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Interplay of resonant states and Landau levels in functionalized graphene
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Adsorbates can drastically alter physical properties of graphene. Particularly important are adatoms and
admolecules that induce resonances at the Dirac point. Such resonances limit electron mobilities and spin
relaxation times. We present a systematic tight-binding as well as analytical modeling to investigate the
properties of resonant states in the presence of a quantizing magnetic field. Landau levels are strongly influenced
by the resonances, especially close to the Dirac point. Here the cyclotron motion of electrons around a defect
leads to the formation of circulating local currents which are manifested by the appearance of side peaks
around the zero-energy Landau level. Our study is based on realistic parameters for H, F, and Cu adatoms,
each exhibiting distinct spectral features in the magnetic field. We also show that by observing a local density of
states around an adatom in the presence of Landau levels useful microscopic model parameters can be extracted.
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I. INTRODUCTION

Graphene on a substrate is essentially a surface which is
intrinsically susceptible to contamination with adsorbates—
atoms and molecules—or vacancies that can significantly
affect the electronic properties [1-7]. Adsorbates can gener-
ate giant spin-orbit coupling [8—19] and even induce local
magnetic moments, as predicted theoretically [20] and con-
firmed in experiments [21-24]. Relevant for transport, strong
covalent bonds between adsorbates and host carbon atoms
can be manifested as infinite pointlike scatterers. Dirac elec-
trons bouncing off such centers experience resonant scattering
which can be seen as prominent peaks in the density of states
or scattering probabilities formed at energies close to the
Dirac point. At sufficiently large adsorbate densities, these
scattering centers can dominate over other scattering mech-
anisms and limit the electron mobilities [25-28]. Apart from
transport, adsorbate induced changes in the local electronic
structure can be read from scanning probe experiments [29]
and local electronic resonances as sources of inelastic scatter-
ing can also be detected by thermal nanospectroscopy [30].

In the presence of an external magnetic field electrons in
graphene exhibit cyclotron motion which is quantized in the
Landau levels whose structure in graphene is qualitatively
different from that in 2D semiconductors due to the massless
nature of the electronic states [1]. While Landau level physics
has been investigated mainly in clean samples, it is interesting
to study the interplay between resonant scatterers and cy-
clotron dynamics. Electrons experiencing resonant scattering
“stay” longer at the resonant center, forming quasibound
states that extend spatially farther than exponentially localized
bound states. Landau levels can then form directly at the
scattering centers, affecting the local electronic structure at
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resonances. This was already pointed out in the analytical
treatment of Silvestrov [31], who showed that the impurity
level hybridizes with one of the Landau level (LL) states and
forms two split states, and presented analytical solutions for
the resonant-impurity-induced states in the limit of a large
(compare to the lattice period) magnetic length.

Here we analyze this problem from two different
angles: numerical tight-binding and analytical Green’s
function, while using realistic models of adatom scatterers,
parametrized from density functional calculations. The three
adatoms we chose are all important and they represent
different regimes of resonant scattering. Hydrogen is the
strongest resonant scatterer, akin to vacancies in graphene,
as it generates a resonant peak very close to the Dirac point.
Hydrogenation of bilayer graphene has recently been shown
to give strong resonant peaks in AB stacked structures [28],
while earlier results on spin transport seems to depend
on the hydrogenation mechanism [13,22,32,33]. Copper
is a common adatom in epitaxial graphene, since copper
substrates are used in the CVD growth. As an adatom Cu also
induces resonant scattering, albeit with a less pronounced
peak in the density of states off the Dirac point [18,34]. We
view this case as intermediate resonance scattering. Finally,
fluorine adatoms form what we call marginal resonant
scatterers [35]. Shown by density functional calculations
and subsequent tight-binding parametrization, F adatoms
induce a very broad “resonant” feature at around 200 meV
below the Dirac point. On the other hand, some experiments
on fluorinated graphene [21] appear to be consistent with a
pointlike resonant scattering model [27].

