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Abstract: Kidney fibrosis is an important factor for the progression of kidney diseases,  

e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in 

chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP) 

and cyclic guanosine monophosphate (cGMP) were implicated to suppress several of the 

above mentioned renal diseases. In this review article, identified effects and mechanisms of 

cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several 

signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein 

kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, 

diverse possible drugs activating these pathways are discussed. From these diverse 

mechanisms it is expected that new pharmacological treatments will evolve for the therapy 

or even prevention of kidney failure. 

Keywords: signalling; cyclic nucleotides; cyclic guanosine monophosphate; cyclic adenosine 

monophosphate; kidney fibrosis 

 

1. Renal Fibrosis and Involved Signalling Pathways 

Cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate 

(cGMP) are important second messengers regulating chronic kidney disease. These signalling molecules 
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act in a different manner upon various chronic kidney diseases (CKDs) which result from diverse causes. 

Disorders which often generate CKD comprise diabetic nephropathy, glomerulosclerosis and nephritis. 

1.1. Fibrotic Kidney Diseases 

Renal fibrosis is commonly found in CKD, e.g., diabectic nephropathy, glomerulosclerosis and lupus 

nephritis. These CKDs can be caused by oxidative stress, hypoxia, inflammation, autoimmune disease 

or altered metabolism. Acute insult of the kidney by ischemia or toxins can also finally result in CKD. 

However, there are common disease patterns in various CKDs, as the formation of myofibroblasts 

(which secrete in turn extracellular matrix (ECM) proteins) is regularly the first step in the progression 

of fibrosis. This leads to several renal damages including fibroblast activation, matrix deposition and 

inflammatory processes like interstitial leukocyte accumulation. The differentiation of progenitor cells, 

e.g., fibroblasts, pericytes, endothelial cells, epithelial tubular cells or bone-marrow derived fibrocytes 

into myofibroblasts is very important for the development of fibrosis. It is still not defined and highly 

discussed which cells are considered to be the primary source here [1–4]. For a long time, it was suggested 

that the differentiation of tubular cells into myofibroblast, the epithelial mesenchymal transition (EMT), 

is the main process for fibrosis induction. Meanwhile, it is thought that pericytes, interstitial fibroblasts 

and fibrocytes are major sources of this differentiation process [3,5]. In glomerulosclerosis, besides 

mesangial cells, also podocytes might be a source for pericyte differentiation into myofibroblasts [6]. 

The differentiation of progenitor cells is enhanced by profibrotic mediators, e.g., transforming growth 

factor β (TGFβ), connective tissue growth factor (CTGF) or Rho/Rho kinase [7]. The underlying 

signalling pathways are crucial for fibrotic progression. Therefore, the concentration or activity of these 

fibrotic markers is often determined to evaluate the development of fibrosis. Following differentiation, 

myofibroblasts lead to cytokine secretion, e.g., interleukin 1 (IL-1), tumor necrosis factor α (TNFα), 

platelet derived growth factor (PDGF), and enhanced ECM deposition of collagens or fibronectin. 

Consequently, the regulation of ECM degrading matrix metalloproteases (MMPs), e.g., MMP2 or 

MMP9, and their inhibitors TIMPs (tissue inhibitors of MMPs) is very critical for balancing the 

abundance of extracellular matrix proteins. Though, the MMP/TIMP ratio is often disturbed in fibrotic 

diseases. Moreover, inflammatory processes, e.g., activation of macrophages or T-lymphocytes, also 

influence fibrotic disease progression. Profibrotic cytokines, released by leukocytes induce oxidative 

stress and production of reactive oxygen species (ROS) [8,9]. Besides that, oxidative stress, e.g., caused 

by aldosterone, is involved in fibrotic disease progression [10]. Moreover, chronic hypoxia or stable 

expression of the hypoxia inducible factor 1α (HIF-1α) in tubuloepithelial cells promotes renal 

interstitial fibrosis [11]. A further factor for fibrosis progression might be altered metabolism by 

mitochondrial dysfunction and thereby generation of mitochondrial ROS [12,13]. 

Interference of profibrotic signalling pathways is a selective tool for disease suppression [14]. 

Inhibitors of TGFβ or of its signalling pathways, preventing the myofibroblast differentiation, are 

valuable as antifibrotic agents. Expression of TGFβ can be reduced e.g., by pirfenidone, which might be 

effective for treatment of diabetic kidney disease (Table 1). Additionally, it improves oxidative stress 

induced by mitochondrial dysfunction [15,16]. Signalling of cyclic nucleotides can act on several parts 

of these fibrotic processes as they suppress, e.g., interstitial fibrosis via reduced TGFβ signalling and 
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myofibroblast formation or reduction of oxidative stress [10,17]. Details of these effects of cyclic 

nucleotides will be given in Section 2.1. and 2.2. 

Diabetic nephropathy (DN) is the most important cause for end-stage renal disease and kidney failure. 

DN is often associated with hypertension and symptoms of DN are albuminuria, glomerulosclerosis 

and interstitial kidney fibrosis. Development of DN is strongly enhanced in endothelial nitric oxide 

synthase knockout mice (eNOS−/−), implicating an important function of this signalling defect in DN, 

most likely through hypertension [18,19]. Increases of the renin angiotensin aldosterone system (RAAS) 

are associated with diabetic nephropathy and fibrosis. Diverse signalling pathways including JAK/STAT 

and TGFβ are strongly activated by angiotensin II (ATII) leading to diabetic glomerular fibrosis  

and sclerosis [20]. Hence, treatments with RAAS inhibitors are a common therapy option of DN  

(Table 1) [21]. Remarkably, in a diabetic rat model an increase of aldosterone was concomitant with 

nitric oxide (NO)/cGMP decrease. The reduction of aldosterone by the renin inhibitor aliskiren or the 

calcium channel blocker amlodipine restored NO/cGMP levels [10]. Further possible treatments are 

tested regarding Rho kinase inhibition which experimentally improves glomerular haemodynamics in 

diabetic nephropathy [22]. Diminished blood pressure in hypertension confers protection against 

fibrosis. However, there are effects which are presumably independent of blood pressure reduction. 

The combined treatment with the angiotensin receptor blocker telmisartan and the sGC stimulator 

riociguat improved glomerular and interstitial fibrosis in comparison to telmisartan treatment alone 

without additional blood pressure reduction [23]. 

Glomerulosclerosis is frequently found in kidney diseases. A specific form, the idiopathic focal 

segmental glomeruloclerosis (FSGS), is a major cause of primary kidney disease resulting in nephrotic 

syndrome and end-stage renal disease [24]. FSGS causes podocyte injury which alters the permeability 

and selectivity of the glomerular barrier and leads to proteinuria [25,26]. The serum soluble urokinase 

receptor (suPAR) activating podocyte β3 integrin could be involved in induction of FSGS [27,28]. There 

are multiple secondary causes for this disease including diverse forms of glomerulonephritis, diabetes 

mellitus, arterial hypertension or Bartter syndrome. Current therapy options are glucocorticoids, 

calcineurin inhibitors, cytostatics and/or mycophenolate mofetil (Table 1, summarized in [26]). About 

half of the patients show total or strong reduction of proteinuria, whereas others are resistant to medication. 

Recently, rituximab—A monoclonal CD20 antibody which reduces circulation of B cells—Was clinically 

tested. Steroid-resistant FSGS showed no remission of the disease. However, other studies reported 

an improvement of FSGS upon rituximab or adrenocorticotropin (ACTH) treatment [25,29,30]. Still, 

new treatments for resistant FSGS are needed. In this regard, it might be interesting that cyclosporine is 

protective against FSGS via an increase in intracellular cAMP [31]. Therefore, enhancement of cAMP might 

be a valuable target for this disease. Furthermore, reduction of glomerulosclerosis by cGMP modulators 

is also common in renal fibrotic models (see below). 

