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ABSTRACT: The synergistic combination of a heterogeneous organic
semiconductor mesoporous graphitic carbon nitride (mpg-CN) and a
homogeneous nickel catalyst with visible-light irradiation at room
temperature affords the C(sp2)−C(sp3) cross-coupling of aryl halides
and potassium alkyl trifluoroborates by single electron transmetallation.
Like the homogeneously catalyzed protocol, the reaction is compatible
with a variety of functional groups including electron-donating and
electron-withdrawing aryl and heteroaryl moieties. Moreover, this
protocol allows the installation of allyl groups onto (hetero)arenes,
enlarging the scope of the method. The heterogeneous mpg-CN
photocatalyst is easily recovered from the reaction mixture and reused
several times, paving the way for larger-scale industrial applications of
this type of photocatalytic bond-forming reactions.
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■ INTRODUCTION

Metal-catalyzed cross-coupling reactions are standard synthetic
methods in academia and industry.1 The classic cross-coupling
protocol is useful for C(sp2)−C(sp2) bond-forming reactions
but less applicable for the formation of C(sp2)−C(sp3) bonds
due to slower rates of oxidative addition and transmetallation
and a facile β-hydride elimination.2 While the β-hydride
elimination can be suppressed by different metal−ligand
combinations,3 the rate-limiting two-electron transmetallation
was a challenge before the pioneering work of Molander and
MacMillan introducing single electron transmetallation to
organoboron cross-coupling by photoredox-nickel dual catal-
ysis.4,5 The core of the concept is the oxidative generation of
stable radicals from their respective precursors, which are
trapped by an in situ generated nickel complex. Reductive
elimination from the Ni(III) species generates the desired
cross-coupling product. Molander demonstrated that such
carbon-centered radicals are easily generated from the
respective trifluoroborate salts, while MacMillan used α-
heteroatom-containing carboxylic acids for the generation of
carbon-centered radicals by oxidative decarboxylation. The
one-electron transmetallation overcomes the problem of slow
rates for C(sp3) coupling partners and avoids more harsh
reaction conditions required in conventional cross-coupling
conditions. o-Benzyl xanthates6 or ammonium alkyl silicates7

are alternative precursors yielding the respective nucleophilic
alkyl radicals under visible-light photoredox conditions and the
application of dual photo-nickel cross-coupling has been

demonstrated in synthesis.8 To improve the efficiency of this
technology further, we now have replaced the homogeneous
iridium photocatalyst of the original reports by a heteroge-
neous organic semiconductor.
We recently reported that mesoporous graphitic carbon

nitride (mpg-CN), an organic semiconductor material, is a
versatile photocatalyst capable of performing many organic
transformations under diverse reaction conditions.9 mpg-CN
can easily be synthesized using inexpensive starting materials,
and the polymeric material is stable toward reactive radicals or
nucleophiles. mpg-CN possesses a suitable band gap between
valence band maxima (VBM) and conduction band minima
(CBM),10 which allows the use of photoexcited mpg-CN for
controlled oxidation and reduction of many substrates. Pieber
and Seeberger reported the application of carbon nitrides in
photoredox-nickel dual cross-coupling reactions using oxygen-
centered nucleophiles.11 Recently, carbon nitride-based heter-
ogeneous photocatalysts have also been utilized for several
other synthetic transformations.12 We report here organoboron
cross-coupling reactions using mpg-CN as a photocatalyst.
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We decided to explore mpg-CN photo Ni-dual catalysis for
C(sp2)−C(sp3) cross-coupling reactions yielding diarylme-
thanes, as the structure is present in many bioactive molecules,
organic materials, and drug candidates.13 Diarylmethanes are
also frequently used as a motif in catenanes, macrocycles, and
rotaxanes.14 Diarylmethanes 4 and arylvinylmethanes 5 are
accessible starting from the respective aryl halide (1) and
potassium alkyltrifluoro borate (2 or 3) as shown in Scheme 1.

