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k · p theory for phosphorene: Effective g-factors, Landau levels, and excitons
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Phosphorene, a single layer of black phosphorus, is a direct band gap two-dimensional semiconductor with
promising charge and spin transport properties. The electronic band structure of phosphorene is strongly affected
by the structural anisotropy of the underlying crystal lattice. We describe the relevant conduction and valence
bands close to the �-point by four- and six-band (with spin) k · p models, including the previously overlooked
interband spin-orbit coupling which is essential for studying anisotropic crystals. All the k · p parameters
are obtained by a robust fit to ab initio data, by taking into account the nominal band structure and the
k-dependence of the effective mass close to the �-point. The inclusion of interband spin-orbit coupling allows us
to determine dipole transitions along both armchair and zigzag directions. The interband coupling is also key to
determine the effective g-factors and Zeeman splittings of the Landau levels. We predict the electron and hole
g-factor correction of ≈0.03 due to the intrinsic contributions in phosphorene, which lies within the existing
range of experimental data. Furthermore, we investigate excitonic effects using the k · p models and find exciton
binding energy (0.81 eV) and exciton diameters consistent with experiments and ab initio based calculations. The
proposed k · p Hamiltonians should be useful for investigating magnetic, spin, transport, and optical properties
and many-body effects in phosphorene.
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I. INTRODUCTION

The two-dimensional (2D) phosphorene was first synthe-
sized in 2014 [1–6] and showed remarkable physical proper-
ties. For example, phosphorene is a direct band gap semicon-
ductor with enhanced photoluminescence intensity compared
to bulk black phosphorus [4]. Moreover, its strong coupling
to light can be varied in the far-infrared to red spectral range
[4] due to high sensitivity of the band gap to the number
of monolayers [3,5,7–10]. Due to the puckered crystalline
structure phosphorene shows strongly anisotropic electronic
properties [1,6]. High carrier mobility in phosphorene allows
not only observation of fundamental quantum phenomena,
such as Landau levels [11,12] or quantum Hall effect [13],
but also its potential applications to semiconductor spintron-
ics [14,15], due to the weak spin-orbit coupling (SOC) of
phosphorus [16]. Indeed, nanosecond spin lifetimes observed
in all-electrical spin injection experiments and realization
of a spin valve operating at room temperature [17] already
demonstrated the robustness of spin coherence in phospho-
rene. Furthermore, few-layer phosphorene heterostructures
are promising candidates for ultrafast switching based on
optically generated surface polaritons [18].

There have already been applications of the k · p method
to describe phosphorene [19–23]. However, to also study
spin-orbit effects the effective models should fully exploit
the symmetry of phosphorene by capturing the anisotropy of
the interband dipole coupling. Effective g-factors illustrate
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this best. For monolayer transition metal dichalcogenides
(TMDCs) the g-factors can be derived employing the conven-
tional �p-matrix elements [24–26] (equivalent to the so called
Kane matrix element in zinc-blende structures [27]), in the
perturbative fashion within the k · p framework [28–30]. In
phosphorene, due to its twofold symmetry embedded in the
D2h group, the usual Kane-like matrix elements can account
only for the coupling along the armchair direction. In order
to include the contribution along the zigzag direction, one
needs to go beyond the conventional �p-matrix element and
include the k-dependent SOC contribution. The inclusion of
this term was already shown by Zhou et al. [31] to provide the
g-factor correction in phosphorene thin films with its value
estimated from experimental data. As another example, the
inclusion of such k-dependent SOC terms in III-V wurtzite
semiconductors was recently shown to provide a more reliable
fitting to the ab initio spin splitting and overall band structure
[32] and also to add sizable corrections to the total value
of the effective g-factors [33]. Furthermore, more complete
k · p models for phosphorene can be used as building blocks
to model van der Waals heterostructures [34], for instance
combined with TMDCs [35] and (In,Ga)Se materials [36],
overcoming computational costs of ab initio calculations.

In this work, we investigate important physical features
which appear due to the inclusion of the interband SOC
term in effective k · p models for monolayer phosphorene.
We show that this additional SOC term not only provides
the interband dipole coupling along the zigzag direction but
also allows us to predict the values of the effective g-factors
from a full theoretical perspective highlighting the intrinsic
contributions of monolayer phosphorene. We also analyze
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the Landau level (LL) spectra and show that the interband
SOC term provides a correction to Zeeman splitting (ZS),
consistent with the g-factor approach. Finally, we combine
our effective models with the Bethe-Salpeter equation (BSE)
and show that the excitonic spectra of monolayer phosphorene
are in agreement with the available data in the literature.
We point out that our k · p parameters are obtained from
a systematic fitting to ab initio band structure calculations
taking into account the k-dependence of the energy bands
and the effective masses (weighting the contribution around
�-point), a crucial point to correctly describe the linear-in-k
couplings in the Hamiltonian. Besides providing a simplified
and tangible understanding of the underlying physics, these
effective k · p models might be used to investigate additional
properties in phosphorene but also of more complex systems
such as van der Waals heterostructures composed of several
layered materials.

