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SUMMARY

Complement dysregulation is a feature of many
retinal diseases, yet mechanistic understanding at
the cellular level is limited. Given this knowledge
gap about which retinal cells express complement,
we performed single-cell RNA sequencing on
�92,000 mouse retinal cells and validated our results
in five major purified retinal cell types. We found ev-
idence for a distributed cell-type-specific comple-
ment expression across 11 cell types. Notably,
M€uller cells are the major contributor of complement
activators c1s, c3, c4, and cfb. Retinal pigment
epithelium (RPE) mainly expresses cfh and the termi-
nal complement components, whereas cfi and cfp
transcripts are most abundant in neurons. Aging en-
hances c1s, cfb, cfp, and cfi expression, while cfh
expression decreases. Transient retinal ischemia in-
creases complement expression in microglia, M€uller
cells, and RPE. In summary, we report a unique com-
plement expression signature for murine retinal cell
types suggesting a well-orchestrated regulation of
local complement expression in the retinal microen-
vironment.

INTRODUCTION

Single-nucleotide polymorphisms in complement genes are

associated with a number of retinal diseases, including glau-

coma (Scheetz et al., 2013), age-related macular degeneration

(AMD) (Weber et al., 2014), and diabetic retinopathy (Yang
Cell Repor
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et al., 2016; Wang et al., 2013). The immune-privileged retina is

among others under regular immune surveillance by proteins of

the complement system. Although systemic complement is

known to perform homeostatic functions that include opsoniza-

tion for phagocytosis, formation of membrane attack complexes

(MACs), and recruitment of immune cells (Merle et al., 2015), the

local regulation of complement within the cellular architecture of

the neurosensory retina is poorly understood. Current evidence

suggests that complement components are locally expressed

in the retinal pigment epithelium (RPE) (Schäfer et al., 2017;

Luo et al., 2011; Anderson et al., 2010; Tian et al., 2015; Li

et al., 2014; Rutar et al., 2012) as well as microglia (Rutar et al.,

2012) and could be independent of the systemic complement,

which is produced in hepatocytes and distributed via the blood-

stream. A retinal complement system may help facilitate a rapid

response to microbial invasion and disposal of damaged cells

despite an intact blood-retina barrier.

Upregulation of complement expression, subsequent protein

deposition, and MAC formation have been demonstrated in the

normal aging (Chen et al., 2010; Ma et al., 2013; Chen et al.,

2008) and diseased retina (Crabb, 2014; Sudharsan et al.,

2017; Radu et al., 2011; Zhang et al., 2002; Kuehn et al., 2008).

In fact, complement components present in extracellular de-

posits (termed ‘‘drusen’’) are the hallmark of AMD (Crabb,

2014). Consequently, it is tempting to speculate that a source

of complement components during aging could be the retina/

RPE itself, as animal studies have shown increased retinal

expression of c1q, c3, c4, and cfb in older mice (Ma et al.,

2013; Chen et al., 2010). Complement upregulation has also

been observed in retinitis pigmentosa (Sudharsan et al., 2017),

Stargardt disease (Radu et al., 2011), and conditions associated

with transient ischemic tissue damage, viz. diabetic retinopathy

(Zhang et al., 2002) and glaucoma (Andreeva et al., 2014; Kuehn
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et al., 2008; Kim et al., 2013). Despite a clear indication for a

fundamental role of the complement system in the retina, it re-

mains unknown which retinal cell populations shape comple-

ment homeostasis in the healthy, aging, and diseased retina.

The retina consists of more than 40 different cell types, which

cooperate to capture, process, and transmit visual signals to the

brain (Macosko et al., 2015; Tian et al., 2015; Rheaume et al.,

2018; Shekhar et al., 2016). Our understanding of the healthy

and diseased retina and its supporting tissues like the RPE and

choriocapillaris has grown recently (Tian et al., 2015; Pinelli

et al., 2016). Transcriptomic studies have focused on the whole

retina or RPE but miss information about cell-type-specific tran-

scription (Pinelli et al., 2016; Tian et al., 2015). Droplet-based sin-

gle-cell RNA sequencing (scRNA-seq) has identified the molec-

ular differences among retinal ganglion cells (Rheaume et al.,

2018), bipolar cells (Shekhar et al., 2016), and M€uller cells

(Roesch et al., 2008), but these studies provided little insight

into complement expression of the major retinal cell types and

changes occurring with aging and degeneration.

Here, we profile complement expression at the single-cell level

in themajor 11 retinal cell types of themouse and further validate

these results in enriched M€uller cells, vascular cells, microglia,

neurons, and RPE cells. We observed a characteristic contribu-

tion of complement transcripts from distinct retinal cell popula-

tions. Our data suggest that the classical and alternative

complement pathway could be activated solely by local comple-

ment production and thereby could induce C3 cleavage. CFH

is the major complement inhibitor in the mouse retina; retinal

stress consistently downregulates cfh expression. Moreover,

cell-type-specific changes in complement expression differed

in aging and acute retinal degeneration induced by transient

ischemia, implying a stress-dependent and cell-type-specific

modulation of retinal complement homeostasis mediated by

the tissue itself.

RESULTS

Single-Cell RNA Sequencing Reveals Complement
Component Expression across Multiple Cell Types
Retinal cells, �92,000 total, were isolated from six male healthy

C57BL/6J mice and separated for scRNA-seq (Macosko et al.,

2015; Shekhar et al., 2016; Cheng et al., 2013b; Kim et al.,

2008). Following sequencing, the data were analyzed using 30

principal components as input to the t-Distributed Stochastic

Neighbor Embedding (t-SNE) method for dimension reduction

and data visualization (Figures 1A and S1). Cells were classified

into elevenmajor types based on establishedmarkers (Tables S1

and S2). We then mapped the expression of complement genes

across all 11 cell types and observed a distributed expression of

complement components across various resident cells in the

retina (Figure 1B; Table S3).We detected cell-type-specific com-

plement expression mainly in the classical pathway via scRNA-

seq. Moreover, we mapped the cell-type-dependent expression

of both soluble and membrane-bound complement regulators

(Figure 1C; Table S3) and found main soluble regulators cfh,

vtn, and clu. Cell types expressing complement regulators at

the highest levels were M€uller cells, pericytes, and endothelial

cells. Complement receptors, which detect complement activa-
2836 Cell Reports 29, 2835–2848, November 26, 2019
tion (anaphylatoxins or opsonins), were only expressed in micro-

glia cells (Figure 1B; Table S3).

The results from scRNA-seq regarding complement compo-

nent transcription were exemplary validated using RNA fluores-

cence in situ hybridization (FISH) (Figure 2). Complement

component c4 expression colocalized with gfap-positive astro-

cytes/M€uller cells in the retinal ganglion cell layer (GCL) (Fig-

ure 2A), which correlated with scRNA-seq data (Figure 1B).

The scRNA-seq data were also confirmed for complement regu-

lator cfi, which was specifically detected in bipolar cells both by

transcription analyses (Figure 1C) and via RNA-FISH (Figure 2B).

Complement receptor c1qbpwas detected in all cell populations

in RNA sequencing (RNA-seq) (Figure 1B). In line with that, we

found a colocalization of c1qpb transcripts with markers of

microglia/macrophages (hereafter termed microglia) (tmem119)

in the GCL (Figure 2C), but rather evenly distributed signals

were detected in all retinal layers except for the inner nuclear

layer (INL).

qPCR-Based mRNA Analyses of Purified Neurons,
M€uller Cells, Microglia, Vascular Cells, and RPE
Decipher the Differentially Transcriptional Relevance of
Retinal Cells
Though our single-cell analysis uncovered complement expres-

sion in different cell types, some complement components re-

mained undetectable or were found in relatively rare cell types

at the single-cell level (Table S3). Therefore, we further validated

our results on M€uller cells, microglia, vascular cells, and retinal

neurons purified by immunomagnetic cell separation using

quantitative real-time PCR. RPE was purified through manual

scratching of eyecups from male and female albino BALB/c

and pigmented C57BL/6 mice (Figure 3A) (Grosche et al.,

2016). All five cell populations were characterized by the expres-

sion of specific marker genes (Figures 3A–3F).

