
The effects of drought and wildfire on forest structure 

and carbon storage in a resprouting eucalypt forest 

This thesis is presented for the degree of 

Doctor of Philosophy 

in 

Environmental and Conservation Sciences,  

College of Science, Health, Engineering and Education, 

Murdoch University, Australia 

2020 

Lewis L. Walden, BSc (Hons) 



ii 

Declaration 

I declare that this thesis is my own account of my research and contains as its main content 

work which has not previously been submitted for a degree at any tertiary education institution 

Lewis Walden 

6 December 2019 



 iii 

 

Abstract  

The frequency and intensity of forest disturbances are projected to increase in many regions as 

climate changes, with an increased likelihood of multiple disturbance events occurring in short 

succession. The effects and importance of multiple disturbance events are gaining increasing 

attention but there is substantial uncertainty regarding the strength of interactions in relation to 

type, sequence, and relative timing. Forests play an integral role in climate change mitigation 

efforts, however, multiple disturbances could alter forest carbon dynamics, potentially 

reducing the storage capacity of impacted stands. Accurate accounting of carbon losses and 

transformations is thus imperative across forests globally, and particularly in non-conifer 

dominated types and with different responses such as resprouting.  

This study investigated the effects of a global change-type drought (2010-11) and the Waroona 

Fire (2016), singularly on forest carbon dynamics in the regrowth Northern Jarrah (Eucalyptus 

marginata) Forest of southwestern Australia. This was followed by an investigation of the 

additive and interactive effects of these two disturbances on forest structure and recruitment. 

The affected forest stands were assessed using a plot-based forest inventory method combined 

with allometric equations and remote sensing metrics to determine carbon transformations and 

fire severity.  

Following the drought die-off there was a significant loss of live standing carbon (49.3 t C ha-

1), and a corresponding significant increase in the dead standing carbon pool six months after 

the drought. The Waroona Fire caused pyrogenic carbon emissions of between 10 and 21 t C 

ha-1, which corresponded to 5.5-12.2% of the mean pre-fire carbon storage, and the conversion 

of 59.2 – 72.8 t C ha-1 from the live to dead standing tree pool. This carbon, which comprises 

another 30-37% of the pre-fire carbon storage will be susceptible to loss over time both from 
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decomposition and from future fires. Total immediate carbon emissions from the 360 km2 

wildfire were estimated at 723,113 t C. When the disturbances were examined in combination 

there was no evidence of linked or compounding effects of these disturbances. Instead a strong 

effect of wildfire on live basal area (-20.7 ± 7.3 m2 ha-1) overwhelmed pre-existing drought 

impacts. 

Eucalypt resprouting forests are particularly resilient, with focal species able to survive 

multiple stressors over a short time period. However, the newly regrowing burnt stands are 

vulnerable to future disturbance until they develop bark thick enough to withstand fire, and 

carbon stores to maintain resprouts following drought. The drought event preferentially 

removed large trees and the wildfire smaller trees from the live standing carbon pool. With a 

continually decreasing rainfall and projections of more frequent and severe fires in this area 

the trajectory of the regrowth in these stands is likely to be strongly tied to the future 

disturbance regime. Increases in disturbance frequency and intensity may therefore lessen the 

chances of these forests recovering to pre-fire structure and therefore carbon storage capacity.  
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Preface 

This thesis consists of three papers that present my PhD research (Chapters 2-4). They are 

bracketed by an introduction (Chapter 1) and synthesis (Chapter 5), which review the literature, 

explain links between papers, and place the research in a broader context. The papers were 

written to stand alone, so this thesis does not contain a chapter describing the study area, study 

species and common methods. Inevitably there is some degree of overlap, particularly in 

descriptions of the study area, study design, survey methods and some introductory material.  

My project established a network of sites within and near the Waroona Fire boundary. Outside 

of my three direct supervisors (Prof. Richard Harper, Dr Joe Fontaine, Dr Katinka Ruthrof), 

Dr. George Matusick, was fundamental in devising the experimental design for Chapters 3 and 

4 and has therefore been included as a co-author on the papers derived from those chapters. To 

complete Chapter 2, I acquired and added to data from long-term plots established to monitor 

drought induced die-off as part of the State Centre of Excellence for Climate Change Woodland 

and Forest Health. The project leaders on that team for that initial dataset included Dr George 

Matusick and Dr Katinka Ruthrof. Prof. Giles Hardy was a key contributor to the experimental 

design and implementation of the dataset used in the Chapter 2 and was thus included as a co-

author in the resultant publication.  

One of the papers presented in this thesis has been published, and two are in preparation. The 

contributions of co-authors, are as follows:  
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1 Introduction and aims of the thesis 

1.1 Introduction 

Forests are a significant store of carbon and are critical for global climate change mitigation 

efforts, in terms of retaining existing stores, replacing stores through reforestation or 

afforestation or through management of existing forests (Canadell and Raupach 2008; Smith 

et al. 2013). An estimated 861 ± 66 Gt of carbon is stored in forests, with the majority stored 

in tropical forests (55%), followed by boreal (32%) and temperate forests (14%) (Pan et al. 

2011). Carbon stock density is also greatest in tropical and boreal forests with mean values of 

242 and 239 t C ha-1, respectively. Temperate forest carbon density is markedly lower with 

approximately 60% of the carbon density of the other two forest types with 155 t C ha-1 (Pan 

et al. 2011). 

The land sector plays a major role both in carbon emissions and carbon mitigation strategies. 

Land-based climate change mitigation is dependent upon the (a) the reduction of atmospheric 

GHG emissions through carbon sequestration, with the transfer of atmospheric CO2 into long 

lived carbon pools (ocean and terrestrial) (Lal 2008), (b) the preservation of existing carbon 

stocks, such as in forests and peatlands and/or (c) the replacement of fossil fuels with biomass. 

Globally, forests sequester and store large amounts of carbon, and in recent decades forests 

have sequestered 30% of the annual anthropogenic CO2 emissions (Pan et al. 2011). Forests 

thus consistently feature in mitigation strategies (Smith et al. 2013) that aim to use these biomes 

as a major component in global carbon mitigation efforts (Grassi et al. 2017). 

Climate change will have adverse effects on ecosystems globally (Lenton et al. 2008). The 

changing climate is largely due to an increased concentration of greenhouse gases (GHGs), 

mainly carbon dioxide (CO2) (Hartmann et al. 2013). Concentrations of CO2 emissions have 
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increased by 40% since pre-industrial times (Ciais et al. 2013) and this has led to an increase 

in the radiative forcing of the planet, which in turn has increased global mean surface 

temperatures (Ramaswamy et al. 2001; Hartmann et al. 2013). There are likely to be many 

adverse side effects associated with the changing climate, and to limit the impacts of climate 

change, substantial and sustained reductions of GHGs are needed (Meehl et al. 2007; Collins 

et al. 2013).  

As the climate changes, it is projected there will be an increased frequency and severity of 

disturbance events (Hoegh-Guldberg et al. 2018) including both abiotic and biotic factors, 

(Randhir and Erol 2013). These can include deforestation (Canadell and Raupach 2008), 

drought (Harper et al. 2009a), storms (Ziemblińska et al. 2018), and insect outbreaks (Kurz et 

al. 2008a). However, whilst the ecological impact of single events has been generally well 

researched, there is a lack of research on the carbon storage consequences of disturbance 

events, particularly in the resprouting forest types, such as Australian eucalypt forests.  

Multiple disturbance events can cause profound changes to forest composition, structure and 

function (Buma 2015), and again, the impact of successive interacting disturbance events has 

been documented across forest types with differing disturbance types and frequencies (Buma 

and Wessman 2011; Harvey et al. 2014b; Fairman et al. 2019). There is however a paucity of 

information on the effect of multiple disturbances on carbon storage, and this situation is 

particularly apparent for resprouting eucalypt forests. 

Disturbances alter the carbon storage and dynamics in a forest stand through mortality, 

combustion and biogenic decay (Galik and Jackson 2009). Importantly, disturbance events can 

change forest stands from carbon stores to carbon sinks. For example Kurz et al. (2008a) 

reported that outbreaks of mountain pine beetles (Dendroctonus ponderosae) caused forests in 

Western Canada and the USA to transition from a carbon sink to a carbon source over a 20-
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year period; the cumulative impact of the affected regions resulted in a loss of 270 Mt of carbon. 

Quantifying the carbon consequences of disturbance events is thus imperative to understanding 

the stability of forest carbon storage and their feasibility as long-term carbon sinks.  

With a changing climate it is likely that many systems will be disturbed more frequently, 

potentially altering stand structure and carbon storage capacity. Therefore, it is important to 

understand the interaction between forest disturbance and forest carbon storage.  

1.2 Literature Review 

This literature review will examine the disturbance factors affecting forests globally and how 

these disturbances affect carbon sequestration and storage.  

1.2.1 Forest carbon stores 

Forest carbon stores are here split into three different pools, which are live biomass carbon 

(above and below ground), soil carbon and dead organic matter. The stressors driving changes 

in carbon dynamics which are discussed will affect each of these stores, so an understanding 

of this construct is essential as a base for further discussion.  

Above ground biomass is the living biomass on the plant above the ground surface and 

includes, leaves, branches, and stems. Below ground biomass refers to the carbon found in the 

fine and coarse roots combined, although, roots <2 mm in diameter are included in the soil 

organic carbon pool as they are difficult to distinguish from the soil organic matter (Paustian 

et al. 2006). The majority of the stressors mentioned in this chapter affect the carbon stored in 

the biomass (Aalde et al. 2006). The measurement of the biomass carbon pool can be difficult 

in large forests as destructive sampling is required, and this particularly applies to roots 

(Sochacki et al. 2017). Instead, default values are often used to estimate below ground biomass 

(Grierson et al. 2000; Mokany et al. 2006; Sochacki et al. 2012). For example, Mokany et al. 

(2006) assume below ground carbon stores are approximately 20% of the standing above 
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ground carbon. Losses from the biomass carbon store can be associated with anthropogenic 

and natural factors including roundwood and fuelwood removal, fire, insects, diseases, and 

storm damage (Aalde et al. 2006). 

When litter, debris and below ground biomass decompose they transfer into the soil organic 

matter pool, which is the carbon stored in soil (soil organic carbon) or through the release of 

carbon dioxide to the atmosphere. Soil organic carbon can then be classified in several ways, 

depending if it based on physical or chemical analysis. For soil carbon modelling, such as the 

model RothC, three subgroup pools are used which comprise: particulate organic carbon, 

humic carbon, and resistant organic carbon (Coleman et al. 1997; McKenzie et al. 2000; Paul 

et al. 2003) which in forested soils can be comprised of a large proportion of charcoal (Santín 

et al. 2015b).  

1.2.2 Disturbance regimes 

Resistance and resilience are terms long established in forest ecology (Holling 1973). These 

terms conceptualise ecological systems as ones that can recover from both biotic and abiotic 

disturbances (Pimm 1984). A recurring way of visualising resistance and resilience of 

ecosystems is the ‘ball and cup’ model (Figure 1.1)(Larsen 1995; Gunderson 2000). These two 

terms of ‘ball’ and ‘cup’ refer to the ability of a system to return to its former state (Larsen 

1995) following disturbance. However, multiple disturbance events occurring before 

ecosystem recovery may push the ecosystem in to a different state (Donato et al. 2009b; 

Fairman et al. 2019). It is important to consider these terms when discussing the potential 

threats to both natural and planted forest ecosystems, as there may be processes that the forests 

are adapted to, and, in some cases, dependant on. As will be seen, the examples described in 

this chapter will be of processes which go beyond this natural regime to which the forest is 

adapted. 
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Figure 1.1 Schematic representation of ecological resilience based on Gunderson (2000). 

The ball in the basin represents the ‘state’ of a system. Resilience is a measure of how 

much disturbance a system (the ball) can absorb and still remain in the same basin, before 

it moves into another stable state (different basin). Source: Griffiths and Philippot (2013). 

1.2.3 Abiotic disturbances affecting carbon stores 

1.2.3.1 Drought and temperature extremes  

Climate change will affect a range of variables, including precipitation, evaporation and 

temperatures (IPCC 2013; Hoegh-Guldberg et al. 2018). There are also likely to be changes in 

the frequency of extreme events, such as temperatures and precipitation (Field et al. 2013). 

Drought occurs due to decreased rainfall over extended periods of time and can often be 

coupled with higher temperatures during both wet and dry seasons. This increases the stress on 

large plants and may lead to die off and mortality events. Allen et al. (2010b) documented 88 

cases of increased mortality due to drought and heat in forests across the globe.  

The response of plants to drought will vary depending on the species, as some have the potential 

to resprout after a substantial loss of biomass (Zeppel et al. 2015), which may lead to an 

increase in the abundance of resprouters rather than reseeding species (Vilagrosa et al. 2014). 

Williams et al. (2013) stated that with temperature as a significant driver of drought mortality, 
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the structure and composition of water limited forest across the globe will transition to 

unfamiliar distributions. Notable changes in forest canopy structure has been observed in the 

jarrah forest of south-western Australia due to extreme drought and heat conditions, with an 

estimated 16 515 ha experiencing canopy collapse (Matusick et al. 2013). There have also been 

reports of widespread deaths as a result of drought in Eucalyptus globulus plantations (Harper 

et al. 2009a) in this region. Although such events affect significant amounts of biomass, no 

studies have considered how this will affect the carbon dynamics of these systems. 

Drought and fire are interlinked disturbances, as increased drought stress may produce more 

fuel for wildfire from dead biomass (Dale et al. 2000; 2001). Fuel produced through drought-

induced mortality, along with the drying of existing fuel, has been shown to increase the 

wildfire area burned of fires in forested areas of the Western America (Littell et al. 2009). 

Drought induced canopy dieback has also been reported to increase local fuel loads in the 

resprouting forests of southwestern Australia (Ruthrof et al. 2016). It follows that with 

subsequent fire, areas that have experienced pre-fire drought stress may experience a higher 

severity of fire than adjacent ‘healthy’ stands.  

Future projections of global climate depict a substantial increase in temperature, along with an 

increase in rainfall variability for areas currently affected by seasonal drought (Collins et al. 

2013). Although this trend has not been consistently shown, Greve et al. (2014) reported that 

only 10.8% of land globally follows this pattern (dry gets drier, wet gets wetter) when based 

on various combinations of hydrological datasets from 1948-2005. Greve et al. (2014) also 

found that 9.5% of global land area shows the opposite pattern, with dry areas becoming wetter. 

However, an increased prevalence of drought will place further stress on forests and large trees, 

and therefore increase the incidence of drought induced tree mortality (Zeppel et al. 2015). 

Considering the large documented collapses and potential future events, there is little known 

about how this type of event will affect the carbon dynamics of forests.  
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1.2.3.2 Fire 

Fire is a process that affects many global forest ecosystems around the world, and is thought to 

have been a major factor affecting the vegetation composition and structure of these forests 

(Bond and Keeley 2005; Bond et al. 2005; Bowman et al. 2009). Distinctive fire regimes, 

which refers to a specific fire frequency and intensity, have shaped many forest ecosystems 

into what occurs presently (Gill 1975). For example, many Australian vegetation systems are 

adapted to frequent fires, and have developed strategies to recolonise after these events 

(through reseeders and resprouters, Pausas et al. 2004). However, many forest ecosystems are 

not adapted to fire, and this can lead to large mortality events (Campbell et al. 2007), with the 

forests regenerating from seed.  

In both types of ecosystem, a fire disturbance leads to a loss of biomass and release of carbon 

previously stored in the vegetation. The loss of carbon from the system may be incomplete, as 

some biomass still stands and some material may not have fully combusted (Santín et al. 

2015a).  

A change in fire regime can lead to forest degradation and a severe decline in forest health, and 

this has led to forest canopy collapses in some instances (Holz et al. 2015; Paritsis et al. 2015). 

For example, recurrent fires outside the regular fire cycle has resulted in the loss of the obligate 

seeder species Alpine ash (Eucalyptus delegatensis) in south-eastern Australia, where a second 

fire occurred before regenerating vegetation was able to produce seed (Bowman et al. 2014). 

Fairman et al. (2019) also reported the loss of resprouting ability in the temperate eucalypt 

forests of Victoria, south-eastern Australia, where repeated fires in short succession resulted in 

widespread mortality and resprouting failure of the dominant overstory. It follows that these 

events may have both short- and long-term consequences on carbon storage and dynamics in 

those stands as lost carbon is sequestered by recruitment of new trees. This concept of 
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increasing fire frequency affecting forest species composition can be extended to a range of 

ecological communities containing woody species (Enright et al. 2015).  

Globally, significant amounts of carbon are lost from the terrestrial pool each year with 

approximately 1.4-3.1 Gt tonnes of carbon emissions each year from wildfire for the period 

from 1960-2000 (Schultz et al. 2008). The carbon emissions from forest wildfire have been 

estimated in the mixed conifer forests of south western Oregon. Campbell et al. (2007) 

quantified the carbon emissions from a fire that burnt 20,000 ha of mixed conifer forest with 

an estimated 17-22 Mg C ha-1 -released from the event. A large wildfire that burnt an area of 

450,000 ha of temperate eucalypt forest in Victoria, Australia, emitted an estimated 3.9 Mt C, 

at an estimated rate of 40-58 t C ha-1 (Keith et al. 2014). These examples represent large 

quantities of carbon released from the terrestrial pool into the atmosphere from single events, 

highlighting the importance of fire in global carbon accounts and climate change mitigation 

efforts. Kirschbaum (2000) argued that the emissions from wildfires in Australian systems 

would only be temporary emissions as the carbon is recovered from regeneration starting 

directly after the event, and this is how they are treated in the Australian National Greenhouse 

Gas Inventory.  

It follows that if fire regimes and climate equilibrate, the carbon emissions from a fire event 

will be counteracted by the surviving vegetation and regeneration (Bowman et al. 2009). Fire 

intensity is important to  the recovery of forest carbon stores following fire (Volkova et al. 

2014). During low intensity planned fires litter and debris layers may be removed from the 

forest stand but large mature individuals are typically not killed by these fires, and carbon lost 

is quickly replenished through resprouting and regrowth (Volkova and Weston 2015). 

Alternatively severe wildfire can result in mortality of overstorey trees and therefore the 

transfer of live to dead carbon as well as losses from combustion of material (Keith et al. 2014). 

It follows that as the climate changes and fire severity and frequency increase (Clarke et al. 
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2016), regeneration and persisting vegetation may not be able to counteract carbon lost from 

fires.  

1.2.3.3 Storm damage 

Storm damage occurs during a meteorological event and can lead to tree mortality. This type 

of forest degradation is more pronounced in production forests, as they are usually 

monocultures. For example, a large storm which affected southern Sweden in 2005 caused 

widespread damage to the forests with approximately 70 million cubic meters of timber being 

felled (Valinger and Fridman 2011). There was also a reported decrease in growth in 

subsequent years after the event, which shows that the effects extend beyond the storm 

(Valinger et al. 2014). Valinger et al. (2014) also reported that there was no change in the 

choice of species used for regeneration, and minimal adaption by forest owners for possible 

future events. There is a gap in the literature surrounding the effects of storms on the carbon 

dynamics of affected forests.  

1.2.4 Biotic disturbances affecting carbon stores  

1.2.4.1 Insect pests  

Insect outbreaks can cause widespread damage to forests and ecosystem dynamics by reducing 

growth and increasing mortality (Mattson and Addy 1975; Kurz et al. 2008a). In Canada, the 

mountain pine beetle (Dendroctonus ponderosae) had a record outbreak in 2005, which 

affected 140 million m3 of lodgepole pine (Pinus contorta) trees. Insect outbreaks are not only 

focussed on mature trees as some species are known to affect seedlings and juvenile plants. 

This is the evident in Sweden where the Pine Weevil (Hylobius abietis) attacks Norway spruce 

(Picea abies) seedlings, hindering growth and increasing mortality in reforestation activities 

(örlander and Nilsson 1999). It is important to reiterate that these forests may be adapted to this 
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type of disturbance, and the increase in mortality and general degradation stems from a 

broadened range or increased prevalence of these insects.  

The effect pest outbreaks have on carbon dynamics has been quantified for the ponderosa pine 

(Pinus ponderosa) forests of Canada, along with the potential impact climate change will have 

on these type of outbreaks. Kurz et al. (2008a) estimated the cumulative carbon emissions from 

mountain pine beetle outbreaks in Canada (British Columbia) from 2000-2020, which equated 

to 270 Mt of carbon. This led to the forest being converted from a small net carbon sink to a 

carbon source, during and directly after the outbreak (Kurz et al. 2008a; Kurz et al. 2008b). 

Bark beetle outbreaks (Dendroctonus spp.) have also been linked to an increase in severity of 

crown fires in lodgepole pine forests (Turner et al. 1999), which would have additional effects 

on the carbon dynamics of this system. However, debate is ongoing as to whether bark beetle 

outbreaks actually increase the severity of crown fires in these forests (Simard et al. 2010; 

Black et al. 2013).  

1.2.4.2 Pathogens 

Pathogens are one of the possible causes of tree decline, and they can weaken or kill the infected 

individual. Pathogens are in the form of microscopic organism such as, bacteria, fungi, 

phytoplasmas or viruses, and unlike their hosts are usually highly mobile (Hamelin et al. 2005). 

The heightened ability to disperse allows large areas of forest to be affected by the pathogen. 

For example, Podger (1972) estimated that 80 000 ha of Eucalyptus forest in southwestern 

Australia had been affected by the pathogen Phytophthora cinnamomi, a soil borne water 

mould which causes root rot. This type of mortality has led to a change in the forest structure 

at the affected sites (Newhook and Podger 1972).  

There are many cases of forest pathogen induced mortality across the globe, from a variety of 

different pathogens and vectors (Allison et al. 1986; Rizzo and Garbelotto 2003; Gonthier et 
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al. 2007). However, the effect these mortality events have on forest carbon dynamics is 

unstudied, although its significance has been mentioned (Bergot et al. 2004). The carbon 

implications of these events could be significant for terrestrial carbon sinks, not only because 

of the associated mortality, but also the possible change in forest structure. 

The spread and establishment of pathogens has been linked to an increase risk of wildfires in 

California, where areas which were recently invaded by the pathogen (Phytophthora ramorum) 

had an increased overstory burn severity (Metz et al. 2010). Metz et al. (2010) also found that 

in areas with long-term prevalence of the disease the increased log volumes led to increased 

substrate burn severity, and that the mortality had only a minor effect on the fire severity. 