The paper is organized as follows: In Sec. II we discuss the
ab initio band structure of phosphorene. The effective k · p
models with the inclusion of the interband SOC are addressed
in Sec. III. In Sec. IV we investigate the behavior of the differ-
ent k · p models under external magnetic field by calculating
the effective g-factors and the LL spectra. Excitonic effects
are presented in Sec. V, and finally, in Sec. VI we draw our
conclusions.

II. PHOSPHORENE BAND STRUCTURE FROM AB INITIO

The initial crystal structure of the phosphorene layer was
taken from the bulk black phosphorus [37]. New cell parame-
ters were then found by fully relaxing a sheet of phosphorene
using a quasi-Newton variable-cell scheme as implemented in
the QUANTUM ESPRESSO package [38,39]. During this process
all atoms were free to move in all directions in order to relax
internal forces. The force convergence threshold and total
energy convergence threshold were set to 10−4 Ry/a.u. and
10−5 Ry/a.u., respectively. A vacuum of 20 Å was introduced
in order to reduce spurious interactions between the periodic
copies of the system. We used the norm-conserving pseudopo-
tential with the Perdew-Burke-Ernzerhof (PBE) [40] version
of the generalized gradient approximation (GGA) exchange-
correlation potentials, with kinetic energy cutoffs of 70 Ry and
280 Ry for the wave function and charge density, respectively.
The optimized cell parameters are a = 3.2986 Å along the
zigzag edge, and b = 4.6201 Å along the armchair edge. The
electronic and spin properties of phosphorene were calculated
using the full-potential augmented plane wave all-electron
code package WIEN2k [41]. Self-consistency was achieved
with 151 k-points in the irreducible wedge of the Brillouin
zone. Tuning of the band gap was achieved by combining the
undressed LDA functional with the modified Becke-Johnson
potential [42]. The parameters of the latter were chosen to
give the gap close to the recent experimental [3,9] and the-
oretical [10] values and to provide a realistic description of
phosphorene.

The resulting ab initio band structure is shown in Fig. 1.
The calculation reproduces the direct band gap of phospho-
rene with the value of 2.178 eV centered at the �-point. This
value is close to the recent quantum Monte Carlo result of
2.4 eV [10]. The energy dispersion of the top-most valence
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FIG. 1. Ab initio band structure of phosphorene. The labels at
the �-point indicate the energy bands used to construct the effective
k · p Hamiltonians, i.e., first valence (v1), first conduction (c1), and
second conduction (c2) bands with the irreducible representations
from the single group D2h. In the inset we show the crystal structure
of phosphorene with the identified armchair and zigzag directions,
and the first Brillouin zone highlighting the high-symmetry points
and momentum directions.

(labeled v1) and bottom-most conduction (labeled c1) bands
close to the band edge displays a sizable anisotropy with re-
spect to the main crystallographic directions. This anisotropy
is particularly pronounced for the band v1, which is almost
flat for momenta along the �-X direction (along the zigzag
edge of phosphorene), and very dispersive along the �-Y path
(along the armchair edge of phosphorene). For this band, the
corresponding effective masses mv1,x and mv1,y differ by more
than an order of magnitude (see Sec. III).

Phosphorus is a light element; therefore the influence of
spin-orbit coupling on the band structure is mainly limited to
the removal of orbital degeneracies at certain high-symmetry
points and lines, e.g., at the X-S and Y-S paths. At the S-
point, the splitting is 21 meV and 17 meV for the valence
band v1 and conduction band c1, respectively [16]. The spin
degeneracy of the energy bands is not removed by SOC, by
virtue of space inversion and time-reversal symmetry. We also
identify in Fig. 1 the single group irreducible representations
(irreps) for the energy bands at the �-point that are used as
input to the k · p Hamiltonians discussed in the next section.