Commonly used housekeeping genes showed high transcrip-

tional and translational variability across different cell types (Fig-

ures S2A–S2D) except pyruvate dehydrogenase E1 component

subunit beta (pdhb) (Figures S2E and S2F) and isocitrate dehy-

drogenase 3 (NAD+) beta (idh3b) (Figures S2G and S2H), which

had relatively homogeneous expression levels. We decided to

use idh3b to determine how distinct cell populations proportion-

ally contributed to the total retinal complement transcriptome,

because it showed expression levels similar to those of the com-

plement genes, while gapdh, for example, was expressed at

much higher levels and thus appeared to be less appropriate

(Figure S2C). Based on idh3b, we estimate that the neuronal

fraction contributes 60% of the total retina transcriptome and

M€uller cells contribute 25% (Figure 4A). Vascular cells and mi-

croglia expressed lower levels of idh3b, indicating low cell

numbers and/or low transcription activity of these cell types in

the mouse retina. Quantifying total RNA by RNA picochip

analysis, we found similar RNA quantities in M€uller cells (33%),

neurons (26%), and the RPE/choroid fraction (22%) per mouse

(Figure 4B). In accordance with these results, PDHB protein

levels were relatively similar across M€uller cells, neurons, and

RPE cells (Figure 4C), whereas microglia and vascular cells

showed weaker PDHB signals. In agreement with previous re-

ports of cell counts in the mouse, we found neurons make



Figure 1. Single-Cell RNA-Seq of Murine Retina Reveals Complement Expression in Different Cell Types

Distribution of complement expression in normal mouse retina is delineated by single-cell transcriptomics.

(A) Using unsupervised clustering, we detect all 11 major cell classes in the mouse retina; the distinct cell types that passed quality control (described in STAR

Methods) are shown in a t-SNEmap (out of the 92,343 cells total, 91,798 cells passed the filter of having mitochondrial gene expression <50%, and 200 < unique

gene counts <3,500). Percentages of assigned cell types are summarized in the right panel. BC, bipolar cell.

(B) Cell-type-specific expression of complement genes is shown in a heatmap. Mean expression values of the genes were calculated in each cluster by randomly

subsampling a population of 100 cells for each cell type. Each row represents a retinal cell type, and each column corresponds to a gene.

(C) The expression of complement regulators among the various retinal cell types is shown bymeans of a dot plot. Cell types are arranged roughly by their location

in the retina, from the inner layer (top) to the outer layer (bottom). The size of each circle (pct.exp) depicts the percentage of cells in which the gene was detected

for a given cell type, and its color depicts the average transcript count in the expressing cells (avg.exp.scale).

See also Figure S1 and Tables S1–S3.
up 85%, RPE cells 13%, M€uller cells 2%, and microglia and

vascular cells are less than 1% of all retinal cell types (Figure 4D;

Table S2) (Jeon et al., 1998). While M€uller cells are a compara-
tively infrequent cell type (2%), they contribute up to one third

of the total mRNA content in the retina (Figures 1A, 4A, 4B,

and 4D; Table S2). Accordingly, our study provides important
Cell Reports 29, 2835–2848, November 26, 2019 2837
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Figure 3. Validation of Enrichment of

Different Retinal Cell Types

(A) Schematic view of distinct retinal cell types.

M€uller cells (blue), the central glia cells of the retina,

are in direct contact with the vitreous and various

retinal cell types: microglia (green), vascular cells

(red), and neurons (gray). 80% of the retinal neu-

rons are light-responsive photoreceptors that are

supported by retinal pigment epithelial cells (RPE,

brown).

(B) scRNA-seq data illustrating expression of

glutamine synthetase (glul) across retinal cells (top

panels). Murine retinal cell populations were en-

riched by immunomagnetic cell separation and

characterized by quantitative real-time PCR using

specific markers (bottom panels); Glul is a marker

for the M€uller cell fraction.

(C) Microglia (and putatively co-enriched macro-

phages) specifically express cd11b (itgam).

(D) Vascular cell enrichment was proven by strong

expression of pecam.

(E) Retinal neurons were characterized by an

enhanced detection of the photoreceptor-specific

nrl mRNA compared to the other cell populations.

(F) Rpe65 was exclusively expressed in RPE/

choroid. Exemplarily shown mean values ± SEM

for cell preparations from BALB/c mice at 8, 16,

and 24 weeks of age (n = 4‒6 for each age).

See also Figure S2 and Table S7.
insight into the proportional transcriptional activities of these five

major cell populations in the retina.

Retinal Cell Populations Express Unique Complement
Signatures
Encouraged by the distributed complement expression pattern

across 11 cell types (Figures 1B and 1C; Table S3), we hypothe-

sized that specific retinal cell types shape the intraretinal com-
Figure 2. Localization of Selected Complement Component Transcripts in the Healthy Retin

rescence In Situ Hybridization

(A) Spots indicative of c4 transcripts were detected in the GCL and clearly overlap with the very few particles p

No transcripts of c4 or, as expected, the astrocyte marker gfap were detected in the INL or outer nuclear la

(B) Cfi expression was very weak in the GCL, with no clear association with cell somata, but was detected at

overlapped with those of the bipolar marker gsg1 (asterisks). In the ONL, probes detecting cfi transcripts pr

background level. A clear distinction regarding whether cfi transcripts are localized in photoreceptors and/or

in the ONL cannot be made.

(C) clqbp transcript was rather evenly distributed across the whole retina. A partial overlap with the microg

(arrowheads). Note that c1qbp transcripts were detected in the inner plexiform layer (IPL), but not in the INL

(D) cfh transcripts were detected at low levels in the GCL and INL, and no clear overlap of signals with that o

seemed to bemore enriched in the outer plexiform layer (OPL). Similarly, cfh transcript levels are low in theON

M€uller glia enwrapping photoreceptor somata.

(E and F) As positive control, probes conjugated either with (E) Quasar 670 (green) or (F) Quasar 570 (red) targe

detection of the transcript especially in association with cell bodies, which confirms the high expression

fluorescence background was detected in the recording channels if no appropriate probe was incubated with

background was detected in the OPL and ONL if no appropriate probe was incubated with the tissue.

Scale bars, 5 mm.

Cell Report
plement homeostasis through expression

of specific complement components. We

selected six disease-associated genes

(Schäfer et al., 2017; Weber et al., 2014)
(c1s, c3, cfb, cfp, cfh, and cfi) and six supporting complement

genes (c4, cfd, c5, c6, c7, c8, and c9) for further validation via

quantitative real-time PCR and western blot (Figures 4E and

4F) and found that M€uller cells contributed themost complement

activator transcripts, expressing 47% of c1s, 67% of c4, and

54% of c3 retinal transcripts in 8-week-old mice (Figure 4E).

