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ABSTRACT

The high frequency (instantaneous) shear modulus of three-dimensional Yukawa systems is evaluated in a wide parameter range from the
very weakly coupled gaseous state to the strongly coupled fluid at the crystallization point (Yukwa melt). This allows us to quantify how shear
rigidity develops with increasing coupling and inter-particle correlations. The radial distribution functions (RDFs) needed to calculate the
excess shear modulus have been obtained from extensive molecular dynamics (MD) simulations. MD results demonstrate that fluid RDFs
appear quasi-universal on the curves parallel to the melting line of a Yukawa solid in accordance with the isomorph theory of Roskilde-
simple systems. This quasi-universality allows us to simplify considerably calculations of quantities involving integrals of the RDF (elastic
moduli represent just one relevant example). The calculated reduced shear modulus grows linearly with the coupling parameter at weak cou-
pling and approaches a quasi-constant asymptote at strong coupling. The asymptotic value at strong coupling is in reasonably good agree-

ment with the existing theoretical approximation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140858

Elastic moduli and related quantities are important characteris-
tics of a material. In this article, we calculate the high-frequency
(instantaneous) shear modulus, G, which characterizes shear rigidity
for a three-dimensional one-component Yukawa fluid across coupling
regimes. The instantaneous shear modulus (as well as bulk modulus)
is finite and well defined in fluids because the fluid response to sudden
(high-frequency) perturbations is not much different from that of a
solid body." Moreover, the properly normalized instantaneous shear
modulus is known not to vary much in the dense (strongly coupled)
fluid regime and is numerically close to that of a corresponding (iso-
tropic) solid. In this regime, the instantaneous shear modulus becomes
an important quantity, which affects and regulates the transverse
sound propagation, the instantaneous Poisson’s ratio,” the coefficient
in the Stokes—Einstein relation,” Lindemann melting rule,™” relaxation
time in the shoving model,”” just to mention a few examples.

In this brief communication, we focus on two main aspects: How
the strongly coupled asymptote of G, is approached from the side of
disordered weakly coupled gaseous state and how the calculation of
G and related quantities can be simplified in the strongly coupled
regime by using the “corresponding states” approach.

Our interest to Yukawa fluids is mainly justified by the fact that
traditionally Yukawa (screened Coulomb or Debye-Hiickel) potential

is extensively used as a first approximation to model real interactions
between charged particles in complex (dusty) plasmas.” * The results
can also be of some interest in the context of strongly coupled plasmas
and colloidal suspensions.'” In a more general context, the Yukawa
potential represents just one particular example of soft repulsive inter-
actions operating in various soft matter systems.

Yukawa systems represent a collection of point-like charged par-
ticles interacting via the pairwise Yukawa (screened Coulomb) poten-
tial of the form

¢(r) = (Q/r) exp(—r/2), M

where Q is the particle charge and / is the screening length. Such a sys-
tem is fully characterized by the two dimensionless parameters: the cou-
pling parameter I' = Q?/aT and the screening parameter k = a/4,
where a = (4nn/ 3)71/ ? is the Wigner-Seitz radius, T is the tempera-
ture in energy units (kg = 1), and # is the density. Conventionally, the
systems is referred to as strongly coupled when I' >> 1, that is, when
the Coulomb interaction energy exceeds considerably the kinetic
energy.

The high-frequency (instantaneous) elastic moduli of simple
monoatomic fluids can be related to the pairwise interaction potential
¢(r) and radial distribution function (RDF) g(r). A thorough analysis
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of the three-dimensional case with particular emphasis on Lennard-
Jones fluids was performed by Zwanzig and Mountain." The instanta-
neous shear modulus can be expressed as"'

Goo =nT + ZIH_ZL drr3g(r) [rd)”(r) + 4d>'(r)]. (2)

The first term above corresponds to kinetic contribution, and the sec-
ond one is the potential (excess) contribution.

In the ideal gas limit, no correlations are present, which corre-
sponds to g(r) = 1. The excess term vanishes in this regime because

AGy x J:C drr? [rd)”(r) + 4d>'(r)] = [r%)’(r)]?z 0, (3)

for potentials that diverge slower than o r~* as r — 0 and decay faster
than oc r~* as r — co. Yukawa interaction belongs to this class. The
only contribution to the shear modulus is the kinetic term, nT.
Substituting this into the expression for Maxwellian shear relaxation
time, T = 1/Guo, along with the conventional definition 7 ~ ¢/uvr
(where ¢ is the mean free path and vy = /T /m is the thermal veloc-
ity) allows us to reproduce elementary kinetic theory expression for
the gaseous shear viscosity'”

n ~nTl/vr = mornl,

where m is the particle mass. Nevertheless, even though the instanta-
neous shear modulus remains finite at gaseous densities due to the
presence of the kinetic term, it is not a very useful quantity in this
regime. "

