ISOLATION AND CHARACTERIZATION OF BACTERIA PRODUCING BIOFILM FROM FOOD VENDORS BY USING CONGO RED BROTH METHOD AND TUBE METHOD

ENGKU NOOR FATIN AMIRA BINTI ENGKU MUDA

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology In the Faculty of Applied Science UniversitiTeknologi MARA

JULY 2017

This Final Year Project Report entitled "Isolation and Characterization of Bacteria Producing Biofilm from Food Vendors by using Congo Red Broth Method and Tube Method" was submitted by Engku Noor Fatin Amira binti Engku Muda, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Iwana Izni binti Zainudin Supervisor Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Lili Syahani binti Rusli Project Coordinator Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Dr Nor' aishah binti Abu Shah Head of School of Biology Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENT

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of the Study	3
1.4	Objectives of Study	5

CHAPTER 2: LITERATURE REVIEW

2.1	2.1 Food Vendors		6
	2.1.1	Food Vendors as Potential for Food-Borne Disease	7
2.2	Biofil	m in Bacteria	8
	2.2.1	Bacteria Producing Biofilm	10
		2.2.1.1 Pseudomonas aeruginosa	10
		2.2.1.2 Staphylococcus aureus	11
		2.2.1.3 Shigella spp	11
		2.2.1.4 Salmonella spp.	12
		2.2.1.5 Listeria monocytogens	13
	2.2.2	Determination of Biofilm Formation	14

CHAPTER 3: METHODOLOGY 3.1 Materials

3.2

Materi	ials		15
3.1.1	Raw materials		15
3.1.2	Chemicals		15
3.1.3	Apparatus		16
Metho	ods		16
3.2.1	Sample Collection		16
3.2.2	Isolation of Biofilm	Producing Bacteria	16
	3.2.2.1 Selective N	Iedia	17
	3.2.2.1.1	MacConkey Agar	17
	3.2.2.1.2	Eosin Methylene Blue Agar	17
3.2.3	Biofilm Formation		18

	3.2.3.1	Congo Red Broth method	18	
	3.2.3.2	Tube Method	18	
3.2.4	Species (Characterization	19)

CHAPTER 4: RESULT AND DISCUSSION 4.1 Isolation of Bacteria

4.1	Isolation of Bacteria		21
4.2	Testing for Biofilm Formation		21
4.3	Species Characterization		24
	4.3.1	Gram Staining Test	25
	4.3.2	Oxidase Test	25
	4.3.3	Catalase Test	26
	4.3.4	MacConkey Agar Test	27
	4.3.5	Eosin Methylene Blue Agar Test	29

CHAPTER 5: CONCLUSION AND RECOMMENDATION 30

CITED REFERENCES	31
APPENDICES	34
CURRICULUM VITAE	36

ABSTRACT

ISOLATION AND CHARACTERIZATION OF BACTERIA PRODUCING BIOFILM FROM FOOD VENDORS BY USING CONGO RED BROTH METHOD AND TUBE METHOD

The attachment of microorganism onto moist surfaces environment will form biofilm. Biofilm may give negative impact to human health such as causing gastrointestinal disease if improper handling and choosing food from street food vendors. Therefore, this study was conducted to isolate and characterize biofilm producing bacteria from food sold from food vendors in UiTM Kuala Pilah and to compare which method either Congo Red Broth or Tube Method were effective in determining biofilm formation. Exposed food samples such as cheese tart, fried chicken and cooked dishes containing vegetables were taken from food vendors. Through selective media screening and biochemical testing, there were a few pathogenic bacteria characterized. Tube Method was superior techniques to determine biofilm compared to Congo Red Broth method as the results showed strong and moderate of biofilm formation. It can be recommended that Tube Method is reliable to detect formation of biofilm.