Rather the areas of most concern were those recently affected by the disease. 

1.2.4.3 Stacked disturbance events 

The role of disturbance in ecosystem carbon storage and dynamics has been highlighted for 

multiple disturbance and forest types. However, as the climate changes and frequency of 

disturbance increases there is a higher likelihood of multiple, stacked disturbances occurring 

in short succession. These events can cause abrupt and profound changes to forest composition, 

structure and function (Buma 2015). Multiple disturbance events can push the ecological 

resilience of an ecosystem beyond its resistive capacity and therefore push the system to an 

alternative state. For example Donato et al. (2009a) reported that in the mixed conifer forests 

of Oregon, there was no decline in diversity but a change in forest structure following multiple 

fires in short succession (15 years). Areas which experienced short burn intervals had a reduced 

dominance of woody forest components and an increase in shrub cover. It is likely that these 

changes to forest structure and woody biomass will also have significant effects on carbon 

dynamics in these forest stands; however, these were not reported.  
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Repeated disturbance events can either have linked or compound interactions (Buma 2015). 

Linked disturbances occur when the first disturbance affects the likelihood, extent, or severity 

of the second disturbance (Buma 2015). Compound disturbances describe the biotic response 

(for example, tree recruitment) following a second disturbance event, and how it is altered 

relative to the individual disturbance event. The interaction between successive disturbance 

events has been documented across different disturbance types and frequencies (Metz et al. 

2010; Buma and Wessman 2011; Kulakowski et al. 2013; Harvey et al. 2014b; Fairman et al. 

2019). Linked disturbance effects have been reported in the interaction between tree 

windthrow, and subsequent fire severity by Kulakowski and Veblen (2007). They reported that 

in the subalpine forests of Colorado stands with severe windthrow (66% of trees) experienced 

higher wildfire severity compared to those with lower rates of windthrow (Kulakowski and 

Veblen 2007). Linked disturbance effects have also been reported between intense storms and 

fire with defoliation leading to higher fuel loads and subsequent fire intensity (Gower et al. 

2015) as well as pest (Dendroctonus ponderosae) outbreaks and subsequent fire (Harvey et al. 

2014b). Compound disturbance interactions have been reported in a resprouting shrubland 

system of southwestern Australia (Gower et al. 2015). Gower et al. (2015) found that areas that 

experienced hailstorm damage and subsequent planned (prescribed) fire had reduced 

resprouting vigour and seedling recruitment compared to those that just experienced fire alone. 

With a projected increase in disturbance frequency and intensity with a changing climate, the 

complex effects of disturbance types, potential interactions and cumulative effects are key to 

understanding ecosystem resilience and the stability of global carbon sinks in a changing 

climate.  

1.2.5 Conclusions 

Forest are a large store of anthropogenic carbon emissions and thus they play a key role in the 

mitigation of climate change. However, there are threats to these forest carbon stores which 
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could potentially have significant feedbacks on the global carbon cycle. These threats include 

both abiotic and biotic processes such as, wildfire, drought, storm damage, insect attack, and 

pathogens. These threatening processes do not work independently, rather the processes work 

synergistically and can have a heightened effect on forest ecosystems when they occur before 

the forest has recovered. The impacts of these disturbance events singularly have on forest 

mortality and structure have for the most part been thoroughly researched. However, there is a 

significant lack of research focussed on the implications of these events for carbon storage, 

particularly in a resprouting forest. There is also a need for more research which investigates 

the impacts of stacked disturbance. This presents a very large gap in the literature, considering 

the significant amount of carbon stored in forests globally and the role these are posited in 

playing in management of global carbon cycles. It is also important to consider the effects 

climate change will have on these disturbances, as most are expected to worsen over time. 

1.3 Thesis questions 

The jarrah forest is a 30-40 m tall evergreen forest with a diverse understorey (Dell and Havel 

1989b). Harper et al. (2019) provide an overview of the jarrah forest and its management. 

Although there was complete forest cover at the time of European settlement in 1829 there has 

subsequently been considerable forest harvesting and deforestation for agriculture. The 

Northern Jarrah Forest comprises 11,276 km2 of forest, with approximately 81% of this vested 

with the Western Australian Government (Conservation Commission of Western Australia 

2013) and the remainder in private ownership.  

Following repeated harvests, the forest is now almost wholly comprised of regrowth of various 

ages. Low intensity planned fires are used at intervals of 6 to 8 years to reduce the build-up of 

fuel loads (Burrows and McCaw 2013). Around 62% of the forest is in conservation reserves, 

with the remainder subject to timber harvest, through selective logging rather than clear-fall 
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(Conservation Commission of Western Australia 2013). Bauxite mining also occurs across 10 

km2/yr of the forest, with this involving the removal of the surface 2-4 m of regolith and 

subsequent rehabilitation (Koch and Hobbs 2007). 

Southwestern Australia and the Northern Jarrah Forest () has experienced a significant change 

in climate since the 1970’s (Bates et al. 2008; Andrys et al. 2017), which has been characterised 

by a reduction in annual rainfall (10-15%) and increase in temperature (0.15°C per decade, 

Figure 1.3, Andrys et al. 2017). Following a global change-type drought (hotter drought) in 

2010, and a series of heatwaves in early 2011, the structure of approximately 16 000 ha of the 

Northern Jarrah Forest was affected by sudden canopy die-off (Matusick et al. 2013). The 

structure of severely affected stands was altered, moving these areas towards shorter, more 

densely stocked stands (Matusick et al. 2016). However, there was no assessment of the carbon 

storage consequences of this event, and subsequent recovery. Five years after the drought die-

off event, a severe wildfire (the Waroona Fire) burnt 36 000 ha of the Northern Jarrah Forest 

(NJF). Whilst the recovery of the jarrah forest following fire had been well documented (Abbott 

and Loneragan 1983; Abbott and Loneragan 1986; Burrows et al. 2010; Burrows 2013), there 

had been no accounting of carbon losses associated with wildfire in this forest type. 
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Figure 1.2 Location of the Northern Jarrah Forest (grey shading) in southwestern 

Australia. Isohyets illustrate the rainfall gradient from east to west. State capital city 

Perth, and Dwellingup (Station number: 009538) the source of long-term rainfall data is 

presented. Data source: Australian Bureau of Meteorology 



 16 

Figure 1.3 Annual precipitation for Dwellingup (Station number: 009538) from 1957 to 

2019. Dotted blue lines represent mean (1957-2000) annual rainfall and mean annual 

maximum temperature. Grey dots indicate years pre-2000 and red dots indicate post-

2000 years. Data source: Australian Bureau of Meteorology. 

During the Waroona Fire there were areas of forest that burnt which had been previously 

affected by drought induced die-off. This layering, or stacking, of disturbances presented an 

opportunity to investigate the potential additive and interacting effects of these disturbance 

events in a resprouting forest.  

Eucalypt forests are already subject to recurrent fire (Bowman et al. 2009; Burrows et al. 2010) 

and drought (Brouwers et al. 2013a; Matusick et al. 2013) and while there are some studies 

that have examined the impacts of fire on carbon storage (Keith et al. 2014; Volkova et al. 

2014; Volkova and Weston 2015), there is little information on the impacts of drought, or 

indeed fire and drought in combination on carbon storage. Eucalypt forests differ in their 

response to non-sprouting coniferous forests, which have been subject to wildfire and drought 

in the northern hemisphere, in that they have differing mechanisms of resistance and resilience 
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to these events. After both drought and fire, eucalypts can resprout from epicormic buds on 

their stems and continue growth (Burrows 2013), whereas non-sprouting forests can be killed 

outright and have to regenerate from seed (Pausas et al. 2004).  

The objectives of this thesis, therefore for a resprouting eucalypt forest, are to a) quantify the 

carbon implications of global-change-type drought and recovery, b) quantify the carbon 

emissions and transformations following severe wildfire and c) investigate the additive and 

interactive effects of drought plus wildfire on forest structure, mortality and recruitment in a 

resprouting forest type, such that the future recovery trajectory of the forest can be understood. 

This thesis thus explores both the carbon storage and structural consequences of repeated 

disturbance in a resprouting eucalypt forest. Chapters 2 and 3 investigate the disturbances 

singularly, then the stacked disturbance event will be examined (Figure 1.4). The thesis will 

attempt to answer the following questions:  

1) What are the carbon implications of global-change-type drought and recovery? 

Chapter 2 investigates the carbon consequences of global change-type drought in a 

resprouting eucalypt forest in south-western Australia. With the use of ecological 

knowledge, we calculated the estimated carbon transfers (e.g. from live to dead standing 

carbon) following die-off and early recovery.  

2) What are the carbon emissions and transformations following severe wildfire?  

Chapter 3 uses a field survey approach to quantify the carbon emissions and structural 

transformations following a large severe wildfire. Field surveys were also undertaken to 

examine the structural and carbon transformations following the event.  

3) What are the additive and interacting effects of drought plus wildfire on forest 

structure and mortality in a resprouting forest type?  
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Although there is a body of literature that examines the effect of fire and drought on the 

Northern Jarrah Forest there are no data on the effect of stacked disturbances on this 

forest type. Or indeed resprouting forest types in general. To understand the likely 

trajectory, in terms of forest growth and carbon storage of these stands, Chapter 4 

investigates the effects of repeated disturbance on forest structure, mortality and 

recruitment in a resprouting forest type. This is of interest because as climate changes 

and disturbance regimes shift there will undoubtedly be more areas of resprouting forest 

that are subjected to repeated disturbance. 
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Figure 1.4 Roadmap of thesis chapters and interrelationships of research topics 

  

Chapter 1: Introduction and literature review 

Chapter 2: Carbon consequences of drought 

differ in forests that resprout 

Chapter 3: Carbon emissions and 

transformations following wildfire 

Chapter 4: Structural changes following 

drought and wildfire double disturbance 

Chapter 5: General Discussion 
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2 Carbon consequences of drought differ in forests 

that resprout1 

2.1 Abstract 

Prolonged drought and intense heat-related events trigger sudden forest die-off events and have 

now been reported from all forested continents. Such die-offs are concerning given that drought 

and heatwave events are forecast to increase in severity and duration as climate change 

progresses. Quantifying consequences to carbon dynamics and storage from die-off events is 

critical for determining the current and future mitigation potential of forests. Stand 

measurements were taken five times over 2+ years from affected and unaffected plots across 

the Northern Jarrah Forest, southwestern Australia, following an acute drought/heatwave in 

2011. There was a significant loss of live standing carbon (49.3 t C ha-1), and subsequently a 

significant increase in the dead standing carbon pool by six months post die-off. Of the 

persisting live trees, 38% experienced partial mortality contributing to rapid regrowth and 

replenishment (82-88%) of labile carbon pools (foliage, twigs, branch) within 26 months. Such 

regrowth was not substantial in terms of net carbon changes within the timeframe of the study 

but does reflect the resprouting resilience of this forest type. Dead carbon generated by the die-

off may persist for centuries given low fragmentation and decay rates resulting in low biogenic 

emission rates relative to other forest types. However, future fire may threaten persistence of 

 
1 This chapter has been published as: Walden LL, Fontaine JB, Ruthrof KX, Matusick G, 

Harper RJ, Hardy GESJ (2019) Carbon consequences of drought differ in forests that 

resprout. Global Change Biology, 25, 1653-1664. 
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both dead and live pools via combustion and mortality of live tissue and impaired regrowth 

capacity. Resprouting forests are commonly regarded as resilient systems, however a changing 

climate could see vulnerable portions of forests become carbon sources rather than carbon 

sinks. 

2.2 Introduction 

Globally, increased heatwave and drought events are leading to elevated rates of forest die-off 

events (Allen et al. 2010a; Hicke et al. 2012). There have been at least 88 incidences of drought 

and heat related die-off events, reported from every forested continent and every major forest 

type (Allen et al. 2010a; Allen et al. 2015; Cobb et al. 2017). These global change-type 

droughts (that is, hotter droughts) are predicted to increase in frequency, duration and severity 

into the future (IPCC 2013). Die-off events may have broad repercussions, impacting the 

structure, function and biodiversity of ecosystems, with some systems experiencing structural 

state shifts (Clark et al. 2016; Matusick et al. 2016). For example, Martı́nez-Vilalta and Piñol 

(2002), reported drought-induced mortality in three pine species (Pinus pinaster, P. nigra, and 

P. sylvestris) on the north eastern Iberian Peninsula, and suggested that a drier climate may 

extirpate P. sylvestris populations in the region. In the southwestern USA, Breshears et al. 

(2005) reported that a global change-type drought in 2002-2003 led to the die-off of the key 

overstorey species, P. edulis, across over a million hectares. Such impacts have garnered broad 

and intense interest and while changes in forest structure and composition have been 

documented, the carbon consequences of drought and heat related forest die-off events remains 

relatively unreported, leaving substantial uncertainty around drought/heat wave-caused 

emissions and destabilisation of carbon pools.  

Forest carbon sinks and the maintenance of existing forest carbon stocks contribute 

significantly to the global carbon budget, and are an essential component of climate change 
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mitigation strategies (Le Quéré et al. 2013). Indeed, the management of forest carbon sinks to 

sequester and store carbon emissions was included in the recent Paris Agreement (Schleussner 

et al. 2016; Grassi et al. 2017) and forms the basis of the National Determined Contributions 

(NDCs) of 187 countries (Grassi et al. 2017). Forests cover 30% of the earth’s land mass and 

offset approximately 25% of emissions from fossil fuel use, which equates to approximately 

2.3 Gt C annually (Pan et al. 2011). However, forest disturbance events can have profound 

effects on forest carbon dynamics (Williams et al. 2016). Such events directly emit carbon 

dioxide into the atmosphere (e.g. via pyrogenic emissions from wildfire) or drive large 

transformations in the structure of carbon pools (i.e. live to dead) in forest stands, through for 

example, insect outbreaks, drought, or disease. Harvest, fire, windthrow, bark beetles and 

drought collectively lead to the gross loss of approximately 200 Mt C yr-1 of live biomass 

annually across the conterminous USA (Williams et al. 2016). A large wildfire event in 

Oregon, USA, for example, was reported to have released 19 t C ha-1  of carbon from pyrogenic 

emissions (3.8 Mt C total fire emissions), which was an estimated 16 times the net annual 

ecosystem emissions (Campbell et al. 2007). Kurz et al. (2008a) reported that outbreaks of 

mountain pine beetles (Dendroctonus ponderosae) caused forest of Western Canada to 

transition from a carbon sink to a carbon source over a 20-year period; the cumulative impact 

of the affected regions resulted in a loss of 270 Mt of carbon. Quantifying the carbon 

consequences of disturbance events such as those above is imperative to understanding the 

stability of forest carbon storage and their feasibility as long-term carbon sinks.  

Drought-induced forest mortality events alter the rate at which carbon moves through the 

carbon cycle (Law and Waring 2015) by reducing the carbon sequestration potential. Given 

that this type of disturbance can vary in intensity and duration, so do the potential live carbon 

losses. The magnitude, pace and pattern by which a system responds to drought is determined 

by the functional traits of the species within the stand. For example, Zeppel et al. (2015) suggest 
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that drought stress may have a relatively minor impact on resprouting forest systems, such as 

eucalypt forests, due to a lack of tree mortality compared with conifer-dominated systems, 

which do not resprout and require seedling-based regeneration and may experience larger and 

longer lasting live carbon losses.  

Not all drought related die-off events, however, lead to a reduction in carbon storage capacity. 

For example, Fauset et al. (2012) documented drought-induced structural and functional 

changes (including shifts from shade tolerant, evergreen, wet forest species, to deciduous, dry 

forest species) in tropical forests of Ghana, which led to an increase in above ground biomass 

(carbon) following two decades of chronic drought. Contrasting results from the boreal forest 

of Canada suggest that if climate change-induced drought events continue to intensify, forests 

could transition from a carbon sink to a carbon source as the climate warms and water deficits 

lead to a decline in tree growth, a reduction in net primary production and widespread increases 

in mortality (Ma et al. 2012). It is important to quantify the movement of carbon through forest 

stands, as well as changes in the volume of live and dead carbon, as these may have 

implications for the response of forests to future disturbance events, for example, fire, 

windthrow, or insect outbreak.  

Quantification of the carbon consequences of a drought-induced die-off event in a resprouting 

forest type, rather than a coniferous forest, is a pressing yet largely unexplored area of research. 

Resprouting species can experience partial mortality and may regrow lost biomass quickly, 

rather than the complete biomass loss that results from tree mortality commonly seen and 

reported in coniferous forests (Zeppel et al. 2015). The effect that this ‘incomplete’ type of 

disturbance has on forest carbon storage and dynamics is important for carbon accounting and 

ongoing forest management, as the accumulation of dead material and the reduction of live 

carbon will impact forest structure, carbon storage and fire risk. The Mediterranean climate-

type forest of southwestern Australia is a region dominated by resprouting canopy species 



 24 

(predominantly Eucalyptus and Corymbia spp.) and has experienced intermittent droughts 

since the mid 1970s, an acute drought in 2010, and multiple heatwave events in 2011 (Bates et 

al. 2008; Petrone et al. 2010; Matusick et al. 2018; Ruthrof et al. 2018). Mediterranean climate-

type ecosystems are considered highly vulnerable to climate change (Klausmeyer and Shaw 

2009) because of a retraction in the Mediterranean climate extent and increase in the prevalence 

of disturbances in these systems (e.g. fire, drought, temperature increase, invasive species; 

Cheddadi et al. 2001; Lenihan et al. 2003; Fried et al. 2004; Parry et al. 2007; Enright et al. 

2015). Drought and heat events in 2010/2011 impacted multiple forest types in southwestern 

Australia, driving canopy die-off and tree mortality across at least three forest types Ruthrof et 

al. (2018); Tuart (Eucalyptus gomphocephala) woodlands (Matusick et al. 2012), the Northern 

Jarrah (E. marginata) Forest (Matusick et al. 2013), and Banksia woodland (Bader et al. 2014; 

Challis et al. 2016). Although there is the beginning of an understanding of the ecological 

implications of drought in such forest and woodland systems, the magnitude of live carbon 

loss, or the effects on live and dead carbon pools within forest stands is unknown. This type of 

information is critical for carbon mitigation, forest management and climate change adaptation. 

Therefore, this paper aims to:  

a) quantify stand dynamics and carbon consequences of a major drought die-off event in 

2011; and,  

b) quantify initial regrowth dynamics following the die-off event for all major above-

ground biomass pools.  

2.3 Methods 

2.3.1 Study area 

The Northern Jarrah Forest (NJF) is located in southwestern Australia (30.8-33.5 S and 115.8-

117.8E) and covers an area of 1,127,600 ha (Havel 1975). The forest ranges from an open dry 
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sclerophyll forest in the north to a tall, closed forest in the south (Dell and Havel 1989a). Deep 

lateritic weathering profiles cap Archaean granite and metamorphic rocks (Gilkes et al. 1973). 

The NJF has a Mediterranean type climate, with hot dry summers and warm wet winters. Most 

rainfall occurs between April and October, and a seasonal drought may last between four to 

seven months (Bates et al. 2008). There is a strong rainfall gradient across the forest, which 

ranges from >1100 mm yr-1 on the western edge to approximately 700 mm yr-1 in the north east 

(Gentilli 1989).  

Southwestern Australia has experienced a significant change in climate, characterised by a 

reduction in rainfall (10-15%) and increase in temperature (0.15°C per decade) since the 1970s 

(Bates et al. 2008). During this period of warming and drying, two extreme drought events 

occurred during the Australian summers of 2006-2007 and 2010-2011. The winter of 2010 was 

extremely dry, with rainfall 40-50% below the annual average (BOM 2011). In addition, the 

number of heatwave days in 2011 was the highest on record since 1960 (BOM 2011). 

Prolonged reduction in rainfall, coupled with a heatwave, triggered significant, abrupt biotic 

disruptions across the region spanning both the terrestrial and marine ecosystems which 

included mortality as well as demographic shifts and altered species distributions (Ruthrof et 

al. 2018). During this event, it was estimated that approximately 16,000 ha of the NJF suffered 

severe canopy die-off (Brouwers et al. 2013a; Matusick et al. 2013). Areas that were severely 

affected were those in close proximity to granite outcrops, had soil with a lower water holding 

capacity compared to surrounding areas (Brouwers et al. 2013b), and were more clustered at 

xeric sites (Andrew et al. 2016). Following the die-off, Ruthrof et al. (2016) reported that the 

areas affected by drought had significantly higher amounts of fine fuels, which could elevate 

fire spread and intensity in subsequent fire events. 

Our current study focussed on drought-affected areas that are composed of a E. marginata 

(Jarrah) and Corymbia calophylla (Marri) co-dominant overstorey, a midstorey composed of a 
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mixture of Banksia grandis, Allocasuarina fraseriana, and two Persoonia species. The 

predominant disturbance agent in the NJF has historically been fire (Burrows et al. 1995) and 

the dominant overstorey species both have the ability to resprout from epicormic and 

lignotuberous buds.  

2.3.2 Site selection 

Following the 2011 drought-induced die-off event, twenty die-off patches were randomly 

selected from 236 patches identified during an aerial survey of the drought affected forest 

(Matusick et al. 2013). The 20 patches (Figure 2.1) with survey plots established spanned areas 

of 0.37 to 16.8 ha. These patches were delineated according to canopy die-off, with >70% of 

crown die-off considered a drought die-off patch, as outlined in Matusick et al. (2013). That 

is, most tree crowns were dying or recently killed on affected plots, including 74 % (±3 %) 

(mean [±SE]) of all stems that were living prior to the collapse, as opposed to only 11 % (±2 

%) in paired control plots (Matusick et al. 2013). The 20 patches initially established were 

visited four times, and a subset of 12 were visited five times following the initial observations 

of crown die-off (3, 6, 16, and 26 months post-event). Sampling events were chosen to 

document the initial damage and response following the first winter rains as well as response 

following subsequent summer drought periods (Matusick et al. 2013; Matusick et al. 2016). 
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At each of the 20 patches, three plots were randomly established within the delineated affected 

patch and three plots 20 m outside the drought-affected boundary in ‘healthy’ forest (giving a 

total of 120 plots, 60 inside the drought-affected patches, and 60 outside). The close proximity 

of plots meant that topography, soil type and fire history did not vary, thereby allowing for 

direct, straight-forward estimation of impact.  

 

Figure 2.1 Location of the 20 field sites (dark grey squares) in the Northern Jarrah Forest 

(light grey), southwestern Australia. Isohyets illustrate the rainfall gradient from east to 

west. 