■ RESULTS AND DISCUSSION
We began our investigation with ethyl 4-bromobenzoate (1a)
and potassium benzyl trifluoro borate (2a) as model substrates
using Ni(cod)2 as a catalyst, 4,4′-di-tert-butyl-2,2′-dipyridyl
(dtbbpy) as a ligand, and mpg-CN as a heterogeneous
photocatalyst. When the reaction mixture in dimethylforma-
mide (DMF) was irradiated using a 455 nm ((455 (±15) nm),
Imax = 1000 mA, 1.12 W) blue light-emitting diode (LED) for
20 h under nitrogen, the desired product 4a was obtained in
81% gas chromatography (GC) yield (Table 1, entry 1). The
use of 2,6-lutidine as an additive increased the product yield to
93% (entry 2). Control reactions, which are either performed
in the absence of light, Ni catalyst, or mpg-CN confirmed the
role of every reaction component in the photocatalytic cross-
coupling reaction (entries 3−5). The use of NiBr2·glyme or
NiCl2·glyme instead of Ni(cod)2 decreased the yield slightly
and prolonged the time to complete the reaction (entry 6−7).
However, with increased catalyst loading, the reaction became
faster (entry 8). It is to be noted that although the reaction
conditions using both Ni sources work equally well in
providing the desired product in excellent yield, the use of
NiBr2·glyme as a bench-stable solid is advantageous and avoids
the use of a glovebox or Schlenk techniques.2 The reaction
becomes very sluggish when performed in the presence of air
and shuts down completely when performed under oxygen
(entries 9 and 10). Further optimizations revealed that the
combination of 2.5 mol % NiBr2·glyme and neocuproine as a
ligand provided the best result and the desired product was
isolated in 96% yield (entry 12 in Table 1, GC yield 97%).
Other commonly used solvents such as dimethyl sulfoxide
(DMSO) and acetonitrile (ACN) gave the desired product in
lower yield (entries 13 and 14) compared to DMF. The
reaction proceeds in the absence of neocuproine or 2,6-lutidine
providing the product in 15 and 70% yield, respectively
(entries 17 and 18). Finally, the use of recovered mpg-CN
without the renewed addition of Ni catalyst (entry 19) did not
yield the desired product, indicating any stable nickel
precipitation on the heterogeneous photocatalyst surface.11

The use of other modified carbon nitrides such as Na-PHI,15a

CN-ATZ-NaK,15c and K-PHI15d did not increase the product
yield, and the use K-PHI,15b Mn-PHI,15e and H-PHI15e gave
the desired products in very similar yields (entries 20−25).
With the optimized reaction condition, which requires

mixing of reagents under air and illumination of the reaction

mixture under nitrogen using a blue LED, we explored the
scope of this reaction using different aryl and heteroaryl halides
as substrates. Potassium benzyl trifluoroborate (2a) was used
as the coupling partner. A range of aryl bromide substrates
possessing both electron-withdrawing and -donating groups,
such as ester, cyano, aldehyde, ketone, trifluomethyl, −SO2Me,

Scheme 1. C(sp2)−C(sp3) Cross-Coupling Using mpg-CN/
Ni Dual Photoredox Catalysis

Table 1. Optimization of Reaction Conditions and Control
Reactionsa

entry Ni catalyst ligand (mol %) time yieldb

1 Ni(cod)2
(10 mol %)

dtbbpy
(10 mol %)

20 h 81%

2 Ni(cod)2
(10 mol %)

dtbbpy
(10 mol %)

22 h 93%c

3 Ni(cod)2
(10 mol %)

dtbbpy
(10 mol %)

22 h 0% (in dark)

4 Ni(cod)2
(10 mol %)

dtbbpy
(10 mol %)

22 h 0% (without mpg-
CN)

5 dtbbpy
(10 mol %)

20 h 0%

6 NiBr2·glyme
(5 mol %)

dtbbpy (6 mol %) 45 h 87%

7 NiCl2·glyme
(5 mol %)

dtbbpy (6 mol %) 45 h 85%

8 NiBr2·glyme
(10 mol %)

dtbbpy
(10 mol %)