Lupus nephritis is a rare autoimmune disease leading to glomerulosclerosis, tubular atrophy and 

interstitial fibrosis that all result in renal failure. Enhanced cellular metabolism and hypertrophy was 

often observed [32]. The TNF-like weak inducer of apoptosis/Fibroblast growth factor-inducible 14 

(TWEAK/Fn14) system is an inducing pathway in lupus nephritis and might be a pharmacological target 

for treatment of this disease [33]. A rodent model of systemic lupus is the MRL/lpr lupus prone mouse 

in which increased cGMP phosphodiesterase (PDE) and decreased cGMP levels was detected [34]. 

Actual common treatments of lupus nephritis or systemic lupus erythematodes (SLE) include broad 
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spectrum steroids [35] or belimumab [36]. Besides that, cytostatics azathioprin or cyclophosphamide as 

well as hydroxychloroquine are used for treatment [37,38]. 

1.2. Renal Fibrotic Models 

Transgenic or knockout animals, particularly mice, in combination with disease models for diverse 

renal fibrotic diseases are beneficial for understanding the diverse mechanisms in chronic kidney 

diseases. Knockout (KO) of genes in the AC/cAMP or natriuretic peptide/NO/cGMP signalling 

pathways (e.g., eNOS−/−, sGC−/−, GCA−/− or PKG1−/− mice) or overexpression of proteins (e.g., PKG 

transgenic mice) are important tools for studying the various diseases. The use of these mice for the 

analysis of renal fibrotic diseases will be presented in the diverse parts of this article (see chapter 2). 

siRNA is also used for examination of cellular signalling pathways, e.g., in Madin-Darby canine kidney 

epithelial (MDCK) or fibroblast cells. 

Several models of diabetic nephropathy exist which are validated for the clinical features of human 

DN regarding e.g., decrease of kidney function, albuminuria and interstitial fibrosis [18]. However, none 

of the available models resemble all of these criteria. It is important to note that the induction of DN is 

dependent on the murine strain used. Furthermore, murine models often reveal only early stages of DN 

because the induction of interstitial fibrosis is less observed than in human DN. Common models for 

type 1 diabetes are mice injected with streptozotocin or genetic models e.g., OVE26 mice which carry 

a transgene overexpressing calmodulin in pancreatic β cells resulting in early onset of type I diabetes,  

in combination with unilateral nephrectomy [39]. For type 2 diabetes, e.g., ob/ob mice in combination 

with eNOS−/− mice are used. Furthermore, hypertension e.g., induced with renin, ATII or aldosterone is 

an important factor enhancing DN and therefore to evaluate its renal effects [10,40]. Deoxycorticosterone 

acetate (DOCA)-salt hypertensive rats are often analyzed (DOCA and sodium chloride applied to 

uninephrectomised rats) which develop oxidative stress and inflammation. The effects of cGMP and 

cAMP modulators on diabetic nephropathy tested with these models will be discussed in the respective 

parts of Section 2.1.1. and 2.2.1. 

Unilateral ureteral ligation (UUO) is a common surgery for the analysis of interstitial kidney fibrosis. 

This model is versatile for the elucidation of fibrotic disease mechanisms, resembles the various factors 

of interstitial fibrosis, is highly predictable [41] and often applied in the analysis of cyclic nucleotide 

signalling (see Section 2.2). The outcome is very rapid (between 3 and 14 days) and, therefore, it is 

discussed whether it features all phases of chronic kidney disease. 

Renal ischemia/reperfusion is a preferred model for studying acute kidney injury [42]. It leads to 

lesions of tubular epithelial cells, inflammation and tubulointerstitial fibrosis. These responses are often 

not reversible and, therefore, might lead to CKD and kidney dysfunction. This model was used to study 

effects of tadalafil and CNP in acute kidney injury (see Section PDE Inhibitors and Natriuretic peptides). 

Renal injury upon 5/6 nephrectomy is a valuable model for the analysis of mechanisms associated 

with renal dysfunction of the remnant kidney [41]. Apoptosis, inflammation and fibrosis via tubulointerstitial 

injury are main factors caused by renal ablation. Notably, there are differences in the responses of diverse 

murine strains. Furthermore, the analysis of the damaged tissue is limited by the small size of the remnant 

kidney. Several studies using this model revealed the suppressive effect of the PDE5 inhibitor sildenafil 

in fibrosis mechanisms (see Section PDE Inhibitors). 
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cAMP and cGMP are suppressive in several fibrotic diseases which will be explained explicitly in 

this review. The concentration of these cyclic nucleotides cAMP or cGMP is enhanced by adenylyl 

cyclases (AC) or guanylyl cyclases (GC), respectively, and modulated by several phosphodiesterases 

(PDEs). Examples regarding modulators of cyclic nucleotides cAMP or cGMP in renal fibrotic diseases 

and pharmacological treatments will be given in Section 2.1. and 2.2. of this article. 

Table 1. Renal fibrotic diseases and its actual or clinically tested treatments. 

Renal Fibrotic 

Disease 
Causes 

Profibrotic 

Signalling 

Pathways 

Actual or Clinically Tested 

Treatments 
Literature 

Diabetic 

nephropathy 

Hyperglykaemia;  

Hypertension 

DM I, II; RAAS; 

JAK/STAT  

eNOS-dysfunction 

TGFβ 

RAAS blockade Pirfenidone [16,21] 

Glomerulo-sclerosis  

(e.g., FSGS) 

DN, Hypertension;  

Nephrotic syndrome; 

(FSGS) 

e.g., DM I, II; 

RAAS; suPAR 

(FSGS) 

RAAS blockade, 

Pirfenidone, FSGS: 

Glucocorticoids, Cytostatics, 

ACTH, Rituximab 

[25,26,29,30,43] 

Lupus nephritis 

Autoimmune antibodies; 

Expansion of 

inflammatory cells [44] 

TWEAK/Fn14 

Steroids, Belimumab, 

Cytostatics: Azathioprin, 

Cyclophosphamide 

Hydroxychloroquine 

[35–37,45] 

DN: Diabetic nephropathy; DM: Diabetes mellitus; FSGS: Focal segmental glomeruloclerosis; RAAS: Renin 

angiotensin aldosterone system; suPAR: Serum soluble urokinase receptor; TWEAK/Fn14: TNF-like weak 

inducer of apoptosis/Fibroblast growth factor-inducible 14 system. 

2. Cyclic Nucleotide Signalling Pathways and Their Potential as Therapeutic Options in  
Renal Fibrosis 

Renal failure is a very common consequence of the above mentioned diseases. As the incidence of 

renal failure is rising worldwide, the prevention or delaying of renal dysfunction that leads to end-stage 

renal failure is the most important goal for pharmacological treatment of CKD [46]. Cyclic nucleotide 

modulation could be a therapeutic approach. This review focuses on the most relevant cyclic nucleotide 

signalling pathways in renal fibrosis as well as diverse drugs involved in cAMP or cGMP pathways 

which could be useful in the treatment of CKD. 

2.1. Cyclic Adenosine Monophosphate (cAMP) Pathway 

The cAMP pathway exerts antifbrotic actions which include inhibition of EMT blockade of fibroblast 

proliferation and activation of the death of fibroblasts. These effects can arise in response to an increase 

in cAMP by AC activators, PDE inhibitors, cAMP analogues or pharmacological agents like Gs-linked 

G protein coupled receptors (GPCR) agonists and Gi-linked GPCR antagonists. Increased cAMP levels 

exert their effects through activation of protein kinase A (PKA) which is the classical signalling pathway. 

