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Abstract

Ticks (Acari: Ixodida) transmit a greater variety of pathogens than any other blood-feeding 

group of arthropods. While numerous microbes have been identified inhabiting Australian 

Ixodidae, some of which are related to globally important tick-borne pathogens, little is 

known about the bacterial communities within ticks collected from Australian wildlife. In this

study, 1,019 ticks were identified on 221 hosts spanning 27 wildlife species. Next-generation 
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sequencing was used to amplify the V1-2 hypervariable region of the bacterial 16S rRNA 

gene from 238 ticks; Amblyomma triguttatum (n=6), Bothriocroton auruginans (n=11), 

Bothriocroton concolor (n=20), Haemaphysalis bancrofti (n=10), Haemaphysalis bremneri 

(n=4), Haemaphysalis humerosa (n=13), Haemaphysalis longicornis (n=4), Ixodes antechini 

(n=29), Ixodes australiensis (n=26), Ixodes fecialis (n=13), Ixodes holocyclus (n=37), Ixodes 

myrmecobii (n=1), Ixodes ornithorhynchi (n=10), Ixodes tasmani (n=51) and Ixodes 

trichosuri (n=3). After bioinformatic analyses, over 14 million assigned bacterial sequences 

revealed the presence of recently described bacteria ‘Candidatus Borrelia tachyglossi’, 

‘Candidatus Neoehrlichia australis’, ‘Candidatus Neoehrlichia arcana’ and ‘Candidatus 

Ehrlichia ornithorhynchi’. Furthermore, three novel Anaplasmataceae species were identified 

in the present study including; a Neoehrlichia sp. in I. australiensis and I. fecialis collected 

from quenda (Isoodon fusciventer) (Western Australia), an Anaplasma sp. from one B. 

concolor from echidna (Tachyglossus aculeatus) (New South Wales), and an Ehrlichia sp. 

from a single I. fecialis parasitising a quenda (WA). This study highlights the diversity of 

bacterial genera harboured within wildlife ticks, which may prove to be of medical and/or 

veterinary importance in the future.

Keywords: Microbiome; ticks; Ixodida; wildlife; marsupials; Anaplasmataceae

1. Introduction

Current estimates suggest that approximately 17% of all infectious diseases of humans are 

vector-borne (Rinker et al., 2016) and global trends show that vector-borne diseases (VBDs) 

are rising at a rapid rate (Jones et al., 2008; Morens and Fauci, 2012). The complex interplay 

between pathogen, vector, host(s) and the environment make VBDs particularly challenging 

to understand. In addition, factors such as climate change (Ostfeld and Brunner, 2015), land 
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use (Ferrell and Brinkerhoff, 2018), feral animal populations (Merrill et al., 2018) and the 

microclimate within a landscape (Dobson et al., 2011) can further influence the prevalence 

and distribution of VBDs. 

Ticks (Acari: Ixodida) comprise a group of haematophagous (blood feeding) arthropods with 

over 900 species described globally (Guglielmone et al., 2014; Mans et al., 2019). Ticks are 

known to transmit various pathogens; however, they also harbour a range of endosymbiont 

and commensal species (Špitalská et al., 2018). The epidemiology of recognised tick-borne 

diseases (TBDs) in the northern hemisphere demonstrates that wildlife serve as sentinels and 

can be used to monitor the presence and distribution of tick-borne pathogens (TBPs). 

Importantly, research has shown that some wildlife species act as dilution hosts for certain 

TBPs, whereas others may act as amplification hosts (LoGiudice et al., 2003). 

The complexity of TBDs means that studies are increasingly shifting away from isolated 

species-specific studies toward ecosystem-based, collaborative research (Estrada-Peña et al., 

2013; Pfäffle et al., 2013). Metabarcoding provides an informative molecular tool to 

characterise the bacterial diversity in ticks. Worldwide, next-generation sequencing (NGS)-

based analyses have been applied to a range of tick species that are important from medical 

and veterinary perspectives, including Amblyomma americanum (Ponnusamy et al., 2014), 

Ixodes ricinus (Bonnet et al., 2014), and Rhipicephalus microplus (Andreotti et al., 2011). 

