating generalized
expectation-maximization (SAGE) [9]. Alternatively, an algorithm
that takes the evolution of the multipath overtime into account such
as the Kalman enhanced super resolution tracking (KEST) [7] can
be used.
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Following the estimation of the parameters, MPCs have to be
tracked over time. The tracking problem can also be seen as a label-
ing or data association problem. Several approaches for tracking and
data association can be found in literature. Multipath component dis-
tance (MCD)-based approach is used in [10] and [11]. The authors
in [12] applied probability hypothesis density (PHD) filters to track
MPCs. Partitioning-based algorithms such as KPowerMeans is also
used for data association and clustering in [13].

Having the MPCs tracked, a scatteres localization algorithm will
use the estimated delay and Doppler of the tracked MPCs to relate
each MPC to its corresponding scatterer in the propagation environ-
ment. Commonly, positions of scatterers are estimated based on a
joint delay-Doppler estimation such as in [14], [15] and [16].

Few recent studies focused on modeling some aspects of the
V2VRU channel. Rashdan et al. in [17] and [18] presented a narrow-
band channel model for the V2VRU channel considering a collision
scenario between a vehicle and a pedestrian based on wideband
channel measurements. The path loss was studied in [19] based
on narrowband channel measurement in LoS when the pedestrian
is stationary and moving parallel to the road. In [20], based on
vehicle-to-pedestrian channel measurements in open-field environ-
ment, the authors localized the scatterers in the environment using a
joint delay-Doppler estimation algorithm.

The main contributions and novelties of this work are summarized
in the following:

1. We conducted an extensive wideband V2VRU channel mea-
surement campaign in open-field and urban environments. The
most critical accident prone scenarios that involve pedestrians and
cyclists are considered.

2. We employ a super resolution estimation and tracking algorithm
to estimate MPCs parameters.

3. We provide a novel method to extract specular reflections form the
estimated time-variant CIR based on the density of their neighbor-
ing MPCs. This extraction allows for further characterization of the
specular reflections.

4. We propose a simple but effective algorithm for multipath tracking
based on delay and magnitude distance.

5. Locations of physical scatterers in the propagation environment
are estimated using a joint delay-Doppler estimation algorithm.
The locations will later be used to provide models for the statistical
distribution of these scatterers.

The remainder of this paper is organized as follows: Section
2 describes the measurement campaigns in open-field and urban
environments. Section 3 presents the results of MPCs parameters
estimation and tracking. Within the section, a method to extract
specular multipaths is presented followed by a detailed descrip-
tion of the MPCs tracking algorithm. Based on the tracked MPCs,
Section 4 presents results on scatterers localization and the employed
algorithm is described. Finally, a conclusion and summary in Section
5 concludes up the paper.

2 Measurement Campaigns

Since the goal is to model the V2VRU channel in critical scenarios,
two extensive measurement campaigns have been conducted. The
first measurement campaign was performed in 2017 on the runway
of the airport in Oberpfaffenhofen near Munich, Germany. This loca-
tion is selected since it represents an open-field environment and the
acquired data can be used to develop a reference channel model. The
second measurement campaign was conducted in 2018 in the city of
Germering near Munich.

2.1 Measurement Scenarios

Open-field environment: LoS and NLoS scenarios were consid-
ered. All experiments were conducted with a receiver located at a
moving pedestrian and a static tripod. Fig. 1 shows the trajectory
of the test vehicle on an aerial view. Several scenarios were mea-
sured to cover the impact of different propagation aspects such as

Fig. 1: Aerial view of the measurement scenario in the open-field
environment showing the trajectory of the TX towards the imaginary
collision point. (Google Maps 2017 Geobasis-DE/BKG.)

Table 1 Channel sounder parameters

Parameter Value

RF center frequency fc 5.2 GHz
Bandwidth B 120 MHz
Transmit power Pt 37 dBm
Signal period Tp in open-field 0.8 µs
Signal period Tp in urban 3.2 µs
Time grid Tg 1.024 ms
Tx antenna Omni-directional (V-polarized), 8 dBi
Rx antenna Omni-directional (V-polarized), 8 dBi

body shadowing, crowed shadowing, movement effect on the chan-
nel, and obstructions by parked vehicles. For more details on the
measurement campaign, see [17]. In this work, results for only the
LoS scenario with a static tripod (Fig. 2a) will be presented. In the
scenario, the vehicle moved 100 m towards the imaginary collision
point with an average speed of 11 m/s, while the tripod was placed
at 12 m distance from the collision point.