2.3.3 Plot measurements 

At each of the 120 plots, a stand assessment was completed of the overstorey, understorey live 

vegetation and surface fuels. A plot radius of 6 m was used to sample individuals of >1 cm 
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diameter at breast height (DBH). These individuals were identified to species and were 

measured for DBH, live height and crown health class. The crown health class score, described 

by Worrall et al. (2008), and used by Matusick et al. (2013)  and (Ruthrof et al. 2015), ranged 

from 1 to 4, with 1 signifying healthy trees, characterised by predominately green turgid 

foliage, 2 signifying dying trees, characterised by predominately dry and discoloured foliage, 

3 signifying recently killed trees, characterised by predominately red and dead foliage, and 4 

signifying long dead trees, characterised by a lack of leaves, fine twigs, and the presence of 

sloughing bark (Matusick et al. 2013; Ruthrof et al. 2015; Matusick et al. 2016). This tree 

survey method was carried out at 0, 3, 6, 16, and 26 months post drought die-off. Time 0 is a 

derived measure from the initial measurement at 3 months, given that trees impacted by the 

drought retained their symptomatic foliage, which was wilted, discoloured and dead (Matusick 

et al. 2016). At 6 and 16 months post-drought die-off, affected trees were assessed for 

resprouting to assess partial bole mortality. The presence, number, and height of epicormic 

sprouting was used as an indicator to determine individuals that had suffered partial bole 

mortality. After 26 months, these measurements were not repeated because vigorous 

resprouting made tracking individual tree sprouts unreliable (Matusick et al. 2016). No effort 

was made to estimate the proportion of individual stems that were dead in weakly resprouting 

trees. For the purposes of this study, partial mortality refers to individuals that have suffered 

severe canopy dieback and have epicormically resprouted on the bole.  

2.3.4 Biomass and carbon calculations 

Above ground biomass was estimated for each stem using previously published allometric 

equations (Hingston et al. 1980; Grierson et al. 2000). These equations relate DBH to dry 

weight (DW) of that individual (Table 2.1). Carbon content was calculated as 50% of the dry 

weight (Gifford 2000). 
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Table 2.1:Species and corresponding allometric equations relating DBH (cm) to dry 

biomass (kg) for plots in the Northern Jarrah Forest investigating drought-induced 

forest die-off, southwestern Australia. 

Species Equation Reference  

Eucalyptus marginata ln(DW) = -3.680 + 2.84 ln(DBH) Hingston et al. (1980) 

Corymbia calophylla ln(DW) = -3.370 +2.74 ln(DBH) Hingston et al. (1980) 

Banksia grandis ln(DW) = -2.26 + 2.5 ln(DBH)  Grierson et al. (2000) 

Allocasuarina fraseriana ln(DW) = 3.57 + 2.68 ln(DBH) Grierson et al. (2000) 

 

Total biomass was allocated into the tree components (foliage, twig, branch, bark, and bole) 

according to published proportions (Hingston et al. 1980; Grierson et al. 2000). Individual trees 

measured during the field assessment included both healthy and drought-affected trees which 

had experienced partial mortality. Partial mortality entailed a spectrum of impacts on trees and 

tree components; therefore, it was necessary to quantify impacts with field-based techniques 

(observation of canopy impact, bole death, resprouting extent) as well as literature-supported 

approaches to fractionate pools (estimation of live and dead fractions from allometric equations 

and similar studies; i.e. Campbell et al. 2007; Gordon et al. 2018; Collins et al. 2019). To 

account for loss of foliage, fine branches and aerial decay, each component was adjusted 

according to its health score (Table 2.2, Equation 1). Dead standing carbon biomass was 

calculated as the remaining biomass following the live biomass corrections (Table 2.2, 

Equation 2). It was assumed that there was no substantial fragmentation of dead material, and 

all dead biomass was retained in the canopy and underwent aerial decay only.  
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Table 2.2: Biomass corrections for each of the biomass component for trees in the 

Northern Jarrah Forest study sites, southwestern Australia. Values are presented as a 

live proportion of each class. 

Biomass 

component 

Crown Mortality score 

 1 2 3 4 

Foliage 1 0.5 0.15 0 

Twig 1 0.6 0.2 0 

Branch 1 0.7 0.3 0 

Bark 1 1 0.75 0 

Bole 1 1 0.75 0 

 

The total live and dead carbon composition of an individual was calculated using the crown 

health rating, which corresponds to a specific biomass correction (Table 2.2). Summing each 

component yielded dry weight of biomass. which was reduced by 50% for carbon content 

(Equation 1; Gifford, 2000). 

Equation 1  𝑻𝒍𝒊𝒗𝒆𝑪 = ∑(𝑳𝒄𝒐𝒓𝒓 × 𝑫𝑾𝒄𝒐𝒎𝒑 ) × 𝟎. 𝟓 

Where Lcorr is the correction for the respective biomass component (based on health score) and 

DWcomp is the dry weight for the component derived from Hingston et al. (1980) and equations 

in Table 2.1. Total individual live carbon (TliveC) was calculated by summing each live 

component dry weight multiplied by its relative correction value, multiplied by 0.5 (Equation 

1).  
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Equation 2 𝑻𝒅𝒆𝒂𝒅𝑪 = (∑  (𝟏 − 𝑳𝒄𝒐𝒓𝒓 ) × 𝑫𝑾𝒄𝒐𝒎𝒑) ) × 𝟎. 𝟓)  

Dead carbon (TdeadC) was calculated by using the inverse of the live correction of Equation 1 

to determine the weight of biomass to be allocated to the dead carbon pool (Equation 2). Once 

the individual carbon content was determined, total carbon was calculated for each plot and 

averaged for condition (die-off vs control) at each site, then scaled to tonnes per hectare.  

2.3.5 Statistical analyses 

The overarching aims of this study were (1a) to quantify how stand attributes (density, basal 

area) varied following die-off, and (1b) to quantify the effect of drought on live and dead 

standing carbon stocks across multiple visits following die-off, (2) quantify initial regrowth 

across all above ground carbon components. Impact and early response were quantified five 

times over 26 months, total carbon and basal area was tested using one-way analysis of variance 

and change over time by pool type using a mixed model analysis. All data analyses were carried 

out using R (R Core Team 2014) with the lme4 package (Bates et al. 2014) and data 

visualisation with ggplot2 (Wickham 2011). In all cases, means and 95% confidence intervals 

are reported and a lack of overlap of the mean with adjacent confidence intervals was 

interpreted as evidence for a statistical difference between groups, while asymmetrical overlap 

of means (intervals overlap one mean but not the other) was interpreted as suggestive evidence 

of a statistical difference between groups (Ramsey and Schafer 2012). 

Basal area was analysed across visits to detect stand level changes to structure. Changes in 

basal area were tested with a one-way analysis of variance, with Tukey’s multiple comparison 

tests used to reveal changes over time. Test assumptions (homogeneity of variance and 

normality of residuals) were checked visually using histograms and residual plots, and no 

violations were detected. 
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Given that the experimental design included repeated measure of plots over time and plots were 

nested within site, a mixed effects model structure was implemented. Random effects were 

assigned to plot and site, and stand attributes such as density, basal area and drought impact 

were fixed effects. The response variable was biomass in tonnes per hectare and was analysed 

for stem density, live and dead carbon. Model structure consisted of a two-way interaction 

between time since die-off (TSD) and drought impact (control vs die-off). 

Prior to analysis, the covariates were assessed for outliers and collinearity. There were only 

two covariates (drought impact, and time since die-off) and no issues with collinearity were 

evident. Model residuals were examined graphically to ensure model assumptions were met; 

no violations were detected.  

The same method was used to analyse differences in proportional mortality at the die-off and 

control plots over time (that is, time since die-off). However, this model used the binomial 

distribution given the nature of the data.  

2.4 Results 

2.4.1 Impact of die-off 

The impact of the drought-induced die-off was evident in all stand characteristics six months 

following the event (six months since die-off, TSD6). Six months following the drought event, 

live basal area in die-off plots decreased and remained significantly lower than control plots 

(23.40 vs 41.19 m2 ha-1, TSD6; F8,483= 5.29, p= 0.041, Table 2.3). Approximately 38% (8.97 

m2 ha-1) of the remaining live basal area in die-off plots consisted of individuals that had 

suffered partial mortality. Live stem density also decreased significantly at six months (t= 3.11, 

p<0.01,Figure 2.2). Mean proportional stem mortality levels in die-off plots (0.39±0.07) also 

climbed significantly six months following the event and remained elevated relative to control 

plots (0.17± 0.06, z = 4.55, p<0.001, Figure 2.3). Within die-off plots, proportional mortality 
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peaked at six months and then declined somewhat at the TSD16 and TSD26 visits (p = 0.120; 

Figure 2.3) as some trees resprouted over the intervening growing season. 

The changes found in stand characteristics six months following the event were mirrored in the 

live and dead carbon pools. Total (live + dead) carbon storage between die-off and control plots 

was not significantly different at any of the visits following the disturbance (F2,157 = 1.33 p 

=0.27). However, the relative size and fluctuations of live and dead pools varied substantially 

across time and plot type (Figure 2.4). Three months following the disturbance, dead carbon 

significantly increased in the die off plots compared to the first visit (+20.2 ± 19.33 t ha-1, t = 

2.05, p<0.05, Table 2.4). At six months following the disturbance, dead carbon increased 

further in the die-off plots compared to the initial visit (+49.3 ± 19.32 t ha-1, t = 5.01, p<0.001, 

Table 2.4) and with a corresponding decrease in live carbon (-49.3 ± 25.3 t ha-1, t = -3.82, 

p<0.001). Within die-off plots, the largest contributor to the decrease in live carbon of 49.3 t 

ha-1 (95% CI=25.34) six months post drought (t = -3.82, p<0.001) was from bole-stored carbon 

(Figure 2.5).  
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Table 2.3: Mean live basal area (m2 ha-1) at die-off and control plots in the Northern 

Jarrah Forest, southwestern Australia across five visits. Ninety-five percent confidence 

intervals (CI) are presented in brackets after each estimate. 

Time Since Die-

off (months) n sites Live Partial mortality Complete mortality 

 

 

Control  

(CI) 

m2 ha-1 

Die-off  

(CI) 

m2 ha-1 

Control 

(CI) 

m2 ha-1 

Die-off 

(CI) 

m2 ha-1 

Control 

(CI) 

m2 ha-1 

Die-off 

(CI) 

m2 ha-1 

0 20 
41.46  

(5.56) 

36.78  

(8.73) 
- - - - 

3 20 
41.46 

(5.56) 

36.78 

(8.73) 
- - - - 

6 20 
41.19 

(5.46) 

23.40 

(5.58) 

3.58 

(2.58) 

8.97 

(3.48) 

3.20 

(2.57) 

18.81 

(6.46) 

16 20 
41.19 

(5.47) 

29.48 

(6.40) 
0 

8.85 

(3.86) 

3.14 

(2.53) 

12.55 

(4.96) 

26 12 
44.30 

(8.28) 

28.47 

(7.70) 
- - - - 
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Figure 2.2 Mean live stems per hectare for die-off (circles) and control plots (triangles) 

in the Northern Jarrah Forest, southwestern Australia across five visits. Error bars 

represent the 95% CI of the mean 

2.4.2 Initial regrowth 

In subsequent visits following the significant decline in live carbon, early regrowth response 

was observed (Figure 2.2). Early regrowth was captured as the live stem density increased in 

die-off plots to a level that was significantly higher at TSD26 than TSD0 levels (t = 3.77, 

p<0.001, Figure 2.2). Live stem density did not change across all the visits in the control plots 

(Figure 2.2) with broad overlap of 95% confidence intervals for all visits.  

Live and dead carbon pools were relatively stable from six to 26 months post die-off (Figure 

2.4). From six months onwards, regrowth from resprouting trees contributed a small amount to 

live carbon; however, resprouting of previously ‘dead’ individuals drove an increase in bole 

live carbon when comparing TSD3 and TSD6 visits (protracted epicormic resprouting above 
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breast height led to an allocation of a proportion of the bole mass the live pool; Figure 2.5). 

Resprouting and subsequent growth led to the recovery of the more labile pools (foliage, twig, 

and branch) to close to pre-drought levels by TSD26 (Figure 2.6). At the 6-month visit, the 

labile biomass components branch, twig, and foliage were reduced to 42%, 53%, and 46% of 

their initial pre-drought mass, respectively (Figure 2.6). Foliage recovered to 82.4% of its 

original mass by the 26-month visit, while branch and twig pools recovered to 88% and 82.1% 

of their first visit carbon mass respectively (Figure 2.6).  

 

Figure 2.3 Mean proportional mortality of die-off (circles) and control (triangles) plots 

in the Northern Jarrah Forest, southwestern Australia, across the five visits. Error bars 

represent the 95% confidence intervals of the mean. 
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Figure 2.4 Mean dead standing (top) and live standing (middle) and total (bottom) 

carbon (t C ha-1) for both control and die-off plots across all visit times (months) since 

die-off (TSD0, 3, 6, 16, 26) in the Northern Jarrah Forest, southwestern Australia. 

Values represent the means of 120 plots across 20 sites (60 plots per treatment), and 

bars represents 95% confidence intervals of the mean. 
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 Figure 2.5 Dead and live standing carbon (t C ha-1) for carbon components for drought-

induced die-off plots in the Northern Jarrah Forest, southwestern Australia, across all 

visits (time since die-off). 
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Table 2.4: Results from a linear mixed effects model used to quantify carbon dynamics following a drought die-off event in the Northern 

Jarrah Forest, southwestern Australia. Models tested differences in live carbon, dead carbon, stems per hectare and proportional stem 

mortality in the different treatments (die-off and control plots) and across the visits (time in months since drought, TSD). Estimates are 

the difference from the initial value at control plots at the first visit (TSD0), with 95% confidence intervals of the estimate in brackets. 
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Model constructed from 552 observations, 20 unique sites, with 120 unique plots over 5 visits 

 

Coefficients Response 

  Live carbon (t ha-1) Dead carbon (t ha-1) Stem density (stems ha-1) Proportional stem mortality 

  
Estimate 

(CI) 
t-value p-value Estimate (CI) t-value p-value Estimate (CI) t-value p-value Odds Ratio (CI) z-value p-value 

Intercept 150(29.4) 9.99 <0.001 9.02 (17.7) 1.00 0.32 1640 (369) 8.70 <0.001 0.07 (0.04) -11.8 <0.001 

Die-off -28.2 (41.5) -1.33 0.18 8.05 (24.3) 0.65 0.51 453 (513) 1.73 0.08 1.9 (1.18) 2.62 <0.010 

TSD3 -3.28 (17.9) -0.36 0.72 3.28 (13.7) 0.47 0.76 0.00 (235) 0.00 1.00 1 (0.35) 0.00 1.00 

TSD6 -2.07 (17.9) -0.23 0.82 2.07 (13.7) 0.30 0.78 -97.3 (361) -0.81 0.42 1.79 (0.57) 4.09 <0.001 

TSD16 -1.86 (17.9) -0.20 0.84 1.88 (13.7) 0.27 0.79 -103 (235) -0.86 0.39 1.82 (0.58) 4.22 <0.001 

TSD26 7.45 (21.3) 0.69 0.49 -0.21 (16.2) 0.02 0.99 188 (279) 1.32 0.19 2.2 (0.81) 5.00 <0.001 

Die-off TSD3 -20.2 (25.3) -1.56 0.12 20.2 (19.3) 2.05 <0.05 1.47 (332) 0.01 0.99 1 (0.46) 0.00 1.00 

Die-off TSD6 -49.3 (25.3) -3.82 <0.001 49.3 (19.3) 5.01 <0.001 -527 (332) -3.11 0.002 2.26 (0.94) 4.55 <0.001 

Die-off TSD16 -27.4 (25.3) -2.12 <0.05 27.5 (19.3) 2.79 0.005 -260.8 (332) -1.54 0.12 1.33 (0.56) 1.56 0.120 

Die-off TSD26 -53.4 (30.11) -3.48 <0.001 36.1 (22.9) 3.09 0.002 1020 (395) 5.07 <.001 1.22 (0.58) 1.03 0.300 
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Figure 2.6 Mean proportion of initial live biomass components (foliage, twig, branch) in 

die-off plots in the period up to 26 months following the drought event in the Northern 

Jarrah Forest, southwestern Australia. Values are expressed as the proportion of the 

TSD0 (time in months since die-off) mass. TSD0 is included for reference. 

2.5 Discussion 

This study quantifies carbon dynamics following a drought-induced forest die-off in a 

resprouting Australian eucalypt forest. It builds on the work of other drought-induced die-off 

carbon studies (Fauset et al. 2012; Ma et al. 2012) by showing that although the total carbon 

storage did not differ over time following the die-off event, the composition of the carbon pools 

shifted markedly with substantial dead carbon contained in standing trees suffering complete 

and partial mortality. Such increases in dead carbon are in contrast to Fauset et al. (2012), who 
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reported post-drought increases in above ground biomass (that is, carbon) in a Ghanaian 

tropical forest due to shifts in tree species. The impacted forest underwent a structural state 

change, from a tall, open forest to a shorter, denser, closed forest (Matusick et al. 2016) but 

without changes in tree species composition (Ruthrof et al. 2015). Stem mortality occurred by 

six months post die-off and resprouting of these trees ensued with regrowth of both basal and 

epicormic shoots from six to 26 months post die-off. Overall, the forest transitioned from large 

trees to short, multi-stemmed individuals, and our study has shown that this is clearly reflected 

in its carbon sequestration potential.  

The die-off driven carbon transformation from live to dead pools was substantial (49.3 t C ha-

1). Subsequent biogenic emissions and decay rates (Gunn et al. 2012) will be contingent on a 

range of factors including standing versus down, snag fragmentation rates, climatic setting, 

material size and wood density, and biotic agents of decay. Suspended, aerial dead wood (dead 

trees, portions of trees) decays more slowly (lower annual emissions) than downed wood on 

the forest floor in contact with the soil that experiences greater moisture content and 

decomposition rates (Harmon et al. 2011). The rate of snag fragmentation (recruitment of dead 

material from suspended to down) is undocumented for the dominant tree species in this study. 

However, using the knowledge available regarding the mechanisms that influence snag 

fragmentation rate (climate, wood density, and biotic agents), it can be assumed that snag 

fragmentation and fall rate will be more gradual than that of tropical and boreal forests. Climate 

plays a large role in snag decomposition rate, with decay rates decreasing from the equator 

towards the poles (Cooper 1983). Warm moist environments result in faster rates of wood 

decay, and the Mediterranean climate (cool wet winters and warm dry summers) of 

southwestern Australia, therefore, do not provide optimal conditions for wood decay. In 

general, in a tropical forest almost all the woody material may decay within 10 years (Cooper 

1983). In contrast, the turnover time for Eucalyptus species in a temperate sclerophyll forest 
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can range from seven (e.g. E. regnans) to 375 years (e.g. E. camaldulensis and E. tereticornis) 

based on climate setting (Mackensen and Bauhus 1999). The initial wood density of a species 

will also contribute to decay rate, with higher wood densities decaying slower than lower initial 

wood densities (Mackensen and Bauhus 1999). Climatic conditions coupled with high wood 

density of the species in this study, E. marginata (0.67g cm3) and C. calophylla (0.65g cm3), 

dead individuals may remain standing for decades before being added to the coarse woody 

debris pool and remain in the stand and ecosystem as decaying wood for a century or more in 

the absence of fire. This suggests that the loss of carbon (decay and subsequent heterotrophic 

respiration of dead wood) from the NJF may not translate to total carbon storage loss at the 

same rate as other forest types more commonly studied. Thus, it follows that in the absence of 

disturbance the total carbon storage in the die-off sites could increase as new growth 

counteracts the carbon lost from biogenic emissions of dead material. However, with a drying 

climate (Bates et al. 2008) regrowth is unlikely to grow to the extent of the individuals that 

died. The post-disturbance regrowth is also more likely to have a severe fire occur within it 

(Zylstra 2018), further reducing carbon stored in both live and dead pools. A combination of 

these two factors are likely to prevent these stands from regaining or increasing carbon storage. 

Fluctuations in live and dead carbon storage have implications on forest structure and future 

carbon sequestration capacity by potentially putting an upper limit on the amount of carbon a 

forest stand can fix (Ma et al. 2012). This study quantified live carbon loss and initial regrowth 

in die-off plots and found significant losses to live carbon occurred six months following the 

event. However, the resprouting nature of the dominant tree species in this study, E. marginata 

and C. calophylla, resulted in many large trees resprouting at 16 months resulting in partial 

mortality, which permitted rapid regrowth of the same individual and live carbon being 

‘regained’ in the system. The loss of canopy also allows plants to compete for available 

resources, potentially elevating regrowth and subsequently increasing live carbon in smaller 
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stems. These results are consistent with Zeppel et al. (2015) who reported the ability of 

resprouters to avoid complete mortality, through partial mortality, and withstand drought, 

indicating that the impact of drought stress in resprouting forest systems may be lower than in 

other forests dominated by nonsprouting species (i.e. conifers).  

It has been suggested that even in the most rapidly growing forests, another disturbance 

(drought or fire) may occur before stands have recovered similar sized individuals and forest 

structure (Adams et al. 2009; Allen et al. 2015; Frank et al. 2015). Furthermore, post-

disturbance regrowth forests have been linked to an increase in the likelihood of occurrence, 

severity, or extent of another disturbance, particularly fire, as the structure of the regrowing 

forest is growing closer to the surface and more likely to be ignited (Kitzberger et al. 2012; 

Kitzberger et al. 2016; Zylstra 2018). The NJF of southwestern Australia is considered a 

frequent fire forest, unlike forests that naturally experience infrequent stand replacing 

disturbances. Many of the stands that experienced drought-induced die-off are likely to be burnt 

by either wildfire or planned burns before they have completely recovered. Given that the 

drought- affected patches in this study were comprised of many younger, multiple, resprouting 

stems (Matusick et al. 2016), these younger/shorter individuals are more susceptible to 

mortality during a fire, or future drought event, as they do not have thick bark to withstand fire 

events (Abbott and Loneragan 1986; Pausas 2015). Thus, the already stressed and drought 

affected mature individuals may not have the resilience to resprout again (Galiano et al. 2012; 

Fairman et al. 2019) which would result in large losses in carbon storage and future 

sequestration potential. In a study of Quercus ilex forest in Spain, Galiano et al. (2012) 

suggested that progressive depletion of carbon reserves through repeated drought events may 

lead to loss of resilience in resprouting species. Therefore, these systems may be at an even 

greater risk of future carbon loss because large trees have undergone canopy retraction (partial 

mortality) and resprouted epicormically, and resulting new small stems lack the thick bark 
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required to survive even a low intensity fire (Abbott and Loneragan 1986). Thus, it follows that 

the resilience of these stands has been compromised compared with the surrounding vegetation.  