Retinal neurons dominated the expression of the complement

regulators cfi and cfp, while 59% of the cfh, 45% of the cfb,
a ofPigmented 10-Week-Old Mice via Fluo-

ositive for the astrocyte marker gfap (arrowheads).

yer (ONL).

a rather high level in the INL. There, signals partially

oduced signals clearly above the autofluorescence

in M€uller glia that ensheathe photoreceptor somata

lia marker tmem119 in the GCL could be validated

.

f the ganglion cell marker pou4f1 was observed. It

L. The staining pattern could reflect an expression in

ting transcripts of gapdhwere used. Note the robust

levels of gapdh detected via scRNA-seq. Auto-

the tissue in the GCL, while some autofluorescence

s 29, 2835–2848, November 26, 2019 2839



Figure 4. Contribution of Retinal Cell Types to the Retinal Architecture, Expressome, and Complement Homeostasis

(A) mRNA expression of the housekeeping gene idh3b as determined in samples from retinal cell populations enriched from retinae of 8-, 16, and 24-week-old

albino mice without adjusting the RNA input amount per cell type. This enables an estimate of the contribution of each cell type to the retinal transcriptome. Bars

represent mean values ± SEM (n = 4‒6).

(B) The total RNA amount isolated from retinal cell populations enriched from albino mice (8 to 16 weeks old) was investigated using picochip analysis. Bars

represent mean values ± SEM (n = 5‒8).

(C) Quantification of PDHB protein expression via western blots performed on five retinal cell types purified from 4‒6 albino mice.

(D) Previously published (Jeon et al., 1998) and our own retinal cell counts in the healthy mouse retina.

(E) Expression levels of indicated complement components were determined from cells of albino mice at mRNA (bars, 8-week-old mice) and at protein level

(western blot, 8- to 24-week -old mice). The overall contribution of each cell population to the local complement homeostasis was determined by analyzing the

total yield of mRNA or protein derived from the respective cell population so that both are reflected by the data (expression level per cell type and the number of

cells per cell type present in the retina).

(F) Scheme of the complement system that can be activated via three different mechanisms and is enhanced by an amplification loop. Note that complement

components only detected at the transcript level are delineated in pink, and those that were also confirmed at the protein level are shown in dark pink. Com-

plement components with higher expression in retinal cell types compared to the RPE/choroid fraction are pinpointed by a thick outline. CP, classical pathway;

AP, alternative pathway.

See also Figures S2 and S3 and Table S7.
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Figure 5. Retinal Phenotype and Complement Homeostasis in Aging

Albino Mice

(A) Expression levels of c1s, c3, cfb, cfp, cfh, and cfi were determined from

cells of albino mice at the mRNA level (bars) at the indicated ages. The overall

putative contribution of each cell population to the local complement ho-

meostasis was determined by analyzing the total yield of mRNA derived from

the respective cell population.

(B–D) The quantities of DAPI+ cell nuclei in the (B) GCL, (C) INL, and (D) ONL

were comparable in 16- to 32-week-old albino retinae.

(E) Left: microglia were quantified in the inner retinal layers (INR) such as

ganglion cell and inner plexiform layer and additionally in the outer plexiform

layer (OPL) on basis of Iba1 labeling in mice of the indicated age. Right: the

area occupied by processes of a single microglia was measured as exem-

plarily depicted by the dashed circles of different color for OPLmicroglia in (D).

Bars represent mean values ± SEM from 2‒4 animals. *p < 0.05, **p < 0.01,

Mann-Whitney U test. See also Figure S2 and Table S7.
and 82% of the cfdmRNA and c5‒c9 transcripts responsible for

the terminal MAC were detected in RPE. Despite the relatively

low number of microglia, the resident immune cells of the retina
contributed proportionally more cfhmRNA and a similar amount

of cfb transcripts to the retinal complement population

compared with retinal neurons.

We confirmed expression of complement activator C1s, CFB,

and CFP proteins in all enriched murine cell populations (Fig-

ure 4E). Complement C3 protein was detected in RPE, M€uller

cells, and neurons, while the complement inhibitor CFH and

CFI proteins were present in all cell types except the vascular

cell population. Alternative pathway protease CFDwas identified

in the M€uller cell and RPE fraction, while C6 was only found in

neurons and C7 was detected in M€uller cells and neurons. We

could not detect C4, C5, and C9 proteins in any of the retinal

cell populations (Figure 4E). For C8, no specific antibody was

commercially available. There was an overlap in the complement

transcript levels determined by quantitative real-time PCR and

that of the complement proteins detected in various cell popula-

tions. For example, the strong c1s mRNA expression found in

M€uller cells matched the robust C1s protein levels, and cfd

mRNA expression corresponded with CFD protein detection in

RPE. Interestingly, neurons expressed �40% of the total cfp

mRNA, whereas CFP protein levels were highest in microglia

(Figure 4E). This may imply a spatial separation of complement

component transcription and complement component accumu-

lation at the protein level within the retina.

Age-Dependent Changes in the Complement
Expression of Different Retinal Cell Populations
We further investigated age-dependent changes in expression

levels of known disease associated complement transcripts via

quantitative real-time PCR among the different retinal cell popu-

lations in mice from 8 to 24 weeks of age. C1s, cfb, cfp, and cfi

transcripts increased with age among all cell populations (Fig-

ure 5A). Upregulated c1s expression in RPE cells lead to

doubling of the total retinal c1s mRNA between 8 and 24 weeks

(Figure 5A). Transcripts of the alternative pathway activator cfb,

primarily produced by M€uller cells and RPE, increased at 16 and

24weeks of age. The largest increase in cfb transcript levels (2.6-

fold) was found in the microglial population between 8 and

24 weeks (Figure 5A). The highest proportional contribution of

cfp retinal transcripts came from neurons (55%) at 8 weeks of

age, and this contribution further increased to 73% at 16/

24 weeks of age (Figure 5A). In contrast, c3 expression remained

relatively stable (Figure 4E), except for the vascular cell popula-

tion, where the c3 levels dropped by 50% between 8- and 24-

week-old mice (Figure 5A).

CFH is themain negative regulator of the complement system.

We found that cfh expression decreased by 50% in all cell pop-

ulations in 24-week-old mice compared to 8-week-old mice. In

24-week-old mice, RPE cells produced the majority of the retinal

cfh (Figure 5A), although the majority of the cfi transcripts (which

act together with CFH) were produced by neurons, specifically

rod bipolar cells (Figures 1C and 5A). Together with its functional

counterpart, cfp, the expression of cfi also increased in neurons

of 24-week-old mice compared to the 8- and 16-week-old mice

(Figure 5A).

These divergent changes in the local complement expression

in the retina of aging mice were not accompanied by any detect-

able retinal cell loss (Figures 5B–5D) but were accompanied by
Cell Reports 29, 2835–2848, November 26, 2019 2841



Figure 6. Comparison of Complement

Component Expression between Retinal

Cell Types of Aging Mice

(A) Expression of complement components was

determined by quantitative real-time PCR. Dia-

grams represent the relative amount of transcripts

per cell (normalized to the idh3b housekeeper

expression) of the different complement compo-

nents in the respective cell type enriched from

mice at the indicated age. Note the high expres-

sion level of inhibitory complement factors in RPE/

choroid samples as well as in microglial and

vascular cells, while complement-activating genes

appear to dominate in M€uller cells and neurons.

Data were collected from 4‒6 wild-type albino

mice (numbers are given in Table S4).

(B) Complement expression analysis by quantita-

tive real-time PCR was performed on enriched

retinal cell types from 8-, 16-, and 24-week-old

mice. Bars represent mean values ± SEM of cells

purified from 4‒6 animals. Mann-WhitneyU testing

was performed on all data. A circle indicates a

significant difference compared to the expression

level at 8 weeks of age; whereas a diamond in-

dicates a significant difference compared to the

expression level at 16 weeks of age. �/>p < 0.05;
� �/>>p < 0.01.