Metabarcoding studies of the bacterial microbiome of Australian ticks have been reported 

only recently, with the first bacterial profiling by NGS conducted on the human-biting tick 

Ixodes holocyclus (Gofton et al., 2015a). These authors identified a highly abundant 

endosymbiont ‘Candidatus Midichloria mitochondrii’ (CMm) and after blocking the 
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amplification of this organism, a greater bacterial diversity was revealed, including a number 

of novel microbes (Gofton et al., 2015a,b). Critically, in contrast to many parts of the world 

where multiple TBPs have been elucidated within well-studied tick-host-environment 

ecologies, there is a relative dearth of such information available for Australia. With this in 

mind, the aims of our study were to survey the bacterial communities present in ticks 

collected from Australian wildlife and to investigate their genetic relatedness to ‘taxa of 

interest’, i.e. tick-associated pathogenic and endosymbiotic organisms (Parola and Raoult, 

2001; Mediannikov and Fenollar, 2014; Sumrandee et al., 2016). ‘Taxa of interest’ in the 

present study were defined as genera within alphaproteobacteria, gammaproteobacteria and 

spirochaetes known to be transmitted by ticks in other parts of the world, specifically; 

Anaplasma, Bartonella, Borrelia, Coxiella, Ehrlichia, Francisella, Midichloria, 

Neoehrlichia, Rickettsia and Rickettsiella. (Ahantarig et al., 2013; Vayssier-Taussat et al., 

2015; Bonnet et al., 2017; de la Fuente et al., 2017).

2. Materials and methods

2.1 Sample collection and identification

1,019 ticks were sourced opportunistically from wildlife in Australia by veterinarians, 

veterinary nurses, wildlife carers, researchers and via submissions from members of the 

public, and preserved in 70% ethanol before being shipped to Murdoch University, Western 

Australia (WA), for identification. Ticks were identified morphologically to life stage and 

species using keys and species’ descriptions (Roberts, 1970; Barker and Walker, 2014). 

Details of sample collection are available in Supplementary File S1.

2.2 DNA Extraction
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A sub-sample of ticks (n=238) was chosen for DNA extraction and bacterial profiling.  Ticks 

were selected to represent as many tick species, hosts, geographical regions and life stages as 

possible within the study. Prior to DNA extraction, individual ticks were surface-sterilised in 

10% hypochlorite solution, rinsed in 70% ethanol and DNA-free PBS, and then air-dried. 

Total genomic DNA (gDNA) was extracted using the Qiagen DNeasy Blood and Tissue kit 

(Qiagen, Germany) following the manufacturer’s recommendations with the following 

modifications; ticks were placed in a 2 mL safe lock Eppendorf tube with a 5 mm steel bead, 

frozen in liquid nitrogen for 1 minute and homogenised by shaking at 40 Hz in a Tissue Lyser

LT (Qiagen, Germany). The volume of elution buffer AE was adjusted to 200 μL for 

engorged females, 100 μL for unengorged adults and 40 μL for nymphs. A double elution 

was carried out to increase gDNA yield for unengorged adults and nymphs. Sterile and DNA-

free equipment and tubes were used for each step. Extraction reagents blank (EXB) controls 

were performed alongside tick extractions to assess background bacterial communities.

2.3 16S amplification and library preparation for NGS sequencing

Amplicons targeting a 250-320 bp product of the V1-2 hypervariable region of the 16S rRNA

(16S) gene were generated using the primer pair 27F-Y (Gofton et al., 2015b) and 338R 

(Turner et al., 1999). Previous research identified that paralysis tick, I. holocyclus, has a 

highly abundant bacterial species (‘Ca. M. mitochondrii’), which masks the diversity of 

bacteria in 16S metabarcoding studies (see Gofton et al. 2015a). Therefore, a blocking primer

developed by Gofton et al. (2015a) was used to inhibit the amplification of ‘Ca. M. 

mitochondrii’ in I. holocyclus ticks. Depending on tick life stage and level of engorgement, 3-

10 μM of the CMm blocking primer was added to the PCR reaction. Amplicon PCRs were 

conducted in 25 μL reactions each containing 1 X Buffer (KAPA Biosystems, USA), 1.5 mM

MgCl2, 0.4 μM of each forward and reverse primer with MiSeq adapters, 0.4 mg/mL BSA 
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(Fisher Biotech, Australia), 0.25 mM dNTPs (Fisher Biotech, Australia), 0.5 U KAPA Taq 

(KAPA Biosystems, USA), and 2.0 μL of undiluted genomic DNA. Samples underwent the 

following thermal cycling conditions; initial denaturation at 95°C for 5 mins, followed by 35 

cycles of denaturation at 95°C for 30 s, annealing at 62°C (CMm blocking primer present) or 

55°C (CMm blocking primer absent) for 30 s, and extension at 72°C for 45 s with a final 

extension at 72°C for 5 mins. Libraries were then prepared using the Nextera XT DNA 

library preparation kit in 25 μL reactions following manufacturer’s recommendations. 