Thereby, cAMP binds to the regulatory subunit of PKA leading to dissociation of the catalytic subunit 

which subsequently phosphorylates target proteins. Stimulated PKA causes inter alia phosphorylation 
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of cAMP response element binding (CREB) and subsequent CREB-mediated gene transcription. 

Detailled signalling mechanisms of cAMP are shown in Figure 1. 

 

Figure 1. Cyclic adenosine monophosphate signalling pathways in kidney fibrosis including 

pharmacological treatment options. AC, adenylyl cyclase; AMP, adenosine monophosphate; 

ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CBP, CREB binding 

protein; CREB, cAMP response element binding protein; CTGF, connective tissue growth 

factor; ECM, extracellular matrix; Epac, exchange protein directly activated by cAMP; 

GPCR, G protein coupled receptor; GTP, guanosine triphosphate; PDE, phosphodiesterase; 

PKA, protein kinase A; SMA, smooth muscle actin; smad, small mothers against 

decapentaplegic protein, TGFβ, transforming growth factor β. 

cAMP exerts antifibrotic effects in fibrosis, which are mediated by stimulation of PKA and activated 

CREB that thus blocks TGFβ mediated gene transcription. Furthermore, it activates Epac which blocks 

TGFβ mediated smad dependent gene transcription. Therapeutic options which enhance cAMP are AC 

stimulators, PDE inhibitors, cyclosporine and adrenomedullin (shown in yellow). Motifolio PPT 

Drawing Toolkit was used for designing the figure. 
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2.1.1. cAMP Modulation 

Adenylyl Cyclase (AC) 

Adenylyl cyclases are enzymes which convert ATP into cAMP. At least nine isoforms of  

AC—AC1-9—and two splice variants of AC8 are known [47]. 

Previous studies have shown antifibrotic effects by an increase of AC5/6 expression in cardiac and 

pulmonary fibroblasts which prevents the differentiation of cardiac fibroblasts [48] and pulmonary 

fibroblasts to pathophysiological changed myofibroblasts [49]. This is not yet studied in renal fibroblasts, 

but AC5 expression was also shown in the kidney [50]. 

Forskolin is an AC activator which increases intracellular cAMP levels by activation of membrane 

bound AC. Clinical data about the usage of AC activators are not yet available. As many disorders,  

e.g., cardiovascular diseases, glaucoma, asthma etc., are discussed for the application of forskolin, the  

risk-benefit ratio is not yet fully evaluated [51]. Nevertheless, antifibrotic effects of forskolin in renal 

mesangial cell cultures were already observed by reducing glomerular mesangial cell growth [52]  

or inhibiting CTGF gene expression by forskolin [53]. CTGF is a growth factor which is not present  

in healthy kidne but which is induced in fibrotic pathological condition, like glomerulosclerosis or  

diabetic nephropathy. 

Phosphodiesterases (PDEs). 

PDEs are enzymes which catalyze the hydrolysis of cAMP and/or cGMP, thereby, regulating the 

cAMP and cGMP levels [54]. The PDEs can be subdivided into at least 11 structurally related gene 

families (PDE 1 to 11) based on their ability to hydrolyze either preferentially cAMP, cGMP or both [55]. 

PDE1, PDE4 and PDE8 are important enzymes for cAMP signalling in the kidney. cAMP might be 

increased by PDE inhibitors. 

PDE1: PDE1 consists of three genes—PDE1A, B and C—And belongs to the Ca2+ calmodulin-activated 

PDE family. Thereby, the activity of PDE1 family members can be increased up to tenfold in the 

presence of Ca2+ calmodulin [56,57]. PDE1A represents the predominant isoform but has a higher 

affinity for cGMP than for cAMP [57]. In cardiac fibroblasts, PDE1A is highly upregulated after 

stimulation with ATII and TGFβ [58]. Moreover, it is reported that the PDE1 inhibitor IC86340 

decreased ATII or TGFβ induced cardiac myofibroblast activation, ECM production, and profibrotic 

gene expression. Thereby, PDE1 inhibition also mediates the antifbrotic effects via cAMP [58]. The PDE1 

isozymes are abundant in the kidney and some isoforms of PDE1C exhibit high affinity for cAMP [59]. 

Thus, increased cAMP levels induced by specific PDE1 inhibitors could be beneficial in renal disease, 

but data about PDE1 inhibition in the kidney are lacking. 

PDE4: Another PDE isoform, which specifically hydrolyses cAMP, is PDE4. Souness et al., reported 

that inhibitors of PDE4 exert antiinflammatory effects by suppression of many inflammatory cell 

responses, TNFα release and ROS generation. Consequently, PDE4 inhibitors can be used in the therapy 

of different diseases characterized by excessive cytokine production [60]. In renal diseases protective 

effects—Including antifibrotic effects—Of PDE4 inhibition have already been investigated. 

cAMP hydrolysis in the renal mesangial cells is particularly mediated via PDE3 and PDE4 [61]. 

Inhibition of PDE4 has repeatedly shown suppressive effects on TGFβ signalling which has relevant 
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therapeutic effects on excessive tissue remodeling, e.g., glomerulopathies. PDE4 inhibitors decrease 

fibroblast activity through elevated cAMP, and thus PKA, by decreasing collagen contraction and 

fibroblast chemotaxis towards fibronectin, especially in the presence of TGFβ signalling in vitro. 

Moreover, PDE4 inhibitors normalize the release and activation of tissue-degrading MMPs in TNFα 

cultured fibroblasts [62–64]. In a rat glomerulonephritis model, improvement of renal function and renal 

structure was observed [65,66]. 

Roflumilast, a selective PDE4 inhibitor was tested in type1 diabetic nephropathy induced by 

streptozotocin. Treatment with roflumilast decreased oxidative stress as well as extracellular matrix 

proteins such as fibronectin, collagen and apoptosis which was demonstrated by the TUNEL assay.  

The antioxidant enzyme heme oxygenase-1 is elevated in type 1 diabetic kidney whereas FoxO1,  

a transcription factor involved in oxidative stress is decreased [67]. Roflumilast was able to reverse that 

pathological condition. 

However, the above mentioned PDE4 inhibitors, e.g., roflumilast (see Section 2.1.2) have several 

side effects, like central nervous or gastrointestinal disturbances [68]. 

Recently, a selective PDE4 inhibitor TJN-598 was established which showed lower excretion of 

TGFβ as well as lower mesangial matrix index, but—Inconsistent with the commonly used PDE4 

inhibitors—Could not improve protein excretion [69]. (The mesangial matrix index evaluates mesangial 

expansion by the ratio of mesangial area to total glomerular area, whereas mesangial expansion is a 

product of glomerular hypercellularity, widening as well as mesangial matrix accumulation.). 

NCS613 preferentially inhibits PDE4C which prevents disease progression in a lupus nephritis 

disease experimental model by ameliorating proteinuria [70]. 

PDE8: PDE8 is a cAMP specific PDE [60]. Upon TGFβ stimulation cardiac myofibroblasts generate 

less cAMP compared with fibroblasts because the synthesis of cAMP by AC5/6 expression was 

down-regulated and the degradation of cAMP by the PDE8 isoform PDE8A was upregulated in 

myofibroblasts [71]. In the kidney, mRNA expression of AC5/6 [47] and PDE8A [72] was already 

shown. Therefore, a TGFβ induced downregulation of cAMP in renal myofibroblasts could also be 

conceivable, but it is not yet examined. 