20 h 70%

9 NiBr2·glyme
(5 mol %)

dtbbpy (6 mol %) 45 h 19% (under air)

10 NiBr2·glyme
(5 mol %)

dtbbpy (6 mol %) 45 h 0% (under O2)

11 NiBr2·glyme
(5 mol %)

neocuproine
(5 mol %)

22 h 97%

12 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 97% (96%)

13 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 55%d

14 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 89%e

15 NiBr2·glyme
(1 mol %)

neocuproine
(5 mol %)

24 h 61%

16 NiBr2·glyme
(2.5 mol %)

neocuproine
(5 mol %)

24 h 85%

17 NiBr2·glyme
(2.5 mol %)

24 h 15%

18 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 70%c

19 dtbbpy
(10 mol %)

22 h 0% (recovered
mpg-CN)

20 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 74%f

21 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 90%g

22 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 72%h

23 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 59%i

24 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 89%j

25 NiBr2·glyme
(2.5 mol %)

neocuproine
(2.5 mol %)

24 h 87%k

aThe reaction was performed using ethyl 4-bromobenzoate as a
model substrate in 0.2 mmol scale, 1 mL of DMF has been used as a
solvent. A 1.25 equiv of 2,6-lutidine was used as an additive. bGC
yields. cWithout 2,6-lutidine. dDMSO was used as a solvent. eACN
was used as a solvent. fNa-PHI.15a gK-PHI (prepared from 5-
aminotetrazole in LiCl/KCl eutectic mixture using mechanochemical
pretreatment of reagents).15b hCN-ATZ-NaK.15c iK-PHI (prepared
from 5-aminotetrazole in LiCl/KCl eutectic mixture using 0.5 wt. % of
K-PHI nanoparticles as nucleation seeds).15d jMn-PHI.15e kH-PHI15e

was used as a heterogeneous photocatalyst.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.9b05598
ACS Catal. 2020, 10, 3526−3532

3527

https://pubs.acs.org/doi/10.1021/acscatal.9b05598?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.9b05598?fig=sch1&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.9b05598?ref=pdf


−SOMe, amide, methyl, −OMe, −OPh, and others, were
easily converted to their corresponding C(sp2)−C(sp3)-
coupled products in good to excellent isolated yields. The
presence of the −CN group in ortho-position did not alter the

reaction outcome, and the desired products were obtained in a
very comparable isolated yield of 90%. Similarly, when 4-
bromostyrene, 1-bromo-4-cyclopropylbenzene, or aryl or
heteroaryl bromides possessing biologically relevant functional

Scheme 2. Examples of C(sp2)−C(sp3) Bond-Forming Reactions Using (het)Aryl Halides and Potassium Benzyl
Trifluoroborate

aStandard conditions: (hetero)aryl bromide (0.2 mmol, 1.0 equiv), 59.4 mg of potassium benzyl trifluoroborate (0.3 mmol, 1.5 equiv), mpg-CN
(10.0 mg), 1.5 mg of NiBr2·glyme (0.005 mmol, 2.5 mol %), 1 mg of neocuproine (0.005 mmol, 2.5 mol %), and 29 μL of 2,6-lutidine (0.25 mmol,
1.25 equiv) in DMF (1 mL) under nitrogen atmosphere for 22−24 h. [a]Similar conditions were used for reactions in 5-6 mmol scale; for more
details, see the Supporting Information. [b]63.7 mg potassium trifluoro(1-phenylethyl)borate (0.3 mmol, 1.5 equiv) was used instead of potassium
benzyltrifluoroborate. [c]72.6 mg potassium trifluoro(1-(4-methoxyphenyl)ethyl)borate (0.3 mmol, 1.5 equiv) was used instead of potassium
benzyltrifluoroborate. [d]63.6 mg potassium trifluoro(2-methylbenzyl)borate (0.3 mmol, 1.5 equiv) was used instead of potassium
benzyltrifluoroborate.
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groups such −SCF3,16 or polyfluoro aromatic or heteroar-
omatic bromides were used as substrates, the desired coupling
products were isolated, leaving the functional groups intact.
When heteroaryl bromides such as pyridines, pyrimidines,
thiophenes, and benzothiazoles were used as substrates, the
desired products were obtained in good isolated yields. Of note
is the mass balance of these reactions. The dehalogenated
products were obtained only as byproducts17 and starting
materials could be easily recovered by column chromatography
when the product yield is low. All yields were calculated based
on the amount of isolated products. Almost similar reactivity
and product yields were obtained when the reactions were
performed on gram scales (examples 4a and 4q). The reactions
using heteroaryl bromides proceed effectively on a gram scale,