We study the three adatoms in graphene in the presence
of quantizing magnetic fields. Analytically, we present the
Green’s functions which can be combined with any scatterer
to provide reliable scattering amplitudes as a function of
the magnetic field. Numerically, we study large-scale sys-
tems to find local changes of the quantizing fields. Both ap-
proaches give the same electronic densities of states. The three
adatoms that we study give qualitatively different responses
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in the presence of a magnetic field. In the limiting case of
electron hole symmetry, a strong resonant scatterer can be
approximated as a vacancy, which forms two bound states
interacting with the zeroth Landau level (LL) near the Dirac
point. For an intermediate resonant scatterer, such as Cu, on
the other hand, only one bound state is pronounced, and its
energy is relatively insensitive to the external magnetic field.
Finally, the marginally resonant scatterer (here F) exhibits a
large spectral width (in density of states or transmission am-
plitude) overlapping with multiple Landau levels and forming
marked side peaks at LLs.

In conventional graphene on oxide substrates such as SiO»,
scattering of electrons off of charge fluctuations is relevant
for transport [36]. But it also happens that adatoms (in our
case mainly F) can be charged, due to the electron transfer
to/from graphene. It is then natural to ask how does the
resonant scattering picture in the presence of a magnetic field
change when the scatterers themselves are charged, causing
the long-range Coulomb interaction between them and the
Dirac electrons. We deal with this problem similar to what was
investigated experimentally and theoretically for vacancies
[37]. We find that a positively charged impurity will produce
one bound state in the conduction band next to LLy. We also
show how the resonant states evolve with increasing charge
before and after the atomic collapse [38].

Our specific predictions could be used in scanning tunnel-
ing experiments to obtain important electronic state character-
ization of resonant scatterers. We show how certain resonant
features in a magnetic field allow one to extract on-site and
hopping energies in a simple impurity model.

II. MODEL
A. Tight-binding model

We consider a noninteracting Anderson impurity model.
The unperturbed Hamiltonian of pristine graphene in a mag-
netic field is

Hy = — Ztijcjcj + H.c, ey
(i.J)

where c; (c;) stands for a creation (annihilation) operator
of p, electron at carbon site j (state ket |c;)), and the
nearest neighbor hopping ;; comprises magnetic field (Peierls

substitution)
_ R;
ti =1 exp i e)/ A-dl |, )
. h R,

where A is the vector potential, R;; are the coordinates of
the corresponding lattice states, e is the positive elementary
charge, and hopping parameter ¢ = 2.6 eV [39]. Throughout
the paper, we assume two geometries: an infinite system—
framing analytical approach, and a finite graphene flake [40]
with about a million carbon atoms—playground for numerical
simulation. As finite size effects get weaker with a larger sys-
tem size the flake should be much greater than the magnetic
length, Ip = /h/eB (5.7 nm for B =20T).

We consider three different kinds of impurities, namely,
H, F, and Cu in top position. The Hamiltonian for such an
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FIG. 1. (a) TB parameters around the impurity. (b) The proba-
bility density of the resonant state on the graphene sheet is shown
around the impurity site (H adatom). Bound states (B # 0) also
exhibit qualitatively the same localized nature in spatial distribution.

impurity is
Hy = gqd'd + wq(dieo + ), 3)

where ¢, is the on-site energy at the impurity site and wy
is the hybridization energy between the impurity and the
underlying carbon atom [see Fig. 1(a)] that parametrize the
first principles calculations [15,18,35,41]. The values used in
the paper are shown in Table I. Similarly as before, d (d)
and c:g (c) create (annihilate) an electron at the impurity site
and at the carbon atom below the impurity, respectively. We
numerically calculated the local density of states (LDOS) at
atomic site i, p;(¢) = 1/N Zn|(1ﬂn|6,‘)|25(8 — &,), where g,
|¥n), and N are eigenenergies, eigenfunctions, and the order
of the Hamiltonian matrix of the finite system, employing the
kernel polynomial method with the numerical tight-binding
(TB) package PYBINDING [42,43].