See also Figure S2 and Table S7.
increased microglia numbers (Figure 5E) and enhanced micro-

glial activation, as suggested by a decreased occupied area of

microglial processes (Figure 5E).
A Characteristic Proportion of Activating and Inhibiting
Complement Transcripts in Distinct Retinal Cell Types
Having noted a cell-type-specific complement expression in our

data, we sought to understand the balance of complement acti-

vator and inhibitor expression in the different cell types by

normalizing complement expression levels to the housekeeping

gene to allow a comparison between cell populations indepen-

dent of cell counts (Figure 6). Strikingly, we discovered that

certain cell types like RPE and microglia mainly express inhibi-

tory complement components (cfh and cfi), whereas other cell

populations, such as neurons and M€uller cells, mostly express

complement activators (c1s, c3, cfb, and cfp) (Figure 6A). Inter-

estingly, neurons expressedmore cfi than cfh than the remaining

cell types (Figure 6A).

Finally, we checked for age-dependent changes in the expres-

sion of the respective complement components—now, in

contrast to results presented in Figure 5A, independent of puta-

tive changes in cell numbers. We could confirm a significant up-

regulation of complement activators such as c1s, c3, cfb, and

cfp with increasing age (Figure 6B). Most of these changes

were detected in RPE cells but at later stages (e.g., 24-week-

old mice) also in microglia, vascular, andM€uller cells. Expression

changes of complement inhibitors were not consistent across

cell types. While cfh was significantly downregulated in M€uller

glia in mice at 16 weeks of age, it was upregulated in RPE. More-
2842 Cell Reports 29, 2835–2848, November 26, 2019
over, cfi was significantly downregulated in microglia but upre-

gulated in M€uller glia, retinal neurons, and RPE.

The spatial distribution of complement activators and regula-

tors signifies a unique complement signature for each retinal

cell type that was dynamically changing, even though relatively

short intervals of aging were investigated.

Acute Ischemic Retinal Injury Triggers Robust Cell-
Type-Specific Complement Expression
Retinal tissue injury is a commonmanifestation of retinal disease.

To evaluate how tissue injury might change cell-type-specific

complement expression, we used a retinal ischemia/reperfusion

(I/R) injury model to induce acute retinal degeneration (Wagner

et al., 2017). We found a significant increase in the expression

of complement activators 24 h post-ischemia in the different iso-

lated cell populations (Figure 7). Consistent with our previous re-

sults, cfi appeared to be the main complement inhibitor in

neurons, whereas cfh was the major complement inhibitor ex-

pressed in the remaining cell populations. Compared to aging

retina (Figures 5 and 6), the upregulation of c1s, c3, cfb, and

cfi transcript expression of was more pronounced in post-

ischemic retina at the mRNA level (Figures 7A–7C). Interestingly,

this response in c1s, c3, and cfb expression was provoked by

changes in the RPE. Moreover, cfh and cfi showed again amutu-

ally opposite pattern of expression changes whereby cfhmRNA

decreased and cfi increased in I/R retinae (Figure 7C). Detection

of C3 (Figure 7D) and C1s (Figure 7E) at protein level via immu-

nolabeling 3 days after the ischemic tissue injury was performed

to enable detection of newly formed protein. C1s puncta were

evenly distributed over all retinal layers, with a slight enrichment



Figure 7. Transient Ischemic Stress Results in Cell-Type-Specific Upregulation of Transcripts from Activating Complement Components

and Downregulation of cfh

(A) The relative amount of complement transcripts per retinal cell type indicated that complement-activating transcripts are more abundant in pigmented mice

than in albino mice in which transcripts of complement inhibitors dominate at the same age. Note the strong relative upregulation and the resulting shift toward

transcripts from complement activators 24 h after transient ischemic retinal stress in all retinal cell types of C57BL/6 mice (numbers are given in Table S5).

(B) Major changes of local complement expression (normalized to the housekeeper) were detected by quantitative real-time PCR 24 h after transient ischemia.

The most pronounced upregulation of complement activators was found in M€uller cells (c3 and cfb), microglia (c3, cfb, and cfp) and RPE (c1s and c3). Cfh was

downregulated in M€uller cells, while cfi was upregulated in all investigated cell types. Significantly different expression as compared to that cells from healthy

control eyes is indicated (*p < 0.05, **p < 0.01, Mann-Whitney U test).

(C) Complement transcript contribution of the different retinal cell populations (no normalization to the housekeeper and no adjustment of RNA input) indicated a

pro-inflammatory milieu in the post-ischemic retina. M€uller cells, microglia, and RPE cells mainly contributed to the changed complement homeostasis in post-

ischemic retinae.

(legend continued on next page)
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in the GCL and RPE (Figure 7D). Similarly, C3 labeling was

observed in all retinal layers, and a moderate rise in labeling in-

tensity could be observed 3 days after the ischemic tissue injury,

especially in the outer retina affecting photoreceptors and RPE

(Figure 7E). Complement components are typically secreted by

the producing cells. In line with this fact, we did not find a perfect

cell-type-specific match of protein distribution compared to the

transcript signatures described above. It has to be considered

that ischemic damage may lead to transient breakdown of the

blood retinal barrier and that the complement components de-

tected via this approach could also be derived from the systemic

complement system, at least in post-ischemic tissue.

DISCUSSION

Since the retina is an immune-privileged tissue, understanding

its local complement system is critical to our understanding of

retinal inflammation. To identify the retinal cell types expressing

complement, we isolated and sequenced �92,000 cells from

healthy mouse retinae. scRNA-seq was validated by RNA-FISH

analysis for selected genes and 12 complement components

by assays of RNA and protein in enriched cell populations of

M€uller cells, microglia, vascular cells, retinal neurons, and RPE.

Collectively, our results show that complement components

are locally expressed by different retinal cell populations, chal-

lenging the conventional belief that the complement source in

the retina is confined to resident immune cells. We detected

complement transcripts and proteins that were produced at

higher levels in the neuroretina than in RPE that would be suffi-

cient to activate the classical and/or alternative complement

pathway. In consequence, cleavage of C3 into its anaphylatoxin

C3a and opsonin C3b could be performed independently of

blood-derived complement components (Figure 4F). Comple-

ment transcripts of the components that are key to MAC assem-

bly were primarily detected in RPE and rarely found as proteins in

the neuroretina. The RPE forms the outer retina-blood barrier,

which is able to secrete substrates not only toward the subretinal

space (apical) but also toward the choroidal side (basal). Consid-

ering its complement expression profile and the largely under-

studied idea of a context-specific apical or basal secretion

pattern of complement by RPE sitting at the blood-retinal inter-

face, it is tempting to speculate that by doing so, the RPE could

actively shape the complement homeostasis of the retina, which

needs to be addressed in future studies.

Given the cell-specific ratios of activating and inhibiting com-

plement component expression levels, each cell type appears to

have a specific role in maintaining retinal complement homeo-

stasis. Moreover, cell populations present in the retina at rela-

tively low numbers, such as microglia and M€uller cells (Jeon

et al., 1998), seem to have a major impact on retinal complement

expression levels. We found that these cells contribute substan-

tially to the total retinal transcriptome. This suggests that quan-
(D) Representative immunostaining of complement component C1S and C3 in the

co-labeled for the M€uller cell marker glutamine synthetase (GLUL), and nuclei we

(E) Representative micrographs of retinal sections incubated with the combinatio

GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, o

Scale bars, 20 mm. In (A) and (B), data were collected from 3 ‒ 5 animals. See al

2844 Cell Reports 29, 2835–2848, November 26, 2019
tification of cell numbers alone is insufficient to draw conclusions

about the contribution of cellular activity to the global expression

profile of the retina. Nonetheless, it has been shown that tran-

scription is tightly regulated according to cell size, and cells

with larger cell bodies, such as M€uller cells, can provide more

mRNA than the more abundant cells with a smaller volume

(e.g., neurons and RPE) (Marguerat and Bähler, 2012; Kempe

et al., 2015).