As the coupling increases and the correlations build up in the
fluid phase, the excess contribution to the shear modulus becomes
progressively more and more important. At sufficiently strong cou-
pling, not too far from the fluid-solid phase transition, transverse
(shear) collective excitations can be supported. The specifics of the
transverse mode in dense fluids (as compared to solids) is the existence
of a minimum threshold wave-number, k., above which transverse
mode exists. This phenomenon, often referred to as the k-gap in the
transverse dispersion relation, constitutes an important fundamental
research topic across disciplines.”” *” The long-wavelength transverse
mode dispersion relation is to a good accuracy described by”*

w? ~ Goo o _ L7
mn 272
where w is the frequency, k is the wave vector, and the transverse
sound velocity is ¢ = (G, /mn). In the considered strongly coupled
regime, excess contribution to G, dominates and properly normalized
Goo and ¢, appear quasi T-independent.”*’ In the following, we will
see how this asymptote is approached from the side of weak coupling.

Generally, the RDF g(r) is required as an input for the calculation
of elastic moduli, e.g., using Eq. (2). We have generated a set of RDFs
by performing molecular dynamics (MD) simulations using
LAMMPS package™ (a possible alternative approach, without need to
perform MD simulations, would be to use an accurate isomorph-
based empirically modified hypernetted-chain approach developed
recently””). In our MD simulations, the system of about 6 x 10*
particles has been simulated in the Nose-Hoover thermostat and NVT
ensemble with periodic boundary conditions. Starting from the crystal
state at I ~ 3"y, where I'y, is the coupling parameter at the
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fluid-solid phase transition (melting),”" the system has been heated up
to ' ~ 107>T,.. Each configuration has been equilibrated during 10°
time steps. We have used about 10° of statistically independent config-
urations to obtain the RDFs. The cutoff radius for the Yukawa interac-
tion potential has been chosen as 7oy ~ 10/k.

A representative example is shown in Fig. 1 where RDFs of a
Yukawa fluid with k = 4 are plotted. RDFs are plotted for various val-
ues of the reduced coupling parameter I'/T'y,, spanning over a very
wide range of coupling strength. Note that I", is x-dependent. A use-
ful approximation of the numerical data for ', (i) tabulated in Ref.
31 is provided by a simple empirical formula™

172 exp(ax
(k) 3#
14 ax +Eo¢2;<

’
2

where the constant o = (47/ 3)!° ~ 1,612 is just the ratio of the
mean interparticle distance A = n~'/3 to the Wigner-Seitz radius a.
The figure demonstrates how correlations build up as the reduced cou-
pling parameter increases. Two stages can be clearly identified.” First
the correlational hole (a spherical cavity where g(r) ~ 0 around a test
particle) grows rapidly as the coupling increases. At the second stage,
upon further increase in coupling, the radius of the correlational hole
saturates, approaching the average interparticle separation ~ A. The
shell structure characterized by the oscillatory behavior of g(r)
emerges. In particular, the magnitude of the first peak increases gradu-
ally with increasing the coupling strength. At the same time, the mag-
nitude of g(r) at the position of the first minimum decreases. These
tendencies are further illustrated in Fig. 2.

It has been long known, from the results of Monte Carlo simula-
tions, that details of the interaction potential have relatively little effect

FIG. 1. Radial distribution function g(r) of Yukawa systems vs the reduced distance
rla. Each curve corresponds to a particular value of I'/T",, where Iy, is the value
of the coupling parameter at the fluid-solid phase transition.”" The range shown
spans from I'/T'y ~ 1073 (weakly coupled disordered gas) to I'/T'm =1
(Yukawa fluid at the boundary of the fluid-solid phase transition or Yukawa melt).
The inset shows the same data plotted in 3D in coordinates r/a and logyy(I'm/T").
Note that the color scheme is different from the main figure. The calculation is for
the fixed screening parameter x = 4.
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FIG. 2. The ratio of the amplitude of the first maximum of the RDF to that at the

melting point (gmax (") /gmax (I'm), left axis) and the amplitude of the first non-zero

minimum of the RDF (gmin, right axis) vs the reduced coupling parameter I' /T, of

Yukawa systems. Circles connected by solid curves correspond to simulations with
Kk = 4. Squares denote similar data for k = 1.

on the structure of fluids near the melting temperature, in particular,
when extreme cases of hard-sphere and Coulomb interactions are
excluded from consideration.”* Nowadays this empirical observation
is supported by the concept of isomorphs. Isomorphs correspond to
curves of constant excess entropy in the thermodynamic phase dia-
gram.” For systems characterized by strong virial and potential
energy correlations (usually referred to as “Roskilde-simple” sys-
tems), the structure and dynamics in properly reduced units are
invariant along isomorphs to a good approximation.”””” Many sim-
ple systems, including the Yukawa case, belong to this class.” Since
melting and freezing curves appear as approximate (although not
exact) isomorphs,”” parallel curves (not too far from the fluid-solid
phase transition) should also be approximate isomorphs. This repre-
sents justification of using relative coupling strength I'/T",,, as a con-
venient unified state parameter for strongly coupled Yukawa systems.