The methylxanthine derivate pentoxifylline is an unspecific PDE inhibitor which has antifibrotic and 

antiinflammatory properties in several models of disease and is used for peripheral vascular diseases in 

clinical practice [73]. 

Renal antifibrotic effects of this unspecific PDE inhibitor were described in several animal models. 

In an anti-Thy1 nephritic rat model, mRNA levels of type I, type III and type IV collagen as well as 

fibronectin were decreased in pentoxifylline treated rats compared to controls. Additionally, ICAM-1 

and MCP-1 mRNA levels were reduced by pentoxifylline, in which cAMP involvement is supposed but 

evidence is lacking so far [74]. Similar antifibrotic results were observed in rats with 5/6 subtotal 

nephrectomy [75]. 

In tubulointerstitial fibrosis induced by unilateral ureteral obstruction, expression of remodeling 

biomarkers like Col1A1 and CTGF as well as α-smooth muscle actin (α-SMA), a marker for 

myofibroblast accumulation, are diminished by pentoxifylline which mediates its action via cAMP and 

subsequently PKA to abrogate TGFβ signalling [76]. In a similar model, reduction of total volume of 

interstitial fibrosis was observed as well [77]. 
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Remodeling processes—Particularly renal scarring—Are also a consequence of pyelonephritis. 

Pentoxifylline prevented renal scar formation after induction of pyelonephritis in an experimental rat 

model when antibiotic therapy was delayed [78]. 

The renoprotective effect of pentoxifylline was already shown in the PREDIAN clinical trial, in which 

patients with type 2 diabetes mellitus and chronic kidney disease had a lower decline in estimated 

glomerular filtration rate with pentoxifylline treatment in addition to RAAS blockade [79]. These results 

indicate that multiple inhibitors of PDE isoforms are potential targets in the therapy of renal fibrosis. 

Inhibitors of PDE4, which specifically prevent degradation of cAMP, are in clinical development. 

2.1.2. cAMP Effectors 

Protein Kinase A-cAMP Response Element Binding (PKA-CREB) 

In human epidermal HaCat keratinocytes, it was shown that cAMP elevating agents such as the  

AC activator forskolin prevent TGFβ2 signalling via PKA [80]. TGFβ transduces intracellular signals 

through type1 (TGFβ-R1) and type2 (TGFβ-R2) receptors. Receptor associated smad (R-smads) 

proteins, such as smad2 and smad3 are phosphorylated and activated by type1 receptors of TGFβ. Upon 

phosphorylation, the R-smads build a complex with smad4 which is a common mediator for all receptor 

activated smads. R-smad/smad4 complexes are then translocated into the nucleus where they modulate 

the transcription of many genes [81,82]. However, the cAMP/PKA/cAMP response element binding 

(CREB) cascade blocks TGFβ specific smad-dependent transcription. cAMP elevating agents abolished 

interactions of the TGFβ2 induced smad3/4 complex with the transcription co-activators CREB protein 

in a PKA dependent manner. Thereby, the smad translocation into the nucleus in response to TGFβ was 

not affected by cAMP in the examined HaCat keratinocytes [80]. These results are in accordance with 

Lin et al., that increased cAMP accompanied by PKA induced CREB phosphorylation attenuated renal 

tubulointerstitial fibrosis. Thereby, increased cAMP levels were achieved by pentoxifylline—A general 

inhibitor of cAMP dependent PDEs—Which leads to a block of TGFβ induced smad3/4 dependent gene 

transcription. In this study, the inhibition of the profibrogenic CTGF was shown. However, smad 

activation and nuclear translocation were also not affected by cAMP/PKA [76]. 

CREB effects were shown by modulating cAMP via pentoxifylline or forskolin as direct modulators 

of CREB are lacking. 

Exchange Protein Directly Activated by cAMP (Epac) 

cAMP is able to stimulate PKA-independent Epac which is a guanine nucleotide exchange protein 

for the small GTPase Rap1. Activation of Epac by cAMP leads to release of the guanine nucleotide GDP 

and binding to GTP [83]. Epac regulates different functions like migration, proliferation and apoptosis 

via Rap1 [84]. It was shown that fibrosis inhibits Epac expression. Therefore, activation of Epac acts 

antifibrotically by inhibition of collagen type I- and collagen type III expression. Moreover, Epac 

interacts with TGFβ-R1 resulting in inhibition of phosphorylation of smad2 and transcriptional 

activation [85]. The importance of the cAMP-Epac-Rap signalling for modulating myofibroblast 

stimulation and ECM production was also described in the heart by Miller et al. [58]. 
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A model to study EMT, which is a mechanism of tissue fibrosis, is the use of renal epithelial cells 

such as MDCK cells treated with TGFβ. MDCK cells base on epithelial phenotype with high E-cadherin 

expression and low α-SMA expression. TGFβ induces EMT by increasing α-SMA (and proteins 

characteristic of fibroblasts such as collagens) and decreasing E-cadherin expression (and other proteins 

characteristic of epithelial cells). Treating these MDCK cells with cAMP-derivative inhibits the 

upregulation of α-SMA via Epac. Therefore, Epac acts antifibrotically via inhibition of profibrotic TGFβ 

signalling [86]. 

A recent study by Stolman et al., demonstrated that Epac/Rap stimulation ROS production in the 

kidney [87]. Uncontrolled production of ROS mediated cellular injury and also occured during renal 

fibrosis [88]. 

Thus, activation of Epac/Rap signalling may protect against renal fibrosis, but data about 

pharmacological modulation of kidney fibrosis are lacking. 

2.1.3. Further cAMP Influencing Systems 

Adrenomedullin particularly is a vasodilatory agent which was demonstrated to augment NO.  

Its antifibrotic effects are mediated through cAMP-mediated decrease of CTGF induction and Erk 

phosphorylation in renal interstitial fibrosis [89]. The renoprotective effects were observed in diverse 

hypertensive models, e.g., in Dahl salt-sensitive rats or in the DOCA-salt model [90,91]. 

Cyclosporine is widely used for the treatment of FSGS. Its renoprotective effects are partly mediated 

through hemodynamic effects by decreasing glomerular perfusion rate and by decreasing intracellular 

pressure, but also through reduction of T cell mediated cytokines. Presumably, an increase in glomerular 

cAMP levels following cyclosporine treatment is responsible for the improved permeability 

characteristics of the glomerular filtration barrier [31]. 

2.2. Cyclic Guanosine Monophosphate (cGMP) Pathway 

Chronic organ injury, particularly kidney fibrosis, degrades NO producing cells, such as endothelial 

cells. The decreased availability of NO leads to reduced cGMP levels. Many studies report that enhanced 

cGMP levels have an effective antifibrotic benefit in various organs including the kidney [17]. 

Nitric oxide synthases (NOS) produce NO which activates the soluble guanylyl cyclase (sGC). sGC 

is the NO receptor mediating the downstream signalling by the generation of cGMP. Increased cGMP 

levels lead to activation of cGMP dependent protein kinases (PKG). cGMP can also be produced by 

natriuretic peptides (ANP/BNP) which stimulate the particulate guanylyl cyclase (pGC). The degradation 

of cGMP is mediated by PDEs. Detailled signalling of cGMP is shown in Figure 2. 

cGMP mediates its antifibrotic action (shown in green) via activation of PKG which is able to inhibit 

the profibrotic TGFβ signalling (shown in red). TGFβ signalling is mediated via a smad dependent 

pathway to increase target gene transcription, or a smad independent pathway which activates Erk1/2 

and RhoA/ROCK signalling. Therapeutic options which enhance cGMP are serelaxin, sGC modulation, 

organic nitrates, PDE inhibitors or natriuretic peptide analogues or their modulators (shown in yellow). 