Libraries were purified using Agencourt® AMPure® XP PCR purification beads (Beckman 

Coulter Life Sciences, USA) and pooled in equimolar amounts. Final libraries were then 

quantified using the Qubit® 2.0 Fluorometer (Thermo Fisher, Australia). Libraries were 

sequenced on an Illumina MiSeq™ using v2 chemistry (2x250 paired end). 

Extraction reagents blanks (n=12) and PCR no-template controls (NTC; n=7) were included 

in all stages of the workflow. All pre- and post-PCR procedures were performed in physically

separate dedicated laboratories and sterile protocols were maintained through library 

preparation in order to minimise amplicon contamination. 

2.4 Bioinformatics and statistical analysis

Raw fastq files were downloaded from the Illumina BaseSpace Sequence Hub for analysis in 

a custom pipeline using USEARCH (Edgar, 2010). Raw paired-end sequences were merged 

in USEARCH v10, a minimum of 50 nucleotide (nt) overlap and maximum number of 

mismatches increased to 15 nt due to long overlap of paired-end sequences. Only sequences 

with perfect primer sequences were retained, primer sequences and distal bases were trimmed

using USEARCH v8.0. Sequences were quality filtered in USEARCH v10, allowing a <1% 

expected error rate and singletons were discarded (Edgar and Flyvbjerg, 2015). Sequences 
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were then clustered into operational taxonomic units (OTUs) of 97% similarity using the 

UPARSE algorithm (Edgar, 2013) in USEARCH v10. Taxonomy was assigned in QIIME2 

v2018.4 using the q2-feature-classifier (Bokulich et al., 2018) with reference to a trained 

Greengenes database (DeSantis et al., 2006) (release May 2013) using the primer pair 27F-Y/

338R. Taxonomic assignments were confirmed using NCBI MegaBLAST (Morgulis et al., 

2008) on a random subsample of OTUs and in the case of tick-associated microbes, GenBank

accession numbers and percentage identity of top hits were recorded for ‘taxa of interest’. 

The profiles from EXB controls and NTCs were first assessed to ensure quality of sampling 

and absence of tick-associated bacteria. The following criteria were used to assess inclusion 

of sequences: all OTUs that appeared exclusively in controls were removed; OTUs that had a 

higher relative sequence abundance in controls compared to tick samples were removed; and 

OTUs were removed that appeared in over half of controls (i.e. at least eight) that had a 

taxonomic identity associated with environmental bacteria (e.g. members of the phyla 

Acidobacteria and Cyanobacteria). In addition, potential cross-contamination during library 

preparation or ‘cross-talk’ at the sequencing level was assessed by inspecting the presence of 

expected tick-associated bacteria (e.g. members of the obligate intracellular bacterial families

Anaplasmataceae and Midichloriaceae) in controls. The profiles of EXB controls and NTCs 

were then removed bioinformatically from associated samples to eliminate background 

bacteria.

Data analysis and visualisation was carried out in RStudio (RStudio Team, 2015) using 

packages metacoder (Poisot et al., 2017), phyloseq (McMurdie and Holmes, 2013) and vegan

(Oksanen et al., 2019). Alpha diversity of samples was measured using observed OTUs, 

Chao1 index, Shannon index and Simpson index. Removal of samples with a low sequencing 

depth (<1000 assigned OTUs after data filtering), did not significantly alter alpha diversity 
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measurements among tick species (data not shown). Rarefaction curves for samples were 

calculated to assess sequencing depth based on observed number of OTUs. Principal 

coordinate analysis (PCoA) on weighted unifrac dissimilarity measurements was used to 

assess the differences in microbial composition between tick species. Investigation into ‘taxa 

of interest’ warranted a more rigorous assessment of sequence number than was required for 

diversity measures in order to avoid any potential cross-contamination and machine cross-

talk (Dong et al., 2017; Wang et al., 2017), as such only samples with >100 sequences were 

considered positive. Taxonomic assignment to ‘taxa of interest’ was assessed based on NCBI 

MegaBLAST top hit of named organism. Where precent identity was ≤97%, the terminology 

of nearest named Genus-like was employed. Due to sample collection biases in the present 

study, prevalence data of these microbes were not considered statistically relevant. 