III. k · p MODELING

For the effective description of the phosphorene band struc-
ture, given in Fig. 1, we focus on the first valence (v1), first
conduction (c1), and second conduction (c2) bands, identified
by the irreps of the symmetry group D2h provided by the
ab initio calculations. This irrep identification of the energy
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bands is a crucial step for the development of k · p Hamil-
tonians [32,43,44]. The Hamiltonian basis set, including spin,
is then given by {|�c2

x+ ↑〉, |�c2
x+ ↓〉, |�c1

z− ↑〉, |�c1
z− ↓〉, |�v1

x+ ↑〉,
|�v1

x+ ↓〉}, in which the orbital part |�n
α〉 is written in Dirac

notation, defined as 〈�r|�n
α〉 = un

α (�r). Essentially, our notation
means that the Bloch function un

α (�r) of the energy band n
transforms as the irrep �α of the symmetry group D2h. The
vertical arrows represent the spin up and down projections,
eigenvalues of the σz Pauli matrix. In Sec. I of the Supple-
mental Material [45] we summarize the symmetry properties
of the group D2h of phosphorene.

Within the k · p framework, we must compute matrix
elements between different energy bands that are mediated
by vector (such as �p) or pseudovector (such as �∇V × �p)
operators. In the language of group theory, we would write
these matrix elements as the direct product �n ⊗ �o ⊗ �m,
with �n(m) representing the irrep of the energy band n (m)
and �o representing the irrep of the operator. If the re-
sult of such direct product contains the identity irrep (with
characters equal to 1 for all symmetry operations), then the
matrix element is nonzero [44]. Furthermore, since the irreps
of the symmetry group D2h are all one-dimensional, the
nonzero matrix elements are readily available by inspecting
the multiplication table, given in Sec. I of the Supplemental
Material [45]. We point out that a thorough and systematic
investigation of the symmetry properties of phosphorene has
been performed by Li and Appelbaum [20], however without
providing realistic values for the k · p parameters. In our study,
we go beyond the derivation of k · p Hamiltonians based on
symmetry arguments and also focus on the estimation of the
Hamiltonian parameters by using the ab initio data presented
in Sec. II.

Our strategy is to investigate different k · p formulations,
including different energy bands and couplings, to demon-
strate qualitative differences stemming from various cou-
plings. In what follows we define the different k · p models
we considered: ph6 (describes c2, c1, and v1 bands), ph4
(describes c1 and v1 bands), and Nph4 (also describes c1 and
v1 bands but without any coupling between them). For the
most general model, ph6, we can write the total Hamiltonian
identifying the different coupling blocks

Hph6 =

⎡
⎢⎣

Hc2 Hc2c1 Hc2v1

H†
c2c1 Hc1 Hc1v1

H†
c2v1 H†

c1v1 Hv1

⎤
⎥⎦, (1)

with each coupling block being a 2 × 2 matrix. To obtain
the Hamiltonian for the ph4 model, Hph4, we just remove the
blocks that have contribution of the band c2, i.e., the first row
and the first column of Eq. (1). For the model Nph4, we can
obtain the Hamiltonian HNph4 by just removing the interaction
block Hc1v1 between the c1 and v1 bands from Hph4.

Each of the Hamiltonian blocks in Eq. (1) can be written as

Ha = H0,a + Hk,a + Hk2,a, (2)

with H0,a containing only k-independent terms, Hk,a contain-
ing terms linear in k, and Hk2,a containing terms quadratic in k,
with the subindex a indicating the specific block. Specifically,
taking into account the symmetry properties of phosphorene,

the k-independent Hamiltonian block is given by

H0,a =
[

Ea 0

0 Ea

]
, (3)

which appears only for a = {c2, c1} and the parameters Ea

indicate the energy values at the �-point (note that Ec1 = Eg).
The Hamiltonian block with the linear contribution of k is
given by

Hk,a =
[−iPaky − αakx 0

0 −iPaky + αakx

]
, (4)

which appears only for a = {c2c1, c1v1}, and the parameters
Pa and αa originate from first-order perturbation theory of the
operator

�� = h̄

m0
�p + h̄2

4m2
0c2

[�σ × �∇V (�r)], (5)

with Pa being the conventional Kane-like matrix elements
[originating from the first term in Eq. (5)] and αa being the
k-dependent interband SOC parameter [originating from the
second term in Eq. (5)]. We note that due to the symmetry of
energy bands involved, the αa terms do not mix different spins.
Finally, the Hamiltonian block with the quadratic contribution
of k is given by

Hk2,a = h̄2

2m0

[
Aak2

x + Bak2
y 0

0 Aak2
x + Bak2

y

]
, (6)

which appears only for a = {c2, c1, v1, c2v1}, and the param-
eters Aa and Ba are the effective mass parameters obtained
from the second-order perturbation theory. In the Supplemen-
tal Material [45] we provide the specific definitions of these
parameters in Sec. II and in Sec. III we write the three different
k · p models explicitly.