Motifolio PPT Drawing Toolkit was used for designing the figure. 

Some treatment options are in development for the augmentation of the cGMP pool [92]. The aim of 

these agents is to ameliorate or prevent the progression of fibrotic tissue. 
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Figure 2. Cyclic guanosine monophosphate signalling pathways in kidney fibrosis including 

pharmacological treatment options. ANP, atrial natriuretic peptide; AT1R, angiotensin II 

receptor type 1; AT2R, angiotensin II receptor type 2; BNP, brain natriuretic peptide;  

cGMP, cyclic guanosine monophosphate; CNP-c, type natriuretic peptide; CTGF, 

connective tissue growth factor; ECM, extracellular matrix; eNOS, endothelial NO synthase; 

ERK1/2, extracellular-signal regulated kinase; GMP, guanosine monophosphate; GTP, 

guanosine triphosphate; iNOS, inducible NO synthase; nNOS, neuronal NO synthase; NO, 

nitric oxide; NPRA, natriuretic peptide receptor A; PAI-1, plasminogen activator inhibitor 

1; PDE, phosphodiesterase; pGC, particulate guanylyl cyclase; PKG, cGMP dependent 

protein kinases; RAAS, renin angiotensin aldosterone system; Ras, Rat sarcoma protein, 

RhoA, particular Rho protein; ROCK, Rho associated protein kinase; ROS, reactive oxygen 

species; RXFP1, relaxin family peptide receptor 1; sGC, soluble guanylyl cyclase; SMA, 

smooth muscle actin; smad, small mothers against decapentaplegic protein; TGFβ, 

transforming growth factor β. 

2.2.1. cGMP Modulation 

Organic Nitrates 

Organic nitrates are used for the treatment of cardiovascular disease for the last centuries, as they 

increase NO availability and thereby support the NO/cGMP signalling pathway. However, this therapy 

option is limited due to formation of nitrate tolerance as well as accumulation of ROS (e.g., peroxynitrite) 
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under oxidative stress conditions. Beneficial effects in kidney fibrosis were shown in different 

glomerulonephritis experimental models after administering l-arginine supplements [93,94]. 

Nitric Oxide Synthase 

The generation of NO is catalyzed by three NOS isoforms: type I (neuronal or nNOS), type II 

(inducible or iNOS) and type III (endothelial or eNOS). All three NOS isoforms are found in the kidney, 

but the expression of iNOS is more variable [95]. Furthermore, the contribution of eNOS, nNOS and 

iNOS to renal injury is very different. 

eNOS: The eNOS activity is altered in diabetes and associated with the development of nephropathy 

in type1 and type2 diabetes patients [96]. Diabetic patients often develop nephropathy despite optimal 

therapy including adjustment of blood glucose. Moreover, superoxide producing enzymes promote  

an increased formation of ROS and eNOS uncoupling leading to decreased NO bioavailability [97]. 

Oxidative stress inactivates NO. Thus, reduced NO bioavailability accompanies chronic renal  

diseases [98]. Comparable results reported Liu et al., that the activity of eNOS was decreased by the 

fibrotic process in the lung [99]. In the cirrhotic liver, cGMP synthesis was also reduced due to the 

declined activity of eNOS [100]. 

Moreover, eNOS counterbalances the activity of the RAAS. Thus, inhibition of NOS increases the 

activity of the RAAS resulting in augmented expression of fibrosis marker such as fibronectin and  

α-SMA [101]. Moreover, deletion or reduction of eNOS in animals leads to glomerular abnormalities 

and tubular cell death. eNOS deletion is realized in eNOS knockout models whereas eNOS reduction is, 

for example, realized by models of hypertension. Consequently, eNOS protects against renal injury [95,102]. 

nNOS: In contrast to eNOS, an increase in nNOS facilitates renal injury. It is speculated that increased 

nNOS expression promotes generation of oxidative stress and formation of ROS within the kidney. 

Therefore, inhibition of nNOS showed renoprotective effects. Thereby, the inflammatory cells and the 

number of CD68 positive cells were reduced [95]. 

iNOS: iNOS produces—In comparison to eNOS and nNOS—large amounts of NO that, under 

oxidative stress conditions, can form peroxynitrite. Peroxynitrite initiates lipid peroxidation, oxidative 

protein and DNA modifications [103]. Thus, the downregulation of iNOS expression can reduce toxic 

peroxynitrite reactions. 

Jeong et al., also proposed that decrease of iNOS could induce renoprotective effects in streptozotocin 

induced diabetic rats [104]. 

Soluble Guanylyl Cyclase (sGC) 

Guanylyl cyclases are enzymes that convert guanosine triphosphate (GTP) to cGMP. Both types of 

guanylyl cyclases, particulate guanylyl cyclase (pGC) activated by atrial (ANP) and brain natriuretic 

peptides (BNP), and soluble guanylyl cyclase (sGC) stimulated by nitric oxide, can reduce cardiac 

fibrosis by increasing intracellular cGMP levels [105]. Furthermore, it is reported that NO via cGMP 

downregulates CTGF in rat mesangial cells. Thereby, NO activates the soluble form of guanylyl cyclase 

which leads to increased cGMP levels [106]. 

sGC modulation could be achieved by either sGC stimulators or sGC activators. 
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The target of sGC stimulator is the NO sensitive reduced Fe2+ redox state (NO dependent) whereas 

the target of sGC activator is the NO insensitive oxidized (Fe3+) sGC [107]. sGC stimulators bind  

NO-independently to a regulatory site of the α-subunit of sGC to stimulate the enzyme. Furthermore, 

they cause sGC to be more sensitive to endogenous NO. 

If NO deficiency is the major issue, the use of sGC stimulators is suitable sensitizing sGC for NO. 

However, if heme oxidation or heme-free form of sGC is the major cause of disease, sGC activators are 

an appropriate tool for therapeutic use [97]. sGC activators bind to inactive sGC to additionally increase 

enzyme activity, when the prosthetic heme-group is oxidized or lacking. Activators might be introduced 

as therapy option particularly for pathological changes due to oxidative stress [108]. 

Thereby, it is important to know that oxidative stress, which is an accompanying effect of fibrosis, 

favours heme oxidation or heme-free sGC. Both sGC stimulators and sGC activators were used in studies 

for the treatment of kidney diseases. It is suggested that sGC modulators have direct antifibrotic actions 

that are presumably associated with enhanced NO/sGC/cGMP signalling [108–111]. 

sGC Stimulators: It is manyfold reported that the sGC-cGMP axis could be a therapeutic target of 

fibrosis of various organs. Stimulation of sGC decreased TGFβ induced collagen release by inhibition 

of Erk1/2 phosphorylation in human fibroblasts. However, nuclear p-smad2 and 3 levels, smad reporter 

activity and transcription of TGFβ target genes were unaffected by sGC stimulation. In murine sGC KO 

fibroblasts sGC stimulation showed no effects [112]. 

YC-1 is a benzylindazole derivative which has multiple actions—cGMP-dependent [113] or  

-independent [114] effects. cGMP dependent actions are, among others, inhibition of phosphodiesterase 

activity or sGC modulation [113]. It firstly provided sGC modulation, independent of NO 

bioavailability [115–117]. 