The distribution of carbon (recalcitrant soil fractions or live bole wood versus labile live pools 

or dead decomposing pools) within a forest stand will influence future carbon storage and 

sequestration. Partial mortality of large individuals, and the increase in the number of small 

individuals, may temporarily buffer live carbon loss from the system (Zeppel et al. 2015). In 

our study, six months after the drought event, a reduction in live carbon was recorded, which 

was attributed to the movement of bole-stored carbon from the live to dead carbon pool. The 

slight rebound in live carbon following the initial drop can be mainly attributed to the large 

individuals (DBH>30cm) resprouting in the intervening period of six to 26 months when 

originally scored as dead at six months. This was also highlighted in the labile pools (foliage, 

twigs, and branches), which nearly recovered to pre-die-off levels by 26 months after the 

drought event. Mean foliage, twig and branch biomass were approximately 82.5, 82.0 and 

88.9% of pre-drought levels respectively. Fluctuations like this highlight the significance of 

large trees in this forest ecosystem. Bole-stored carbon, and the transition from dead to live, 

plays a substantial role in the structure and carbon storage capacity of these stands. However, 

the rapid return of labile pools in this study highlights that partial bole mortality in resprouting 

forests may lead to leaf area recovery and return to pre-drought-carbon storage levels in a 

shorter time scale compared to coniferous forests.  

The potential for live carbon recovery is largely dependent on the pattern of disturbance in the 

future. Given the fire frequency and climatic predictions for southwestern Australia that include 

an increase in fire risk (Pitman et al. 2007), it is likely that subsequent disturbances will occur 

before complete forest recovery. Indeed, wildfire and planned (prescribed) burning recently 

have impacted the sites reported in this work. Subsequent disturbances will act to substantially 

reduce total stand carbon storage in two ways; firstly, the drought affected patches studied here 



 46 

are made up of younger/shorter individuals (Matusick et al. 2016) which are more susceptible 

to mortality during a fire or future drought event than larger, extant individuals. Secondly, once 

dead trees eventually fall and are converted to coarse woody debris, they are more likely to be 

consumed by fire, even if it takes multiple fire events to be completely consumed (Abbott and 

Loneragan 1983; Donato et al. 2016). Both pathways transition away from live carbon 

sequestration as well as an eventual reduction in dead carbon storage of die-off affected stands. 
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3 Above-ground carbon dynamics following wildfire 

in a eucalypt forest2 

3.1 Abstract 

Forests are an integral component of the global carbon cycle and climate change mitigation 

efforts. Fire is a predominant disturbance factor in many forests and is likely to increase in 

severity with climate change, and thus affect forest carbon storage and dynamics. Whereas 

wildfire can be stand-replacing in a variety of forest types, eucalypts which typically 

experience frequent fire (5-20 years), most commonly resprout after fire thereby conserving 

most of their live carbon stocks. Pyrogenic carbon emissions and carbon pool transformations 

were quantified following a severe wildfire in a regrowth eucalypt forest in southwestern 

Australia with mean above ground carbon storage of 69-104 t C ha-1. The wildfire induced 

pyrogenic carbon emissions of between 10 and 21 t C ha-1, which corresponds to 5.5-12.2% of 

average pre-fire carbon density. These values were comparable to results from forest with a 

frequent, low-intensity regime and infrequent high-intensity fire regimes. Crown fire in this 

study only partially killed many trees, whereas fires in forests that experience infrequent fire 

high intensity fire have higher rates of live standing carbon loss as they typically do not 

resprout. This has implications for the recovery of carbon stocks through protection of existing 

carbon stocks in standing trees,  as well as differences in the amounts of dead biomass, and  

replenishment of carbon through regrowth from existing trees and seedlings, rather than 

primarily seedlings. Whilst many trees underwent partial mortality, there were high rates of top 

 
2 This chapter has been prepared to be submitted to Journal of Geophysical Research 
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kill (individuals resprouting basally or fire killed). The projected increase in fire severity with 

climate change may lead to permanent reductions in forest carbon storage, particularly when 

combined with other climate induced forest changes such as an increased incidence of drought 

and heat-related mortality.  

3.2 Introduction 

Forests are an integral component of the global carbon cycle and climate change mitigation 

efforts (Canadell and Raupach 2008). Forests cover nearly 30% of earth’s land mass and 

contribute significantly to the 3.8 Gt C yr-1 (for 2017: Le Quéré et al. 2018) sequestered by 

terrestrial ecosystems which in turn equates to ~33% of current anthropogenic emissions 

(Grassi et al. 2017; Keenan and Williams 2018; Kirschbaum et al. 2019). Disturbance events, 

such as deforestation (Canadell and Raupach 2008), drought (Harper et al. 2009a), storms 

(Ziemblińska et al. 2018), and insect outbreaks (Kurz et al. 2008a), along with decomposition 

of dead biomass can release previously stored carbon back into the atmosphere (Galik and 

Jackson 2009).  

Fire has been recognised as having a particularly large potential impact on forest carbon stocks 

(Campbell et al. 2007; Bowman et al. 2009; Keith et al. 2014). Fire as a forest disturbance 

leads to a loss of biomass and release of carbon previously stored in various forest carbon pools, 

whether it be in the form of standing trees, debris, litter, or soil organic matter (Bowman et al. 

2013; Volkova and Weston 2013). Globally, burning of biomass (via wildfire and planned 

burns) between 1996 and 2016 was estimated as a source of approximately 2.2 Gt C yr-1 (Van 

Der Werf et al. 2017), and is therefore a key component of the global carbon cycle (Bowman 

et al. 2009; Pan et al. 2011; Zhang et al. 2018). However individual wildfire events emit 

substantial C emissions, regardless of the historical fire regime or forest type. For example 

Campbell et al. (2007) quantified the carbon emissions from a 200,000 ha wildfire in 2002 in 
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a mixed conifer forest of southwestern Oregon with an estimated 3.8 Mt C (~19 t C ha-1 ) 

released. Emissions from a series of wildfires in Portugal that burnt over 286,000 ha in 2003 

were estimated to have reached 2.01 Mt C (~7.02 t C ha-1) (Rosa et al. 2011; Chiriacò et al. 

2013) and in Victoria, Australia, 3.9 Mt C (40-58 t C ha-1) was estimated to have been released 

from a fire that burnt 450 000 ha of temperate, tall wet eucalypt forest (Keith et al. 2014). 

Forest fires are predicted to increase in severity, duration, and frequency for fire prone regions 

with a changing climate (Moritz et al. 2012; Seidl et al. 2017; Hoegh-Guldberg et al. 2018). 

Quantifying the effect that fire, and particularly fire in a drier and hotter future, has on forest 

carbon stores is key to understanding the stability and persistence of forest systems as global 

carbon sinks (Williams et al. 2016). 

Although wildfire is considered, apart from deforestation, the most common disturbance factor 

and a major influence on the vegetation composition and structure of the resprouting eucalyptus 

forests of Australia (Bond and Keeley 2005; Bond et al. 2005; Bowman et al. 2009), the 

implications of wildfire for carbon dynamics are poorly understood in these ecosystems. 

Resprouting enables large trees to survive fire events throughout their lifespan. It follows that 

the long-term carbon losses from wildfire events in resprouting forests may not be as 

substantial as those experienced in other forest types, which typically experience large rates of 

mortality amongst the mature individuals (Keith et al. 2014; Volkova et al. 2014). In a system 

where climate and fire regimes are in equilibrium, the atmospheric carbon emissions of fire 

and subsequent uptake by surviving vegetation and regeneration are balanced (Bowman et al. 

2009). However, with a changing climate, drought-induced mortality, a lengthening of fire 

weather seasons and an increased frequency of long fire weather seasons globally (Jolly et al. 

2015; Miller et al. 2019), these forests may not be able to continually resist carbon losses from 

wildfire and will undergo changes to structure (Fairman et al. 2019), and carbon storage 

dynamics (Kirschbaum 2000). Fairman et al. (2019) reported the loss of resprouting ability in 
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the temperate eucalypt forests of Victoria, south-eastern Australia, where repeated fires in short 

succession resulted in widespread mortality. It follows that these events may have both short- 

and long-term consequences on carbon storage and dynamics in those stands.  

To help bridge this gap in knowledge regarding carbon dynamics following fire in a resprouting 

forest ecosystem, this chapter examines the carbon dynamics in a Eucalyptus marginata forest 

in southwestern Australia following a landscape-scale summer wildfire that occurred in 

January 2016 (Waroona Fire). The aim was to determine the consequences of the wildfire event 

by: 

a) quantifying the pyrogenic carbon emissions from the affected forest,  

b) determining the total and pool-specific carbon transformations across forest plots in areas 

with different wildfire severity.  

This study thus quantifies pyrogenic carbon emissions and carbon pool transformations 

following a severe wildfire in a fire-prone Australian eucalypt forest and builds on previous 

forest disturbance and carbon studies (Campbell et al. 2007; Kurz et al. 2008a; Ziemblińska et 

al. 2018).  

3.3 Methods 

3.3.1 Study area 

The Waroona Fire was ignited by lightning on the morning of the 6th January 2016 in open 

forest subject to bauxite mining. A combination of severe fire weather and steep inaccessible 

terrain made initial fire suppression unsuccessful. Fire development was further aided through 

the formation of multiple pyro-cumulonimbus clouds, with extensive spotting and further 

lightning ignitions (McCaw et al. 2016). The Waroona fire burnt an area of 69,165 ha, with 

36,000 ha of native vegetation and the remainder including agricultural land, and rehabilitated 
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bauxite mining sites (McCaw et al. 2016) (Figure 3.2). Rainfall for the year preceding the fire 

was 35% below the long-term average (1233 mm year-1) and was the third lowest on record. 

The fire burnt through jarrah forest stands of varying litter age, these ranging between 6 and 

30 years since last burning. 

The Northern Jarrah Forest (NJF), the focal area within the Waroona Fire, is located in 

southwestern Australia (30.75-33.5 S and 115.8-117.8E) and covers an area of 1,127,600 ha 

(Havel 1975). The forest ranges from an open dry sclerophyll forest in the north to a tall, closed 

forest in the south (Dell and Havel 1989a). Across the forest system, deep weathering profiles 

have formed on Archaean granitic and metamorphic rocks (Gilkes et al. 1973) with a resultant 

range of infertile soils. The NJF has a Mediterranean type climate, with hot dry summers and 

warm wet winters with the majority of rainfall occurring between April and October, and a 

seasonal drought that may last between four and seven months (Gentilli 1989). There is a strong 

rainfall gradient across the forest, which ranges from >1100 mm yr-1 on the western edge to 

approximately ~700 mm yr-1 in the north east (Gentilli 1989). Since the mid 1970s 

southwestern Australia has undergone a 15-20% reduction in precipitation and a temperature 

(increase of 0.15 °C/decade: Liu et al. 2019b) It also experienced extremely low rainfall and 

high temperature events in 2010 and 2011 that impacted on forest survival (Ruthrof et al. 2018). 

This study focusses on upland areas composed of a forest with Eucalyptus marginata Donn ex 

Sm. and Corymbia calophylla R. Br. K.D. Hill and L.A.S. Johnson co-dominant overstorey, 

and a midstorey composed of a mixture of Banksia grandis, and Allocasuarina fraseriana. The 

predominant disturbance agents in the NJF have historically been frequent fire and selective 

timber harvesting, with forest stands planned burnt on a fire return interval of 5 to 10 years 

(Burrows et al. 1995). The dominant overstorey species are both considered to be adapted to 

frequent fires via thick bark and the ability to resprout from both epicormic and lignotuberous 

buds (Abbott and Loneragan 1986; Pausas 2015).  
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3.3.2 Site selection and plot establishment 

Following the fire, burn severity was observed to fall into two main categories; 1) severe 

surface fire with canopy scorch, and 2) crown fire with complete canopy consumption. Twenty 

sites were chosen within the forest area that had been burnt, with 17 containing paired plots in 

the two observed fire severities (a total of 37 plots). If both conditions were not present only a 

single plot was established (Table 3.1,Figure 3.2). Ten unburnt control plots were also 

established within 10 km of the fire boundary to ensure soil type, rainfall and stand composition 

and structure did not vary widely between burnt and unburnt areas.  

Plots were established in a modified Forest Inventory and Analysis (FIA) sampling design 

(Bechtold and Scott 2005). Each plot consisted of four subplots, of variable radius, comprising 

a central subplot and subplots orientated at 0°, 120°, and 240° from the central subplot. The 

centre of each subplot was at least 35 m from the middle of the central subplot.  
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Table 3.1: Count of control (unburnt) and wildfire burnt plots in relation to the 

respective fire severity category and time since fire. 

Time Since Fire 

(years) 
Fire Severity 

 Control 

(unburnt) 
Low Mixed Moderate High 

1-5 1 - - - - 

5-10 9 - - 7 10 

10-20 - - - 1 4 

20-30 - - - 5 12 

>30 - - - - 1 

Total 10 - - 12 27 

 

3.3.3 Plot measurements 

At each plot a series of measurements was collected to quantify the pyrogenic carbon emissions 

from the fire event, as well as the transfer of carbon between the live and dead biomass pools 

within the stands. A stand survey was conducted 12 months following the fire event, in January 

2017. This included a tree survey, an understorey/ shrub assessment, and transect 

measurements of forest floor fuels.  

3.3.3.1 Tree survey 

Trees were assessed within each of the subplots. To assess the impact of the fire on live and 

dead standing carbon pools data were collected from each stem to quantify the degree of 
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mortality each stem had experienced. Individuals fell into categories of complete mortality 

(lack of resprouting), partial mortality (only bole resprouting), top kill (only basal resprouting), 

or live (resprouting in the canopy).  

Tree size was assessed through diameter at breast height (DBH) and tree height. A rating 

system was developed to capture the loss of canopy from consumption or fire scorch: 

individuals that had experienced complete mortality were scored as 100, whereas minimally 

affected individuals were given lower scores corresponding to the proportion of original 

canopy that was lost. This measure was used to quantify mortality and the loss of canopy on 

every individual. Dead portions of the individual were then given a fragmentation score to 

account for pre-fire death and decomposition. Fragmentation categorisation of the previously 

dead material in the canopy was ranked from class 1-4 according to Harmon et al. (2011), and 

Woldendorp and Keenan (2005), where newly dead material is ranked 1 and long dead, rotten 

material is scored a 4. 

Regrowth was quantified using a measure of resprouting vigour: individuals that had 

completely regrown canopy to pre-fire levels were scored 100, and completely dead individuals 

were scored a 0. To estimate the degree of partial bole mortality in burnt individuals, the 

presence and height of basal resprouts were recorded, as well as the height of the lowest 

epicormic sprout. The total height of resprouting was also measured.  

The charring of each individual was also recorded and categorised based on a scoring system 

developed by Ryan (1982) with a 0 being no char, 1 is surface char, and 2 being deep charring. 

The overstorey species of the NJF do not possess stringy bark, which causes fire to scorch 

entire boles, thereby rendering scorch height measurements irrelevant. 
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3.3.3.2 Understorey/shrub assessment  

The species, basal diameter of stems, and canopy dimensions of any perennial understory 

shrubs were recorded in each subplot.  

3.3.3.3 Forest floor fuels transects  

A planar intersect method was used to determine coarse and fine woody debris (CWD, FWD) 

loads within each of the plots (Brown 1971). Transects were established along intercardinal 

directions, originating from the centre subplot (NE, SE, SW, NW). Coarse woody debris 

(diameter >7.6 cm) was surveyed along four 50 m transects (200 m total per plot), while FWD 

was recorded on a smaller (15 m) section at the end of the same transect. Fine woody debris 

transects were further stratified by time-lag size classes (Fosberg 1970): 1h (0-0.6 cm) were 

recorded on the last 5 m, 10 h (0.61-2.5 cm) fuels on the last 10 m, and 100 h (2.5-7.6 cm) fuels 

on the last 15 m of each transect. All pieces of CWD and FWD were classified with a burn 

category, either surface or deep charring, and a decay category following Harmon et al. (2011). 

Decay is rated between 1 and 5. A piece at decay class 1 has all bark still intact with most twigs 

present and the wood is still hard, while a piece at decay class 5 is almost completely decayed, 

the sapwood is rotten, and any remaining material is easily broken apart. 

To establish the amount of litter accumulation within each unburnt plot, ground sampling was 

undertaken on each debris transect. Along each transect, two 25 x 25 cm quadrats were used to 

collect all dead, non-attached material down to mineral earth. Thus, in total eight samples were 

taken from 10 plots, totalling 80 samples. In burnt plots, all litter was consumed and any 

material on the ground was considered post fire accumulation of litter. All leaf litter in burnt 

plots had clearly fallen from the canopy and therefore was allocated to aerial C pools (Figure 

3.1).  
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Figure 3.1 Plot photos highlighting post fire conditions of a) high (canopy consumed) 

fire severity and b) moderate (canopy scorch) fire severity condition of plots measured 

in the Northern Jarrah Forest, south western Australia. Litter present in both fire 

severity categories was considered post fire fall.  

3.3.4 Biomass and carbon transfer calculations 

Above-ground biomass (AGB) was estimated for each tree and shrub using previously 

published allometric equations (Hingston et al. 1980; Grierson et al. 2000; Paul et al. 2015) 

(Table 3.2). These equations relate diameter at breast height (DBH; trees) or diameter 10 cm 

a) 

b) 
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from the surface (D10; shrubs) to dry weight (DW) of that individual. Carbon content was 

calculated on the basis of 50% of the dry weight (Gifford 2000).  

Table 3.2: Allometric equations for key species in the Northern Jarrah Forest, south 

western Australia, and associated reference.  

Species Equation Reference  

Eucalyptus marginata ln(DW) = -3.680 + 2.84 ln(DBH) Hingston et al. (1980) 

Corymbia calophylla ln(DW) = -3.370 +2.74 ln(DBH) Hingston et al. (1980) 

Banksia grandis ln(DW) = -2.26 + 2.5 ln(DBH)  Grierson et al. (2000) 

Allocasuarina fraseriana ln(DW) = 3.57 + 2.68 ln(DBH) Grierson et al. (2000) 

Persoonia longifolia ln(DW) = -2.93 + 2.55 ln(DBH) Grierson et al. (2000) 

Generalised shrub allometric ln(DW) = 2.428 ln(D10) – 3.007 Paul et al. (2015) 

 

Total biomass was allocated to the tree components (foliage, twig, branch and bark) according 

to published proportions (Hingston et al. 1980; Grierson et al. 2000). Individual trees measured 

during the field assessment included both burnt and healthy unburnt trees. To avoid 

overestimation of live carbon and to account for combustion or loss of foliage, twigs, fine 

branches, each component was adjusted according to its health, fragmentation score, live and 

dead height measurements, and height of resprouting.  

Individual stems were examined for pre-fire stress, which was determined by the presence of 

severe canopy architectural damage (presence and quantity of large dead wood in the canopy) 

and/or the presence of large epicormic sprouts. Both states are symptomatic of stress resulting 
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in partial tree mortality (see Chapter 3 for a description of drought mortality in the same forest, 

but on different plots). These correction values were then applied to the biomass estimates 

calculated from the allometric equations for the species (Table 3.2).  

Bole biomass was classified as live, dead, or suffering partial mortality. These classifications 

were determined using live height and crown break height. If an individual was epicormically 

resprouting in the canopy (live height greater than crown break height), the bole was deemed 

live, and if the individual was only basally resprouting the bole was deemed dead. In these 

cases, the biomass allocated to the bole was determined using published allometric equations 

and proportions. However, if the stem was epicormically resprouting on the bole below the 

crown break the bole was fractionated into live and dead portions using live and dead heights 

and a taper function determined from literature values to calculate a volume (Innes et al. 2007). 

In these cases, Smalian’s formula (Equation 1) was used to calculate the volume of live and 

dead portions of the bole, rather than the allometrically derived portions of bole biomass. The 

known wood densities of each tree species were then used to convert volume to mass of live 

and dead bole portions. 

Smalian’s formula was used to calculate bole volume  

𝑉 =  
𝐴1+ 𝐴2

2
 × 𝐿 Equation 1 

Where V is the volume of the log (m3), A1 is the area of the log at the small end, A2 is the area 

of the log at the large end, and L is the log length. The large area was calculated using the DBH 

measured during the field survey and the small area was calculated using the live height/crown 

break height and taper equation. Once a volume of live and dead biomass was obtained it was 

converted to mass using the wood density of the given species. These values were taken from 

Innes et al. (2007). 
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The method of using taper equations and height was used to estimate the biomass stored in 

stumps throughout the plots. Once a mass was determined the value was corrected to account 

for the percentage of mass missing and the decay score of the individual. There was no 

correction made for butt swell.  

Unburnt plot surface fuels ages ranged from 2-10 years since the last fire. As noted, the burnt 

plots had all litter consumed. Therefore to calculate pre-fire surface fuel loads for areas that 

were unburnt for >15 years published values and equations were used (Gould et al. 2011).  

3.3.5 Combustion coefficients 

Combustion coefficients were calculated using a combination of literature derived values, and 

data collected in space for time plots. Literature values were used to estimate the mass of bark 

lost from burnt areas (Burrows 2001). Complete combustion of the litter pool was assumed 

across all burnt areas (Keith et al. 2014). Mass loss of fine woody debris and coarse woody 

debris were calculated as the average difference between pre-fire and post-fire debris volume. 

The fraction of foliage reported missing from each tree via ocular assessment was used as an 

estimate of foliage and twig combustion coefficient for the fire severity categories. Post fire 

litter values were also used as an indication of foliage combustion. Higher post fire litter values  

resulted in less canopy foliage consumption as canopy was scorched and not consumed.  