To obtain the values for the different parameters that appear
in the k · p Hamiltonians we perform a numerical fitting to the
ab initio data. For a reliable description, we considered the
band structure and the effective masses (as functions of the
wave vector k) along multiple directions of the first Brillouin
zone starting from the �-point, namely �-X (along kx), �-Y
(along ky), and �-S (which combines kx and ky). These differ-
ent constraints (band structure, effective masses, and multiple
directions) are used simultaneously in the fitting procedure,
implemented via the LMFIT package in Python [32,46]. The
use of the k-dependent effective mass calculated from ab initio
weights the points in the vicinity of the �-point. Furthermore,
special care must be taken for the linear-in-k terms, especially
the α parameters. From ab initio we calculate the dipole ma-
trix elements without SOC (within the optic code in WIEN2k
[47]), finding Pc1v1 = 5.3230 eV Å and Pc2c1 = 0.1757 eV Å.
For the α parameter, we can estimate its value by comparing
the change in the effective mass with and without SOC within
the ab initio calculations. This approach gives a range of
values of αc1v1 ∼ 0.007–0.015 eV Å. A detailed description of
the evaluation of αc1v1 can be found in Sec. IV of the Supple-
mental Material [45]. We emphasize that for each of the three
different k · p models (ph6, ph4, and Nph4) we performed an
individual fitting of the band structure and effective masses
with double precision resulting in the parameter sets shown
in Table I. From the Nph4 parameters we can readily obtain
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TABLE I. Values of the k · p parameters for the different k · p
models. The parameters P and α have units of eV Å and the
parameters A and B are dimensionless.

Nph4 ph4 ph6

Ac1 0.8696 0.8208 0.8405
Bc1 4.1667 0.5453 0.4800
Av1 −0.1372 −0.1614 −0.0958
Bv1 −4.1667 −0.4588 −0.2926
Pc1v1 5.3696 5.4473
αc1v1 −0.0195 −0.0218
Pc2c1 0.2051
αc2c1 0.0070
Ac2 7.0622
Bc2 0.4845
Ac2v1 1.9669
Bc2v1 0.8598

the effective masses: mc1,x = 1/Ac1 = 1.15, mc1,y = 1/Bc1 =
0.24, mv1,x = 1/Av1 = 7.29, and mv1,y = 1/Bv1 = 0.24. For
the fitted values of Pc1v1 and Pc2c1 our values shown in Table I
are relatively close to those calculated by ab initio, thus
showing that our fitting scheme is quite reliable. We point out
that this small discrepancy between the fitted and calculated
values from ab initio is well known within the k · p framework
in which the parameters are slightly modified to accommodate
the band structure features. We note that the signs of the α

parameters given in Table I can be reversed without affecting
the band structure.

The comparison between the fitted k · p models and the ab
initio data is shown in Fig. 2. Up to 1.5 nm−1, the limit in
k-space used in our fitting, we find a good agreement for the
band structure of all k · p models considered. For the effective
mass analysis, we focus on v1 and c1 bands. We notice
that Nph4 shows a constant dependence in all directions but
agrees well very close to the �-point (as a parabolic dispersion
should); ph4 also shows a nearly constant dependence along
�-X but now acquires a dependence along the �-Y and �-S
directions due to the interband couplings; and finally, ph6
provides a more realistic description of the effective mass k-
dependence, with additional contributions due to the quadratic
coupling between the c2-c1 bands and the interband coupling
terms. Furthermore, although we enforced the k limit of
1.5 nm−1 for the fitting, we also find a good agreement with
ab initio at even larger k-values for the band structure, except
for the v1 band along �-X in the ph4 and Nph4 models. Within
the ph6 model it is even possible to model the anticrossing of
the c2 and c1 conduction bands along �-Y.