and the desired products were obtained in similar yields as
exemplified by the reaction yielding product 4aa. Different
borate salts were effective as a source of the respective C(sp3)
radicals, giving the desired products in very good yields. For
example, the borate salts containing a methyl group at the
benzyl position also gave the desired products in excellent 83−
89% isolated yields. The presence of an electron-donating
group at the para position has almost no influence on the yields
of the desired product as shown in Scheme 2. An ortho-
substituted borate gave product 4ai in 42% yield. Other
borates, such as cyclohexyl-, alfa-alkoxy-, vinyl-, alfa-trifluor-
omethylbenzyl-, and phenylethyl borate were reacted under
standard reaction condition with ethyl 4-bromobenzoate (1a)
but did not yield the desired product.18 When 4-MeO2C-

Scheme 3. Scope of (hetero)Aryl Chloride Substrates in C(sp2)−C(sp3) Cross-Coupling Reactions

aStandard conditions: (hetero)aryl chloride (0.2 mmol, 1.0 equiv), 59.4 mg of potassium benzyl trifluoroborate (0.3 mmol, 1.5 equiv), mpg-CN
(10.0 mg), 1.5 mg of NiBr2·glyme (0.005 mmol, 2.5 mol %), 1 mg of neocuproine (0.005 mmol, 2.5 mol %), and 29 μL of 2,6-lutidine (0.25 mmol,
1.25 equiv) in DMF (1 mL), under nitrogen atmosphere for 48 h.

Scheme 4. Scope of the Coupling Reactions Using Allyl Borate Salt and Aryl Halides

aStandard conditions: aryl bromide (0.2 mmol, 1.0 equiv), 44.4 mg of potassium allyl trifluoroborate (0.3 mmol, 1.5 equiv), mpg-CN (10.0 mg),
1.5 mg of NiBr2·glyme (0.005 mmol, 2.5 mol %), 1 mg of neocuproine (0.005 mmol, 2.5 mol %), and 29 μL of 2,6-lutidine (0.25 mmol, 1.25 equiv)
in DMF (1 mL), under nitrogen atmosphere for 24 h. The second batch of 44.4 mg of potassium allyl trifluoroborate (0.3 mmol, 1.5 equiv) was
added after 24 h, and the reaction mixture was further illuminated for an additional 48 h. [a]Similar conditions were used for reactions on 4.5 mmol
scale; for more details, please see the Supporting Information.
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benzyl borate was reacted under the standard reaction
condition, only low substrate conversion was observed. The
use of K-PHI,15b which possesses a strong oxidation potential
(+2.54 V vs RHE),9b as a photocatalyst increased the substrate
conversion to 10−12% but no preparative useful product yields
were obtained.
The C(sp2)−C(sp3) cross-coupling protocol is not only

effective for heteroaryl bromides but heteroaryl chlorides can
also be employed as substrates (see examples in Scheme 3).
However, the reaction using 4-chlorobenzonitrile as a substrate
requires higher temperatures of 55 °C to complete the reaction
and give the desired product 4b in 56% isolated yield.
Chlorinated pyridines, pyrimidines, and thieno[2,3-d]-
pyrimidine derivatives gave the desired coupling products in
good to moderate isolated yields.
We envisioned that the oxidation potential of mpg-CN10b

might allow the generation of relatively stable allyl radicals
from allyltrifluoroborates, eventually offering the installation of
functionally important allyl moiety onto arenes. In fact, a