B. Green’s function approach

For practical purposes one can downfold impurity degrees
of freedom by means of Lowdin’s decimation procedure [44],
transforming H; into the corresponding energy-dependent
form

(,()2
Hi(e) = —4—¢} 4)
1(5) e 8COCU' (
— &4

To analyze the resonant-impurity-induced bound and resonant
states in the host system one needs to investigate poles of
the retarded Green’s resolvent in the presence of perturbation
[45], G(e4) = Go(e)[1 — H{(e1)Go(e)]™!, where &, =
& + 1§ is the energy with an infinitesimal positive imaginary
part, and the unperturbed Gy(e.) is the inverse of e, — Hp
(including proper boundary conditions). Since in our case
H{(¢e) is alocalized perturbation at the lattice site that hosts p,

carbon orbital |cy) = C(T)|O) the equation for the bound (reso-
nant) state energies reads 1 = (co| H{(e4)|co){colGo(e4)|co)-

TABLE I. Tight-binding parameters of adatoms. These values
are fitted from the first principle calculations [18,35].

ineV H F Cu
&4 0.16 —2.2 0.08
wy 7.5 5.5 0.81
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Using Eq. (4) we get

2
& zed _ Gg()(e’ B) — Z |<"IIn|CO)| 7 (5)
w; — &y — &

where the last equality expresses the on-site Green’s function
GY(e, B) = (co|Go(e4)|co) in terms of eigenenergies &, and
eigenfunctions |W,) of Hy, and the summation runs over an
appropriate set of quantum numbers 7.

Depending on the boundary conditions the eigensystem of
Hj can be found analytically. In the case of an infinite system
|W,)’s are the well-known graphene LLs [46,47] with energies

2h
6n = sgn(n)y/Inl IB”F

l = sgn(n)y/|n| iwg,  (6)

where vg = (3/2)tag/h is the graphene Fermi velocity and
the interatomic distance in graphene ap ~ 1.42 A. Defining
dimensionless energies £ = ¢/fiwp the on-site Green’s func-
tion G80 reads [41,48]

~ Ng

. A E 1 1
G()O E,B - _ uc _ —
0 ( ) 7t1322hw3§n+1—E2+n—E2

(N

where A, is the area of the graphene unit cell and the cutoff
Np is the integer part of 7T132/Auc. It is worth stressing that
the formula for GY° is valid in the energy range where the
pristine graphene band structure can be approximated by the
linear energy-momentum dispersion. Moreover, the chosen
cutoff Np guarantees that the integral of —1Im G’ gives
the correct number of states (Debye prescription) within the
graphene bandwidth. For the typical magnetic fields, say,
from 5 to 50 T, the magnitudes of Np range roughly from
8000 to 800. Depending on the energy and the strength of
the magnetic field the summation over n in Eq. (7) can be
approximated in a controllable way. For example, for energies
|E| < 1 that are centered around the zero Landau level (LLg)
singularities of G)’(E, B) stem from the 1/E? contribution
and the sum Zfl\ljl 1/(n — E?), which can be approximated
by the harmonic progression

Np
Hy,=) 1/n~InNg+y. ®)

n=1

where y >~ 0.57721 is the Mascheroni constant. With this
approximation, Eq. (7) leads to

GOE By~ e B (1 oy ©)
0 ) ]'[le Zh(,()B ~ NB )

and the formula for the bound state energies, Eq. (5), simpli-
fies to

E—Ed%

A o3 [1

—d |\ — —Hy E|. 10
nly® (hwp)? [ 2E ] (10

From this equation, we arrive at an important result that allows
one to anticipate the model tight binding parameters from
the experimentally measured bound states energies. The total
density of the states is also calculated from the unperturbed
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FIG. 2. LDOS of graphene with a H, F, and Cu adatom in
(@ B=0T and (b) B=20T. LDOS is calculated numerically
using TB model, at a carbon atom which is 8 and 10 unit cells away
from the adatom, respectively. In order to enhance the resolution,
the broadening is adjusted from 10 meV (B =0T) to 3 meV
(B =20T). LDOS of pristine graphene is shown for comparison
(dashed line). When the magnetic field is absent, one can observe
a single resonance peak either on the electron or hole side depending
on the on-site energy of the adatom. All the adsorbates are assumed
to be in top position (inset), which is energetically favorable for the
impurities considered [2]. All parameters used in the calculation are
shown in Table I.

Green’s function (B # 0)

9Go(e)
ae

1
p(e, B) = —;ImTr[Go(E) -1 T(S)}, (11
where T matrix 7 (¢) = H{(¢)[1 — Go(e)H{(¢)]™' and we
use the concentration of the impurity n = 107,

III. RESULTS

A. Locality of the resonance and bound states

One of the interesting and important aspects of resonant
scattering is that the resonant and bound states form falling-off
wave functions following the power law ~1/r as shown in
Fig. 1(b) [31,34,49,50]. For a single adatom [50], the proba-
bility density of the resonant state is concentrated around the
impurity (or vacancy) site, mostly over the opposite sublattice.
In the presence of a magnetic field, the resonant states split
into two bound states as discussed below.