It should be noted that other approaches to introduce the effec-
tive coupling strength have been discussed in the literature.”'"** Tt is
particularly tempting to use a one-to-one mapping between the struc-
ture of Yukawa systems and Coulomb one-component plasma (OCP)
because the properties of the latter system are very well know. The
properties of the RDF have been successively used for this purpose in
Ref. 33. However, since OCP represents an extreme limit of soft long-
range interaction potentials, the proposed mapping is effective only in
the regime of sufficiently weak screening (i < 2).” Using the relative
coupling strength I'/T",, as a mapping criterion allows us to cover a
wider range of coupling parameters. Previously, the ratio I'/T", was
often chosen as an adequate relative coupling strength measure in
dusty plasmas.”” ** Tt was also used to produce useful scalings of trans-
port and thermodynamic properties of Yukawa systems.””

Figure 3 shows two sets of RDFs, each calculated for a fixed
value of I'/T'y,, but different values of the screening parameter,
Kk =1, 2, 3, 4. The set with pronounced correlations corresponds to
I'/T = 1, that is, to strongly coupled Yukawa fluid just near the
crystallization point (Yukawa melt). The curves with different x lie
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FIG. 3. Radial distribution functions for the two state points characterized by the
same I'/T'y = 1 (Yukawa melt) and I'/T'y = 1/200 (weakly coupled gaseous
state) and different screening parameters x = 1, 2, 3, 4. The inset shows the
enlarged portion of strongly coupled RDFs near the first maximum.

almost on top of each other. The small difference is observed in the
vicinity of the first maximum: the amplitude of this maximum slightly
grows with &, as could be expected from our previous experience with
inverse-power-law fluids.”” The inset shows the behavior of RDFs near
the maximum to illustrate this tendency. When the first maximum of
the RDF is normalized by its value at the fluid-solid phase transition,
it exhibits a quasi-universal dependence on I' /Ty, as documented in
Fig. 2. Also, the dependence of the magnitude of the first non-zero
minimum of the RDF on I'/I'y, is quasi-universal, see Fig. 2. This can
be potentially useful in estimating the relative coupling strength in
experiments with complex (dusty) plasma fluids, where RDFs are
often easily accessible. At the same time, it should be noted that the
experimental noise level combined with the relatively smooth depen-
dence of g(r) on I' /T, can in many cases hinder the application of
this tool.

The second set of RDFs plotted in Fig. 3 corresponds to a weakly
coupled quasi-gaseous state at I'/T'y,, = 1/200. Here the differences
between the curves with different r are still small, but observable. This
again should be expected because far from the fluid-solid phase transi-
tion the isomorphs are not necessarily parallel to the freezing and
melting curves. In fact, deep into weakly coupled gaseous phase, all
correlations between the shape of the RDF and melting temperature
are lost [see explicit expressions for g(r) below]. Nevertheless, even for
such small I'/T",,, investigated, the deviations between RDFs with dif-
ferent K are so tiny that no major effect on the magnitude of integrals
involving g(r) should be expected. This is the basis behind the
“corresponding state” approach used below to reduce the amount of
calculations of the shear modulus in the strongly coupled regime.

For the Yukawa interaction potential (1), the expression for the
instantaneous shear modulus (2) becomes

mna.

AG,, =

2.2 coo
P J dxg(x)e ™ (1% — 2i0x — 2), 4)
30 J,
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where x = r/a and w, = \/41Q*n/m is the plasma frequency. In the
following, we will be dealing with the reduced (dimensionless) quan-
tity AG/ mnw}z,az. This is equivalent to expressing the transverse
sound velocity in units of wpa, a common practice in the dusty plasma
literature.”>””"*”" An alternative option would be to express the
instantaneous shear modulus in units of nT (and, hence, transverse
sound velocity in units of vr). The relation between the two normal-
izations is straightforward by virtue of the identity mnwf,az /nT =3T.

The integration in Eq. (4) has been performed using the RDFs
generated in MD runs and the results are shown in Fig. 4. Two
approaches have been employed. The direct one is to employ “exact”
RDFs for each pair of state variables (r, I'). These results are shown by
symbols. The second (approximate) method is what we call here the
corresponding state approach. In this method, we use only the set of
RDFs calculated for « = 4 (see Fig. 1). We use an RDF from this set,
corresponding to a certain value I'/T'y,, for other values of « with the
same reduced coupling I' /Ty,. The results from these calculations are
shown by the solid curves. We observe that the exact and approximate
approaches demonstrate very good agreement in the strongly coupled
regime. The deviations are only observable at the lowest relative cou-
pling I' /Ty, = 1/200. Thus, there is a wide region where the simple
corresponding state principle can be useful to simplify calculations of
various Yukawa fluids properties, which involve integrals over RDFs
(elastic moduli represent just one example; other examples include
excess energy and pressure, Einstein frequency, frequency moments,
etc).