Antifibrotic effects of YC-1 were observed in diverse tissues, e.g., in a preventive model of  

hypoxia-induced pulmonary arterial hypertension (PAH), in which YC-1 alleviates right ventricular 

hypertrophy and pulmonary vascular remodeling [118]. 

cGMP-dependent antifibrotic effects of YC-1 via PKG1 in the kidney were described by  

Schinner et al. [119] in an animal model of interstitial kidney fibrosis induced by unilateral ureteral 

obstruction. YC-1 inhibited the profibrotic RhoA/ROCK pathway by the cGKIα isozyme, which blocked 

RhoA phosphorylation. As a consequence TGFβ stimulation as well as myofibroblast formation was 

suppressed. Moreover, the antifibrotic effect of YC-1 was boosted via HIF-1α inhibition in renal  

kidney fibrosis [11]. However, due to its cGMP-independent effects YC-1 is not applicable for clinical 

drug testing. 

BAY 41-8543 and BAY 41-2272 are pyrazolopyridines which were developed from the structure  

of YC-1. 

BAY 41-2272 attenuated remodeling and limited progression of fibrosis in an anti-Thy1 induced 

model of progressive kidney disorders, particularly in interstitial fibrosis [17,120]. Additionally, it 

reduced mesangial proliferation, matrix expansion and proteinuria in a rat model of mesangial 

proliferative glomerulonephritis compared to placebo [94,121]. 

BAY 41-8543 showed also a renal protective effect [122]. It restored or preserved renal structure and 

function in case of obstructive kidney disease by positively influencing α-SMA expression, collagen IV 

deposition and TGFβ1 mRNA expression [123]. 
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The majority of available research is preclinical. Clinical experiments are limited due to unfavourable 

pharmacokinetic profile, CYP inhibition or induction and blood pressure decrease in healthy  

volunteers [124]. 

Riociguat (Bay 63-2521) is a further sGC stimulator causing antifibrotic effects in the kidney. 

Riociguat has two benefits—it sensitizes sGC to NO and can also increase sGC activity in the absence 

of NO. Riociguat (BAY 63-2521) is structurally similar to BAY41-8543 and the single sGC stimulator 

which has an acceptable oral bioavailability and thus, was successfully completing the clinical 

development program due to its pharmacokinetic profile. It was approved by health authorities for PAH 

and chronic thromboembolic pulmonary hypertension (CTEPH) [125]. Its tradename is Adempas®. 

Administration of riociguat alone as well as in combination with the AT1R inhibitor telmisartan 

attenuated progression of renal fibrosis, especially diabetic nephropathy. Thereby the systemic 

inflammation was decreased which was measured by plasma TNFα levels [23]. In a similar fashion renal 

fibrotic tissue remodeling was markedly improved in a rodent model of pressure and volume overload 

by decreasing protein und mRNA expression of profibrotic osteopontin, TIMP1 and PAI-1 (plasminogen 

activator inhibitor 1) in the renal cortex [126]. 

Furthermore, in two independent models of hypertension, it was shown a potent protection against 

renal interstitial fibrosis and partially against glomerulosclerosis [127]. 

sGC activators: The sGC activators cinaciguat [128] and ataciguat (HMR1766) [129] have 

antiremodeling effects in the kidney. 

Cinaciguat is in the clinical development program for acute heart failure, but in a high dose cinaciguat 

therapy (>200 µg/h) hypotension occurred as adverse event and subsequently the phase IIb clinical trial 

was stopped [130]. 

The NO independent sGC activator cinaciguat (Bay 58-2667) is characterized by activating sGC after 

oxidation of its hem group. Chronic renal failure is accompanied by impaired NO availability because 

the generation of NO is decreased, and NO is inactivated by ROS or its physiological action is impeded 

by dysfunctional sGC. The reduced NO availability promotes renal disease. 

Cinaciguat attenuated remodeling and limited progression of fibrosis in models of pulmonary 

hypertension partially associated with eNOS-dependent generation of nitric oxide [110]. Furthermore, 

rats with subtotal 5/6 nephrectomy which were treated with cinaciguat had slowing renal disease 

progression, reduced left ventricular hypertrophy and preserved renal function by targeting oxidized 

sGC and increasing intracellular cGMP [128]. 

Beneficial effects of ataciguat (HMR1766) on structural parameters of renal damage and urinary 

albumin excretion in a remnant kidney model were demonstrated [129]. HMR1766 has blood-pressure-

independent and sustainable antifibrotic effects. 

sGC activators are promising compounds for the treatment of kidney fibrosis. Data about antifibrotic 

effects in the kidney are still to be fully elucidated. 

PDE Inhibitors 

PDE1: As already mentioned, PDE1 consists of three genes—PDE1A, B and C. PDE1A represents 

the predominant isoform which has a higher affinity for cGMP than for cAMP [57]. Inhibition of PDE1 

by IC86340 reduced ATII or TGFβ induced activation of cardiac myofibroblasts, synthesis of ECM and 
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expression of profibrotic genes. Thereby, the antifbrotic effects of this PDE1 inhibitor were also 

mediated via cGMP/PKG. 

The phosphodiesterase 1 inhibitor nimodipine was investigated as new therapeutic strategy for the 

autoimmune disease systemic lupus. In MRL/lpr lupus-prone mice PDE1 activity was elevated in the 

kidney, which was accompanied by a decrease in cGMP levels. Treatment with nimodipine resulted  

in improvement of organ remodeling, especially kidney remodeling, as well as in reduction of 

hypercellularity [131]. 

PDE5: The cGMP pool is rapidly degraded by PDEs. PDE5 is the PDE isozyme which specifically 

hydrolyzes cGMP. At the renal level of rat kidney, PDE5 is expressed in inner medullary collecting duct 

cells, cortical tubules, mesangial cells, the vasculature and glomeruli. PDE5 inhibitors, including 

sildenafil and tadalafil, possess antiapoptotic and antioxidant properties. Consequently, they exert 

nephroprotective effects. 

In lung fibrosis, the PDE5 inhibitor (KMUP-1) was able to reduce the fibrotic process. In this study, 

many possible mechanisms, which mediate the effects of PDE5 inhibition, were shown. Administration 

of KMUP-1 significantly attenuated the expression of active MMP2 which is upregulated in fibrosis. 

Moreover, TGFβ and CTGF expression was reduced by KMUP-1. Moreover, the TGFβ induced increase 

of the p-smad3/smad3 ratio was downregulated by administration of KMUP-1. Furthermore, KMUP-1 

inhibited the profibrotic RhoA/ROCK signalling and enhanced eNOS activity which was decreased in 

fibrosis [99]. These antifibrotic mechanisms of PDE5 inhibition are not yet studied in the kidney 

although PDE5 inhibitors such as sildenafil and tadalafil are tested in renal diseases. Thus, these 

mechanisms and signalling pathways in lung fibrosis could also be an approach in renal fibrosis. The 

PDE5 inhibitor sildenafil was already tested many times regarding kidney function. In a mouse model 

of interstitial kidney fibrosis induced by UUO renal fibrosis was reduced after administration of 

sildenafil for 14 days. Amelioration of kidney fibrosis was perceived by increased cGMP levels, 

mediated partly through regulation of macrophages and tubular cells. This was associated with reduced 

renal TGFβ/smad signalling and decreased macrophages infiltration. Kidney fibrosis was evaluated via 

protein and mRNA expression of collagen type I, collagen type III as well as α-SMA [132]. The PDE5 

inhibitor sildenafil was administered to rats with 5/6 nephrectomy immediately after renal ablation for 

8 weeks. In this setting sildenafil prevented histological damage, inflammation and apoptosis leading to 

reduced worsening of renal function, ameliorated proteinuria and decreased hypertension. Simultaneously, 

urinary cGMP excretion was elevated with sildenafil treatment [133]. It additionally suppressed renal 

arteriolar remodeling as a reason for improved function of the remnant kidney [134]. DOCA-salt 

hypertensive rats develop renal dysfunction due to fibrotic remodeling processes. In this experiment 

sildenafil reduced remodeling biomarkers, e.g., α-SMA and fibronectin, and thereby prevented 

progression of tubulointerstitial fibrosis and glomerulosclerosis [135]. 