Urban environment: The measurements took place in three dif-
ferent urban streets. Pedestrian and cyclist accident scenarios were
considered. In this work, we only investigate the channel measure-
ments for the cyclist scenario in Göthestraße (see Fig. 3). Along the
street, 3−to 6−story buildings are lined up on one side and sepa-
rated by green areas on the other side. The street consists of one lane
for each direction and contains parked vehicles on both sides. The
street width is 12 m with 3 m wide sidewalks. In the cyclist accident
scenario, as illustrated in Fig. 2b and 4, the vehicle is moving 100 m
towards the intersection then turning right while the cyclist is mov-
ing 10 m toward the imaginary collision point from the right. This
scenario accounts for 42 % of the total cyclist accidents as reported
by the General Association of the German Insurance Industry (GDV)
[2]. Also in this scenario, the visibility is blocked by buildings at the
corner of the intersection and obstructed by parked vehicles. Fig.
3 displays the trajectories of the test vehicle, and the cyclist on an
aerial view. The cyclist moves with an average velocities of 1.5 m/s
while the test vehicle moves with a velocity between 5 and 11 m/s.

2.2 Measurement Systems

The measurements were performed using the DLR RUSK channel
sounder. The carrier frequency is fc = 5.2 GHz and the bandwidth
is B =120 MHz, which corresponds to a delay resolution of ∆τ =
8.33 ns. During the measurements, the channel transfer function was
recorded every Tg = 1.024 ms, therefore, the maximum allowed
absolute Doppler frequency is fd max = 488 Hz. Fig. 5 shows the
antenna position on both the vehicle and the cyclist. The main mea-
surement parameters of the channel sounder for both campaigns are
summarized in Table 1.
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(a) Open-field

(b) Urban

Fig. 2: Measurement environments.

Fig. 3: Aerial view of the measurement scenario in the urban envi-
ronment showing the trajectory of the vehicle (in black), and the
trajectory of the cyclist (in red) towards the imaginary collision
point. (Google Earth 2018 Geobasis-DE/BKG.)

The measured CIRs for open-field and urban scenarios are shown
in Fig. 6. At the beginning of the experiment, the Tx-Rx separation
distance was approximately 100 m. The LoS between the Tx and Rx
was maintained in the open-field scenario with some traces paral-
lel to the LoS. In the urban scenario, as can be seen in Fig. 6b, the
LoS starts to appear, accompanied by a group of strong multipaths,
at approximately 40 m distance or 12.5 s. The LoS path remains
between 12.5 and 19 s but is partially obstructed by parked vehicles.
During NLoS, a weak path appears as a tail of the LoS path and with
a slightly more delay than the geometric LoS (GLoS). A group of

Fig. 4: An illustration of the accident scenario between a vehicle
and a cyclist.

Fig. 5: Antennas positions on both the test vehicle and the cyclist.

weak paths can also be recognized. Contrary to the open-filed, in the
urban measurements, the CIR is highly cluttered. This clutter consist
of diffuse multipath components (DMCs),

3 Parameter Estimation and Tracking

In this section, based on the measurement data, the parameters of
the MPCs will be estimated. Then, based on the estimated MPCs,
the specular MPCs will be extracted and then tracked over time.

3.1 MPCs Parameter Estimation

The behavior of the multipath channel can be described by the
time variant channel impulse response (CIR) h(tn, τ) which can be
expressed mathematically as a sum of N(tn) Dirac impulses [21]:

h(tn, τ) =

N(tn)−1∑
m=0

αm(tn) · δm(τ − τm(tn)), (1)

where αm(tn) and τm(tn) denote the complex amplitude and the
delay of the mth MPC in snapshot n and δ(·) is a Dirac distribu-
tion. A dynamic multipath estimator named KEST, introduced in [7],
is employed for estimating the parameters of specular MPCs. The
estimated parameters are absolute value of the amplitude, the delay,
and the phase of each MPC at time instant tn. KEST uses the out-
put of SAGE algorithm [9] as measurements within a Kalman filter.
SAGE is used as a snapshot-based estimator that jointly estimates
the complex amplitude αm(tn) and the delay τm(tn) for each MPC
m. Additional, KEST consists of several Kalman filters in parallel
using different model orders for estimating the number of MPCs.
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(a) Open-field
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(b) Urban

Fig. 6: Time-variant CIRs based on the measured data.