The complement system helps maintain normal ocular func-

tions (Sohn et al., 2003, 2000), and its dysregulation significantly

influences retinal disease (Sudharsan et al., 2017; Radu et al.,

2011; Weber et al., 2014; Yang et al., 2016; Scheetz et al.,

2013). Although earlier studies have found low background

expression of complement in retinal microglia (Luo et al., 2011;

Schäfer et al., 2017; Anderson et al., 2010; Rutar et al., 2012)

and RPE/choroid (Schäfer et al., 2017; Luo et al., 2011, 2013),

our results unequivocally show that other cell types are capable

of local complement production. We did observe expression dif-

ferences between the scRNA-seq and the MACS-enriched cell

populations that can be explained by the lower sensitivity to

detect gene expression compared to quantitative real-time

PCR. For instance, compared to the single-cell analysis, quanti-

tative real-time PCR allowed us to more readily detect the

expression of c1s and c3 in M€uller cells, cfp in microglia and

vascular cells, cfb in all major retinal cell types, and cfd, c5‒c9

mainly in RPE cells. Still, both approaches converged in their

assessment of cell-type-specific expression for most comple-

ment components. Our results also add to previous work on

retinal complement in humans (Tian et al., 2015; Li et al., 2014;

Anderson et al., 2010), mice (Schäfer et al., 2017; Luo et al.,

2011), and rats (Rutar et al., 2012) by also detecting protein

expression for nine complement components that reflect their

RNA expression.

The regulation of complement expression in whole-cell popula-

tions from the aging retina largely matched the changeswe calcu-

lated for the normalized cellular expression rates in the distinct cell

types. This implies that expression changes were driven by

changes at the transcriptional level, not by changes in cell

numbers, in accordance with the data from our morphometric an-

alyses performed on aging BALB/cmice. Interestingly, the relative

expression of all tested complement components increased in the

whole-RPE-cell population with increasing age, except for cfh,

whose expression decreased. We speculate that increased sin-

gle-cell cfh expression alone is unable to counterbalance the

overall age-associated RPE dysfunction and/or degeneration

(as also indicated by a reduced rpe65 expression). Accordingly,

RPE-dependent cfh transcripts decrease at 24 weeks, the puta-

tive contribution of cfh in regulating the alternative complement

pathway in the retinal microenvironment could be diminished,

and the intraretinal milieu could be misbalanced.

We also discovered that healthy neurons produce the comple-

ment regulators cfp and cfi. The relevance of these complement
healthy and post-ischemic pigmented retina 3 days after injury. Sections were

re visualized by DAPI co-labeling.

n of secondary antibodies and DAPI only.

uter plexiform layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium.

so Figure S2 and Table S7.



components has already been shown for AMD (Fritsche et al.,

2016; Weber et al., 2014; Micklisch et al., 2017). In murine

models of retinal degeneration, cfi expression increases after

polyethylene-glycol-induced insult, whereas cfp expression de-

creases in the light-damaged retina (Schäfer et al., 2017; Lyzo-

gubov et al., 2014). Our single cell analysis demonstrated that

cfi mRNA localizes specifically to rod bipolar cells and protein

detection to neurons and M€uller cells in mice. CFI inactivates

the complement system, and the resulting cleavage products

modulate the activity of phagocytes. Rods primarily govern

scotopic vision, and mice have a rod-dominated retina similar

to humans (except for the fovea centralis). This rod-bipolar-

cell-specific cfi transcription in themouse retina further suggests

that the retinal complement system is influenced by functional

and anatomical characteristics of the retina.

Age-related anatomical alterations in the retina have been

demonstrated in histological analyses (Grossniklaus et al.,

2013). Consistent with previous results (Damani et al., 2011;

Friedman and Ts’o, 1968), we found increased microglial and

decreased RPEmarker gene expression with aging. In our study,

the expression of complement transcripts c1s, cfb, cfp, and cfi

increased while that of cfh decreased in retinal cells between 8

and 24 weeks of age. This indicates a role for complement in

retinal adaptation during maturation and with processes of aging

(Mukai et al., 2018). Although age-dependent upregulation of

complement transcripts, including that of c1q, c3, c4, and cfb,

in the retina has been described (Chen et al., 2010), our findings

add a role for microglia in the expression of c3 and cfb. Our re-

sults also show that M€uller cells and neurons provide a substan-

tial proportion of retinal complement transcripts and, thus, their

impact on retinal complement homeostasis has likely been

underestimated by past studies. Cell culture studies have

suggested that M€uller glia can produce C1q (Astafurov et al.,

2014) and that complement activation products can regulate

M€uller cell activity via C5a-receptor and influence retinal disease

(Cheng et al., 2013a). Our results show a direct involvement of

M€uller cells in the transcript expression of the retinal comple-

ment components, and it is likely that in the retina, similar to

the brain, neurons and glia cells orchestrate complement-medi-

ated maturation of nervous tissue via synaptic pruning, progen-

itor proliferation, and neuronal migration (Tenner et al., 2018).

Aging and Alzheimer disease brains increase expression of

c1q, c3, and c4 (Walker and McGeer, 1992; Cribbs et al.,

2012), which might point to a general mechanism of local com-

plement function in the overall aging of the CNS.

Ischemia and subsequent reperfusion (e.g., upon treatment

with anti-VEGF therapy) are associated with diabetic retinopathy

(Silva et al., 2015; Traveset et al., 2016; Levin et al., 2017), and

polymorphisms in CFB and CFH (Wang et al., 2013) have been

implicated in modifying disease progression. We identified

M€uller cells as a major cell type involved in this process (by

downregulating cfh transcripts and upregulating cfb) in the anal-

ysis of post-ischemic mouse retina. Gene profiling studies of

whole mouse retinas also suggest an important role of the com-

plement pathway in I/R-associated damage (Andreeva et al.,

2014). Retinal c1q, c1s, c1r, c2, c3, c4a, and cfh expression

has been reported after transient ischemia in mice (Kuehn

et al., 2008; Kim et al., 2013; Andreeva et al., 2014). However,
it remains undetermined how individual retinal cell types modu-

late complement activity after retinal I/R injury. Here, we show

that mainly M€uller cells, microglia, and RPE increase c3 and

cfb expression following ischemia, while cfp is upregulated pri-

marily in microglia. The complement inhibitor cfi also showed

cell-type-specific enhanced mRNA levels in microglia, RPE,

and retinal neurons, whereas expression of the complement in-

hibitor cfh was significantly reduced in M€uller cells following

ischemia. These expression changes suggest augmentation of

local complement components following ischemia.

Genetic variation in several complement genes, such as CFH

andCFI, are associatedwith AMD, glaucoma, and central serous

retinopathy (Fritsche et al., 2016; Weber et al., 2014; Grassmann

et al., 2016). CFI, along with cofactor CFH, regulates comple-

ment activity by degrading complement components C3b and

C4b (Davis et al., 1984), thereby facilitating the cleavage of

C3b into inactive fragments (Sim et al., 1993). We discovered a

spatially distinct transcription pattern of cfi and its cofactor,

cfh. cfiwasmainly detected in retinal neurons (specifically rod bi-

polar cells), while cfhwas detected primarily in vascular and RPE

cells. Further, we found opposing transcriptional regulation of cfi

and cfh during aging and ischemia. These findings hint at a CFH-

independent function of CFI in the retina, perhaps in conjunction

with other cofactors such as CR1 or CD46 (Sim et al., 1993). To

date, there are no known AMD-associated polymorphisms in the

cd46 or cr1 genes, but cd46 knockout induces retinal degener-

ation (Lyzogubov et al., 2016), highlighting its relevant role in

retinal physiology.