Another study found that sildenafil attenuates infiltration of macrophages (ED1 positive cells) 

reducing the production of inflammatory stimuli. Moreover, PDE5 inhibition prevented oxidative stress 

in diabetic nephropathy. Jeong et al., speculated that decrease of iNOS by sildenafil could induce this 

renoprotective effect [104]. The inhibition of oxidative stress by sildenafil—Determinated by suppression 

of NADPH oxidase expression and therefore of superoxide formation—Parallels the results of  

Muzaffar et al. [136]. 
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In the study of Sohotnik et al., the PDE5 inhibitor tadalafil prevented kidney dysfunction and 

structural renal damage in an experimental model of renal ischemia-reperfusion (I/R) [137,138]. 

Tadalafil also reduced the urinary excretion of NGAL and KIM-1, which are two biomarkers indicating 

acute kidney injury. 

Relaxin 

The pregnancy hormone relaxin—Human relaxin II—Has shown antifibrotic effects in several 

experiments in vitro and in vivo. Its antifibrotic actions were demonstrated in several cell types,  

tissues, and organs, including lung, liver, heart, and kidney. The relaxin family peptide receptor 1 

(RXFP1)—The most relevant receptor for relaxin’s antifibrotic effects—was already localized in 

different tissues, including the kidney [139,140]. 

Relaxin is a hormone that both reduces ECM production and increases its clearance. This was first 

found in 1929 by Hisaw et al., who showed, that relaxin induces relaxation of the pelvic ligament as the 

ligament reveales remodeling of the collagen from dense bundles to looser, less structured fibers.  

In pregnancy, relaxin is responsible for widespread extracellular matrix remodeling in the cervix, vagina 

and in some species in the pubic symphysis [141]. 

The antifibrotic signalling mechanism of relaxin is not clearly understood so far and therefore, it has 

to be fully elucidated in the future. But a lot of research is done to generate a hypothesis for relaxin’s 

antifibrotic pathway. Relaxin is supposed to mediate its antifibrotic effect in renal myofibroblasts via 

the RXFP1 and a subsequent Erk1/2 phosphorylation which activates the nNOS/NO/cGMP-dependent 

pathway. The disruption of TGFβ signalling by relaxin was demonstrated by decreased ECM  

production and decreased myofibroblast differentiation in humans [142] as well as in rodents [143,144]. 

Additionally, relaxin leads to upregulation of MMPs—ECM degrading enzymes—And downregulation 

of TIMPs—Inhibiting enzymes of MMPs—Which is likely mediated through iNOS. This signalling 

mechanism is increased by blocking the TGFβ1/Smad2 signalling [145]. Current research indicated that 

relaxin signals through RXFP1-AT2R heterodimer complexes which are formed between RXFP1 and 

AT2R independent of ligand binding [146], which could explain relaxin’s antifibrotic effects especially 

in pathological conditions. In the lung, iNOS-NO-cGMP-PKG signalling was demonstrated to inhibit 

the profibrotic RhoA/ROCK which thus abrogated myofibroblast contractility [147]. Furthermore, 

eNOS appeared to be more relevant in vasodilating effects of relaxin [148]. This leads to the assumption 

that relaxin can act on the various NOS isoforms which depends on specific actions and tissues. 

Relaxin deficient mice spontaneously develop fibrotic tissue in different organs, including the  

kidney [149]. They are associated with age-related fibrosis going along with renal hypertrophy,  

increase in total collagen content, interstitial fibrosis, glomerular sclerosis and a decline in renal  

function [150,151]. 

The exogenous infusion of serelaxin led to ameliorated progression of interstitial and glomerular 

fibrosis in several experimental models of renal diseases. 

In aging rats the infusion of relaxin increased glomerular filtration rate as well as renal plasma flow 

and decreases renal vascular resistance, acutely caused by increased gelatinase activity [152]. Renal 

fibrosis caused by antiglomerular basement membrane disease decreased glomerulosclerosis and 
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interstitial fibrosis [153]. ATII-induced hypertension preserved glomerular structure as well as reduced 

oxidative stress after a two week period of relaxin treatment [154]. 

In another animal model relaxin administration was started one week after induction of renal papillary 

necrosis by bromoethylamin injection for the duration of 28 days. Initial papillary necrosis results in 

interstitial fibrosis and renal insufficiency. Relaxin improved renal function by restoration of glomerular 

filtration rate indicated by reduced TGFβ, macrophage infiltration and reducing fractional area of 

interstitial collagen staining by 75% [155]. Relaxin was administered for the same duration in models 

of renal mass reduction [156] and for shorter [157] or longer duration [148] in hypertension which 

demonstrated decreased interstitial and glomerular fibrosis and normalized collagen accumulation in the 

kidney. Influence on reducing blood pressure was shown, but matchable results were achieved in blood 

pressure independent models [155]. 

In contrast, in ATII-induced organ damage [158] as well as in diabetic renal disease [159] relaxin 

could not reverse fibrotic processes. 

Recently, a novel peptide was identified, CGEN25009, which has relaxin-like activity. Its action is 

mediated through RXFP1 receptor, involvement of cyclic nucleotides was observed in the antifibrotic 

mode of action [160]. Data about renal fibrosis are still lacking. 

Natriuretic Peptides 

Natriuretic peptides are divided into three peptides—Atrial (ANP), brain (BNP) and C-type (CNP) 

natriuretic peptides [161]. Biological action of ANP and BNP is mediated through binding to NPR-A to 

induce vasorelaxing, diuretic, natriuretic, antiproliferative, antihypertrophic and antialdosterone effects. 

NPR-B is the receptor for CNP to cause vasorelaxing and antifibrotic effects as well as playing a role in 

bone growth regulation and reproduction. Due to its paracrine and autocrine effects CNP as well as its 

receptor is located in several tissues, including the kidney [162]. 

It is reported that ANP/cGMP/PKG can abolish TGFβ induced nuclear translocation of p-smad2 and 

p-smad3 in rat pulmonary arterial smooth muscle cells. However, the phosphorylation of smad2/3 is  

not influenced by ANP/cGMP. It is discussed that cGMP/PKG phosphorylates smad2 or smad3 on 

additional serine residues which are different from the TGFβ phosphorylation sites leading to inhibition 

of nuclear translocation [163]. These results are in agreement with studies in cardiac fibroblasts. Here, 

the TGFβ induced nuclear translocation of p-smad3 was also abolished by cGMP. As already mentioned, 

PKG1 phosphorylated smad3, but at sites different from those required for its TGFβ induced nuclear 

translocation. Furthermore, the stimulation of the cGMP/PKG pathway by ANP reduced TGFβ induced 

myofibroblast differentiation, proliferation, collagen production and PAI-1 expression [164]. 

Thus the pharmacological potentiation of endogenous ANP or BNP may be a therapeutic approach 

for the treatment of renal fibrosis. 

Disruption of the gene encoding for GC-A/NPR-A leads to the development of renal fibrosis. 