3.3.6 Fire severity classification 

Fire leads to changes in the reflectance of burnt vegetation. After fire there is an increase in the 

reflectance of the midinfrared region, with this region sensitive to water content of soil and 

vegetation, while the reflectance in the near infrared region declines because of the loss of live 

vegetation and chlorophyll content (Miller and Thode 2007; Lanorte et al. 2013; Ghermandi et 

al. 2019). The spectral bands used in the calculation of normalised burn ratio (NBR) have been 

selected considering these spectral characteristics (Ghermandi et al. 2019). 
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Normalised burn ratio was calculated from Landsat TM, Near Infrared (NIR) and Short-wave 

infrared (SWIR) bands in pre and post fire images (Equation 2). An image was chosen from 

within two months pre and post fire to establish the extent of burn severity across the area that 

had been burnt by the wildfire. The NBR data from these two images was then used to calculate 

the relative difference normalised burn ratio (RdNBR, Equation 3). The use of RdNBR 

removes biases occurring from differences in pre-fire vegetation across the fire (Miller et al. 

2009).  

𝑁𝐵𝑅 =  
(NIR−SWR)

(NIR + SWR)
  Equation 2 

((𝑝𝑟𝑒𝑁𝐵𝑅−𝑝𝑜𝑠𝑡𝑁𝐵𝑅)×1000)

√𝑎𝑏𝑠(𝑝𝑟𝑒𝑁𝐵𝑅)
 Equation 3 

 

The RdNBR data were used to classify areas that experienced different fire conditions.  

A combination of aerial photography paired with ground-based observations was used to 

delineate areas of forest with differing fire severities. Twenty polygons were constructed using 

post-fire aerial imagery to cover the range of fire severities observed in the burn area. Relative 

difference normalised burn ratio (RdNBR) data were extracted from these polygons and 

averaged to create the fire severity class cut points, which could be applied to the burnt area. 

Choosing the threshold values between fire severity categories can be fairly subjective (Miller 

et al. 2009). However, the threshold values for fire severity class were determined following 

Miller et al. (2009), by using the mid-point between aerially delineated and observed fire 

severities polygons mean RdNBR values. Once burnt areas had been categorised into fire 

severity class, a combination of field measurements and values from the literature were used 

to calculate pyrogenic emissions. 
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Figure 3.2: Location of 39 burnt plots (triangles) within the moderate and high fire 

severity classes in native upland Northern Jarrah Forest (NJF), southwestern Australia. 

Patches of unclassified areas are a combination of farmland, mining and mining 

rehabilitation. Fire severity by burn area; Low 18%, Mixed 13%, Moderate 43%, High 

26%.  
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3.3.7 Pyrogenic carbon emissions 

Pyrogenic carbon emissions for the Waroona Fire were calculated following eq. 1 in Campbell 

et al (2007); 

𝑃𝑦𝐶 =  ∑ 𝐴𝑖 (𝐷𝑖𝑗 ∗ 𝐶𝐹𝑖𝑗)𝑛
𝑖=1,𝑗=1  Equation 4 

Where PyC is the pyrogenic emission in mass of carbon, A is the area affected by fire severity 

class i, D is the pre-fire carbon load in mass per unit area of forest carbon pool j, which was 

averaged across plots of fire severity i. The fraction of the pre-fire carbon pool j combusted in 

fire severity I is the combustion factor, CF. In this study the forest is separated into 13 carbon 

pools which were burnt by four fire severity classes 

Once severity and pre-fire litter loads were calculated across the fire area, combustion 

coefficients were applied to each of the fire severities for each of the forest carbon pools. These 

values were then converted to tonnes for each fire severity class to give an estimate of carbon 

emissions from the plots.  

3.3.8 Statistical analyses 

Quantifying pyrogenic carbon emissions of the 2016 wildfire event. Carbon losses across the 

fire severities (unburnt, moderate, high) were tested using a one-way analysis of variance.  

Determining whether wildfire severity had significant effects on forest carbon pools. Changes 

in each of the carbon pools following the wildfire was also tested using one-way analysis of 

variance. All data analyses were carried out using R (R Core Team 2014) and data visualisation 

with ggplot2 (Wickham 2011). In all cases, the means and 95% confidence intervals are 

presented and a lack of overlap of the mean with adjacent confidence intervals was interpreted 

as evidence for a statistical difference between groups while asymmetrical overlap of means 
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(intervals overlap one mean but not the other) was interpreted as evidence of a statistical 

difference between groups (Ramsey and Schafer 2012). 

3.4 Results  

3.4.1 Pyrogenic emissions 

Combustion coefficients showed a uniform increase across all forest carbon pools with 

increasing fire severity class from low to high burn class. The highest combustion coefficients 

were in the litter, shrub and tree foliage carbon pools (Table 3.3).  

Table 3.3: Combustion coefficients for the forest carbon pools across four fire severities 

observed in the Waroona Fire of January 2016 in the Northern Jarrah Forest, 

southwestern Australia.  

Forest carbon pool type Fire severity 

 

High Moderate Mixed Low 

Foliage  0.95 0.9 0.4 0 

Twig <1 cm diam  0.2 0.1 0.05 0 

Branch  0.01 0.01 0 0 

Bark  0.3 0.25 0.2 0.1 

Bole  0 0 0 0 

Understorey (Shrubs)  0.95 0.92 0.7 0.5 

Coarse Woody Debris  0.01 0.01 0 0 

Fine Woody Debris 1hr 1 1 1 1 

 10hr 0.9 0.85 0.7 0.5 

 100hr 0.8 0.7 0.6 0.4 

Surface Litter   1 1 1 1 
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The total pyrogenic emissions from the 2016 Waroona Fire are estimated as 723 113 t C emitted 

from above-ground carbon pools. The highest emissions came from tree biomass from the 

combustion of foliage, bark, and small twig material (Table 3.4). Surface fuels released the 

second largest amount of emissions (200 674 t C) as large litter loads (6.6 t C ha-1) in long 

unburnt stands (>30 years) were severely burnt. A general increase in carbon emissions was 

recorded with an increase in fire severity category (Table 3.4), with this ranging from 10.0 to 

22.1 t C ha-1 for the low and severe fire categories, respectively. Much of the carbon loss (3.7 

and 13.3 t C ha-1) came from the forest canopy and understory shrubs. Total pyrogenic carbon 

emissions from low to high severity burn areas were approximately 5.5-12.2% of the initial 

pre-fire carbon density. 

3.4.2 Transfer of carbon 

The Waroona Fire affected the total carbon storage and the composition of forest carbon pools 

in the NJF (Figure 3.3). Total above ground carbon of measured stands ranged from 76.3 t C 

ha-1 to 229.6 t C ha-1 and was significantly lower in moderate (-41.8 t C ha-1, F2,44= 6.19, 

p<0.05) and high (-48.8 t C ha-1, F2,44= 6.19, p<0.01) severity burnt stands compared to the 

unburnt condition (Figure 3.3a). The primary store of carbon in all measured stands was live 

standing carbon, which on average made up 79%, 62% and 56% of unburnt, moderate and high 

fire severity class forest stands, respectively (Figure 3.3a).  
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Table 3.4: Pre-fire forest carbon density (t C ha-1) and pyrogenic carbon emissions (t C 

ha-1) by carbon pool and fire severity class. Total carbon emissions (t C) area also 

displayed for each of the above ground forest carbon pools burnt in the Waroona Fire of 

January 2016 in the Northern Jarrah Forest, southwestern Australia.  

 

  Combusted carbon (t C ha-1) 

 

 

 Pre-Fire density  

(t C ha-1) High Moderate Mixed Low 

Fire wide 

emissions (t C) 

Trees   156.5 10.2 8.6 5.7 2.1 268 905 

Shrubs  3.2 3.1 2.9 2.2 1.6 95 137 

Coarse Woody Debris  11.6 0.1 0.1 0.0 0.0 2 873 

Fine Woody Debris 10 hr 1.5 1.3 1.3 1.1 0.8 41 971 

 100 hr 4.8 3.8 3.4 2.9 1.9 113 553 

Litter   0.6-6.6 - - - - 200 674 

Total   181.2 22.1 19.9 15.5 10.0  
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Figure 3.3: Mean total above ground carbon (t ha-1) for above-ground forest carbon 

pools in unburnt and wildfire-burnt plots. b) Mean live standing and dead standing 

carbon (t C ha-1) for unburnt, moderate and high fire severity category plots. c) mean 

carbon in understorey carbon pool for unburnt, moderate and high severity category 

plots d) Mean carbon content (t C ha-1) in coarse woody debris and fine woody debris 

for unburnt, moderate and high fire severity category plots in the Northern Jarrah 

Forest, southwestern Australia. Points represent means and bars represents 95% 

confidence intervals of the mean.  

Live tree carbon in the burnt plots ranged from 39.4±18.3 t C ha-1 to 202.4±67.9 t C ha-1 with 

mean values of 97.2±13.1 t C ha-1 and 83.7±9.6 t C ha-1 for the moderate and high fire severities, 

respectively. High wildfire severity resulted in the most combustion of canopy stored carbon 

as well as the largest transfer of live standing carbon to dead standing carbon (Figure 3.3b). 
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The wildfire thus significantly lowered live carbon storage in both moderate (-59.2 t C ha-1, 

F2,44= 15.53, p<0.001) and high (-72.8 t C ha-1, F2,44= 15.53, p<0.001) fire severity classes 

compared to the unburnt stands. However, live standing carbon did not differ between the two 

measured fire severity classes (F2,44= 15.53, p= 0.51, Figure 3.3b). The pattern of decrease in 

standing live carbon was mirrored in the standing dead carbon pools, with an increase in dead 

standing carbon in the moderate (22.8 t C ha-1, F2,44= 6.71, p<0.05) and high (30.6 t C ha-1, 

F2,44= 6.71, p<0.001) severity classes compared to the unburnt condition, and no difference 

between measured fire severity classes (F2,44= 6.71, p=0.57, Figure 3.3b).  

Coarse and Fine Woody Debris 

Carbon storage in coarse woody debris decreased slightly following the fire, however this was 

highly variable across plots and was not significant (F2,44= 0.15, p=0.86, Figure 3.3d). Fine 

woody debris post fire was lower in both moderate (-1.1 t C ha-1, F2,44= 15.49, p<0.05) and 

high (-1.8 t C ha-1, F2,44= 15.49, p<0.001, Figure 3.3d) severity burnt stands. Fine woody debris 

also varied between the two measured fire severity classes, with the high severity having 

significantly less debris than the moderate severity class (-0.7 t C ha-1, F2,44= 15.49, p<0.05, 

Figure 3.3d). 

3.5 Discussion  

Wildfire significantly reduced the total carbon storage of the severely burnt stands through 

combustion of litter, debris, tree and shrub canopies, with this representing a direct emission 

of between 10 and 21 t C ha-1. The fire also killed trees, which increased the storage of carbon 

in the dead tree and shrub pools, with this having two consequences. The first is related to the 

vulnerability of the now dead carbon to tree decay and future fires, and the second to the ability 

of the forest to sequester carbon. The persisting live trees will resprout and new individuals 

will germinate, and this will restore some of the carbon lost during the event. However, 
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regrowth and seedlings may be vulnerable to subsequent disturbance events such as drought 

and fire (Chapter 2). 

Pyrogenic carbon emissions were directly related to the severity of wildfire across the burnt 

area, with higher combustion (and thus emissions) resulting from a higher wildfire severity 

(Keeley 2009). In this study, plots experiencing high fire severity class released carbon stored 

in foliage, twigs, and bole bark. The rate of emissions reported here (20.1 t C ha-1) is 

comparable to other severe wildfires and other forest systems. A large wildfire that burnt an 

area of 450,000 ha of temperate eucalypt forest in Victoria, Australia, emitted an estimated 3.9 

Mt C, at an estimated 40-58 t C ha-1 (Keith et al. 2014). This corresponded to 6-14% of pre-

fire carbon density. In contrast, a stand-replacing wildfire that burnt 200,000 ha of non-

sprouting mixed coniferous forest in Oregon, United States, released an estimated 3.8 Mt C, or 

approximately 19 t C ha-1 (Campbell et al. 2007).  

While the reported rates of pyrogenic carbon emissions are closely aligned between resprouting 

and non-resprouting forests, the subsequent carbon trajectories may differ. Secondary 

emissions from biogenic decay could differ between these two systems for two reasons: firstly, 

resprouting forest results in a lower rate of overstorey mortality, and secondly, the decay rate 

and subsequent emissions of the dead material can be assumed to be slower in resprouting 

forests because of climate and a high initial wood density. In addition, tree growth rates will 

differ between forest types, which are affected by local climate and edaphic conditions. There 

is clear uncertainty on the impact of climate change on forest growth and survival (Chapter 2; 

Allen et al. 2010) 

The regrowth of carbon will differ as well; from forests with stand replacing fires with complete 

mortality, where carbon will have to be regained through seedlings or advanced regeneration, 

whereas in a resprouting forests this will come from surviving trees, albeit damaged to different 
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degrees. In the severely burnt trees of this study, not all standing above ground carbon was 

transferred from the live to dead carbon pools, as the co-dominant overstorey species, E. 

marginata and C. calophylla both resprout from lignotuberous buds following disturbance 

(Abbott and Loneragan 1983). The resilience of the co-dominant overstorey species allows 

them to quickly regenerate any lost canopy, however this occurs to different degrees in different 

trees. In some trees there has been partial mortality where trees have suffered severe canopy 

loss and have epicormically resprouted on the bole but not in the crown (Chapter 2; Walden et 

al. 2019), whereas in other trees there has been bole mortality and regrowth begins from the 

base. The resprouting ability of the predominant overstorey species has reduced standing live 

carbon lost from the wildfire event and increased the rate at which carbon will be restored in 

this system.  

Once a tree dies it is subject to biogenic emissions from dead wood decay and the release of 

carbon back into the atmosphere. The rate of decay (Gunn et al. 2012) and subsequent 

emissions are strongly reliant on climate and wood characteristics of the tree that has died, 

which include; being standing versus horizontal, rates for snag fragmentation, material size, 

wood density and biotic agents of decay. Standing, aerial dead wood (dead trees, portions of 

trees) decays slower (lower annual emissions) than downed wood on the forest floor in contact 

with the soil, as those pieces experience greater moisture content and therefore higher 

decomposition rates (Harmon et al. 2011). Climate also plays a large role in snag 

decomposition rate, as decay rates decreases from the equator towards the poles (Cooper 1983). 

If follows that the Mediterranean climate (cool wet winters and warm dry summers) of 

southwestern Australia, does not provide ideal conditions for wood decay. In a tropical forest 

almost all the woody material may decay within 10 years as warm moist environments promote 

decay (Cooper 1983). The turnover time for eucalyptus species in a temperate sclerophyll forest 

can range from seven (e.g. E. regnans) to 375 years (e.g. E. camaldulensis and E. tereticornis) 
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based on climate setting (Mackensen and Bauhus 1999). Not only will the amount of material 

available to biogenic decay be markedly less than the non-sprouting alternative, the rate at 

which that dead material decays can be assumed to be slower due to the high initial wood 

density and warm dry conditions of southwestern Australia. Termites are not a major feature 

of this forest ecosystem.  

Ecosystem responses will be determined by the intrinsic ability of species to withstand fire 

(resistance traits), and respond to fire (resilience traits; Ruthrof et al. 2015) . In this study, there 

was significantly lower mean live standing carbon (-72.8±31.6 t C ha-1) in the higher burn 

severity plots, and a corresponding significantly higher mean dead standing carbon store 

(+30.57± 20.25 t C ha-1), when compared to unburnt forest stands. Nonetheless, live carbon 

loss from these stands will take time to regenerate. The shrub and litter forest carbon pools 

were uniformly combusted throughout the severely burnt forest area. These pools will quickly 

regenerate and replenish carbon lost from combustion, however they will not contribute to 

long-term storage due to the frequent planned burning in these systems. Although coarse 

woody debris decreased, these changes were not statistically significant. Fire may have 

consumed some of the CWD, however, with the large increase in dead standing carbon, the 

CWD pool will likely increase in size as large dead trees fragment and are converted to debris.  

Pyrogenic emissions from the Waroona Fire of 0.72 Mt C were equivalent to 3% of Western 

Australia’s total carbon emissions for 2016 (Australia National Greenhouse Gas Inventory 

Committee 2018). Given the severity of this wildfire, the significant losses of live carbon, and 

the potential of more frequent severe fires in this area, the stability of these forest carbon stores 

may be threatened with forest regrowth never restoring carbon lost from combustion and 

mortality. For example, Fairman et al. (2019) reported the loss of resprouting ability of fire 

tolerant eucalypt species in the temperate eucalypt forests of Victoria, south-eastern Australia, 

where repeated fires in short succession resulted in resprouting failure and widespread 
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mortality. While the effects of these events on carbon storage were not directly measured, it 

can be assumed that the loss of large overstorey trees and replacement with ground coppice 

and seedlings will result in decreased carbon storage in those stands.  

3.6 Conclusions 

This study quantified the movement of live standing carbon to dead standing carbon in burnt 

stands in a resprouting eucalypt forest. The significant loss of live carbon from the stand will 

require long periods of unburnt and undisturbed regrowth if carbon stores are to return to pre-

fire levels. Given the projections of hotter and more frequent fires Clarke et al. (2016) it is 

uncertain whether these stands will have the time to recover prior to the next fire event. It 

follows that the resilient eucalyptus forests of southwestern Australia may not be stable carbon 

sinks if fire frequency and severity increase substantially with a changing climate.  

The total emissions from the fire and rates of emissions allign closely with other forested 

systems. However, the movement of carbon and loss of live standing carbon may be lower than 

non-sprouting systems which experience infrequent severe fire. There were significant losses 

of live standing carbon and increases in dead standing carbon. Individuals that have undergone 

partial mortality, top-kill and regrowth in this forest are vulnerable to subsequent disturbances 

as they recover and develop bark thick enough to withstand fire. Studies such as this are 

important, as they show that even fire-resilient forests cannot withstand large, hot fires without 

large losses of overstorey individuals and hence carbon.  

  



 72 

4 High severity wildfire overrides drought legacy 

impacts in a resprouting forest3 

4.1 Abstract 

The frequency and intensity of forest disturbances are projected to increase as climate shifts in 

many regions, with an increased likelihood of multiple disturbance events occurring in short 

succession. The effects of multiple disturbance events are becoming increasingly important but 

with substantial uncertainty regarding interaction strength in relation to type, sequence, and 

relative timing. This chapter examines the effects of wildfire following global change type 

drought (hotter drought) to quantify linked and compounding effects in a resprouting eucalypt-

dominated forest. The impact (mortality) and early response (resprouting, recruitment) in the 

dominant overstory tree species Eucalyptus marginata and Corymbia calophylla in south-

western Australia were quantified. There was no evidence of linked or compounding effects of 

these disturbances in combination. Instead a strong effect of wildfire on live basal area (-20.7 

± 7.3 m2 ha-1) overwhelmed pre-existing drought impacts. Stem size, fire severity, and harvest 

frequency were found to be the strongest determinants of stem survival. Resprouting eucalypt 

forests are particularly resilient with focal species able to survive multiple stressors over a short 

time period. However, the newly regrowing burnt stands are vulnerable to future disturbance 

as they develop bark thick enough to withstand fire and develop carbon stores to maintain 

resprouts following drought. With projections of continually decreasing rainfall and more 

frequent and severe fire in this region the trajectory of the regrowth in these forest stands is 

strongly tied to the future disturbance regime. Increases in disturbance frequency and intensity 

 
3 This chapter has been prepared to be submitted to Global Change Biology 
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may therefore lessen the chances of these stands recovering to pre-fire structure and carbon 

store.  

 

4.2 Introduction 

Forest disturbance frequency and intensity have increased in recent decades and are projected 

to continue to increase across global forested ecosystems as climate change continues to 

accelerate (Hoegh-Guldberg et al. 2018). Disturbance regimes (composed of frequency, size, 

season, intensity of events) are often a key driver of ecosystem structure, function and 

composition (Buma 2015). The capacity of an ecosystem to return to a pre-disturbance state 

(as measured by cover, composition, or structure) has been defined as the ecological resilience 

of a population, community, or ecosystem and reflects the frequency and intensity and type of 

impact the ecosystem can withstand whilst still returning to its ‘original’ state (Gunderson 

2000). Increasing attention to the occurrence of disturbances outside a historic regime has 

openly questioned the capacity of systems to return to their original state and instead shift to 

alternative states (i.e. phase change from forest to shrubland; Donato et al. 2009a; Fairman et 

al. 2019)  

Multiple disturbance events can cause profound changes to forest composition, structure and 

function (Buma 2015). The impact of successive interacting disturbance events has been 

documented across forest types with differing disturbance types and frequencies (Buma and 

Wessman 2011; Harvey et al. 2014b; Fairman et al. 2019). Repeated disturbance events can 

either have linked or compound interactions. Linked disturbances occur when the first 

disturbance affects the likelihood, extent, or severity of the second disturbance (Buma 2015). 

For example the interaction between tree windthrow, and subsequent fire severity, has been 

examined by Kulakowski and Veblen (2007) in the subalpine forests of Colorado where stands 

with severe windthrow (66% of trees) experienced higher wildfire severity compared to those 
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with lower rates of windthrow. Linked disturbance effects have also been reported between 

intense storms and fire with defoliation leading to higher fuel loads and subsequent fire 

intensity (Gower et al. 2015) as well as pest (Dendroctonus ponderosae) outbreaks and 

subsequent fire (Harvey et al. 2014b). Harvey et al. (2014b) reported that fire severity was 

higher in areas with recent outbreak if moderate fire was present. However, once high severity 

fire (canopy fire) was present there was no link between outbreak age and fire severity (Harvey 

et al. 2014a).  

Compound disturbances describe the biotic response (for example, tree recruitment) following 

a second disturbance event, and how it is altered relative to the individual disturbance event. 

For example, forest stands experiencing windthrow in the subalpine forests of Colorado, which 

lost a substantial seed source, and then experienced fire, had reduced recruitment relative to 

forests which experienced fire alone (Buma and Wessman 2011). In a resprouting shrubland 

system of southwestern Australia, Gower et al. (2015) found that areas that experienced hail 

storm damage and subsequent planned fire had reduced resprouting vigour and seedling 

recruitment compared to those that just experienced fire alone. The complex effects of 

disturbance types, potential interactions and cumulative effects are key to understanding 

ecosystem resilience particularly in changing climate. Quantifying the impacts of linked and 

compounding disturbances is critical for forest management, as drought, wildfire, storms and 

insect outbreaks are predicted to increase with a changing climate (Moritz et al. 2012; Allen et 

al. 2015), therefore increasing the frequency of disturbance interactions. 