Given the cell-type-specific expression profile of complement

genes in the retina, we propose that a balanced local comple-

ment expression is linked to normal retinal integrity. Moreover,

our data show that changes in local, cell-type-specific comple-

ment expression during aging and acute stress can be induced

by cell stress and retinal degeneration and, thus, could in the

end also contribute to disease progression. For example, a reac-

tion common to I/R damage and aging appears to be the

decrease of intraretinal expression of the complement inhibitor

cfh. This working hypothesis of course needs further validation

at the functional level by future studies.

Taken together, our cell-type-specific analyses provide an

alternative perspective on how expression of complement

genes, such as those identified by a genome-wide association

study (GWAS) for AMD and diabetic retinopathy, in various

retinal cell types might be involved in the disease mechanisms

in question. The tightly orchestrated reaction of all retinal cell

types to distinct conditions of tissue stress suggests that cell-

type-specific responses must be considered for successful

development of therapeutic strategies targeting retinal comple-

ment activity in the future.

Finally, it needs to be pointed out that the analysis of comple-

ment activation and its putative role during retinal development,

aging, and retinal degeneration was beyond the scope of the

present study that was primarily set up to generate a detailed

retinal complement expression atlas. However, complement

function in the aforementioned processes (irrespective of its

source) has been partially addressed and demonstrated by other

research groups in the field (Sohn et al., 2003, 2000; Radu et al.,

2011; Scheetz et al., 2013; Sudharsan et al., 2017; Weber et al.,
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2014; Yang et al., 2016). We would like to point out that those

local complement transcripts we were able to detect in distinct

retinal cell types are sufficient to activate the classical and alter-

native complement pathways. Given the rather low expression of

components of the terminal canonical complement pathway in

cells from the neuroretina, it remains debatable whether it can

be intraretinally active without input from the RPE that did pro-

duce moderate levels of respective transcripts and/or the sys-

temic complement system. However, we also would like to

stress the point that those complement components we demon-

strated to be locally expressed are likely to have non-canonical

functions in the retina (e.g., C3 in synapse pruning or CFH in

phagocytosis or apoptosis) (Martin et al., 2016; Hawksworth

et al., 2017). There is growing evidence for intracellular functions

of early complement components, which could have an impact

on normal cellular physiology (Liszewski et al., 2017). To follow

up this intriguing line of thinking, future studies are needed to

identify these intracellular functions in addition to their cell secre-

tion and functional interactions.
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Martin, M., Leffler, J., Smoląg, K.I., Mytych, J., Björk, A., Chaves, L.D., Alex-

ander, J.J., Quigg, R.J., and Blom, A.M. (2016). Factor H uptake regulates

intracellular C3 activation during apoptosis and decreases the inflammatory

potential of nucleosomes. Cell Death Differ. 23, 903–911.

Merle, N.S., Church, S.E., Fremeaux-Bacchi, V., and Roumenina, L.T. (2015).

Complement system part I - molecular mechanisms of activation and regula-

tion. Front. Immunol. 6, 262.

Micklisch, S., Lin, Y., Jacob, S., Karlstetter, M., Dannhausen, K., Dasari, P.,

von der Heide, M., Dahse, H.-M., Schmölz, L., Grassmann, F., et al. (2017).

Age-related macular degeneration associated polymorphism rs10490924

in ARMS2 results in deficiency of a complement activator.

J. Neuroinflammation 14, 4.

Mukai, R., Okunuki, Y., Husain, D., Kim, C.B., Lambris, J.D., and Connor, K.M.

(2018). The complement system is critical in maintaining retinal integrity during

aging. Front. Aging Neurosci. 10, 15.

Pannicke, T., Frommherz, I., Biedermann, B., Wagner, L., Sauer, K., Ulbricht,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse anti-CD29-Biotin Milteny Biotec (Bergisch-Gladbach,

Germany)

130-101-943; RRID:AB_2660700

rabbit anti-PDHB Abcam (Cambridge, UK) ab155996; RRID:AB_2814826

rabbit anti-C1s Proteintech (Rosemont, IL, USA) #14554-1-AP / (Schäfer et al., 2017);

RRID:AB_2814827

goat anti-C4 Complement Technologies (Tyler, TX, USA) #A205; RRID:AB_2814828

goat anti-C3-HRP MP Biomedicals (Santa Ana, CA, USA) #55557 / (Schäfer et al., 2017)

rabbit anti-C3 Abcam (Cambridge, UK) ab11887; RRID:AB_298669

goat anti-CFB Merck (Darmstadt, Germany) #341272 / (Schäfer et al., 2017); RRID:AB_2082392

sheep anti-CFD R&D Systems (Minneapolis, MN, USA) #AF5430; RRID:AB_1655868

mouse anti-C5 Quidel (San Diego, CA, USA) #A217; RRID:AB_452484

goat anti-C6 Complement Technologies (Tyler, TX, USA) #A223; RRID:AB_2814831

goat anti-C7 Tecomedical (Sissach, CH) #A308; RRID:AB_2814832

rabbit anti-C9 Antibodies online (Aachen, Germany) #ABIN1714714; RRID:AB_2814833

rat anti-CFP in-house (Schäfer et al., 2017)

goat anti-CFH Merck (Darmstadt, Germany) #341276; RRID:AB_2080303

goat anti-CFI Quidel (San Diego, CA, USA) A313 / (Rose et al., 2008): RRID:AB_452514

rabbit anti-IBA1 Wako Chemicals (Neuss, Germany) #019-19741 / (Schäfer et al., 2016);

RRID:AB_839504

mouse anti-glutamine sythetase Merck (Darmstadt, Germany) MAB302 /(Mages et al., 2019); RRID:AB_2110656

goat anti-rat Ig-HRP Dianova (Hamburg, Germany) #112-035-003; RRID:AB_2338128

goat anti-rabbit Ig-HRP Dianova (Hamburg, Germany) #111-035-003; RRID:AB2313567

rabbit anti-goat Ig-HRP Dianova (Hamburg, Germany) #305-035-003; RRID:AB2339400

goat anti-rabbit-IG-Cy3 ThermoFisher (Braunschweig, Germany) #A10520; RRID:AB2534029

Chemicals, Peptides, and Recombinant Proteins

CD11b (Microglia) MicroBeads, human

and mouse

Milteny Biotec 130-093-634

CD31 MicroBeads, mouse Milteny Biotec 130-097-418

Anti-Biotin MicroBeads UltraPure Milteny Biotec 130-105-637

Critical Commercial Assays

RevertAid H Minus First-Strand cDNA

Synthesis Kit

Thermo Fisher Scientific K1632

PureLink� RNA Micro Scale Kit Thermo Fisher Scientific 12183016

Deposited Data

scRNA sequencing data Gene Expression Omnibus (GEO) GSE116426

Experimental Models: Organisms/Strains

BALB/cJRj mice Janvier Labs SC-BALBJ-M

C57BL/6J Jackson Laboratories 000664

Oligonucleotides

see Table S6 This paper N/A

Software and Algorithms

Progenesis QI software for proteomics

(Version 3.0)

Nonlinear Dynamics, Waters,

Newcastle upon

Tyne, U.K.