Thereby, TNFα and IL-6 are increased [165]. These findings are in accordance with Kumar et al., who 

showed that increased renal NPR-A/cGMP signalling attenuates renal fibrosis [166]. ANP is a member 

of a natriuretic peptide family, which counterregulates renal hypoxia and the consequent process of 

fibrosis, exerting protective effects in response to oxidative stress and fibrosis [167]. An earlier study 
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also demonstrated that activation of the endogenous NPR-A system and administration of ANP increased 

the cGMP levels leading to reduced renal interstitial fibrosis induced by UUO [168]. 

Nesiritide is the recombinant form of naturally occurring brain natriuretic peptide (BNP) enhancing 

cGMP levels via GC-A/NPR-A. This signalling pathway has demonstrated cardiac antihypertrophic and 

antifibrotic effects in several experiments. 

In mutant mice lacking Npr1 gene, which is encoding for GC-A/NPR-A, increased fibrosis, 

hypertrophic growth and remodeling of the kidney was observed [165]. 

Chronic excess of BNP has shown to ameliorate glomerular hypertrophy and mesangial expansion 

after renal ablation, improves immune-mediated renal injury and prevents glomerular injury in 

progression of diabetic nephropathy [169–171]. 

In the last years new chimeric natriuretic peptides were developed to generate more potent peptides. 

CBA-NP is a fusion of diverse amino acid sequences of ANP, BNP and CNP. CD-NP is a composition 

of CNP and DNP, which enables the newly created peptide to act on both natriuretic peptide receptors 

NPR-A and NPR-B. Both CD-NP and CBA-NP attenuated renal fibrosis resulting in an improved renal 

function [172,173]. 

CNP could be a novel approach for the prevention of acute kidney impairment after ischemia-reperfusion 

injury. Jin et al. demonstrated improved renal vascular function and degraded glomerular and tubular 

microstructure in an experimental rat model of ischemia reperfusion injury. This effect is supposed to 

be mediated via cGMP signalling [162]. 

These observations suggest that natriuretic peptides and their derivatives play a pivotal role in the 

renal antifibrotic properties. However, nesiritide could not provide improvement of kidney function in 

the ASCEND-HF clinical trial in acute decompensated heart failure [174]. 

LCZ696 is the first compound of a new drug class, ARNI (angiotensin receptor neprilysin inhibitor) 

and is now being investigated in patients with chronic kidney disease [175]. LCZ696 simulaneously 

blocks AT1R and neprilysin, which is a natriuretic peptide degrading enzyme, resulting in enhanced 

activity of natriuretic peptides. Recently, clinical data are promising for chronic heart failure patients 

with reduced ejection fraction as they are superior to angiotensin-converting enzyme (ACE) inhibition 

by reducing risk of death and hospitalization in heart failure [176]. LCZ696 may provide kidney 

protection through blocking the profibrotic RAAS and concomitantly stimulating the antifibrotic 

neprilysin inhibition. Renoprotective evidence is supposed, but evidence is still lacking. 

2.2.2. cGMP Effectors 

cGMP Dependent Protein Kinases (PKG) 

The major downstream effector of cGMP is PKG. Two isoforms of PKG are known—PKG1 and 

PKG2. However, only PKG1 is studied regarding the involvement in renal fibrosis. 

Using PKG1-KO mice, Schinner et al. [92,119] showed that cGMP acts antifibrotically via activation 

of PKG1 in UUO. Thereby, the antifibrotic effects of cGMP/PKG1 were mediated by inhibition of the 

profibrotic RhoA/ROCK signalling to inhibit TGFβ signalling and myofibroblast formation (see above). 

In human mesangial cells (HMCs), TWEAK, which is an inflammatory cytokine, led to increased 

TGFβ expression by stimulation of Ras/Erk1/2. Interestingly, PKG1 protein expression and activity was 

reduced. Thereby, the Ras/Erk1/2 pathway was essential for the downregulation of PKG1 by TWEAK. 
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Stimulation of PKG1 via 8Br-cGMP abolished TWEAK induced upregulation of TGFβ [177]. These 

results are in accordance with a study of Cui et al., that increasing PKG activity reduces ECM 

accumulation in renal mesangial cells. PKG can be activated by increased cGMP levels. In addition to 

pharmacological approach, PKG transgenic mice (Tg mice) were used to demonstrate the antifibrotic 

effects of PKG. Tg mice, which expressed more PKG1 than WT mice, showed the same results 

compared to the treatment with PDE5 inhibitor sildenafil [132]. Until today, no direct PKG activators 

are in clinical trial, only cGMP elevating agents are being tested. 

2.2.3. Further cGMP Influencing Systems 

Renin Angiotensin Aldosterone System (RAAS) 

Angiotensin acts via angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R). 

Interestingly, AT2R has opposite effects of AT1R which induces fibrosis. The expression of AT2R is 

increased in pathological situations and is able to suppress cardiac fibrosis. Thereby, the AT2R effect is 

mediated via bradykinin/NO/cGMP pathway AT2R thereby forms a heterodimer with the bradykinin 

receptor B2R to induce eNOS which subsequently activates NO/cGMP signalling [178]. The effect of 

AT2R might be promising but is not yet explored in the kidney. 

Diabetes mellitus is accompanied by an increase of the RAAS activity, including ATII and aldosterone 

production. Increased aldosterone was associated with reduced NO/cGMP and increased fibrosis in 

diabetic kidney [10]. The renin inhibitor aliskiren blocked ATII and aldosterone production [179] and 

the dihydropyridine-type calcium channel blocker amlodipine reduced aldosterone levels [180]. Decrease 

of aldosterone and its downstream effectors via aliskiren, amlodipine or the combination of both lead to 

reduced oxdidative stress and fibrosis via enhanced NO/cGMP availability in the kidney [10]. 

Kallikrein 

Bradykinin mediates vasodilatory and antiinflammatory action through NO signalling. Furthermore, 

kallikrein positively modulates bradykinin production which subsequently activates eNOS. This 

mechanism is responsible, among others, for its antifibrotic effects. 

Kallikrein reverses salt-induced renal fibrosis and glomerular hypertrophy in the interstitium and 

vasculature of hypertensive Dahl salt-sensitive rats [181]. The repair of renal tubular damage was also 

observed in a gentamycin-induced nephrotoxicity in normotensive rats [182]. Similar results were shown 

in a mineralocorticoid-induced renal fibrosis [183]. 

All-Trans-Retinoic Acid/Sodium Butyrate 

All-trans retinoic acid in combination with sodium butyrate showed synergistical effects in reducing 

renal fibrotic biomarkers by enhancing Npr1 gene transcription which encodes for the GC-A/NPR-A [184]. 

Renal fibrosis and immunoexpression of renal α-SMA was reduced by ≥70%, and TNFα as well as  

IL-6 showed lower plasma and renal levels. This could be an important finding for the prevention of 

hypertension-related kidney diseases. 
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3. Conclusions 

Cyclic nucleotide signalling plays a prominent role in the development as well as in the prevention 

or amelioration of progressive renal disease. cGMP concentrations are diminished during kidney 

fibrosis. Enhancement of cyclic nucleotides improves renal fibrosis at different stages. They reduce 

TGFβ signalling, transcription of profibrotic cytokines, oxidative stress, myofibroblast formation and 

subsequently ECM accumulation in different experimental models for studying renal fibrosis in vitro 

and in vivo. Therapeutic approaches are in development, but treatment options modulating cyclic 

nucleotides are still lacking in clinical practice. Hence, preclinical experimental research is indispensable 

for the understanding of cyclic nucleotide dependent antifibrotic signalling and for the generation of 

drugs that may find their way into clinical practice for the treatment or prevention of kidney failure. 
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