Let us now turn to additional properties that can be derived
from the k · p models. As a consequence of including the
interband SOC term (in ph4 and ph6 models), it is possible
to compute the dipole strength between v1 and c1 bands not
only for the armchair but also for the zigzag direction. The
dipole strength between the top-most valence and bottom-
most conduction bands as function of the wave vector �k can
be written as

Dx(y)(�k) =
∑
c,v

|〈v, �k|�x(y)|c, �k〉|2, (7)
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FIG. 2. Calculated (a)–(c) band structures and (d)–(f) effective
masses (shown for c1 and v1 only) for the different k · p models
compared to the ab initio WIEN2k data along different directions in
the first Brillouin zone starting from the �-point. In (d), the effective
masses of valence band v1 are multiplied by a factor of 0.1. For the
band structure (effective mass) x axis, the reciprocal space distance
of 5/nm (1.5/nm) corresponds to a percentage of ∼52 (16) for �-X,
∼73 (22) for �-Y, and ∼43 (13) for �-S.

in which x (y) refers to the zigzag (armchair) direction, the
summation for the indices c (v) takes into account both spin
components of the c1 (v1) bands, and the �� operator is given
in Eq. (5). For the angular dependence of the dipole strength as
a function of the transition energy, we can define the quantity

D(θ, E ) =
∑
c,v,�k

|〈v, �k|�y cos θ + �x sin θ |c, �k〉|2

× δ{E − [Ec(�k) − Ev (�k)]}, (8)

where θ is the angle defined as zero with respect to the
armchair axis (y direction) and the �k-dependence in the sum-
mation takes into account all possible transitions at a given
transition energy of Ec(�k) − Ev (�k). To compute such dipole
strengths we use the values of P and α given in Table I.

We discuss in Fig. 3 the dipole strength features of the
ph4 and ph6 k · p Hamiltonians. In Figs. 3(a)–3(c) we show
the calculated dipole strength ratio between the armchair and
zigzag directions [Dy/Dx, ] obtained from Eq. (7)], as function
of the transition energy, mapping the wave vector �k to the
transition energy Ec(�k) − Ev (�k), along different directions of
the Brillouin zone. We find that this ratio is quite large (4
to 5 orders of magnitude) but it is nonetheless nonzero, a
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FIG. 3. Ratio between armchair, Dy, and zigzag, Dx , dipole
strength for ph4 and ph6 k · p models along (a) �-X, (b) �-Y, and
(c) �-S directions. On the x axis we show the energy dependence by
mapping the wave vector �k to the transition energy Ec(�k) − Ev (�k).
(d) Angular dependence of the dipole strength for a transition energy
of 5 meV above the band gap, calculated via Eq. (8).

feature that can only be achieved with the inclusion of the
interband SOC terms (the α parameters). Moreover, these
ratios for ph4 and ph6 are slightly different but both models
(with their respective parameter sets) provide nearly the same
trends. A complementary, and perhaps more instructive, way
to visualize the dipole strength is to look at its angular
dependence for a fixed transition energy using Eq. (8). For
a transition energy of 5 meV above the band gap, we show in
Fig. 3(d) the angular behavior of the dipole strength assuming
the armchair direction at θ = 0. The twofold behavior of this
angular dependence clearly reflects the symmetry of the phos-
phorene lattice. From the experimental perspective, recent
photoluminescence measurements by Wang et al. [9] report
that the emission along the zigzag direction is consistently
less than 3% of the emission along the armchair, while in
the study by Xu et al. [48], the photoluminescence intensity
as function of the polarization angle [Fig. 3(c)] suggests
that the ratio between the armchair and zigzag directions is
two orders of magnitude or more. Based on our findings of
Dy/Dx which take into account the intrinsic selection rules in
phosphorene, the reduced dipole ratio observed in experiment
might be associated with more complex phenomena of many-
body interactions and carrier relaxation.

It is also interesting to investigate the behavior of the ef-
fective k · p models by calculating the density of states (DOS)
and carrier density, physical quantities that play an important
role in transport experiments. We show in Figs. 4(a) and
4(b) the DOS for conduction and valence bands, respectively.
As we noted previously for the band structure and effective
masses shown in Fig. 2, the main differences among the
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for (a) conduction and (b) valence bands. Comparison between the
carrier density as function of energy for the different k · p models for
(c) conduction and (d) valence bands. In the panels (a) and (c), the
energy range starts from the band gap.

k · p models appear in the valence band. Specifically, Nph4
provides a constant DOS dispersion, ph4 a nearly constant
behavior, and ph6 shows a higher value close to the band
edge which decreases slightly as the energy increases, also
observed in the ab initio calculations in Fig. 1(a) of Ref. [49].
This is a typical feature observed in systems with reduced
dimensionality and large effective mass, for instance in the
valence band of conventional quantum wells based on zinc-
blende GaAs [50] and wurtzite GaN [51]. By integrating
the DOS we can obtain the carrier density as function of
the energy, and similar trends of the DOS can also be seen
in Figs. 4(c) and 4(d) for conduction and valence bands,
respectively.