Fig. 7 shows the CIRs for open-field and urban scenarios based on
the estimated parameters by the KEST algorithm. The signal period
Tp of the periodically transmitted multi-tone signal in the open-field
environment was selected to be equal to 0.8 µs which corresponds to
a propagation distance of 240 m. Therefore, reflections with larger
propagation distance were superimposed with the CIR of the next
measurement snapshot. Nevertheless, the delay of these MPCs are
corrected by adding 0.8 µs in the upcoming analyses. In the open-
field environment, the LoS between the Tx and the Rx was never
obstructed and, consequently, the first measured path coincides with
the geometric LoS. However, in the urban environment, from 0 to
12.5 s the LoS was continuously obstructed by the building. Since
the first path reaches the Rx after diffracting at its corner there is a
misalignment between the first arriving path and the geometric LoS.
At approximately 12.5 s or 40 m distance The Tx and Rx are in LoS.

It can be seen that, the estimation results in both scenarios confirm
the initial observations made on the measured CIRs in the previous
section. Based on the time-delay evolution structure of the MPCs,
it can be deduced based on the long lifetimes that all paths in the
estimated CIR in open-field are due to specular reflections. On the
other hand, in the urban scenario, not only specular reflections but
also DMCs can be seen. Therefore, in order to model the specular
MPCs, we need to extract them form the estimated time-variant CIR.

(a) Open-field

(b) Urban

Fig. 7: Time-variant CIRs based on the estimated parameters. The
geometric LoS is displayed as a red dashed line.

3.2 Specular MPCs Extraction

Multipath components can be divided into specular reflections and
diffuse scattering. we consider as specular reflections, paths that
have relatively high power and long lifetime. Specular reflections
are coherent, which means that they have a relatively constant
phase difference with the direct path over time. While, on the other
hand, DMCs will have random amplitudes and phases and therefore
they are called incoherent components. Unlike specular reflections,
DMCs have no clear structure in the time-delay domain and are often
modeled as colored noise [8, 22]. Mirror-like smooth surfaces lead to
only specular reflections and these reflections are also referred to as
"strictly or smooth" reflections. Mirror-like surfaces are rarely found
in outdoor environments and most surfaces possess some rough-
ness (roughness in relation with the wavelength). The roughness will
result in a decrease of the amplitude of the reflected path. This reduc-
tion is due to scattering some energy in different directions. The
scattered energy is what called DMC. DMC is scattered from all or
part of the rough surface and this part is called a glistening zone [23].
A very rough surface may result in canceling the contribution of the
diffuse (incoherent) components. However, with a less rough sur-
face, the DMCs contribute to the received signal and together with
the specular (coherent) components produce an interference pattern
on the path’s amplitude.

Similar to the rough surfaces, vegetation also produces both
specular reflections and DMCs [24, 25].
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Table 2 Specular reflections extraction parameters

Parameter Name Value

δ Search region radius 25 snapshots
ζ∆τ Delay difference threshold 1.5 ns
ζL Nr. of neighbors threshold 10 MPCs

As seen in Fig. 7b, in the urban environment, the output of the
MPCs parameters estimation not only contains specular reflections
but also contains DMC. For channel modeling, the dominant spec-
ular multipath components with long lifetime need to be separated.
DMC will not be neglected in our model since it may have a sig-
nificant contribution to the total received power. However, modeling
the DMC is out of the scope of this paper. In this work, we present
a method to separate specular reflections and DMCs and based on
their number of neighboring MPCs that have delay difference less or
equal a specific threshold. The steps are summarized as follows:

0. For each MPC m in measurement snapshot n, a search radius δ is
defined. The search region has a length of 2δ, and includes all snap-
shots with indices n+ p, where p = [−δ, . . . ,−1, 1, 2, . . . , δ].

1. Check if the MPCs within the search region are close in delay as

Tm̃,n+p =

{
1 if |τm,n − τm̃,n+p| ≤ ζ∆τ
0 otherwise,

(2)

where τm,n is the delay of the MPCm in snapshot n at time instant
tn, τm̃,n+p is the delay of the MPC m̃ in snapshot n+ p, ζ∆τ is
the delay difference threshold, "1" means the MPC under examina-
tion is close in delay, and "0" means it is not. The set T is defined
as

T =

{Tm̃,n+p

∣∣ p = −δ, . . . ,−1, 1, 2, . . . , δ, m̃ = 1, 2, . . . , Nn+p},
(3)

where Nn+p is the number of MPCs in snapshot n+ p.
2. The MPC is classified as specular or diffuse multipath as

MPC=̂

Specular if
∑

Tm̃,n+p∈T
Tm̃,n+p ≥ ζL,

Diffuse otherwise,
(4)

where ζL is a threshold on the number of neighbors. The MPC
is considered as specular if the number of detected MPCs in
the region tn−δ, . . . , tn+δ and τm,n − ζ∆τ , . . . , τm,n + ζ∆τ is
larger than or equal the threshold ζL.