N/A

R package Seurat Stuart et al., 2019 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FIJI (ImageJ) National Institutes of Health,

Bethesda, MD, USA

N/A

R v 3.5.1 https://www.R-project.org N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Diana

Pauly (diana.pauly@ukr.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Single cell RNA-Seq and RNA-FISHwas performed on wild-type (C57BL/6J) malemice (10 weeks old) purchased from Jackson Lab-

oratory (Bar Harbor, ME, USA). All experimental procedures were approved by the University of Pennsylvania Animal Care and Use

Committee.Micewere sacrificedwith cervical dislocation under anesthesia. Experiments for immunomagnetic separationwere done

in accordance with the European Community Council Directive 2010/63/EU and the ARVO Statement for the Use of Animals in

Ophthalmic and Vision Research and were approved by the local Bavarian authorities (55.2 DMS-2532-2-182, Germany). All mice

were housed in a 12 hour light/ dark cycle with �400 lux. Experiments on complement expression in aging mice were conducted

with 8, 16 and 24 week old male and female on BALB/cmice. Retinal ischemia was induced in one eye of 8 week old male and female

C57BL/6J mice. The untreated contralateral eye served as internal control and, accordingly, an additional control group was not

needed thereby sticking to the rules of the three R’s by keeping reducing the number of animals used in respective experiments.

METHOD DETAILS

Retinal ischemia/ reperfusion injury
The protocols for induction of transient retinal ischemia were approved by the local Bavarian authorities (55.2 DMS-2532-2-182,

Germany). Ischemia was induced in one eye of 8 week old male and female C57BL/6J mice using the high intraocular pressure

(HIOP) method (Pannicke et al., 2014;Wagner et al., 2016). The other eye remained untreated and served as an internal control. Anes-

thesia was induced with ketamine (100 mg/kg body weight, intraperitoneal (ip); Ratiopharm, Ulm, Germany), xylazine (5 mg/kg, ip;

Bayer Vital, Leverkusen, Germany), and atropine sulfate (100 mg/kg, ip; Braun, Melsungen, Germany). The anterior chamber of

the test eye was cannulated from the pars plana with a 30-gauge infusion needle, connected to a saline bottle. The intraocular pres-

sure was increased to 160 mmHg for 90 minutes by elevating the bottle. After removing the needle, the animals survived for 24 hours

and subsequently, they were sacrificed with carbon dioxide for tissue analyses.

Single Cell RNA Analysis of mouse retina
Mouse eyeballs were quickly removed and placed in cold phosphate buffered saline (PBS). The mouse retina was carefully removed

under dissecting scope and tissue was dissociated immediately using the papain dissociation system (Worthington, Lakewood, NJ,

USA) following the manufacturer’s instructions. Briefly, the mouse retina was incubated at 37�C for 30 minutes in Eagle’s Balanced

Salt Solution (EBSS) with DNase followed by tissue trituration with a 10 mL pipette. Cell pellet was collected after centrifugation at

3003 g for 5 minutes and then resuspended in DNase albumin-inhibitor solution. The cell suspension was carefully layered on top of

the albumin-inhibitor solution, then centrifuged at 70 3 g for 6 minutes. The cell pellet was washed and resuspended in 1:1 DMEM/

F12 + 10% FBS. All centrifugation steps were performed at room temperature. The final cell suspension was filtered with 40 mm cell

strainer (Falcon, Corning, NY, USA) to remove large debris. To assess cell viability, cells were stained with 0.4% trypan blue (Medi-

atech, Inc., Manassas, VA, USA) and counted using a hemocytometer. Viable cells (greater than 80%) were submitted to the Center

for Applied Genomics at the Children’s Hospital of Philadelphia (CHOP) for cell separation and lysis on the 10X Chromium Genomics

instrument and sequencing on the Illumina Hi-Seq instrument.

All analyses were carried out in the statistical softwareR v 3.5.1. The R package Seurat was used for data analysis, dataset merging

and cell clustering analysis. For clustering, we used 2000 or more genes that had detectable expression with high variability in the

�92,000 mouse retinal cells. Six genetically identical C57BL/6J mice were sequenced, our data were consistent across different

batches (Figure S1). We filtered out low-quality cells in which < 90% of the reads did not map to the genome using the Cell Ranger

pipeline from 10x genomics, and ultimately obtained 92,343 cells used in our subsequent analyses. Given the consistent number of

genes (nGene), UMIs (nUMI), and the percentage of mitochondrial genes (percent.mito) detected in each batch, we merged the

sequencing runs and used 30 principal components as an input to t-distributed stochastic neighbor embedding (t-SNE) method

for dimension reduction and data visualization. We found 25 cell clusters within the retina using an unsupervised analysis that did
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not rely on known markers of retinal cells. Marker genes were identified for all clusters with the functionmarkers.all in the R package

Seurat; all marker genes with power less than 0.4 were discarded. Moreover, only cells with mitochondrial gene percentages < 50%,

and those with unique gene counts between 200 and 3,500 were used, leaving us with 91,798 retinal cells. After filtering, we sought to

consolidate the 25 clusters into a total of 11 (for N = 91,798 cells), each of which represents amajor, functionally important cell class in

the retina. For this, we used the known, established marker genes for common retinal cell types summarized in Table S1. Although

previous studies of scRNA-seq on the mouse retina have identified more than 30 different cell types, this difference is largely ex-

plained by their subdivision of bipolar cells (BCs) into numerous sub-categories. We decided to classify cell types based on general

categories because we wanted to study complement expression in retinal cells more broadly. Using this approach, the cell type pro-

portions in the retina proper are comparable between our study and past studies. Based on mean complement gene expression, we

categorized positive expression for a gene within a cell type only if eitherR 5% of cells or at least 50 cells within that class had non-

zero expression for that gene.

RNA-FISH
Mouse protocol was approved by the University of Pennsylvania IACUC committee. A 10 week old C57BL/6J male was euthanized

with 5 mg pentobarbital sodium. The eye was dissected free from the orbit, washed in PBS, embedded in OCT (Tissue Tek, Sakura

Finetek USA, Torrance, CA, USA) and immediately snap-frozen in liquid nitrogen. The frozen tissue was sliced at 10 mmon a cryostat

and stored at �80�C on glass slides.

Tissue fixation and RNA in situ hybridization (RNA-FISH) was carried out using Stellaris� RNA FISH (LGC Biosearch Technologies,

Petaluma, CA, USA) following the manufacturer’s instructions. Briefly, the tissue section was fixed in 3.7% formaldehyde in 1X PBS

for 10minutes at room temperature. After washing twicewith 1X PBS, the tissue sectionwas permeabilized in 70%ethanol for at least

1 hour at room temperature. Oligo probes were designed against mRNA coding sequence for each gene using the Stellaris Custom

probe sets and labeled with Quasar� 570 dye or Quasar� 670 dye. For a positive control, mouse GAPDH probe (Stellaris ShipReady

probe sets) was purchased. To secure tissues on the slide during hybridization, the HybriWell� sealing system (Grace Bio-Labs,

Bend, OR, USA) was used. Each tissue section was incubated in hybridization buffer containing probe (final concertation was be-

tween 62.5 nM to 250 nM) overnight at 37�C and then washed in washing buffer A for 30 minutes at 37�C. Cell nuclei were stained

with 40,6-diamidino-2-phenylindole (DAPI, 0.1 mg/ml) followed by washing in Buffer B. All buffers were purchased from LGC Bio-

research Technologies. Finally, mounting medium (ProLong Gold antifade reagent, Invitrogen, Life Technologies, Eugene, OR,

USA) was added and a coverglass was mounted on the slide. Confocal microscopy to image the RNA-FISH samples was performed

at the Bioimaging Core Facility of the Biomedical Center of the LMUMunich. RNA FISH images were obtained with an inverted Leica

SP8X WLL microscope with a 63x/1.3 Glyc objective. We sequentially recorded Quasar 670 (excitation 647 nm; emission 670 nm -

760 nm) and Quasar 570 (excitation 556 nm; emission 566 nm - 630 nm) with hybrid photo detectors (HyDs) and DAPI (excitation

405 nm; emission 415 nm - 450 nm) with a conventional photomultiplier tube. The same illumination and acquisition settings were

used for all sections. Brightness and contrast of the images were adjusted with the open source software FIJI (ImageJ; National In-

stitutes of Health, Bethesda, MD, USA).