B. Three patterns

As shown in Fig. 2, we identify three distinct resonant
behaviors depending on the kind of impurity.

a. H adatom. Hydrogen is known to act as a magnetic im-
purity and also to enhance spin-orbit coupling by corrugating
graphene sheet [16,19,35]. In this paper we focus on spin
independent effects. When the magnetic field is absent [see
Fig. 2(a)], the resonance peak appears in the vicinity of the
Dirac point (~7 meV) in the LDOS spectrum. This resonance
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peak is formed by strong hybridization between the adatom
and the carbon atom, which is one of the main scattering
mechanisms in transport [2,3]. In the presence of magnetic
field [B = 20 T; see Fig. 2(b)], the resonance peak splits into
two bound states (e. ~ —27 meV and . =~ 37 meV), which
are placed near the Dirac point between the zero and the first
lowest LLs. The smaller the g; is, the more symmetric the
bound state peaks would appear.

b. F adatom. The negative on-site energy of fluorine places
the resonance peak deep in the valence band, and strong
hybridization with the states off the Dirac point makes the
peak much broader. First principles calculations also show
that the adatom hybridizes strongly with the carbon atoms
in graphene to form midgap states in the valence band [34].
When the external magnetic field is present, instead of being
nearly symmetric, those two bound state peaks are now shifted
toward the valence band without crossing LLs; therefore, one
peak is merged onto LLj and the other on the right side of
LL_;. Due to the broadening, the side peaks near the LLs are
not pronounced, but small shoulders can still be seen in the
valence band.

¢. Cu adatom. Copper is not only a common impurity
found, especially in CVD grown graphene, but also an impor-
tant functionalization element. The resonance peak appears
around 70 meV for B = 0 T and, unlike for H and F adatoms,
the peak position is almost inert to the external magnetic field
[Fig. 3(b)]. The external magnetic field may slightly sharpen
the peak, but there is no counterpart of the bound state in the
valence band, nor do any side peaks appear.

These three adatoms represent the three scenarios of the
interaction between resonant impurity and magnetic fields:
(i) transition of one resonant state peak into nearly symmetric
two bound states appearing around LL due to the external
magnetic field, (ii) no pronounced bound states near the Dirac
point but multiple side peaks next to LLs in one band, and
(iii) a resonant state inert to the field. These different behav-
iors can be qualitatively understood by investigating a limiting
case: a single vacancy.

C. Vacancy limit

When a resonant impurity bonds to the underlying carbon
atom, it effectively removes one p, orbital from the graphene.
In the limit of w; — oo and &; — 0, it is equivalent to remove
one carbon lattice site in our tight-binding model, leaving a
vacancy behind. This leaves the smallest zigzag edge around
the vacancy, so that strongly localized states can be present
in the nearest neighbor sites in the vicinity of the vacancy.
Therefore, the vacancy is an idealized model for the resonant
impurity with strong hybridization. As in Eq. (6), the magnetic
field dependence of LLs proportional to +/B is shown in
Fig. 3(a). In addition to the LLs, with increasing B, the
resonance peak splits into a pair of bound states between LL,
and LL4 . Interestingly, the bound state peaks appear to have
the same /B dependence as LLs. and the bound states in the
conduction band have their counterparts in the valence band
at the same energy but with the opposite sign.

In Fig. 3(b), positions of the bound state peaks induced by
adatoms H, F, and Cu are shown. The asymmetry of the bound
states in the electron and hole side is due to &; 7% 0. For a

— T 50 .
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FIG. 3. (a) Magnetic field dependence of LLs and bound state
peaks due to vacancy. Dashed lines represent LLs of pristine
graphene as in Eq. (6). (b) The bound state energies due to different
adatoms H, F, and Cu at different magnetic fields. TB (solid) and
Green’s function (dashed) calculations agree with each other. Near
the zero energy, the separation between LL, and the bound states
from F and Cu are smaller than the broadening. (c) Comparison
between LDOS (solid) from TB model and DOS (dashed) from
Green’s function for H adatom when B = 20 T. The DOS units are
scaled for better comparison. The two arrows in the center indicate
the bound states (. and ¢.), and the other arrows indicate side
peaks, which are the result of interactions between the H adatom and
higher LLs. These side peaks are not visible in the TB calculation
because of the broadening (3 meV). The insets next to the bound
state peaks are the schematics for the probability current density of
the bound states.