3.2.1 Parameters Selection: The values of the thresholds ζL
and ζ∆τ depend on the richness of the DMCs. These values affect
the performance of the extraction and therefore should be carefully
chosen. By decreasing ζ∆τ more specular MPCs with high delay
variations will be mistakenly classified as DMCs. Contrarily, by
increasing ζ∆τ more DMCs will be mistakenly classified as spec-
ular MPCs. In order to compare the effect of variations in the ζ∆τ
parameter, specular MPCs extraction is performed with three differ-
ent ζ∆τ values. Fig. 8 only shows the extracted specular MPCs for
the part of the CIR within the red rectangle depicted in Fig. 7b. With
larger ζ∆τ more MPCs are classified as specular MPCs.

Similarly, decreasing ζL will result in more DMCs that are mis-
takenly classified as specular MPCs. On the other hand, when
increasing ζL more specular MPCs which have short lifetimes are
also mistakenly classified as DMCs, although a MPC that has short
lifetime could be a part of a longer but discontinuous path that is
associated with one scatterer in the propagation environment. The
aforementioned effect of the ζL parameter value on the specular
MPCs extraction can be clearly seen in Fig. 9.
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(a) ζ∆τ = 1 ns
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(b) ζ∆τ = 1.5 ns
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(c) ζ∆τ = 2 ns

Fig. 8: The extracted specular MPCs using different values for ζ∆τ
while ζL = 10 MPCs and δ = 25 snapshots.

The thresholds ζ∆τ and ζL should be chosen to minimize the
specular MPCs to be mistakenly classified as DMCs. However, this
will also result in some DMCs to be classified as specular MPCs.
However, the misclassification of some DMCs as specular MPCs
is affordable since their contribution to the total received power is
marginal. Moreover, most of these misclassified MPCs can later be
removed based on their short lifetimes in the tracking step.

The aforementioned method is applied on the estimated MPCs in
urban environment from Fig. 7b. Fig. 10a shows the CIR based on
the estimated parameters of the specular MPCs. The CIR of the
residual after extracting the specular MPCs is shown in Fig. 10b.
The values of the parameters used are summarized in Table 2.

3.3 Specular MPCs Tracking

Tracking the temporal evolution of the extracted specular MPCs
is a prerequisite step to not only localize their scatterers using the
phase changes, but also to determine their time-variant properties
e.g., lifetime and visibility region. The KEST algorithm is able to
continuously track each estimated MPC from Fig. 7a over time in
the open-field scenario as visualized in Fig. 12. By visual inspection
it can be seen that generally KEST algorithm correctly associates and
tracks the MPCs over time. Especially stand-alone scattering points
as A1-A3 and A9-A11 are well identified. However, the algorithm
had difficulties in resolving A12 and A8/A13 when all three inter-
sect in the Doppler/delay space. However, it is not able to track the
paths for a long period of time in the urban scenario due to the rich-
ness of DMC. Therefore, we propose an MCD-based MPC tracking
algorithm that utilizes the estimated delay and magnitude for track-
ing. We assume that in the same snapshot, the delay and magnitude
of each MPC are unique, which means only one MPC with the same
delay and magnitude exists. The main steps are as follows:
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(a) ζL = 5 MPCs
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(b) ζL = 10 MPCs
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(c) ζL = 15 MPCs

Fig. 9: The extracted specular MPCs using different values for ζL
while ζ∆τ =1.5 ns and δ = 25 snapshots.

0. Initialize the set of indices (labels) of all MPCs in the first snap-
shot I1 = {1, 2, 3, . . . , N1}, WhereN1 is the number of MPCs in
the snapshot n = 1. A delay difference threshold ζ∆τ is set to be
equal to a predefined initial value ζ∆τ ini. A magnitude difference
threshold ζ∆α is also set to be equal to a predefined initial value
ζ∆αini.

For each MPC m = 1, 2, . . . , Nn in the snapshot n, do:

1. Find the set of indices of the MPCs form the previous snap-
shot that have delay differences to τim,n less than or equal to the
threshold ζ∆τ .

Am,n = {im̃,n−1 ∈ In−1

∣∣ |τim,n − τim̃,n−1
| ≤ ζ∆τ}, (5)

where In−1 is the set of all indices in the snapshot n− 1, and
im̃,n−1 is the index (label) of the MPC m̃ in snapshot n− 1.