Fire is the dominant natural disturbance factor globally (Bowman et al. 2009), and many 

climate models project the development of more fire-prone systems with a changing climate 

(Moritz et al. 2012; Jolly et al. 2015). Fire prone regions may face more frequent, severe and 

larger wildfires as forest dynamics continue to change and stand characteristics are affected by 

multiple stressors. The increase in fire frequency has already been reported to cause forest 



 75 

structure collapses and test resilience mechanisms. For example, Fairman et al. (2019) reported 

the loss of resprouting ability in the temperate eucalypt forests of Victoria, south-eastern 

Australia, where repeated fires in short succession resulted in widespread mortality. An 

increasing incidence of wildfire has implications on both non-sprouting boreal and resprouting 

forests and is therefore likely to exert a strong selection force on the species within such fire 

prone forests.  

Drought-induced forest die off as a disturbance factor can also have major implications on 

forest structure and function. Drought and heatwave related die-off events have been recorded 

on every forested part of the globe (Allen et al. 2015). These die off events may have impacts 

on the structure, function and biodiversity of ecosystems, with some systems experiencing 

complete structural state shifts (Clark et al. 2016; Matusick et al. 2016; Steel et al. 2019). These 

forest stands may experience further stress from other biological stressors (such as pests) as 

they have weakened resistance and resilience mechanisms (Zeppel et al. 2015). The time 

between disturbances, as well as the type of the disturbance that follows underpins the potential 

resilience of that system. For example, fire-drought interactions have been shown to reduce 

seed production and population persistence (Enright et al. 2015) with increasing concern as all 

dimensions of historic disturbance regimes change (i.e. unseasonal fire + increased frequency; 

Miller et al. 2019).  

In southwestern Australia the austral summer of 2010/11 was the hottest and driest since 

records began (BOM 2011) with region wide impacts spanning multiple trophic levels and 

ecosystems (Ruthrof et al. 2018). Approximately 16 000 ha of resprouting forest (The Northern 

Jarrah Forest) experienced severe canopy collapse and began to regrow from basal and 

epicormic resprouting (Matusick et al. 2013; Steel et al. 2019). Five years later in January 

2016, areas of forest that had been subject to drought and heatwave related die-off were subject 

to a lightning-ignited wildfire (The Waroona Fire) (McCaw et al. 2016). The wildfire burnt 
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through 65,000 ha of native forest, farmland, and destroyed the small town of Yarloop. This 

layering of disturbances presented an opportunity to investigate the potential linked and 

compounding effects of these disturbance events in a resprouting forest. The objectives of this 

study, therefore, were to examine the additive and interactive impacts of drought and wildfire 

at the stand and stem level with regards to mortality rates, and recruitment in the Northern 

Jarrah Forest of south-western Australia.  

4.3 Methods  

4.3.1 Study area  

The Northern Jarrah Forest (NJF) is located in southwestern Australia (30.8-33.5° S and 115.8-

117.8°E) and covers an area of 1,127,600 ha (Havel 1975). The forest ranges from an open dry 

sclerophyll forest in the north to a tall, closed forest in the south (Dell and Havel 1989a). The 

NJF harbours over 850 described vascular plant species forming a distinct and important 

component of southwestern Australia’s exceptional plant biodiversity and classification as one 

of 35 global biodiversity hotspots (Mittermeier et al. 2011). Across the NJF, vegetation tends 

to cluster into woodland/forest, riparian, and heath types; this study focussed on upland sites, 

which are predominantly Eucalyptus marginata (jarrah) and Corymbia calophylla (marri) with 

a midstorey dominated by Allocasuarina fraseriana, Banksia grandis, and Persoonia longifolia 

(Dell and Havel 1989a). Deep lateritic weathering profiles cap Archaean granite and 

metamorphic rocks (Gilkes et al. 1973). Soils of upland sites in the NJF are characterised by a 

fissured lateritic caprock overlying a clay profile of depths of up to 30 to >100 m to bedrock 

(Taylor and Butt 1998). Shallow depths to bedrock have been implicated in drought 

vulnerability (Harper et al. 2009b; Brouwers et al. 2013a; Brouwers et al. 2015; Steel et al. 

2019). 
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The NJF has a Mediterranean type climate, with hot dry summers and mild wet winters. Most 

rainfall occurs between April and October, and a seasonal drought may last between four to 

seven months (Bates et al. 2008). There is a strong rainfall gradient across the forest, which 

ranges from >1100 mm yr-1 on the western edge to approximately 700 mm yr-1 in the north east 

(Gentilli 1989). Mean annual rainfall for the study area is between 1233 mm (Dwellingup) and 

992 mm (Waroona).  

Southwestern Australia has experienced a significant change in climate, characterised by an 

increase in temperature (0.15°C per decade) and a reduction in rainfall (10-15%) since the 

1970s (Bates et al. 2008). During this period of warming and drying, two extreme drought 

events occurred during the Australian summers of 2006-2007 and 2010-2011. The winter of 

2010 was extremely dry, with rainfall 40-50% below the annual average (BOM 2011). In 

addition, the number of heatwave days in 2011 was the highest on record since 1960 (BOM 

2011). During this event, it was estimated that approximately 16,000 ha of the NJF suffered 

severe canopy die-off (Brouwers et al. 2013a; Matusick et al. 2013). Areas that were severely 

affected were those in close proximity to granite outcrops, had soil with a lower water holding 

capacity compared to surrounding areas (Brouwers et al. 2013b), and were more clustered at 

xeric sites (Andrew et al. 2016).  

The Waroona Fire was ignited by lightning on the morning of 6 January 2016 and coincided 

with hot, dry offshore winds thereby eluding suppression and growing into an area of 

approximately 69,165 ha, burning both agricultural and native vegetation (McCaw et al. 2016). 

Rainfall for the year preceding the fire was 35% below the long-term average and was the third 

lowest on record (McCaw et al. 2016). The fire burnt through stands previously burned six to 

30 years prior (McCaw et al. 2016). During the fire event the smoke and heat created by the 

fire resulted in a pyrocumulus cloud which caused further ignitions and intensified fire 

behaviour (Peace et al. 2017).  
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There were no planned, prescribed, fuel-reduction burns in the area between the 2010-2011 

drought event and the wildfire.  

The two co-dominant overstorey eucalypt species show differing life strategies to drought 

stress with E. marginata being more resilient, commonly resprouting lower on the bole, and C. 

calophylla showing a higher resistance with the canopy remaining intact for longer and 

resprouting less often (Ruthrof et al. 2015). Large E. marginata trees may be injured by fire 

but are rarely killed (Abbott and Loneragan 1986). Fire damaged trees typically resprout 

vigorously from epicormic buds that are well protected in thick bark making them extremely 

resilient to fire (Burrows 2008; Pausas 2015). Smaller individuals such as seedlings and 

saplings readily re-coppice from belowground lignotubers (Abbott and Loneragan 1983; 

Burrows et al. 1995). A summer wildfire just north of the study area in 1961 resulted in 11% 

of mature individuals (~>30 cm DBH) and 76% of younger individuals (~<30 cm DBH) 

suffering stem mortality (Peet and Williamson 1968). The predominant disturbance agents in 

the NJF have historically been frequent fire and selective timber harvesting over the past ~200 

years, with forest stands treated with planned fire on a 5 to 15 year basis since the 1960s 

(Burrows et al. 1995). 

4.3.2 Site selection and plot establishment 

To assess the impact of drought and wildfire, sites were selected based on their pre-fire drought 

stress and wildfire severity. The experimental design followed a factorial design with two pre-

fire drought conditions and three burn severities (crown consumption, crown scorch, 

unburned). Field assessments were undertaken 1-year post fire and involved 30 sites with a 

complex of 47 plots spread across the fire and drought treatments; sites typically had two plots 

of differing fire severity spanning one level of drought (Figure 4.1).  
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Figure 4.1: Location of 47 burnt and unburnt low drought (blue circles) and high drought 

(red triangles) native upland Northern Jarrah Forest (grey shaded area), southwestern 

Australia. Red dotted shaded area indicates Waroona Fire boundary. 

A model developed by Brouwers et al. (2015) was used to delineate areas of pre-fire drought 

stress within the burn area. The model uses elevation, slope, distance to rocky-outcrop, rainfall 

and temperature data to infer drought and heat sensitivity across a landscape. The model was 

used to nominate stands which were potentially drought stressed pre-fire. These sites were 

validated by applying on ground selection criteria based on plant species association with 

drought and the structural indications of drought collapse (Ruthrof et al. 2015). For example, 

Banksia grandis rarely occurs in severely heatwave/drought impacted areas as they are more 

susceptible to drought mortality (Matusick et al. 2013; Steel et al. 2019). Therefore, sites with 

an established midstorey of B. grandis were not used as high probability drought sites. To 
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validate predicted drought occurrence, high probability drought sites also required structural 

evidence of the drought collapse reported by Matusick et al. (2013), with epicormic sprouts of 

a size that would have developed following this disturbance event. The size (diameter) of the 

epicormics determined whether they were 2010-2011 drought-induced epicormics.  

Following the fire, burn severity was observed to fall into two main categories; 1) severe 

surface fire with canopy scorch (moderate severity), 2) crown fire with complete canopy 

consumption (high severity). Twenty sites (10 high drought, 10 low drought) were chosen 

within the forest area that had been burnt, with 17 containing paired plots in the two observed 

fire severities (a total of 37 plots). If both conditions were not present only a single plot was 

established. Ten unburnt control plots (5 high probability drought, 5 low probability drought) 

were also established within 10 km of the fire boundary to ensure soil type, rainfall and stand 

composition and structure did not vary widely between burnt and unburnt areas. 

Plots were established in a modified Forest Inventory and Analysis assemblage (Bechtold and 

Scott 2005). Each plot consisted of four subplots, of variable radius, comprising a central 

subplot and subplots orientated at 0°, 120°, and 240° from the central subplot. The centre of 

each subplot was at least 35 m from the middle of the centre subplot. Subplot configuration 

was altered only if the forest condition changed rapidly or the subplot was situated on a track. 

4.3.3 Fire severity assessment 

To avoid further repetition, calculation of RdNBR and subsequent fire severity assessment 

used to determine fire severity categories in this chapter can be found in Section 4.3.6 
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4.3.4 Stand assessment 

4.3.4.1 Tree survey 

Trees were surveyed at each of the four subplots at each plot. The plots had a variable radius 

depending on tree stocking rate. The radii were adjusted to capture a minimum of 60 trees with 

a diameter at breast height (DBH) >10 cm in each plot. Three radii were established for the 

different DBH classes; >30 cm, 10-30 cm, and <10 cm. The largest tree radius was not larger 

than 15 m to avoid overlap of subplots. The radii remained constant across each of the subplots 

within a plot.  

To quantify combustion from wildfire and the portion of a tree killed, stem level measurements 

included: live and dead height (m), diameter at breast height (DBH), basal sprout height (m), 

highest and lowest epicormic sprouts point of origin (m), and a canopy health score. The health 

score rating was developed to capture the loss of canopy from consumption or fire scorch on a 

scale of 0-100, with 100 being a tree that had completely lost all crown and was dead with no 

evidence of resprouting, whereas minimally affected individuals were given lower scores 

corresponding to the proportion of original canopy that was lost. A resprouting vigour rating 

was also recorded on a scale of 0-100, with 100 being a tree that has its complete canopy 

resprouting, one-year post fire.  

In burnt stands, to capture the effect of the 2011 canopy collapse on tree architecture, a range 

of measurements were taken that categorised the pre-fire state of the individual, in addition to 

the measurements capturing fire damage and regrowth. To assess pre-fire architecture and 

capture any pre-fire canopy retraction evident the number, size and height of epicormic sprouts 

present on the bole before the wildfire were recorded, as well as a categorisation of the 

fragmentation of previously dead material in the canopy from class 1-4 according to Harmon 

et al. (2011), and Woldendorp and Keenan (2005). That is, if an individual had experienced 
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obvious pre-fire stress, the snag fragmentation category would be higher compared to ‘healthy’ 

individual as a significant portion of the canopy material had been lost pre-fire.  

The same measurements were taken in unburnt plots, without the need for categorising fire 

damage, instead to capture information about which trees had been drought-affected and how 

they had recovered. The height at which drought induced epicormic resprouts were protruding 

from the tree was recorded, along with the height of resprouts themselves. A count was taken 

of any epicormic sprouts and grouped according to diameter classes: 0-5 cm, 5-10 cm, 10-12 

cm.  

Individuals fell in to categories of complete mortality (lack of resprouting), partial mortality 

(only bole resprouting), top kill (only basal resprouting), or live (resprouting in the canopy). 

For the purposes of this study, partial mortality refers to individuals that have suffered severe 

canopy dieback and have only epicormically resprouted on the bole. 

4.3.4.2 Regeneration counts 

At each of the subplots a count of the tree species germinants, seedlings, saplings and 

resprouters was conducted. Classification of regeneration followed Abbott and Loneragan 

(1984) (Table 4.1).  

  



 83 

 

Table 4.1:Classification of regeneration in the Northern Jarrah Forest (reproduced 

from Abbott & Loneragan, 1984). 

Regeneration Type Description 

Seedling 

Less than one year old, usually with cotyledons present, without an 

obvious lignotuber 

Lignotuberous 

seedling More than one year old, cotyledons absent, and lignotuber obvious 

Seedling coppice 

Formed from lignotuberous seedling after damage has caused the 

original shoot to die 

Ground coppice 

Shoot length up to 1.5m and representing a resprout from the lignotuber 

after the death of antecedent shoots. 

Sapling 

Shoot length more than 1.5 m in height but diameter at breast height less 

than 15 cm. 

 

4.3.5 Fine woody debris survey 

To avoid further repetition, collection and calculation of fine woody debris (FWD) loads can 

be found in section 4.3.3.3. 

4.3.6 Statistical analyses 

The overarching aims of this study were to investigate the linked and compounding effects of 

drought plus wildfire as a disturbance iteration. All data analyses were conducted using R (R 
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Core Team 2014) with the lme4 (Bates et al. 2014) package and data visualisation with ggplot 

(Wickham 2011). In all cases means are reported and 95% confidence intervals and a lack of 

overlap of the mean with adjacent confidence intervals was interpreted as evidence of a 

statistical difference between groups, while asymmetrical overlap of means (intervals overlap 

one mean but not the other) was interpreted as suggestive evidence of a statistical difference 

between groups (Ramsey and Schafer 2012). Impact and early response were quantified one-

year post wildfire.  

To investigate the linked effects of the double disturbance of drought and wildfire, the effect 

of pre-fire stress on two separate measures of fire severity at the stand level was evaluated. 

This included a remotely sensed index of fire severity (RdNBR), and post fire fine woody 

debris measurements. Differences in fire severity were analysed between pre-fire drought stress 

with t-tests.  

To evaluate whether drought and wildfire had compounding effects on post fire biotic response 

differences in mortality at the site and stem scale were investigated. For response measures 

quantified at the site scale, differences in basal area, stem density, proportional basal area 

mortality and post fire seedling recruitment were assessed. One-way ANOVA with Tukey’s 

multiple comparison test were used to assess the interaction between pre-fire drought stress 

and fire-killed individuals.  

To evaluate the effects of drought and wildfire on the probability of stem death and early 

resprouting, the effects of the disturbances individually (separately) or combined (drought + 

fire) with other variables specific to the site, individual (multiple stems), and stem were 

evaluated. To test whether a combination of these factors may have predisposed certain stems 

to top kill or a lower resprouting proportion a series of general linear models (GLMs), with the 

binomial distribution and proportional stem mortality as our response were used. A range of 
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site, individual and stem factors were included to test the a priori hypotheses of drought and 

wildfire disturbance interactions. Given that the experimental design included measures of 

multiple stems on a single individual, and fire severity plots were nested within drought 

condition sites, a mixed effects model structure was implemented. Random effects were 

assigned to a site, plot and tree identifier to account for multiple stems on a single individual. 

Fixed effects included stand level factors such as, site basal area, time since fire and harvest 

history (recorded number of times harvested), drought probability, and fire severity 

experienced. Tree level data included; species, stems per tree, and the tree cross sectional area 

(area of all stems on the individual combined). Stem level data included diameter at breast 

height (DBH) of the stem. Interacting variables added to models were; drought condition and 

fire severity, drought condition and species, fire severity and species, stem size (DBH) and 

stems per tree.  

A set of candidate models were developed which included variables to test the a priori 

hypotheses (drought and wildfire) as well as other site, individual, and stem level variables 

(harvest and fire history, species and stem size). Akaike’s information criterion (AIC) was used 

to evaluate the model set, and the model with the lowest AIC value was considered the ‘best’ 

model. Models that fell within two AIC points of the best model were considered as potential 

alternatives (Anderson and Burnham 2004; Zuur et al. 2009). Prior to analysis covariates were 

assessed for outliers and collinearity. Model residuals were examined graphically to ensure 

model assumptions were met and no violations were detected. A natural logarithm was applied 

to linearize the fit between DBH and probability of top kill. The same method was used to 

analyse differences in resprouting proportion, which was the ratio of live height to maximum 

height of that stem resulting in a scale between 0 (dead stem) and 1 (Resprouting at pre-fire 

height).  
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4.4 Results  

4.4.1 Fire severity and linked disturbance effects 

There was no evidence of differences in fire severity across pre-fire drought conditions (Figure 

4.2) with a large overlap of 95% confidence intervals for both measures. Pre-fire drought stress 

did not increase remotely sensed measures of fire severity (Figure 4.2a), or post fire fine debris 

loads (diameter <7.6cm, Figure 4.2b). 

 

Figure 4.2: Indicators of a linked disturbance interaction between drought and wildfire 

a) remotely sensed fire severity (RdNBR) and b) post fire fine woody debris (t ha-1) 

loads in drought and fire affected plots of the Northern Jarrah Forest, southwestern 

Australia. 

4.4.2 Stand structure and compound effects of disturbances 

Stem diameter distributions of all individuals (live and dead) for the fire severities within 

respective drought probability condition were similar in shape (Figure 4.3), and had modal 

stem diameter categories of 5-10cm DBH. However, high drought sites had a higher relative 

abundance of smaller stems, and fewer large stems, whereas low drought probability sites had 

fewer small stems and a higher number of large mature individuals (Figure 4.3). The majority 
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of the small stems (5-10 cm DBH) did not survive wildfire in either pre-fire drought conditions 

(Figure 4.3). Following wildfire, live stem distributions were similar in shape with modal stem 

diameter shifting towards larger, more mature individuals (Figure 4.4). However, modal stem 

diameter was smaller in the high drought probability sites (10-20cm DBH) compared to low 

drought probability sites (30-40cm DBH). 

 

Figure 4.3: Weighted density plot of diameter distributions in drought and fire affected 

and control plots of the Northern Jarrah Forest, southwestern Australia. Showing all 

stems measured (live and dead). 
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Figure 4.4: Weighted density plot of diameter distributions in low and high drought 

probability and moderate and high fire affected and unburnt plots of the Northern 

Jarrah Forest, southwestern Australia (showing only the live stems persisting following 

the wildfire). 

The pre-fire stand conditions of basal area and stem density showed no significant differences 

amongst fire severity and drought probability combinations (Figure 4.5-Figure 4.6). However, 

the highest total basal area (56.4 ± 21.4 m2 ha-1, Figure 4.5) and stem density (2763 ± 934 stems 

ha-1, Figure 4.4) was recorded in the unburnt high drought plots. There was higher variability 

in stocking density in the high drought probability sites compared to the low drought 

probability sites, which was evidenced by larger confidence intervals across all fire severity 

classes (Figure 4.5).  
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Figure 4.5: Mean total (circles) and live (triangles) stem density in sites with low and 

high drought probability, moderate and high severity fire-affected, and unburnt control 

plots of the Northern Jarrah Forest, southwestern Australia. Estimates are means of 

(±95% CI). 

4.4.3 Post-fire stand mortality and compound effects of drought and wildfire 

Wildfire strongly reduced live basal area (-20.7 ± 7.3 m2 ha-1, F (2,36) = 28.84, p <0.001, Figure 

4.6) and stem density (1654 ± 406 stems ha-1, F(2,36) = 67.8, p <0.001, Figure 4.5) compared to 

the unburnt plots, with no significant difference between the moderate and high fire severities 

(F(2,36) = 26.82, p = 0.9, Figure 4.6). The low drought probability plots had consistently smaller 

live basal areas in respective burn categories compared to the high drought probability plots, 

however, there was a large overlap of confidence interval bars. There was no evidence of 

drought legacy interacting with wildfire impacts with the impact of wildfire more apparent in 

all measures of stand mortality (Figure 4.5 - Figure 4.7). Wildfire preferentially removed 

smaller stems from the stands (Figure 4.4).  



 90 

 

Figure 4.6: Mean total (circles) and live (triangles) basal area (m2 ha-1) in drought and 

fire affected and control plots of the Northern Jarrah Forest, southwestern Australia. 

Estimates are means with 95% CI bars. 

Mean proportional basal area (m2 ha-1) stem mortality increased with fire severity and this was 

more pronounced in plots with low drought probability (Figure 4.7). There was a strong 

wildfire effect on proportional basal area mortality, with both drought conditions showing 

markedly lower live basal area in burnt areas compared to unburnt areas (Figure 4.6, Figure 

4.7). Interactions between pre-fire drought stress and post fire mortality were less pronounced, 

with the low drought probability condition showing consistently higher levels of partial and 

total stem mortality compared to the high drought probability alternative for the respective burn 

condition (Figure 4.7). Partial mortality was unchanged in high drought plots between unburnt 

and moderate fire severity. However, this subsequently increased and was then similar to the 

low drought probability condition in the high severity wildfire plots (Figure 4.7).  
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Figure 4.7: Proportional basal area separated by sprouting types (live, partial mortality, 

stem mortality) in high drought (triangles) and low drought (circles) fire affected and 

unburnt plots of the Northern Jarrah Forest, southwestern Australia. Estimates are 

means (±95% CI) 

 

4.4.4 Post fire recruitment  

Pre-fire drought condition and fire severity altered post-fire seedling counts of the two 

overstorey tree species (Figure 4.8). E. marginata germination rates were consistently higher 

than those for C. calophylla, for all drought and fire severity combinations (Figure 4.8). High 

fire severity fire reduced germinant recruitment to the same rate as unburnt control plots (F (1,60) 

= 0.15, p = 0.70). Moderate severity wildfire significantly increased post fire seedling counts, 



 92 

with mean germination count of moderate fire severity (7192 ± 3409 germinants ha-1) 

compared to high severity and unburnt plots (2681±959 germinants ha-1, F (2,83) = 14.36 

p<0.001). Whilst there was an obvious fire effect on post-fire recruitment, the effect of pre-fire 

drought was less obvious. High drought condition consistently increased post fire seedling 

count compared with the low drought alternative, however there was large overlap of 

confidence interval bars (Figure 4.8). 