given hybridization energy, the larger the on-site energy of
the adatom, the further away the peaks appear. As mentioned
above, the three possible patterns of bound states in external
magnetic fields are nearly symmetric bound state peaks (H), a
single (visible) bound state peak from F closely tracing LL_;
(F), and a bound state peak which is qualitatively insensitive
to the magnetic field (Cu). Nonetheless, these three patterns
are governed by the same mechanisms.

We first compare total density of states (DOS) calculated
from the analytical Green’s function method given by Eq. (11)
with the LDOS from the numerical TB model calculations
in Fig. 3(c) for the graphene with H adatom. LDOS and
DOS are rescaled for comparison and the two results match
closely. The coinciding peak positions confirm the equiva-
lence of the two complementary approaches. The five tall
peaks correspond to LL, (jn| < 2) and the two peaks near
LL, are the bound states. Each bound state has a current prob-
ability density circling around the impurity in the opposite

035412-4



INTERPLAY OF RESONANT STATES AND LANDAU ...

PHYSICAL REVIEW B 99, 035412 (2019)

direction. This is schematically shown in the inset of Fig. 3(c).
The chiral local (probability or charge) current of the bound
states generates an effective magnetic dipole, and it lowers
or increases the energy of the bound state depending on the
chirality. When an external magnetic field points out of the
sheet, the probability current density of the lower (higher)
energy bound state flows clockwise (counterclockwise) with
the effective magnetic dipole moment of each state aligned
in the parallel (antiparallel) direction with respect to the
magnetic field. This explains the ordering of the bound states
in the energy. The impurity also interacts with higher LLs,
and side peaks marked by arrows in Fig. 3(c) close to LL4;.
It is more transparent to consider the Green’s function to
analyze the relation between the two lowest bound states
and the TB parameters. The energies of the bound states
can be analytically calculated by solving Eq. (10). Focusing
on the most pronounced bound state peaks, the energies of
left and right lowest bound state peaks are e. and .. As
&4 > 0 increases, the asymmetry of the peaks, represented by
les + e[, also increases, and sgn(gy) = sgn(es + £-), while
the strong hybridization w; — oo makes the system approach
the vacancy limit (symmetric bound states).

One important conclusion derived from Eq. (10) is that
the microscopic TB parameters, namely, ¢; and w,; can be
determined from the lowest bound states energies:

e- 6
g4~ (&> +8<)/|:1 +2HN38—2:|,

2¢e.¢ £-€
2 >C< >C<
wy; ~ —a 8% /|:1+2HN37]1 (12)

where o = Ay /2 (hvp)? & 0.0272 and ¢; = hwg. Equation
(12) provides a useful device that immediately links exper-
imental measurements to microscopic TB parameters. This
formula can provide qualitatively reasonable estimates (within
~10% for broadening 0.1 meV) for ¢; and w,; as long as
absolute values of the bound state energies |¢. | are greater
than the resonance energy (for B = 0 T) but it should be
noted that the accuracy reduces with increased broadening.
Therefore, Eq. (12) might not provide a reliable estimate
for some marginally resonant impurities, such as F, within a
realistic range of the B-field strength.

D. Charged impurity

So far we considered neutral resonant impurities. However,
charged impurities are also known to play an important role
in transport not only as long-range scatterers but also by
forming electron-hole puddles [51]. Recently, it was also
demonstrated that the atomic collapse can occur due to local
charged impurities [52] or a vacancy [38]. Therefore, it is
an interesting question to ask how a charge combined with
a resonant impurity reacts to quantizing magnetic fields. In
order to investigate the effect of the charged impurity, we add
the screened Coulomb potential

—hv ro, r < 1o,
V) = FB/ro < ro (13)
—hvpB/r, r >ro,

(a) resonant (b)

charged

(c) charged and resonant
0.2 ﬂ 0.2
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-0.1