2. Similarly, find the set of indices of the MPCs form the previ-
ous snapshot that have magnitude differences to αim,n less than or
equal to the threshold ζ∆α.

Bm,n = {im̃,n−1 ∈ In−1

∣∣ |αim,n − αim̃,n−1
| ≤ ζ∆α}, (6)

for simplicity in notation, Am,n=̂A and Bm,n=̂B.
3. Let

C = arg min
im̃,n−1∈In−1

|τim,n − τim̃,n−1
| (7)

be the index (label) of the MPC that has a minimum delay dif-
ference to τim,n . Only one MPC will have a minimum delay
difference.

(a) Specular paths extracted form the estimated CIR.

(b) The residual after extracting specular paths. The residual may contains

DMC, noise, and artifacts.

Fig. 10: Results of the specular MPCs extraction method.

4. Similarly, let

D = arg min
im̃,n−1∈In−1

|αim,n − αim̃,n−1
| (8)

be the index of the MPC that has a minimum magnitude differ-
ence to αim,n . Only one MPC will have a minimum amplitude
difference.

5. For each MPC m in each snapshot n, the values of both ζ∆τ and
ζ∆α are updated as follows

a. If C = D, A = φ and B 6= φ, where φ is an empty set, which
means that there is a MPC that has both minimum delay difference
and minimum magnitude difference. However, the delay difference
is above the threshold. Therefore, the current threshold is increased
as

ζ∆τ =

{
|τim,n − τn−1(C)| if |τim,n − τn−1(C)| < ζ∆τ ini
ζ∆τ ini otherwise

(9)
where τn−1(C) is the delay of the MPC that has an index C in
snapshot n− 1. Which means that the delay difference threshold
is set to be equal to the minimum difference if this minimum does
not exceed the initial delay difference threshold. Otherwise, the
threshold will be updated to be equal to the initial threshold.
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The magnitude threshold is updated by a weighted average

ζ∆α = κα∆αk(D), (10)

where ∆αk(D) = |αk(D)− αk−1(D)| is the absolute of the
magnitude difference between two MPCs with the same index D
in consecutive snapshots, k = n− 500, . . . , n− 1 are the indices
of the previous 500 snapshots, and κα > 1 is a constant parameter.
This means that the magnitude difference threshold is updated by
the weighted average of the magnitude differences in the closest
tracked path.

b. If C = D, A 6= φ and B = φ, which means that there is a MPC
that has both minimum delay difference and minimum magni-
tude difference. However, the magnitude difference is above the
threshold. Therefore, the current magnitude threshold is increased
as

ζ∆α =

{
|αim,n − αn−1(C)| if |αim,n − αn−1(C)| < ζ∆αini
ζ∆αini otherwise

(11)
Similar to (a), the delay threshold is updated by a weighted average

ζ∆τ = κτ∆τk(C), (12)

where ∆τk(C) = |τk(C)− τk−1(C)| is the absolute of the delay
difference between two MPCs with the same index C in consec-
utive snapshots, k = n− 500, . . . , n− 1 are the indices of the
previous 500 snapshots, and κτ > 1 is a constant parameter.

After updating the thresholds, the tracking begins as follows:

6. If A ∩B 6= φ, one or more matching MPCs are found. If more
than one matching MPCs are found, then select the one which has
the least delay difference. If the index of the matching MPC is not
already assigned to another MPC in the same snapshot n (step 7),
then Im,n = A ∩B.

7. If A 6= φ, B 6= φ, and A ∩B = φ, then there are at least two
different MPCs, one of them satisfies the magnitude difference
condition and the other satisfies the delay difference condition. In
order to decide which MPC to choose, we calculate a choice metric
γ for both choices as

γτ = ωτ

(
ζ∆τ

|τim,n − τn−1(C)|

)
+ ωα

(
ζ∆α

|αim,n − αn−1(C)|

)
,

(13)
and

γα = ωτ

(
ζ∆τ

|τim,n − τn−1(D)|

)
+ ωα

(
ζ∆α

|αim,n − αn−1(D)|

)
,

(14)
where ωτ + ωα = 1, and ωτ > 0, ωα > 0 are the weight parame-
ters of the delay and magnitude, respectively. Based on the values
of γτ and γα, the matching MPC is then selected as

im,n =

{
C if γτ ≥ γα
D if γα > γτ .