IV. EFFECTIVE g-FACTORS AND LANDAU LEVELS

In this section we incorporate the influence of external
magnetic fields within the k · p models to investigate the
effective g-factors and the LL spectra. Let us first start with
the calculation of the effective g-factors, following the con-
ventional perturbative approach within the k · p framework
[28–30]. We focus on magnetic fields that are oriented out of
the monolayer plane, i.e., along the z direction, following the
coordinate system shown in the inset of Fig. 1. Under these
conditions, the effective g-factor can be generally written as

gn = g0 − i
2m0

h̄2

∑
l �=n

�nl
x �ln

y − �nl
y �ln

x

En − El
, (9)

in which g0 is the bare electron g-factor, n is the band of
interest, l runs over the other bands in the k · p model, the
energy values in the denominator are the values at �-point,
the �� operator is defined in Eq. (5), and �nl

x(y) = 〈n|�x(y)|l〉,
which follows the same form as the interband dipole coupling
shown in Eq. (7).

Evaluating Eq. (9) specifically for the ph4 k · p model, the
top-most valence and bottom-most conduction band g-factors
read

gv1 = gc1 = g0 − 2

(
2m0

h̄2

)(
Pc1v1αc1v1

Eg

)
, (10)
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TABLE II. Calculated values for the effective g-factors using the
ph4 and ph6 k · p models. The values in parentheses indicate the
calculated g-factors with reversed signs of the α parameters given
in Table I.

ph4 ph6

gv1 2.0276(1.9770) 2.0309(1.9737)
gc1 2.0276(1.9770) 2.0295(1.9752)
gc2 2.0009(2.0038)

while for the ph6 k · p model, the g-factors are given by

gv1 = g0 − 2

(
2m0

h̄2

)(
Pc1v1αc1v1

Eg

)
, (11)

gc1 = g0 − 2

(
2m0

h̄2

)(
Pc1v1αc1v1

Eg
+ Pc2c1αc2c1

Ec2 − Eg

)
, (12)

and

gc2 = g0 − 2

(
2m0

h̄2

)(
Pc2c1αc2c1

Ec2 − Eg

)
, (13)

with the parameters P and α (discussed in Sec. III) with values
given in Table I were used to compute the g-factor values.
We emphasize that without including the interband SOC term
(given by the α parameters) there is no correction to the
effective g-factors from the bare electron g-factor, g0.

Evaluating the g-factors given in Eqs. (10)–(13) using the
parameters given in Table I, we show in Table II our predicted
values for the effective g-factors within the ph4 and ph6
models. Due to the small value of α, the corrections to the
bare electron g-factor are on the order of 10−2. Furthermore,
the values obtained for gv1 and gc1 from the different k · p
models are consistent with each other. For the second con-
duction band, gc2 can only be accounted for within the ph6
model and our predicted value is nearly the bare electron
g-factor. The available g-factors experimentally determined
for few-layer phosphorene via transport experiments for the
top-most valence band are gv1 = 1.8–2.7 by Gillgren et al.
[12] and gv1 = 2.0 ± 0.1 by Li et al. [13]. From a theoretical
perspective, the value of gv1 = 2.14 for monolayer black
phosphorus has been determined by Zhou et al. [31]; however,
the interband SOC parameter αc1v1 was not theoretically ob-
tained but estimated from the experimental data of Ref. [52],
leading to a value of αc1v1 ∼ 0.45 eV Å. For the conduction
band, recent experiments by Yang et al. [53] in few-layer black
phosphorus found surprisingly large g-factors of 5.7 ± 0.7
for filling factor ν = 1 due to electron-electron interaction.
The g-factor value drops to 2.5 ± 0.1 for filling factor ν = 7
once screening effects take place. Given the uncertainty in
the experimentally determined effective g-factors obtained in
few-layer phosphorene samples, certainly with the influence
of many-body interactions, our predicted values have the
advantage that they were obtained from a full theoretical
approach taking into account the intrinsic contributions of
bare phosphorene monolayers.