 

Figure 4.8: Mean recruitment (germinants ha-1) of the co-dominant overstorey tree 

species (Eucalyptus marginata and Corymbia calophylla) in drought and fire affected and 

control plots of the Northern Jarrah Forest, southwestern Australia. Estimates are 

means (±95% CI). 
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4.4.5 Stem level response to drought and wildfire 

4.4.5.1 Top kill 

The best model explaining the probability of stem survival (Model Weight ωii = 0.62, Table 

4.2) included stem size (log-DBH), cross sectional area of the tree (which includes all stems of 

that tree), species, site basal area, frequency of harvest, time since last fire, and two-way 

interactions between drought condition and fire severity, tree species and time since fire, fire 

severity and previous fire type. Other competitive models included the number of stems per 

tree, the presence of a stump as part of the tree, and the interaction between log-DBH and stems 

per tree. Within the best models, stem size (log-DBH), fire severity and harvest frequency were 

consistently the variables that had the greatest impact (effect size) on stem survival. Larger 

stems were more likely to survive (ΔPtopkill ~ 0.80, z = 26.98, p<0.001, Figure 4.9a) for all 

combinations of drought and fire severity. The impact of pre-fire drought stress on stem 

survival was not as obvious as wildfire (Figure 4.9). 

Areas with a high probability of drought had a reduced probability of stem survival in the 

unburnt condition (Figure 4.9). However, in combination with wildfire evidence of pre-fire 

drought legacy is minimal with large overlap of 95% confidence interval bars between low and 

high drought probability conditions. A high drought condition increased the probability of 

survival marginally compared to that in the low drought condition (ΔPsurvival ~ 0.64, z = 2.28, 

p<0.05, Figure 4.9a). Harvest frequency also decreased stem survival, with areas experiencing 

more timber harvests having a decreased probability of stem survival (ΔPsurvival -0.44, z= -5.80, 

p<0.001, Table 4.2)  
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Figure 4.9: Predicted probability of stem survival and diameter at breast height (DBH, 

cm) in response to a) wildfire severity (unburnt, moderate, and high ) and b) and 

drought probability (low and high drought), in the Northern Jarrah Forest, 

southwestern Australia. Predictions from the ‘best’ model. Shaded area indicates the 

95% CI of the estimate.  
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Table 4.2: Results from a linear mixed effects model used to quantify top kill in wildfire 

burnt plots across differing pre-fire drought probability conditions in the Northern 

Jarrah Forest. Models tested differences in probability of top kill across fire severity 

and drought conditions, using covariates from site to stem level. 95% confidence 

intervals in brackets.  

 
Top kill 

Coefficients Estimate Odds Ratios (±CI) z-value p-value 

(Intercept) 0.98 62.46 (±30.9) 11.87 <0.001 

High drought probability 0.64 1.75 (±0.67) 2.28 0.022 

Fire severity class (Moderate) -0.03 0.03 (±0.02) -8.96 <0.001 

Fire severity class (High) -0.04 0.04 (±0.02) -8.26 <0.001 

Site basal area (m2 ha-1) -0.47 0.9 (±0.07) -2.66 0.008 

Log(DBH (cm)) 0.80 4.06 (±0.39) 26.98 <0.001 

Species (E. marginata) -0.24 0.31 (±0.13) -4.09 <0.001 

Time since fire (years) -0.49 0.96 (±0.01) -5.22 <0.001 

Harvest frequency  -0.44 0.8 (±0.06) -5.80 <0.001 

High drought probability: Moderate fire 

severity 
-0.38 0.61 (±0.24) -1.95 0.051 

High drought probability: High fire severity -0.32 0.48 (±0.19) -2.91 0.004 

Moderate fire severity: E. marginata 0.75 2.98 (±1.35) 3.53 <0.001 

High fire severity: E. marginata 0.76 3.15 (±1.32) 4.12 <0.001 

High drought probability: E. marginata -0.47 0.87 (±0.27) -0.79 0.429 

Model based on 5069 observations from 47 plots.  
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4.4.5.2 Resprouting proportion 

Eucalyptus marginata and C. calophylla stem survival varied based on pre-fire drought stress 

as well as fire severity. As fire and drought categories changed, the two species changed order 

thereby reflecting the two-way interaction of species and drought condition. The two dominant 

overstorey species exhibited differing probabilities of top kill following drought and wildfire 

overall, with the likelihood of survival decreasing if stems were E. marginata (ΔPresprouting ~ -

0.31, z = 4.33, p<0.001, Figure 4.9a) compared to C. calophylla. Under high drought 

probability conditions C. calophylla showed higher ratios of stem resprouting compared to a 

E. marginata stem of the same size (Figure 4.10). However, without pre-fire stress E. 

marginata had increased ratios of resprouting compared to C. calophylla (Table 4.3,Figure 

4.10).  
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Figure 4.10: Predicted resprouting height proportion of Eucalyptus marginata and 

Corymbia calophylla in response to DBH, in the Northern Jarrah Forest, southwestern 

Australia. Predictions are from the ‘best’ model and shown for all combinations of fire 

severity and drought condition measured. Shaded area indicates the 95% CI of the 

estimate.  
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Table 4.3: Results from a linear mixed effects model used to quantify the resprouting 

proportion in wildfire burnt plots across differing pre-fire drought conditions in the 

Northern Jarrah Forest, southwestern Australia. Models tested differences in 

probability of top kill across fire severity and drought conditions, using covariates from 

site to stem level with 95% confidence intervals in brackets.  

   Resprouting proportion 

Coefficients Estimate Odds Ratios (±CI) z-value p-value 

Intercept 0.97 33.09 (±13.74) 12.79 <0.001 

High drought probability 0.63 1.67 (±0.06) 2.24 0.025 

Fire severity class (Moderate) -0.04 0.04 (±0.02) -10.48 <0.001 

Fire severity class (High) -0.03 0.03 (±0.01) -11.2 <0.001 

Log(DBH (cm)) 0.70 2.38 (±0.02) 19.53 <0.001 

Species (Eucalyptus marginata) -0.24 0.31 (±0.12) -4.58 <0.001 

Site basal area (m2 ha-1) -0.48 0.91 (±0.07) -2.44 0.015 

Stems per tree -0.46 0.86 (±0.07) -3.86 <0.001 

Time since fire (years) -0.49 0.95 (±0.01) -6.43 <0.001 

Harvest frequency -0.43 0.74 (±0.06) -7.09 <0.001 

High drought probability: Moderate fire 

severity 
-0.44 0.8 (±0.29) -0.97 0.33 

High drought probability: High fire 

severity 
-0.37 0.58 (±0.21) -2.37 0.017 

Moderate fire severity: Eucalyptus 

marginata 
0.81 4.21 (±1.79) 5.08 <0.001 

High fire severity: Eucalyptus marginata 0.82 4.68 (±1.83) 6.08 <0.001 

High drought probability: Eucalyptus 

marginata 
-0.48 0.93 (±0.29) -0.36 0.716 

Model based on 5069 observations from 37 plots.  
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4.5 Discussion 

This study has shown that in the resilient resprouting Northern Jarrah Forest of southwestern 

Australia, pre-fire drought does not seem to increase subsequent fire severity (linked 

disturbance) experienced or biotic responses (compound disturbance) following a wildfire. 

Responses to drought and wildfire alone were consistent with other studies from this forest 

type (Abbott and Loneragan 1983; Matusick et al. 2013; Ruthrof et al. 2018). When the 

combined effect of both disturbances was analysed, there was no evidence of any interaction 

between these two disturbances in impact and early response measures. There was no 

difference between the impacts of fire severity (i.e. RdNBR) in drought plus wildfire sites, and 

those with no pre-fire stress, suggesting that any increased fuel loads from drought induced 

canopy die-off did not alter local fire severity under these high severity conditions experienced 

at the Waroona Fire.  

Evidence of a compound disturbance was not present within the timeframe of this study, with 

mortality, proportional resprouting and recruitment rates with these not showing evidence of 

interactions between drought and wildfire thus far. Instead, the plots showed a single strong 

effect of the wildfire. It thus follows that high severity canopy fire may override pre-fire 

drought legacy. However, the future trajectory of regrowth and potential for further collapse in 

these two pre-fire drought conditions (low and high drought probability) may differ as high 

drought probability sites are more prone to drought induced canopy collapse. Regrowth and 

stand dynamics will also be heavily dependent upon the future disturbance regime, as new 

growth and epicormic regrowth begin to reach a size where they can withstand stressors.  

4.5.1 Fire severity and linked disturbance effects  

Drought induced canopy die-off increases fuel loads as dead standing material is converted to 

fine woody debris, which may affect fire behaviour, such as fire rate of spread in die-off stands, 
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compared to surrounding ‘healthy’ forest (Ruthrof et al. 2016). Evidence of linked disturbance 

effects between drought and wildfire severity were not present in remotely sensed RdNBR 

values and post fire FWD loads. A high FWD load post fire may indicate higher fire severity 

in the canopy, leading to higher canopy dead biomass, and therefore larger post fire woody 

debris loads. Fire behaviour during the wildfire event in this study was extreme (Peace et al. 

2017), and many of the forest stands surveyed as part of this study experienced canopy fire. 

Once canopy fire was present it is likely that fire severity would not be significantly altered by 

the increased pre-fire litter loads or elevated fuel loads (dead material in the canopy) caused by 

drought induced canopy die-off. Similar results have been reported in a subalpine forest of 

Wyoming where beetle (Dendroctonus ponderosae) outbreak followed by wildfire occurred. 

Harvey et al. (2014a) reported that the fire severity was higher in areas with a recent beetle 

outbreak if moderate fire was present. However, once high severity fire (canopy fire) was 

present there was no link between outbreak age and fire severity (Harvey et al. 2014a). Our 

results indicate that even moderate severity (canopy scorch) fire may diminish the link between 

drought legacy and subsequent fire severity.  

4.5.2 Mortality and compound disturbance impact at the stand scale  

Pre-fire forest structure was markedly different between the drought conditions, with the high 

drought probability condition having a higher abundance of small stems and fewer large stems, 

compared to the low drought probability condition. The low drought condition had an almost 

bimodal distribution in stem DBH with peaks between 10-15 cm and 30-40 cm. Drought 

induced canopy die-off increases the number of small stems in a stand as the individuals regrow 

from resprouts and new individuals (Nano and Clarke 2011; Matusick et al. 2016). Following 

the wildfire in this current study, the diameter distribution of persisting stems was similar 

between the two drought conditions, with the smaller stems mostly killed by fire and some 

larger, potentially pre-fire stressed trees also dying. High rates of regeneration and resprouting, 
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coupled with declining rainfall may see these forest stands more vulnerable to drought collapse 

continuing towards more densely stocked ‘states’. It follows that large individuals are 

increasingly important for persistence and stand structure. However, the time between 

disturbances and the next disturbance type is likely to determine the future structure of these 

stands. For example, fire in all forms preferentially removes small individuals from a stand and 

large mature individuals persist (Abbott and Loneragan 1986). However, drought and heatwave 

related die-off thins from above, preferentially affecting large mature individuals and pushing 

them to shorter multi-stemmed versions of the same tree, or new individuals (Matusick et al. 

2016). Following the wildfire there has been a significant decrease in the live individuals in 

these stands and regrowth will be susceptible to high rates of mortality with further disturbance 

as both new individuals and resprouting mature individuals regenerate the stands.  

This study has shown that the resprouting overstorey species of the Northern Jarrah Forest, E. 

marginata and C. calophylla are extremely resilient to disturbance, with many individuals 

surviving both extreme drought and heatwave conditions, as well as a canopy fire. The 

Northern Jarrah Forest is an ecosystem that does not typically experience stand-replacing fire 

(Abbott and Loneragan 1986; Burrows 2013). Large mature individuals in this region are 

typically not killed by fire. However, rates of stem top kill found here were higher than 

previously recorded following canopy fire with 23.5% of mature (DBH >30 cm) suffering top 

kill in our study, compared with the 11.7% previously reported for this size class (Peet and 

Williamson 1968). Furthermore, with 49% of total BA top kill (all individuals), the wildfire 

studied here was potentially as close as this system gets to ‘stand replacing’, where many 

individuals are regrowing from basal resprouts or have died completely. Stand replacing fires 

are common in mixed conifer forests where most overstorey tree species do not resprout 

following fire and instead rely on seed stores for regeneration (Wagener 1961). In this study, 

although not all of the overstorey individuals have suffered stem mortality, a significant portion 
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either suffered partial mortality or stem mortality, clearly illustrating the severity of the fire 

and its impact on the forest.  

4.5.3 Mortality and compound disturbance impact at the stem scale 

This study investigated the singular and interactive effects of drought and wildfire on stand and 

stem level measures of mortality. There was no evidence of an interaction between pre-fire 

drought condition and mortality, or proportional resprouting height. Larger stems are more 

likely to survive high severity wildfire, and species behaved differently between the two 

disturbance factors. Stem size is consistently a determinant of stem survival throughout 

resprouting (Collins 2019) and non-sprouting forests (Regelbrugge and Conard 1993). 

Differences between species survival dependant on disturbance types are consistent with other 

works, which suggest that E. marginata and C. calophylla have different life strategies to deal 

with disturbance (Ruthrof et al. 2015).  

Harvest frequency and time since previous fire also appeared to be an important determinant 

of stem survival. Individuals located in stands which had higher frequencies of logging were 

more likely to suffer stem mortality and resprout at lower levels, compared to stems of the same 

size located in areas harvested fewer times. A higher frequency of timber harvest could increase 

mortality with further disturbance as harvest removes genetically stronger individuals (large, 

straight, no bole damage). It follows that after repeated entries the individuals remaining in the 

stand are mostly made up of damaged (basal scarring) or not merchantable (multi-stemmed). 

Harvest activity also leads to soil compaction which may reduce the productive capacity 

(regrowth) of those stands (Whitford and Mellican 2011). It follows that more frequent timber 

harvest could lead to greater and more widespread compaction. More research is required to 

understand the effect of timber harvest activities on forest resilience. This highlights the 
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importance of forest management practices on forest resilience to disturbance, particularly 

under changing conditions.  

4.5.4 Initial regrowth and stand trajectory 

High severity canopy fire may diminish the legacy effects of a drought disturbance in relation 

to stand level stem mortality. Lower drought conditions had consistently higher levels of 

mortality across multiple stand level measures (basal area, stems per hectare) than under high 

drought probability conditions, potentially suggesting that those individuals that were stressed 

pre-fire were more capable of withstanding fire effects. Evidence of compound interactions 

between these disturbances was also not present in the regrowth following fire. Sites that were 

drought affected before the wildfire showed consistently higher rates of recruitment compared 

to those that did not have evidence of a drought response. It is likely that once canopy fire is 

present evidence of interaction between drought and wildfire are diminished. However, post-

fire regrowth vulnerable and areas more prone to drought and water stress could be predisposed 

to further collapse following the wildfire. Therefore, long term germinant and resprouting 

success may be diminished in high drought stands.  

Projections for this region are an increase in fire frequency (Clarke et al. 2016) and severity as 

rainfall continues to decline and temperatures increase (Bates et al. 2008; Andrys et al. 2017). 

Eucalypt forests have been reported to have resprouting failure with repeated fire events before 

recovery from the last fire event (Fairman et al. 2019). Given the high proportion of mortality 

and subsequent regrowth most fire affected stands are vulnerable to further loss with another 

fire event. The NJF is a resilient system with mature overstorey individuals capable of 

regrowing following both drought and wildfire conditions. However, with further disturbance 

and a declining rainfall, some stands could potentially ‘tip over’ with high mortality of 

persisting individuals. As burnt stands resprout and regrow following these disturbances, 
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affected areas will predominantly be occupied by large dead individuals and regrowth will 

occur through smaller trees (basal resprouts and new growth). This is a state which will require 

decades before recovery to a point where stems can survive disturbance. However, with a 

continual decline of rainfall, and projected increases in frequency and severity of fire these 

stands are likely to be disturbed before reaching a mature forest structure and will therefore 

continue to transition towards shorter, smaller, and more densely stocked stands of E. 

marginata and C. calophylla.  

4.6 Conclusions 

This study found that high severity wildfire overrides drought legacy in the resprouting 

Northern Jarrah Forest. There was no evidence of additive or interactive effects with moderate 

fire severity in impact (mortality) and early response (resprouting and recruitment). Instead 

there was a strong impact of wildfire reducing live basal area, and live stem density. Stem 

survival and resprouting proportion was influenced most by stem size (DBH), fire severity, and 

the frequency of harvest. With a high proportion of partial death and full stem mortality the 

affected stands will need decades to regrow in order to be able to withstand further disturbance 

and potentially return to a pre-fire structure. However, with declining rainfall and projected 

increases in fire frequency and severity, it may be unlikely that more vulnerable stands will 

return to pre-fire structural states, instead transitioning towards smaller, shorter and denser 

stocked stands.  
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5 General Discussion 

5.1 Introduction  

Globally, pressure on forest carbon stocks will continue to increase as disturbance regimes shift 

to more frequent and severe events with a warming and drying climate. The effect of different 

disturbances on stand structure and carbon balances have been well documented in the non-

sprouting forests of the northern hemisphere (Campbell et al. 2007; Kurz et al. 2008a; Valinger 

and Fridman 2011; Buma et al. 2014). However, there is a distinct lack of knowledge on 

disturbance effects on forest structure and carbon storage in resprouting forests. Temperate 

forests make up 767 million ha of global forest area (Pan et al. 2011), and native Australian 

forests make up 132 million ha, which equates to approximately 21,949 Mt C stored in these 

forests (NFISC 2018). As forests play a significant role in global climate change mitigation 

efforts an understanding of the dynamics of forests under global change is vital. 

As disturbance frequencies increase, there will be an escalating incidence of stacked 

disturbances, where multiple disturbances occur in short succession within the same forest 

stand and may interact producing ecological ‘surprises’ (Paine et al. 1998). Disruptions to 

disturbance regimes can cause significant and abrupt changes to forest structure (Buma 2015; 

Fairman et al. 2019). Whilst some effort has been made to document these occurrences in non-

sprouting forests (Göthlin et al. 2000; Buma and Wessman 2011; Harvey et al. 2014b), there 

have been few reports of the effects of repeated disturbances from resprouting forests. 

Resprouting forests are thought to be resilient systems, capable of surviving multiple 

disturbance events in short succession (Bowman et al. 2013; Collins 2019). However, recently 

Fairman et al. (2019) reported that even these systems have their limit to disturbance where 

repeated fire events have led to resprouting failure of dominant overstorey eucalypt species in 
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Australia. It follows that, resprouting forests may have an upper threshold to disturbance 

resistance. Disturbance type, frequency, severity and the interplay between multiple 

disturbance events (of differing types and severities) is likely to affect forest structural 

responses and resilience in resprouting ecosystems. Multiple disturbance events may cause 

significant and abrupt changes to resprouting forests structure, carbon storage and resilience 

not dissimilar to non-sprouting forests. 

In this thesis I used the Northern Jarrah Forest of southwestern Australia as a model of a 

resprouting ecosystem to address three major study questions (page 13). These relate to forest 

disturbances and their interactions with forest carbon and stand dynamics in a resprouting 

forest:  

1) What are the carbon storage implications and recovery of global-change-type drought 

(hotter drought, Breshears et al. 2005) and recovery?  

2) What are the carbon emissions and stand transformations following severe wildfire?  

3)  What are the additive and interacting effects of drought and wildfire on forest structure 

and mortality in a resprouting forest?  

Although each of these questions has been explored in Chapters 2-4, this Chapter provides an 

overview that integrates across all chapters, providing an indication of the implications for the 

Northern Jarrah Forest and suggestions for future research.  

5.2 Consequences of drought on carbon storage and dynamics 

Prolonged drought coupled with intense heat waves trigger sudden forest die off events (Allen 

et al. 2010b), which have now been reported from all forested parts of the globe (Allen et al. 

2015). These die-off events cause significant changes to forest structure through mortality of 

the large overstorey individuals (Breshears et al. 2005; Matusick et al. 2016) and function by 

altering soil fungal communities (Oliva et al. 2014; Hopkins et al. 2018). However, there is 
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little documented knowledge on the consequences to carbon storage and dynamics of these 

events, particularly in a resprouting forest ecosystem. With a changing climate the incidence 

of these types of events is expected to increase (IPCC 2013) thus, highlighting the need for 

accurate estimates of carbon transformations to account for the consequence of drought and 

heatwave related die-off events. In Chapter 2, I investigated the carbon consequences of 

drought in a resprouting system and quantified movement of carbon through the forest carbon 

pools immediately following die-off and up to 26 months after the event.  

The die-off event occurred in 2010-2011, and several studies documented the biotic responses 

to the forest and key species (Matusick et al. 2013; Ruthrof et al. 2015; Matusick et al. 2016; 

Ruthrof et al. 2018). I quantified the carbon dynamics showing how partial and complete 

mortality in overstorey trees impacted carbon pools for the 2+ years following the die-off event. 

In contrast to conifer-dominated systems where regeneration occurs solely via seed, trees 

rapidly resprouted and this buffered live carbon loss (49.3 t ha-1 loss of live C), increased stem 

densities (1020 stems ha-1) and drove recovery of live carbon stocks (82-88% of labile carbon 

pools within 26 months). Stem mortality and therefore dead carbon remained largely in 

standing pools with little fragmentation over the measurement period.  

Total carbon storage would be expected to increase in stands affected by drought if there were 

no further disturbance, as sequestration through resprouting and new growth would counteract 

carbon lost through biogenic decay. However, with a drying climate (Andrys et al. 2017) and 

a projected increased frequency and intensity of fire (Clarke et al. 2016), it is unlikely that 

regrowth will grow to the extent of the individuals that died.  

It has been suggested that changes in climate, including a reduction in rainfall, will reduce the 

potential biomass (carbon) the forests of the southwestern Australia can support as the forest 

leaf area comes into ecohydrological equilibrium (Liu et al. 2019a). This is based on the 
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theoretical framework of ecological optimality of Eagleson (1982), where in water limited 

environments the natural vegetation comes to a stable equilibrium with the climate and soils. 