(15)

Which means that matching MPC is the one that satisfies the delay
condition if γτ ≥ γα, or it is the one that satisfies the magnitude
condition if γα > γτ . However, the selection is final only if the
index of the matching MPC is not already assigned another MPC
in the same snapshot n (step 8).

8. If the index of the matching MPC is already selected by another
MPC with a delay τil,n , then the delay of both MPCs will be com-
pared with τn−1(C). The MPC with the least delay difference will
be assigned the index C while the other MPC will search for a

match within the previous δp snapshots (step 10), where δp is a
constant parameter corresponds to the length of the search region,

im,n =

{
C if |τim,n − τn−1(C)| < |τil,n − τn−1(C)|,
Search back (step 10) otherwise,

(16)
and consequently,

il,n =

{
C if |τil,n − τn−1(C)| < |τim,n − τn−1(C)|,
Search back (step 10) otherwise.

(17)
9. If A = φ or B = φ, then there is no match in the previous

snapshot. Therefore, the MPC will search for a match within the
previous δp snapshots (step 10).

10. Search Back: When the MPC does not find a match from the
previous snapshot, then it searches for a match within a window of
length δp snapshots. For each MPC in each snapshot in the search
window, the distance metric is calculated as,

Sm̃,n−p =√
ωτ

(
τim,n − τim̃,n−p

τim,n

)2

+ ωα

(
αim,n − αim̃,n−p

αim,n

)2

,

(18)

where Sp = {Sm̃,n−p
∣∣p = 2, 3, , . . . , δp + 1} is a set of all dis-

tances Sm̃,n−p, and p = 2, 3, , . . . , δp + 1. The matching MPC is
selected as follows:

im,n =

{
im̃,n−p if Sm̃,n−p = min(Sp)

new path otherwise,
(19)

If a matching path is found go to (step 8), and if the path is
considered as a new path, it will get a new index.

The parameters values used for tracking are summarized in Table 3.

3.3.1 Parameters Selection: One important problem that
affects the performance of algorithms is parameters tuning. The
parameter tuning procedure could be long and time consuming. Our
tracking algorithm will only require minimum offline tuning efforts.
In our tracking algorithm, 7 parameters, listed in Table 3, need to be
initialized, and two parameters, namely, the delay difference thresh-
old ζ∆τ and the magnitude difference threshold ζ∆α are tuned
automatically. The measured delay differences |τim,n − τim̃,n−1

|
and the updated delay threshold for the LoS path are shown in
Fig. 11a. The updated threshold is upper-bounded by the initial
threshold ζ∆τ ini =10 ns and its value for each MPC in each snap-
shot is updated as in step 5. Similarly, the measured magnitude
differences |αim,n − αim̃,n−1

| and the updated magnitude threshold
for the LoS path are shown in Fig. 11b

The initial thresholds ζ∆τ ini and ζ∆αini represent upper bounds
on the delay and amplitude changes between two consecutive mea-
surement snapshots. The selection of their values does not require
extensive tuning. It is only important to choose values larger than
the average delay and amplitude changes between two consecutive
measurement snapshots. For example with average delay change of
0.5 ns, any value between 5−10 ns is suitable. Similarly, with an
average magnitude change of 0.15 dB, any value between 1.5 and
3 dB is suitable. The constants parameter κτ is used to update the
delay threshold in Step 5b. As a rule of thumb, it has been found that
any value between 5 and 10 is suitable. However, if fine tuning is
preferred, the selection of the value can be done by an initial track-
ing step using arbitrary large values ≥ 10. In this initial tracking,
the LoS can be easily tracked because of its high power and smooth
delay evolution over time. Based on the delay changes within the
tracked LoS path, the weighting constants is tuned to be large enough
such that the updated threshold is larger than the delay difference of
the tracked LoS and small enough to not exceed the initial threshold.
Similar procedure is also applied to tune κα.

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 7



10 12 14 16 18 20
Time [s]

10-4

10-2

100

D
el

ay
 [

ns
]

Measured delay changes
Updated delay threshold

(a) Delay threshold update

10 12 14 16 18 20
Time [s]

0

0.5

1

1.5

2

2.5

3

M
ag

ni
tu

de
 [

dB
]

Measured magnitude changes
Updated magnitude threshold

(b) Magnitude threshold update

Fig. 11: The automated tuning of the delay and magnitude threshold
for the LoS component.