Now let us turn to the LL spectra of the system, going
beyond the effective g-factor approach by considering the
envelope function approximation, combined with the minimal
coupling and the Zeeman term [30,33,54,55]. First, we notice
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FIG. 5. Calculated Landau levels for conduction and valence
bands using the k · p model (a) Nph4, (b) ph4, and (c) ph6. Thick
(thin) lines indicate spin up (down) LL branches. For the Nph4
calculations we also plot the analytical results of Eq. (14) in dashed
lines. Zeeman splitting for the first Landau level in conduction and
valence band for (d)–(e) Nph4, (f)–(g) ph4, and (h)–(i) ph6. Higher
Landau levels follow the same behavior. Notice that without the
interband interaction, the Zeeman splitting is the same as the bare
electron, i.e., μBg0B.

that because of the lack of interband coupling in the Nph4
model, it is possible to find analytical solutions for the LLs
[56], given by

E±
c1(v1)(n) = Ec1(v1) +

[
Mc1(v1)

(
n + 1

2

)
± g0

2

]
μBB, (14)

with the subindex c1 (v1) denoting the bottom-most conduc-
tion (top-most valence) band, the superindex ± indicating
the positive and negative Zeeman split LLs, n = 0, 1, 2, . . .

indicating the LL index, Ec1 = Eg, Mc1 = 2
√

Ac1Bc1, Ev1 =
0, and Mv1 = −2

√
Av1Bv1. For the ph4 and ph6 models, we

employ the numerical technique of the finite differences [51]
to obtain the LL spectra. We also apply this numerical ap-
proach to the Nph4 model for comparison. We assume B = Bẑ
and the vector potential given by �A = Bxŷ. For the numerical
discretization we consider a system size of L = 200 nm with
401 points and hard-wall boundary conditions.

In Fig. 5 we summarize the LL spectra and ZSs for the
different k · p models with parameters from Table I. Let us
start with the Nph4 model, with LLs shown in Fig. 5(a) and
ZSs in Figs. 5(d) and 5(e). We find a very good agreement
between our numerical calculations and the analytical ap-
proach of Eq. (14); however, due to the lack of interband
coupling, the ZS is given only by the bare electron g-factor.
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For the ph4 and ph6 model LL spectra, shown in Figs. 5(b)
and 5(c), respectively, the situation is quite similar with just
different energy separations between LLs arising due to the
different coupling in the Hamiltonians. Turning to the ZS,
shown in Figs. 5(f)–5(i), we observe that both the ph4 and
ph6 models slightly deviate from the bare electron g-factor
case, as expected and already noticed in the effective g-factor
case. These different features in the LLs and ZSs available in
the ph4 and ph6 models could be investigated as signatures in
magnetotransport spectra [56,57].

V. EXCITONS

Since phosphorene is a direct band gap semiconductor with
interesting optical properties, it is also important to check
the consistency of our effective k · p models and parameters
by calculating the excitonic spectra. Using the effective BSE
[58–60], we focus on direct excitons at zero temperature
assuming the electron-hole interaction to be mediated by the
Rytova-Keldysh potential [61–63], given by

v(r) = e2

8ε0r0

[
H0

(
ε

r0
r

)
− Y0

(
ε

r0
r

)]
, (15)

in which H0 is the zeroth-order Struve function, Y0 is
the zeroth-order Bessel function of the second kind, r =√

x2 + y2, e is the electron charge, ε0 is the vacuum permit-
tivity, ε = (εt + εb)/2 is the effective dielectric constant given
by the average of top, εt , and bottom, εb, dielectric constants,
and r0 = 2πζ with ζ being the 2D dielectric susceptibility
with typical values in the literature of ζ = 4.1 Å [64], ζ =
3.85 Å [65], and ζ = 3.8 Å [66]. In our calculations we
assume ζ = 4 Å, leading to a value of r0 ≈ 25 Å.

We analyze the effect of the dielectric environment con-
sidering different values of ε from 1 to 5, in order to cover a
reasonable range of experimental realizations of phosphorene.
For instance, we identify three important cases that fall within
the range of ε values we considered: (i) freestanding phospho-
rene is equivalent to ε = 1 (εt = εb = 1); (ii) phosphorene on
SiO2 substrate is equivalent to ε = 2.45 (εt = 1 and εb = 3.9
[67]); and (iii) encapsulated phosphorene with boron nitride
is equivalent to ε = 4.5 (εt = εb = 4.5 [68]). For all the k · p
models we solve the BSE numerically using a 2D k-grid

of −0.5 to 0.5 Å
−1

in kx (zigzag) and −0.3 to 0.3 Å
−1

in ky (armchair) with a total discretization of (2Nx + 1) ×
(2Ny + 1) with (Nx, Ny ) = [(70, 42), (60, 36)]. The relative
error between these two mesh discretizations is ∼1%. The
final values of exciton binding energies and diameters are then
obtained using a linear extrapolation of the values calculated
in these two grid sizes. We define the exciton diameter as the
full width at half maximum of the exciton probability density
in real space.