In the strongly coupled regime (I' /T, = 0.1), the instantaneous
shear modulus approaches its asymptotic value, characteristic of both
fluid and solid. For weak screening, this value is approached from
below (x = 1 and 2), while for the highest value investigated (1« = 4),
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FIG. 4. Reduced excess instantaneous shear modulus, AG/ mncugaz, vs the rel-
ative coupling parameter I"/T"y, for various screening parameters x = 1, 2, 3, 4.
The symbols correspond to the calculations with exact RDFs. Solid curves are cal-
culated using “universal” set of (I'/T'-dependent) RDFs obtained for x = 4.
Dashed curves are obtained using the Boltzmann approximations for the RDFs in
the weakly coupled regime. The transition from the weakly coupled to the strongly
coupled regime takes place in the range 10’351"/1"”1510’2. For I'/T'm =0.1,
the reduced shear modulus approaches a quasi-constant value.
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it is approached from above. The existence of a local maximum at rela-
tively weak coupling is unexpected. However, it should be reminded
that the reduced (normalized) quantity is plotted. The actual instanta-
neous shear modulus is expected to increase monotonously on
approaching the melting temperature.

The obtained asymptotic values at strong coupling can be com-
pared with theoretical predictions. Recently, a unified description of
elastic moduli of strongly coupled Yukawa systems of different spatial
dimensionality has been proposed (main results are expressed in terms
of the longitudinal and transverse sound velocities, directly related to
elastic moduli).”’ In this approximation, the elastic moduli are related
to the internal energy of Yukawa solids using relatively weak sensitivity
of the RDFs to the screening parameter at weak screening and the fact
that the internal energy is dominated by the static contribution. The
excess contribution to the instantaneous shear modulus is then
expressed in terms of Madelung constant and its first two derivatives
with respect to x (for details see Ref. 60). Using the ion sphere
model®"” as a proxi for the Madelung constant, the following expres-
sion can be derived:”’

AG

mnwf,a2

~ «*[(k? + 3)sinh(x) — 3k cosh(x)]

. 3 (5)
45[x cosh (k) — sinh (k)]

Comparison between the values obtained from MD-generated RDFs
and the theoretical approximation (5) is provided in Table I. Good
agreement is documented.

In the limit of vanishing particle density (weakly coupled

Yukawa gas), the RDF can be approximated by the corresponding
Boltzmann factor, g(r) ~ exp [— ﬂT’)] Substituting this into Eq. (4)
results in the dashed curves shown in Fig. 4. The transition between
weakly coupled and strongly coupled regimes occurs in the region
1073<I’ JTh= 10~2. This transition is smooth, and no special features
are observable. Expanding the exponential factor and using the iden-
tity (3), we immediately obtain the linear initial increase in the excess
shear modulus with "
AGy r

~— 6
mnwéa2 24K ©

This scaling applies for I' < 1.

To conclude, we have investigated how shear rigidity is built up
when increasing the coupling strength in three-dimensional one-com-
ponent Yukawa system. The rigidity is characterized here by the high
frequency (instantaneous) shear modulus, which can be expressed
using the pairwise interaction potential and the radial distribution
function. The latter has been obtained from MD numerical simula-
tions in a wide parameter range across coupling regimes. Simulations

TABLE |. Reduced excess contribution to the instantaneous shear modulus of
strongly coupled Yukawa systems for different screening parameters x.
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K MD RDFs [Eq. (4)] Theory [Eq. (5)]
1 0.0305 0.0319
2 0.0163 0.0169
3 0.0065 0.0065
4 0.0022 0.0020
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support the corresponding state approach in accordance with the iso-
morph theory of Roskilde-simple systems: The RDFs calculated along
the curves parallel to the melting curves in (x, I') plane are quasi-
universal, at least in the range 1 < x <4 and I'/T, =0.01. This
allows us to considerably simplify the calculation of system properties
that involve integrals over the RDF, like the instantaneous shear mod-
ulus considered here. The calculated reduced excess shear modulus
exhibits the linear increase with I" in the weakly coupled gaseous limit.
Then it increases monotonously (for low x) or behaves weakly non-
monotonously (higher x) and approaches the strong coupling asymp-
totic value. This value is the characteristic of strongly coupled fluid
and solid phases and is demonstrated to be in good agreement with
available theoretical predictions.
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