MACS enrichment of retinal cell types
Retinal cell types were enriched as described previously using magnetic-activated cell sorting (MACS) (Grosche et al., 2016). Briefly,

retinaewere treatedwith papain (0.2mg/ml; RocheMolecular Biochemicals) for 30minutes at 37�C in the dark in Ca2+- andMg2+-free

extracellular solution (140 mM NaCl, 3 mM KCl, 10 mM HEPES, 11 mM glucose, pH 7.4). After several washes and 4 minutes of in-

cubation with DNase I (200 U/ml), retinae were triturated in extracellular solution (now with 1 mM MgCl2 and 2 mM CaCl2). To purify

microglial and vascular cells, the retinal cell suspension was subsequently incubated with CD11b- and CD31 microbeads according

to the manufacturer’s protocol (Miltenyi Biotec, Bergisch Gladbach, Germany). The respective binding cells were depleted from the

retinal suspension using LS-columns, prior toM€uller cell enrichment. To purify M€uller glia, the cell suspension was incubated in extra-

cellular solution containing biotinylated anti-CD29 (0.1 mg/ml, Miltenyi Biotec) for 15 minutes at 4�C. Cells were washed in an

extracellular solution, spun down, resuspended in the presence of anti-biotin MicroBeads (1:5; Miltenyi Biotec,) and incubated for

10 minutes at 4�C. After washing, CD29+ M€uller cells were separated using large cell (LS) columns according to the manufacturer’s

instructions (Miltenyi Biotec). Cells in the flow through of the last sorting step- depleted of microglia, vascular cells and M€uller glia-

were considered as the neuronal population. RPE was collected by scratching the eye cup after the retina had been removed and

thus, scratch samples also contained cells from the underlying choroid. Samples were digested, and in subsequent steps, macro-

phages were depleted using anti-CD11b-microbeads and vascular cells using CD31-microbeads (Miltenyi Biotec).

qRT-PCR
Total RNA was isolated from the enriched cell populations using the PureLink� RNA Micro Scale Kit (Thermo Fisher Scientific,

Schwerte, Germany). A DNase digestion step was included to remove genomic DNA (Roche). We performed RNA integrity validation

and quantification using the Agilent RNA 6000 Pico chip analysis according to the manufactures instructions (Agilent Technologies,

Waldbronn, Germany). First-strand cDNAs from the total RNA purified from each cell population were synthesized using the

RevertAid H Minus First-Strand cDNA Synthesis Kit (Fermentas by Thermo Fisher Scientific, Schwerte, Germany). We designed

primers using the Universal ProbeLibrary Assay Design Center (Roche, Table S6) and measured transcript levels of candidate genes
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by qRT-PCR using the TaqMan hPSC Scorecard Panel (384 well, ViiA7, Life Technologies, Darmstadt, Germany) according to the

company’s guidelines.

LC-MS/MS mass spectrometry analysis
LC-MS/MS analysis was performed as described previously (Frik et al., 2018; Lepper et al., 2018) on a Q-Exactive HF mass spec-

trometer (Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.) coupled to an Ultimate 3000 RSLC nano-HPLC (Dionex, Sunnyvale,

CA). Briefly, 0.5 mg sample was automatically loaded onto a nano trap column (300 mm inner diameter3 5 mm, packed with Acclaim

PepMap100 C18. 5 mm, 100 Å; LC Packings, Sunnyvale, CA) before separation by reversed phase chromatography (HSS-T3M-class

column, 25 cm,Waters) in an 80minutes non-linear gradient from 3 to 40%acetonitrile (ACN) in 0.1% formic acid (FA) at a flow rate of

250 nl/min. Eluted peptideswere analyzed by theQ-Exactive HFmass spectrometer equippedwith a nano-flex ionization source. Full

scan MS spectra (from m/z 300 to 1500) and MS/MS fragment spectra were acquired in the Orbitrap with a resolution of 60,000 or

15000 respectively, with maximum injection times of 50 ms each. Up to ten most intense ions were selected for HCD fragmentation

depending on signal intensity (TOP10 method). Target peptides already selected for MS/MS were dynamically excluded for 30 s.

Spectra were analyzed using the Progenesis QI software for proteomics (Version 3.0, Nonlinear Dynamics, Waters, Newcastle

upon Tyne, UK) for label-free quantification, as previously described (Grosche et al., 2016). All features were exported as a Mascot

generic file (mgf) and used for peptide identification with Mascot (version 2.4) in the UniProtKB/Swiss-Prot taxonomy mouse data-

base (Release 2017.02, 16871 sequences). Search parameters used were: 10 ppm peptide mass tolerance, 20 mmu fragment mass

tolerance, one missed cleavage allowed, carbamidomethylation set as fixed modification, and methionine oxidation, asparagine or

glutamine deamidation were allowed as variable modifications. A Mascot-integrated decoy database search calculated an average

false discovery rate (FDR) of < 1%.

Western blot
Cell pellets of enriched cell populations from pooled pair of mouse eyes were dissolved in reducing Laemmli sample buffer, dena-

tured and sonicated. Neuronal protein extraction reagent (Thermo Fisher Scientific, Braunschweig, Germany) was added to the

neuron populations. Samples were separated on a 12%SDS-PAGE. The immunoblot was performed as previously described (Schä-

fer et al., 2017). Detection was performed with primary and secondary antibodies diluted in blocking solution (Table S7). Blots were

developed with WesternSure PREMIUM Chemiluminescent Substrate (LI-COR, Bad Homburg, Germany). To validate specificity of

the antibodies, all of them were tested on mouse serum as positive control (Figure S3).

Immunofluorescent labeling of retina and RPE
To quantify cell nuclei and perform stainings for C1s, C3 and glutamine synthetase (GLUL) in retinal sections of 4%paraformaldehyde

(PFA)-fixated and paraffin-embedded murine eyes, the sections were deparaffinised and incubated with Hoechst33342/DAPI

(1:1000; #H1399, Thermo Fisher Scientific, Braunschweig, Germany) or detection antibodies as previously described (Schäfer

et al., 2017) (Table S7). Images were acquired using confocal microscopy (VisiScope, Visitron Systems, Puchheim, Germany).

Retinal microglia quantification was performed in the retinal flat mounts. Anterior segments of mouse eyes were removed, and the

retina carefully separated. Flat mounts were fixated in 4% PFA (retina 1 h room temperature), permeabilized (1% Triton X-100) and

blocked (1% BSA, 5% goat serum, 0.1 M NaPO4, pH 7). Retinal flat mounts were stained with anti-Iba1 antibody (3% Triton X-100,

1% DMSO, 5% normal goat serum, overnight at 4�C) and secondary antibody (1% BSA in PBS, overnight at 4�C) (Table S7). Retinal

flat mounts were embedded with photoreceptors facing down, and the GCL facing up. Images were taken with a confocal micro-

scope (VisiScope, Visitron Systems).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Prism (Graphpad Software, San Diego, CA, USA). Inmost of the experiments in the present

study results from 4 biological replicates were collected to keep to the rules of the three Rs for the sake of animal welfare. Since this

low number of input values does not allow an appropriate estimation about a normal Gaussian distribution, significance levels were

determined by the non-parametric Mann-Whitney U test unless stated otherwise. All data are expressed as mean ± standard error

(SEM) unless stated otherwise. Detailed information about specific n-values, implemented statistical tests and coding of significance

levels are provided in the respective figure legends.

DATA AND CODE AVAILABILITY

The accesssion number for the single cell RNA-Seq data reported in this paper is GSE116426 (Gene Expression Omnibus (GEO)).

Other data supporting the findings of this study are available from the corresponding author upon request.
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