Table 3 Tracking parameters

Parameter Name Value

ζ∆τ ini Initial delay difference threshold 10 ns
ζ∆α ini Initial magnitude difference threshold 3.04 dB
κτ Tuning constant for delay difference threshold 10
κα Tuning constant for magnitude difference threshold 5
ωτ Delay weight 0.9
ωα Magnitude weight 0.1
δp Search range 100 snapshots

When the algorithm need to decide between two MPCs, one only
satisfies the delay condition while the other only satisfies the power
condition, the weighting constants ωτ andωα become useful. Higher
delay weight means that the delay similarity is preferred over the
power similarity. The selection of the weights values depends on the
objective of the tracking and on the data. In our problem, due to the
fact that paths with difference delay may have similar power and the
objective is to track the evolution of MPCs over time, larger delay
weight is selected.

Fig. 15 displays the results of the specular MPC tracking for the
urban environment of Fig. 7b. In the first part of the measurements
until 12.5 s where Tx and Rx were in NLoS condition, the algorithm
succeeds in tracking the signal diffracted by the obstructing building
(B7). However it is unable to find singular MPCs that can be tracked
over longer periods of time inside the (B1) cloud. In the LoS situa-
tion, when stronger and more discrete MPCs appear, the algorithm
is again able to track some strong MPCs, as for instance (B2, B3
and B5). These MPCs appear divided in different chunks. If they
belong to the same or to different objects will be assessed in the
next section. The accuracy of scatterers localization in Section 4 can

be considered as an indication of the performance of the proposed
tracking algorithm.

4 Scatterers Localization

The estimated delay τ and Doppler ν, based on the phase of the
estimated complex amplitude, are used to localize scatterers in the
propagation environment. For the sake of simplicity we represent the
objects as a source of single bounce reflection. A two-dimensional
Cartesian coordinate system is considered to describe the propaga-
tion scenario. The LoS and the scattered components are assumed
to propagate horizontally. This means that the differences in antenna
heights and the scattering point height are neglected and the scatter-
ers are then located on a ground plane together with the Tx and Rx
antennas. The delay τ of a MPC depends on the Tx position T, the
Rx position R, and the scatterer position S, and it is given by

τ =
1

c
(‖S−T‖+ ‖R− S‖) , (20)

where c is the speed of light.
When only Tx or Rx is moving, the Doppler frequency ν in the 2-

dimensional Cartesian coordinate system has a shape of a hyperbola.
However, if both Tx and Rx are moving, the Doppler frequency has
no typical shape any more. The Doppler frequency is given by

ν =
fc

c

(
vT

S−T

‖S−T‖ + vR
R− S

‖R− S‖

)
, (21)

where vT and vR are the velocity of Tx and Rx, respectively. In this
representation, the scatterer location is calculated by intersecting the
curves represented by τ and ν. The intersection results in two points
on the ellipse given by (20). Only one of them is the true scattering
point location while the other is an ambiguity. In this work, we adopt
the localization algorithm from [15] where scatterer location in each
snapshot n and MPC m is calculated as a PDF. τ and ν are jointly
expressed as a bivariate normal distribution, i.e., K(θ) ∼ N (µ,Σ)
in the parameter space θ

θ =

[
τ
ν

]
, (22)

where

µ =

[
µτ
µν

]
, (23)

is the mean values, and

Σ =

[
σ2
τ 0

0 σ2
ν

]
, (24)

is the covariance matrix which is calculated from the estimated
parameters in Section 3.1 assuming that τ and ν are independent.
The joint PDF of the parameter θ is given by

p(θ;µ,Σ) =
1

2πστσν
exp
(
− (τ − µτ )2

2σ2
τ

− (ν − µν)2

2σ2
ν

)
. (25)

The next step is to transform the PDF p(θ;µ,Σ) from the parameter
domain into a Cartesian domain as

p(X) =
1

N
p(θ)|J|, (26)

where N is the number of intersections between the shape defined
by τ and the shape defined by ν,X = [x, y]T, and J is the Jacobian
of θ

J = det

([
∂τ
∂x

∂τ
∂y

∂ν
∂x

∂ν
∂y

])
. (27)

The PDFs of the same MPC are then averaged over the lifetime of the
MPC. During the movement of Tx and Rx, the ambiguities change
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Fig. 12: Tracked path over time in open-field environment as a
results of KEST algorithm.

Fig. 13: Estimated Locations of the scatterers in open-field scenario.
The results not only show the true locations but also the ambiguities.
The trajectories of the Tx and the Rx are shown c© Google.

their locations while the true locations remains fixed. As a result of
the averaging, the ambiguities are partially or completely averaged
out.