reaction mixture containing allyltrifluoroborate and 1a under
our standard photochemical reaction conditions provides the
desired product 5a in a 73% isolated yield. The allylation
reaction is also effective for other aryl halide substrates giving
the desired products in good to excellent yields (Scheme 4).
The −CN group at the −o/−m/−p position yielded the
desired products in almost similar amounts (5b, 5d, and 5g,
yields 65−76%).
Unlike molecular photocatalysts that have been used so far

for radical-mediated C(sp2)−C(sp3) cross-coupling reactions,
the use of mpg-CN as a heterogeneous photocatalyst allows
easy recovery of the photocatalyst from the reaction mixture,
even from gram-scale reactions, via simple filtration or
centrifugation (see Figure 1). The heterogeneous nature and
the remarkable stability of mpg-CN under the photochemical
reaction conditions allow such easy recovery of the photo-
catalyst from the reaction mixture, and the recovered mpg-CN
can be reused several times without the loss of photocatalyst
reactivity or yield of the desired product. As shown in Figure 1,

Figure 1. Catalyst recycling (for six catalytic cycles) and assessment of the reaction rates (for four catalytic cycles). Standard conditions: 45.8 mg of
ethyl 4-bromobenzoate (0.2 mmol, 1.0 equiv), 59.4 mg of potassium benzyl trifluoroborate (0.3 mmol, 1.5 equiv), mpg-CN (10.0 mg), 1.5 mg of
NiBr2·glyme (0.005 mmol, 2.5 mol %), 1 mg of neocuproine (0.005 mmol, 2.5 mol %), and 29 μL of 2,6-lutidine (0.25 mmol, 1.25 equiv) in DMF
(1 mL), under nitrogen atmosphere.

Figure 2. Plausible mechanism of mpg-CN- and Ni-catalyzed C(sp2)−C(sp3) cross-coupling reaction.
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the photocatalyst can at least be recycled six times, and the
rates of the photochemical reactions remain the same.
While the complete mechanistic picture of this trans-

formation remains to be elucidated, we depict a working
hypothesis in Figure 2 based on the experimental results and
previously published reports using molecular photocata-
lysts.4,5,19 Oxidative addition of Ni(0) species 6 to an aryl
halide delivers the Ni(II) intermediate 7. Light absorption by
the heterogeneous semiconductor photocatalyst mpg-CN
results in charge separation yielding two-dimensional surface
redox centers as electron−hole pairs. The photogenerated hole
is effective for the oxidative generation of a benzyl radical,
which is trapped by the Ni(II) species yielding a Ni(III)
organometallic adduct (8). Subsequent reductive elimination
delivers the desired C(sp2)−C(sp3) cross-coupling product.
Alternatively, intermediate 8 may be formed from 6 via radical
trapping followed by oxidative addition. Finally, the electron at
the semiconductor surface is utilized for the reduction of the
Ni(I) species to Ni(0) species to complete the Ni catalytic
cycle. The formation of bibenzyl via a photoredox radical
coupling reaction8d was confirmed by GC and GC-mass
spectrometry (MS) analysis, supporting the generation of
benzyl radicals from potassium benzyl trifluoroborate under
the photoredox reaction conditions.

■ CONCLUSIONS

We have demonstrated the application of a heterogeneous
semiconductor mpg-CN in C(sp2)−C(sp3) cross-coupling
reactions using commercially available (het)aryl halides and
potassium alkyl trifluoroborates. A range of aryl and heteroaryl
halides, including chlorides, can be used as starting materials
and substituted trifluoroborates and allyltrifluoroborates are a
suitable source of alkyl and allyl radicals, respectively. The
reactions are easily executed using commercially available and
bench-stable NiBr2·glyme as the Ni source and mpg-CN as a
heterogeneous semiconductor photocatalyst that can be
separated from the reaction mixture by filtration or
centrifugation. We believe that the reported protocol will
facilitate larger-scale applications and make the single electron
photoredox transmetallation simpler and more economical.
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