In Fig. 6 we summarize our findings for the excitonic
spectra focusing on the lowest three excitonic states. We show
in Figs. 6(a)–6(c) the exciton biding energy, EB (measured
from the single-particle band gap), the exciton diameter along
the zigzag direction, Lx, and the exciton diameter along the
armchair direction, Ly, as function of the effective dielectric
constant, respectively. As an initial remark, all the models are
in reasonable quantitative agreement with each other and thus
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FIG. 6. Calculated exciton (a) binding energy, EB, (b) diameter
along zigzag direction, Lx , and (c) diameter along armchair direction,
Ly, as function of the effective dielectric constant for the lowest three
excitonic states using the different k · p models. The zero energy in
panel (a) is the single-particle band gap of phosphorene of 2.178 eV.
The exciton probability densities in real space are presented for (d)–
(f) ε = 1 and (g)–(i) ε = 5 using the Nph4 model. The inset in the
bottom left corner shows the top view of phosphorene unit cell (not
in scale).

it suffices to discuss the general behavior of EB, Lx, and Ly

as a function of ε irrespective of the model. Increasing the
value of ε, we show that the magnitude of EB decreases in a
nonlinear fashion whereas Lx and Ly increase linearly, with
increasing slope for higher exciton levels. This behavior is
in qualitative agreement with 2D excitons obtained from the
Wannier equation and the typical Coulomb potential (EB ∼
ε−2 and R ∼ ε) [69]. In Figs. 6(d)–6(f) and Figs. 6(g)–6(i) we
show the probability density of the exciton wave function in
real space for ε = 1 and ε = 5, respectively. We can identify
the first exciton to a 1s state, the second exciton to a 2px

state, and the third exciton to a 2s state. This exciton ordering
is in agreement with recent ab initio calculations [70]. We
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emphasize that although Nph4 provides a consistent descrip-
tion of excitonic effects, it does not allow any further calcu-
lations involving dipole coupling (see Fig. 3) and therefore
one should rely on either the ph4 or the ph6 models. From
the exciton perspective we revisit the dipole ratio between
armchair and zigzag directions for the first exciton level and
find the values of 6.4 × 104 for ph4 and 5.1 × 104 for ph6,
thus showing the same order of magnitude as the values
calculated in Fig. 3.

Finally, let us compare our calculated exciton biding ener-
gies with the literature. For a freestanding monolayer phos-
phorene we find EB ∼ 0.81 eV, in good agreement with the
range found in the literature 0.75–0.86 eV [10,64,66,71–74].
For a monolayer phosphorene on SiO2 substrate we obtain
EB ∼ 0.44 eV, consistent with the reported values of 0.38 eV
[5], 0.4 eV [64], and 0.46 eV [74]. And for encapsulated
phosphorene with boron nitride, we find EB ∼ 0.26 eV, also
in good agreement with reported values of ∼0.22 eV [64] and
∼0.26 eV [74].

VI. CONCLUSIONS

In summary, we have developed effective four- and six-
band k · p Hamiltonians exploiting the full symmetry of
monolayer phosphorene by including the interband spin-orbit
coupling interaction, a term previously neglected in the litera-
ture and of crucial importance for the treatment of anisotropic
2D materials. Specifically, the inclusion of such spin-orbit
term allows the calculation of two important features in
phosphorene: (i) the proper description of the interband
dipole interaction not only along the armchair but also along
the zigzag direction and (ii) the estimation of the effective

g-factors and the Zeeman splittings of Landau levels. To
obtain the k · p parameters, we have performed a systematic
fitting of the band structure and the k-dependence of the effec-
tive masses to reliable ab initio calculations. Our k · p mod-
els highlight the intrinsic characteristics of monolayer phos-
phorene and were investigated in light of different physical
aspects showing a correct description of the dipole selection
rules, effective g-factors, stable behavior of the Landau level
spectra, and consistent description of the excitonic spectra
(in good agreement with reported values). Furthermore, our
findings suggest that one must be careful in comparing the
calculated intrinsic g-factors to the available experimental data
since many-body effects could have an important contribution.
Finally, the presented k · p Hamiltonians and parameters can
be directly applied to investigate many-body effects, transport
phenomena in the presence of magnetic field, and optical
properties including excitonic effects, and can be possibly
coupled to other available Hamiltonians of 2D materials to
investigate novel van der Waals heterostructures.

Note added in proof. Recently, we became aware of
Ref. [75] which also calculates the interband spin-orbit cou-
pling parameter α using a different theoretical approach.
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