Fig. 13 shows the estimated locations of scatterers in the open-
field environment, and the photos of the scatterers are shown in
Fig. 14 . Our purpose of showing the results of scatterers localiza-
tion in open-field environment is to show the performance of the
localization algorithm in controlled environment and under perfect
GNSS reception and low multipath interference. The results show
that the localization algorithm is able to accurately localize the scat-
terers. The PDFs which are marked by arrows represent the PDFs
of the true location. Other PDFs represent the ambiguities. Since
only the Tx is moving, while the Rx is static, the ambiguities do not
change their position and therefore they do not average out. At large
Tx-Rx separation distance, reflection occurs on the hangers (A9 and
A10). As the vehicle approaches the collision point, other scatterers
become active such as the parked vehicles in the parking lots (A1,
A2, and A3), a small room with metal walls (A4) and a nearby metal
electric box (A5). Far office buildings (A8, A11, A13, and A7) are

Fig. 14: Photos of the localized scatterers in the open-field environ-
ment.

also identified as reflection sources. A12 and A6 are the position of
the channel sounder and the nearby trolleys respectively.

Fig. 15: Tracked path over time in urban environment as a results of
the proposed tracking algorithm.

The estimated locations of the scatterers in urban environment
are shown in Fig. 16. Different objects in the environment could
be identified as sources of reflections and scattering as a result of
the localization algorithm. In NLoS situation, several short MPCs
(B1) in Fig. 15 reach the receiver after scattering from tree branches
and leaves as shown in Fig. 16a and Fig. 17. The lampposts and the
traffic signs under the trees canopy (B1) could also be sources of
reflections during NLoS situation. It can be seen that the ambiguities
are partially averaged. Despite the existence of several objects, such
as parked card, traffic signs, and the corner building, that have vis-
ibility to both the Tx and the Rx, no MPCs are received from these
objects. Simply, In NLoS scenario the location of these objects and
the position of Tx and Rx do not satisfy the low of reflection.

Single and double-bounce specular reflections from the surround-
ing objects in the environment in LoS situation are observed. The
estimated locations of the single bounce reflections (B3) are not
exactly on the facade of the building but rather 1−2 m behind it as
shown in Fig. 16b. One reason could be the inaccuracy of GNSS
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(a) NLoS

(b) LoS

Fig. 16: Estimated Locations of the scatterers in the urban scenario.
The results not only show the true locations but also the ambiguities.
The trajectories of the Tx and the Rx are shown c© Google. At each
time instant, the trajectories of the Tx and Rx together with the point
in the center of the location PDF have the same color.

Fig. 17: Photos of the localized scatterers in the urban environment.

data. However, according to our assumption, the reflection point
together with the Tx and Rx antennas are located on the same hori-
zontal plane. Therefore, when the actual height of the reflection point
doesn’t comply with the assumption, the estimated location will
appear in front of or behind the facade of the reflectors. In our sce-
nario, (B3) MPCs are most probably generated by reflections from
the metallic balconies of the first floor. The estimated locations of the
MPCs (B2) appear to be about 15 m behind the building facade. It
has been found, by simple ray-tracing, that MPCs (B2) are generated
by double bounce reflections from the right then the left buildings.
In addition to the single and double-bounce reflections from the right
and left building, reflections from several parked cars (B4) on the left
side of the road and from a car (B6) at the corner near to the cyclist
are also observed. Moreover, the metallic shop sign is found to the
source of reflections (B5).

5 Conclusion and Future Work

In this work, we performed wideband V2VRU channel measurement
campaigns in open-field and urban environments. Critical collision
scenarios involving pedestrians and cyclists are considered. The
main aim of this paper is to localize scatterers in the propaga-
tion environment. Therefore, MPCs parameters are estimated by the
KEST algorithm. According to the results of the parameter estima-
tion in the urban environment, it is found that not only specular
reflections are estimated but also part of the DMC is mistakenly esti-
mated as specular reflections. Therefore, we proposed a method to
extract the specular reflections and separate them from the DMC.
Furthermore, we proposed a novel algorithm to track and label spec-
ular MPCs. Each path is then related to a physical scatterer by
joint delay-Doppler estimation algorithm. Single and double bounce
reflections from buildings and parked vehicles are identified in LoS
situation. In NLoS situation, scattering from trees nearby the receiver
as well as reflections from traffic signs and lampposts beneath the
tree canopy are identified.

As a future work, we intend to localize scatterers in other urban
streets for pedestrian and cyclist scenarios. The goal is to model scat-
terers locations by statistical distributions. Moreover, the lifetime
and visibility angle for the scatterers are to be modeled.
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