It follows that with a reduction in rainfall, such as has already occurred and is predicted to 

occur into the future, the level of this stable equilibrium will reduce. The amounts of biomass 

and thus carbon storage, or carrying capacity, will thus also reduce. The Northern Jarrah Forest 

is growing on very deep regolithic soils, which contain both soil moisture and groundwater. 

There is evidence that forest growth has relied on these stores (Smettem et al. 2013) and the 

moisture in the regolith has been depleted (Kinal and Stoneman 2012). This may explain why 

drought deaths were associated with shallow soils with poor overall water holding capacity. 

Thus, the forest will readjust to a new hydrologic equilibrium (Harper et al. 2019).  

Whilst rainfall, and interactions between vegetation and streamflow may prescribe the upper 

limit of carbon stored in these forests, disturbance will ultimately determine whether that 

carbon storage potential is achieved. The changes to forest structure following drought die-off 

reported here may limit the recovery of carbon storage in affected stands. Resprouting of the 

dominant overstorey species buffered the loss of live carbon as individuals either partially died, 

or resprouted in the canopy. This resilience to disturbance via resprouting will inevitably 

determine how long large individuals (DBH >30 cm) persist in these stands as future drought/ 

heatwave events occur.  

Australian resprouting forest ecosystems can experience mixed severity wildfires (Collins et 

al. 2018) as well as planned fires at frequencies between 5-20 years (Murphy et al. 2013). 

Many of the stands that experienced die-off are likely to be burnt before they have completely 

recovered. The drought die-off affected stands are comprised of many younger, multiple 

resprouting stems (Matusick et al. 2016), and it is unlikely that many of these stems will survive 

fire, therefore making increases in carbon storage following drought die-off ephemeral. Any 

additional disturbance prior to these stands completely recovering would further push this 
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system from being dominated by large overstorey trees towards shorter, denser stands. It 

follows, that resprouting forests, and the carbon stored within them, may be vulnerable to 

changes in disturbance regime similar to non-sprouting forest types.  

5.3 Carbon storage and dynamics following wildfire in a eucalypt forest 

Fire has been recognised as having a particularly large potential impact on forest carbon stocks 

(Campbell et al. 2007; Bowman et al. 2009; Keith et al. 2014) with the consequent critical 

need to incorporate disturbance into global carbon cycle models (Dixon et al. 1994; Hicke et 

al. 2012). Pyrogenic emissions from wildfire differ depending on fire severity, size and forest 

type it occurs within (pre-fire carbon density), with larger more severe fires typically leading 

to higher emission. It follows that representative estimates of pyrogenic emissions are required 

for all forest types. 

Fire is the most common mode of disturbance in resprouting forests (Bond and Keeley 2005; 

Bond et al. 2005; Bowman et al. 2009). Resprouting enables large trees to quickly regain 

carbon lost during fire and this may occur multiple times over their lifespan. This mechanism 

of resprouting may lead to lower carbon losses and more rapid recovery of carbon combusted 

following fire compared to other forest types, which naturally experience high rates of 

mortality amongst mature individuals (stand replacing) when high severity fire occurs.  

Southwestern Australia has experienced a reduction in rainfall (10-15%) and increase in 

temperature (0.15°C per decade) since the 1970s (Bates et al. 2008) with these drying and 

warming trends predicted to continue (Andrys et al. 2017). Fire frequency and severity is also 

predicted to increase (Clarke et al. 2016), further highlighting the need for accurate carbon 

accounts for resprouting forest types in this region following, for example, drought and 

wildfire. Continuing the theme of quantification of carbon transformations and dynamics 
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following forest disturbance, in Chapter 3 I estimated pyrogenic emissions and carbon 

transformations following an extreme wildfire event in the summer of 2016.  

Wildfire caused significant disruptions to the forest carbon pools in the Northern Jarrah Forest 

(NJF), as reported in Chapter 3. The approximately 35,000 ha of burnt upland NJF sites had 

total pyrogenic emissions at a rate of between 10 and 21 t C ha-1, or an estimated 723 133 t C 

in total. This corresponds to approximately 5.5-12.2% of the pre-fire carbon density. Rates of 

pyrogenic carbon emission were comparable to non-sprouting forests, where Campbell et al. 

(2007) reported combustion of approximately 19 t C ha-1 following a severe wildfire that burnt 

200,000ha of mixed coniferous forest in Oregon, United States. In areas of high fire severity, 

the loss of live standing carbon was estimated at 73 t ha-1, significantly higher than the mean 

rate of pyrogenic emissions from the wildfire, and these represent carbon stores which will be 

released in the coming years as the dead material decomposes. Although these estimates are 

for one forest type, they are nonetheless very significant, when extrapolated over whole 

regions. A key issue for carbon accounting is whether the losses are reversible.  

The Waroona Fire in January 2016 emitted significant amounts of pyrogenic carbon and caused 

changes to the forest carbon pools as stems died, resprouted or were converted from standing 

to surface carbon pools. Regrowth in the forest after fire was mainly comprised of bole 

epicormics and basal resprouts (66% of BA in the high severity fire areas) on persisting 

individuals, and new growth as seedlings. Carbon stored in these stores is vulnerable to further 

loss with subsequent fires. Carbon lost from the understorey pool, will be quickly replenished 

as shrubs regrow and regenerate. However, this pool will likely be burnt and lost in subsequent 

planned fuel reduction burns or wildfire. Moreover, it is relatively small (3.17 t C ha-1) when 

compared to the forest as a whole.  Similarly, litter will be subject to decomposition. Again, 

this is a relatively small pool (2.62 t C ha-1) but can be regarded as essentially ephemeral.  
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Similar to the finding on the effects of drought (Chapter 2), and with an increased incidence of 

disturbance (decreased rainfall and increased frequency and severity of fire) projected with a 

changing climate, it is likely that moderate and severely burnt stands will not recover total 

above ground carbon storage to pre-fire levels. Fire could be regarded as a mechanism that 

reduces the carbon storage capacity in the forests, as climate changes and the equilibrium 

storage value decreases. If forests are to be maintained as long-term carbon pools, they will 

require management to retain large individuals within stands and promote the growth of new 

individuals to the size of pre-disturbance trees.  

 

 

Figure 5.1 Effects of forest carbon storage and structure of areas of the Northern 

Jarrah Forest affected by drought and severe wildfire  

 

Drought (Chapter 2) and wildfire (Chapter 3) both resulted in changes to the composition of 

forest carbon pools (Figure 5.1), in terms of total storage, the distribution across the different 

pools and likely future trajectories of carbon accumulation. Carbon emissions from 
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combustion as well as biogenic decay will not override carbon sequestered in early regrowth 

in these stands. Drought and wildfire both altered the carbon dynamics of the affected stands 

with large amounts of dead wood now present. Early regrowth following these events will be 

similar with large stressed individuals regrowing from epicormic or basal resprouts and new 

recruitment through seedlings.  

Both Chapters 2 and 3 illustrated that following disturbance in a resprouting forest live standing 

carbon moves to the dead standing carbon pool in a manner like what occurs in a non-sprouting 

forest. Marked separation between the two forest types occurs after disturbance where rapid 

regrowth and resprouting of stressed trees buffers live carbon loss and there is a return of labile 

carbon pools (branch, twig, foliage) to pre-disturbance levels. It is difficult to compare the 

actual fluxes of carbon between pools in the two forest types, as they will have different growth 

rates due to a variety of reasons, such as climate, soils and past management.  

Dead wood generated from these disturbances will likely remain standing for a considerable 

period (decades), and once converted to the debris pool, multiple fire events will be required 

to completely remove carbon stored in these dead individuals (Whitford and McCaw 2019). 

Thus, although carbon moves from live standing trees to dead standing trees this is unlikely to 

be lost even after multiple future disturbances. It is likely that dead standing individuals are 

most likely to be converted to the debris pool as multiple fires burn out the base of the tree, and 

the individual eventually falls. Whitford and McCaw (2019) found that in the jarrah forest of 

southwestern Australia coarse woody debris loads were positively correlated with the number 

of planned burns that each stand had experienced since 1937. They suggested that these fires 

contribute to the eventual or immediate fall of a tree (dead or damaged) without leading to 

immediate consumption, thus increasing coarse woody debris loads in the forest. It follows that 

the individuals that have experienced partial mortality, where the crown is dead but differing 

amounts of the bole are still live, the live base of the bole will slow the process of snag fall as 
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the base is still protected from future fires. Aerial dead material is likely to primarily fall via 

fragmentation rather than fire. This process will maintain dead standing carbon within burnt 

and drought affected stands for a considerable period. There are no reports of the contribution 

of wind throw of dead standing trees from storm events in this region. Although northern 

Australia is subject to regular cyclones or hurricanes, the storm tracks of very few of these 

moves into south-western Australia.  

5.4 High severity wildfire overrides drought legacy in a resprouting forest 

Disturbance regimes (composed of frequency, size, season, intensity) are often a key driver of 

ecosystem structure, function and composition (Buma 2015). Ecological resilience is defined 

as the ability of a population, community, or ecosystem to return to its pre-disturbance state 

and reflects the frequency, intensity and type of disturbance impacts the ecosystem can tolerate 

whilst still returning to its ‘original’ state (Gunderson 2000; Enright and Fontaine 2014). The 

occurrence of disturbances outside a historic regime thus opens the question as to the capacity 

of systems to return to their original state or instead shift to alternative states (i.e. a phase 

change from forest to shrubland; Donato et al. 2009b; Fairman et al. 2019). Climate change 

will alter the frequency and severity of disturbances within forest systems (Hoegh-Guldberg et 

al. 2018), this therefore increasing the likelihood of multiple disturbance events occurring in 

short succession. Multiple disturbance events can cause significant and abrupt changes to forest 

composition, structure and function (Buma 2015). However, the strength of interactions in 

relation to disturbance type, sequence, and relative timing is uncertain, particularly in a 

resprouting forest type.  

The impact of successive interacting disturbance events has been documented across forest 

types with differing disturbance types and frequencies (Buma and Wessman 2011; Harvey et 

al. 2014b; Fairman et al. 2019). Repeated disturbance events can either have linked or 
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compound interactions. Linked disturbances occur when the first disturbance affects the 

likelihood, extent, or severity of the second disturbance (Buma 2015). Compound disturbances 

describe the biotic response (for example, tree recruitment) following a second disturbance 

event, and how it is altered relative to the individual disturbance event. Following on from 

Chapter 2 and Chapter 3, which each investigated the effects of a single disturbance on forest 

carbon stores, Chapter4 investigated the additive and interactive effects of stacked disturbance 

(e.g. drought and fire) events on forest structure and recruitment in a resprouting forest.  

This analysis found that in the NJF both moderate and severity fires override drought legacy 

effects, with no evidence of linked or compounding interactions between the two disturbances. 

High levels of mortality for this forest type across all combinations of drought and wildfire 

severity were recorded (>30% of BA), with at least half of the basal area experiencing stem 

mortality in some stands (55.3% of BA in low drought, high severity fire plots). Pre-fire 

drought stress did not increase subsequent fire severity, and there was no evidence of 

compounding effects in stem mortality, or early regrowth and recruitment. Models suggested 

that stem size, fire severity experienced, species, and harvest frequency were the key 

determinants of stem survival.  

The co-dominant overstorey species of the NJF (Eucalyptus marginata, Corymbia calophylla) 

are resilient to disturbance with many individuals surviving both drought and wildfire events. 

However, mortality following the Waroona Fire (23.5% of DBH>30 cm suffering top kill) was 

higher than any other recorded fires in this forest type (11.7% of DBH>30cm; Peet and 

Williamson, 1968), which may suggest that this system is not as resilient as previously thought. 

Similarly, all areas burnt from the wildfire will be vulnerable to significant mortality and 

structural changes with further disturbance. New growth will need time to develop bark thick 

enough to withstand fire, and resprouting mature individuals will need adequate time to recover 

carbon stores to be able to resprout following further disturbance.  
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Following the wildfire large structural changes have occurred within the severely burnt stands. 

On average, only 37% of mature individuals (DBH >30 cm) were resprouting in the canopy. 

The other 63% either experienced stem mortality (top kill) or partial mortality (only resprouting 

on the bole). It is likely that basal resprouts will continue to grow and the basal area in these 

stands will subsequently increase. The NJF does not self-thin and large individuals will have 

many basal resprouts (>5 basal sprouts) that will persist. It follows, that these impacted forest 

stands have undergone a structure state-change, from a tall open forest to a shorter, denser, 

closed forest, but without changes in tree species composition or dominance.  

Stands burnt by wildfire are currently regenerating, and the trajectory of the regrowth and live 

carbon storage is strongly reliant on future disturbance regimes (Figure 5.2a). The relative 

timing, type and intensity of the next disturbance will determine where pressure is exerted on 

these stands. Timing of future disturbance will determine the proportion of the stand population 

that is capable of resisting disturbance as new growth will currently not have bark thick enough 

to withstand mild fire and resprouting mature trees will not have the capacity to resprout in 

short succession (Abbott and Loneragan 1986).  

As described previously, fire is common feature of this forest with both mild planned burns 

and stochastic wildfire. Whilst not impossible, it is unlikely that fire would occur within these 

stands in the coming years as fuel loads may not carry or sustain fire. However, planned 

(prescribed) fire or wildfire are likely to occur within some of these stands before complete 

recovery. Planned fire preferentially removes smaller stems from the stand, while large mature 

individuals are usually not affected by these burns (Figure 5.2b). However, fire in these stands 

before adequate recovery would result in the loss of smaller stems (basal resprouts and 

recruitment) and potentially the loss of mature individuals that suffered partial mortality in the 

wildfire. Assuming the 37% of mature individuals that survived the wildfire would also survive 

subsequent planned fires, they would be the only remaining overstorey individuals in the stand. 
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Small individuals and basal resprouts would be lost and would either resprout basally 

(potentially for the second time) or totally killed and remain as dead standing material. This 

scenario exerts pressure on smaller individuals but also leads to more densely stocked, shorter 

stands in these areas.  

If the next disturbance to affect the burnt stands is a global change-type drought like the 

2010/11 event studied in Chapter 2, initial structural consequences would differ from fire 

effects. Drought in the NJF preferentially affects large mature individuals (Figure 5.2b), 

pushing stands towards smaller, denser states as large individuals undergo partial or stem 

mortality (top kill). A drought and heatwave related die-off event would exert pressure mainly 

on the remaining 37% of mature basal area (Figure 5.2b). Whilst initial changes and where 

pressure is applied is different (small individuals vs large individuals preferentially removed), 

long term structural consequences would be similar. Large overstorey stems will be replaced 

by multi-stemmed individuals creating a shorter, and denser forest. It is unlikely that the 

composition of the dominant overstorey species will change with further disturbance, 

structurally these stands could change ‘states’ to one that more closely resembles a woodland 

of shorter, denser E. marginata and C. calophylla. Importantly, this thesis highlights that 

resprouting eucalypt forests, in this case, are vulnerable to structural changes from disruptions 

in disturbance regime from a changing climate. 
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Figure 5.2 Live standing carbon trajectory, storage and vulnerability in the Northern 

Jarrah Forest a) Live carbon storage across time following drought die-off and wildfire 

and potential carbon recovery pathways b) cumulative live carbon storage in recovering 

drought and wildfire affected Northern Jarrah Forest stands. Fire vulnerable size tress 

shaded red and drought vulnerable size shaded yellow. Red arrows indicate the potential 

movement of these portions of the stand with a changing climate and altered disturbance 

regime.  

5.5 Future research directions 

From this study it is clear that resprouting forests may be vulnerable to disruptions to 

disturbance regimes with a changing climate. Furthermore, this thesis highlights the role that 

disturbance frequency, type and severity has played in the changes in carbon storage and forest 

structure observed in a resprouting Eucalypt-dominated forest of southwestern Australia. 

Whilst there was no evidence of linked and compounding effects of drought and high severity 

wildfire, further research should examine additive and interactive effects of global change-type 

drought and subsequent low intensity planned (prescribed) burns on mortality and fire severity 

in the NJF. 
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While all efforts were made to quantify carbon transformations in all forest carbon pools 

following wildfire, a detailed investigation to the effect of wildfire on carbon stored as black 

carbon, is necessary. Black carbon is a form of carbon resistant to decay and is a continuum 

from partially charred organic materials to charcoal and soot (Bird and Ascough 2012; Jones 

et al. 2019). Santín et al. (2015b) quantified pyrogenic organic matter (black carbon) in boreal 

Pinus banksiana forest in the Northwest Territories, Canada, following fire and found that 

27.6% of the carbon affected by fire was retained in pyrogenic organic matter. If this is a long-

term recalcitrant store of carbon generated from fire, in a fire prone system projected to have 

more frequent fire, it is likely this could become a significant store of forest carbon.  

This thesis also examined the impact and early response of upland NJF sites to drought, wildfire 

and a combination of the two to forest carbon, structure and recruitment. Further research 

should analyse long term recovery of these sites, as sites with a high probability of drought are 

likely to experience stress from declining rainfall and heat related events on a more frequent. 

Continuing to measure regrowth in these stands will also track the replenishment of carbon lost 

from these disturbances while also documenting delayed mortality in these stands. Repeated 

measurements will also allow close comparison of forest stand condition, before and after any 

further disturbance.  
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7 Appendix 

Table 7.1: Area (ha) and RdNBR range of fire severity classes within the Waroona Fire 

of January 2016 in the Northern Jarrah Forest, Southwestern Australia. 

Fire Severity Class Area (ha) RdNBR range 

Low 6420.93 <223.91 

Mixed 4801.75 223.91-307.14 

Moderate 15540.42 307-567.41 

High 9236.75 >567.42 

 

Table 7.2: Area (ha) of each time since fire category (years) within the fire area in the 

Northern Jarrah forest of Southwestern Australia  

Time since Fire 

 (years) Area (ha) 

1-5 1648.30 

6-10 23685.62 

11-15 261.70 

16-20 1839.06 

21-30 3757.21 

>30 4807.96 
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Table 7.3: Mean basal area (m2 ha-1) and stem density (stems ha-1) of live tree and dead 

bole and complete mortality individuals of two wildfire burn severities (canopy scorched, 

and canopy consumed) and control (unburnt) plots of the Northern Jarrah Forest, 

southwestern Australia. 

 

 Basal Area (m2 ha-1) Density (stem ha-1) 

 

 Live 

(CI) 

Mortality 

(CI) 

Live 

(CI) 

Mortality 

(CI) 

 

N (plots) 

 

Bole Complete 

 

Bole Complete 

Control 10 45.50 

(±4.52) 

0.58 

(±0.68) 

9.02  

(±2.81) 

1780 

(±317) 

118 

(±21.8) 

364 

(±95.0) 

Canopy scorched 20 29.3 

(±2.46) 

13.3 

(±2.24) 

8.13 

(±1.91) 

436 

(±63.2) 

739 

(±116) 

568 

(±103) 

Canopy consumed 17 24.7 

(±2.60) 

16.8 

(±2.59) 

9.18 

(±2.72) 

366 

(±62.9) 

1098 

(±144) 

611 

(±128) 
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Table 7.4: Mean Pre-fire carbon mass (t C ha-1) for each fuel category and associated 

combustion factors (fraction of mass combusted) across the four fire severities 

experienced during the Waroona Fire of January 2016 in the Northern Jarrah Forest, 

southwestern Australia.  

  

Combustion Factors 

 Fuel Category 

Mass t C ha-

1
 High Moderate Mixed Low 

Trees 156.5 0.12 0.11 0.06 0.02 

Shrubs 3.18 0.98 0.92 0.7 0.5 

Coarse Woody debris 11.59 0.01 0.01 0 0 

10hr 1.49 0.95 0.9 0.7 0.5 

100hr 4.79 0.9 0.8 0.6 0.4 

Surface litter (incl 1hr) 0.64-6.59 1 1 0.96 0.94 

Soil to 10cm 37.03 

    
 

Table 7.5: Proportional basal area of resprouting type in fire effected and control plots 

of the Northern Jarrah Forest, southwestern Australia 

Fire severity Resprouting type DBH <30cm DBH >30cm 

  Proportion (±CI) Proportion (±CI) 

Unburnt Live 0.81 (±0.10) 0.74 (±0.20) 

 Partial 0.05 (±0.03) 0.05 (±0.04) 

 Stem Mortality 0.13 (±0.09) 0.04 (±0.01) 

Moderate Live 0.25 (±0.15) 0.57 (±0.18) 

 Partial 0.13 (±0.05) 0.13 (±0.07) 

 Stem Mortality 0.53 (±0.15) 0.19 (±0.11) 

High Live 0.12 (±0.09) 0.37 (±0.13) 

 Partial 0.16 (±0.03) 0.24 (±0.04) 

 Stem Mortality 0.63 (±0.07) 0.24 (±0.08) 
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Table 7.6: Proportional basal area of resprouting type in drought and fire affected and 

control plots of the Northern Jarrah Forest, southwestern Australia 

Drought probability 
Fire 

severity 
Resprouting type  DBH <30cm DBH >30cm 

   Proportion (±CI) Proportion (±CI) 

High Drought Unburnt Live 0.83 (±0.21) 0.59 (±0.42) 

  Partial 0.04 (±0.02) 0.08 (±0.06) 

  Stem Mortality 0.11 (±0.19) 0.09 (±0.24) 

 Moderate Live 0.42 (±0.30) 0.76 (±0.14) 

  Partial 0.10 (±0.08) 0.02 (±0.01) 

  Stem Mortality 0.40 (±0.10) 0.12 (±0.21) 

 High Live 0.24 (±0.16) 0.45 (±0.21) 

  Partial 0.14 (±0.06) 0.21 (±0.07) 

  Stem Mortality 0.50 (±0.08) 0.17 (±0.12) 

Low Drought Unburnt Live 0.79 (±0.16) 0.88 (±0.12) 

  Partial 0.05 (±0.05) 0.02 (±0.04) 

  Stem Mortality 0.16 (±0.15) 0.00 

 Moderate Live 0.14 (±0.12) 0.45 (±0.26) 

  Partial 0.14 (±0.07) 0.19 (±0.19) 

  Stem Mortality 0.61 (±0.24) 0.23 (±0.15) 

 High Live 0.00 0.28 (±0.28) 

  Partial 0.17 (±0.04) 0.27 (±0.06) 

  Stem Mortality 0.76 (±0.06) 0.30 (±0.11) 

 