FIG. 4. Spatial distribution of LDOS as a function of distance
(along the armchair direction) from the scattering center (charged
impurity) under the magnetic field B = 10 T. (a) The two bound
states are pronounced in the close vicinity of the resonant impurity
site contrasted with LLs that are evenly present over the distance.
(b) The LLs are bent down due to the positive Coulomb impurity.
(c) When the impurity is positively charged and resonant at the same
time, the Coulomb interaction dominates. The broadening is 3 meV,
and g = 0.357,t = 3.7 eV, and the distance between the charge and
the graphene sheet d = 0.6 nm is used.

where B = Z e?/khvp with the charge number Z and the
effective dielectric constant «. The Fermi velocity in graphene
can be associated with the tight-binding hopping param-
eter as fivp = 3/2tap. A cutoff radius ry is introduced
to prevent from diverging at » =0, and a realistic value
ro =5 nm is chosen to be consistent with experimental
observations [52].

Experimentally, the energies of the bound states can be
measured by scanning tunneling spectroscopy (STS) as dif-
ferential conductivity d1/dV, which can be directly mapped
onto the LDOS spectrum. In Fig. 4 we show calculated LDOS
as a function of the distance from the impurity site (armchair
direction) for B = 10 T. The brighter shade represents the
greater values of LDOS. The magnetic field induced LLs
appear as the horizontal lines over a distance while the bound
states formed by the resonant impurity (H adatom) are pro-
nounced only in the vicinity of the impurity [Fig. 4(a)]. A pos-
itively charged impurity in the substrate lowers the energy and
the LLs bent down around the impurity sites [Fig. 4(b)]. This
result demonstrates the splitting of the LLs due to the orbital
degeneracy lifting as in the experimental observation near a
single charged vacancy [37]. In the case that the resonant
impurity is also positively charged, or an adatom is located
on top of a charged impurity in the substrate, the bound state
is not very clearly distinguished, and the Coulomb interaction
supersedes the resonant scattering [Fig. 4(c)]. The strong
resonant impurity exhibits qualitatively the same behavior
as vacancy and this implies that the Coulomb interaction
provides greater contribution to the scattering amplitude under
the magnetic field.
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FIG. 5. Landau fan diagram of graphene with (a) no impurity
(pristine graphene), (b) a resonant impurity, (c) a charged resonant
impurity at a distance d = 0 nm, and (d) a charged resonant impurity
at a distance d = 2.6 nm. The dashed lines indicate the Landau
levels of pristine graphene. The dashed lines indicate LLs in pristine
graphene. The charge § = 0.4 is used.

When a stronger magnetic field is applied, resonance-
induced bound states can still reappear. Figure 5(a) shows the
fan diagram of pristine graphene within a range of magnetic
fields. With an H adatom, the two bound states separated by
LLy are distinctly seen [Fig. 5(b)] the same as in Figs. 3(c)
and 4(a). The energy splitting between the two levels is
proportional to ~/B. A positively charged resonant impurity

[Fig. 5(c)] shifts all the LLs to lower energies and also splits
LL; into two orbital states and one bound state, and adds
another bound state above LLy. If the charge becomes greater
than the critical charge 8. = 0.5, then the lower orbital state
from LL; evolves into an atomic collapse resonance state [53].
As seen in Fig. 4, in the simultaneous presence of resonance
and charge, charge scatters stronger than the resonance, and
the trace of resonance is not so pronounced. But with a weak
Coulomb potential or in higher magnetic fields, as shown in
Figs. 5(c) and 5(d), the bound state peak splits out of the
shifted LL( with a higher LDOS intensity.

IV. CONCLUSION

We have performed realistic calculations of the electronic
properties of adsorbates on graphene in the presence of a
transverse quantizing magnetic field. Three adatoms were
investigated as special examples: H, F, and Cu, each with
distinct binding characteristics. The interaction between res-
onant adatoms and strong magnetic fields leads to specific
bound states around the Dirac point with unique spectral
features which can be explored experimentally. In particular,
such features could be used to extract useful microscopic
model parameters of the resonant adsorbate. In principle,
the same framework can be applied to investigating the
magnetic exchange, local spin-orbit coupling, or other spin
dependent effects in the means of STS measurements even
without requiring the spin resolution. We have also compared
adatoms with long-range scatterers. In a low magnetic field,
the Coulomb impurity is more pronounced, and a high mag-
netic field activates the resonance-induced bound states.
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