Nucleotide sequences from ‘taxa of interest’ were aligned by MUSCLE (Edgar, 2004) using 

default parameters and aligned sequences were then imported into MEGA7 (Kumar et al., 

2016) with the most appropriate nucleotide substitution model chosen based on the lowest 

Bayesian Information Criterion (BIC) score. Evolutionary histories were inferred using the 

Neighbour-Joining method based on the Tamura 3-parameter model (Tamura, 1992). 

Bootstrap analysis was conducted using 10,000 replicates to assess the reliability of inferred 

tree topologies. 

3. Results

3.1 Tick-host associations

Ticks were collected from 221 wildlife hosts including 24 native and three introduced species

(Fig. 1, Supplementary File S1). Hosts recorded in the present study included; agile 

antechinus (Antechinus agilis), brown antechinus (Antechinus stuartii), spotted-tail quoll 
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(Dasyurus maculatus), water rat (Hydromys chrysogaster), quenda (Isoodon fusciventer), 

northern brown bandicoot (Isoodon macrourus), western grey kangaroo (Macropus 

fuliginosus), eastern grey kangaroo (Macropus giganteus), red-necked wallaby 

(Notamacropus rufogriseus), red kangaroo (Osphranter rufus), platypus (Ornithorhynchus 

anatinus), eastern barred bandicoot (Perameles gunnii), long-nosed bandicoot (Perameles 

nasuta), sugar glider (Petaurus breviceps), eastern ring-tailed possum (Pseudocheirus 

peregrinus), black fruit-bat (Pteropus alecto), fruit-bat sp. (Pteropus sp.), bush rat (Rattus 

fuscipes), black rat (Rattus rattus), Tasmanian devil (Sarcophilus harrisii), wild pig (Sus 

scrofa), short-beaked echidna (Tachyglossus aculeatus), rufous-bellied pademelon 

(Thylogale billardierii), short-eared brush-tailed possum (Trichosurus caninus), common 

brush-tailed possum (Trichosurus vulpecula), wombat (Vombatus ursinus), red fox (Vulpes 

vulpes), and swamp wallaby (Wallabia bicolor). Female ticks were the dominant life stage 

recorded (n=547) followed by nymphs (n=319) and males (n=153). Ticks were received from

animals in the Northern Territory (NT) (n=16), Queensland (QLD) (n=249), New South 

Wales (NSW) (n=316), Tasmania (TAS) (n=136), Victoria (VIC) (n=44) and Western 

Australia (WA) (n=258). Together, Bothriocroton concolor (n=123), Ixodes australiensis 

(n=210), I. holocyclus (n=173) and Ixodes tasmani (n=184) accounted for over two-thirds of 

all ticks submitted. 

3.2 16S rRNA bacterial profiling

A sub-sample of 238 ticks and 19 controls underwent 16S NGS profiling. A total of 23.9 

million raw paired-end sequences were generated on the Illumina MiSeq. 17.9 million 

sequences were retained after merging, and subsequent quality filtering yielded 14.8 million 

sequences for clustering and taxonomic assignment. A total of 4,864 OTUs (average length 

299 bases) were retained after background profiles were removed. After removal of 
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background sequences, a total of 14,328,059 bacterial sequences were assigned to tick 

samples. Despite a high number of OTUs, only 1,535 OTUs had greater than 100 total 

sequences from tick samples. Tick samples had an average of 60,201 assigned sequences (see

Supplementary File S2). Amblyomma triguttatum had the highest median alpha diversity as 

measured by the observed number of OTUs and the chao1 index, whereas Ixodes antechini 

had the highest median alpha diversity as measured by the Shannon and Simpson indexes 

(Fig. 2). Rarefaction analysis of the sequence depth shows that the observed number of OTUs

plateaued at 50,000 sequences (Fig. 3). After the removal of sequences from controls, eight 

phyla were retained. An ordination plot of OTUs (Fig. 4) show that bacteria belonging to the 

Proteobacteria phylum were the most abundant and diverse taxa classified, followed by 

Firmicutes and Actinobacteria. Bacterial families identified in tick species, represented as 

relative number of sequences in Fig. 5, show 26 dominant taxa. While bacterial composition 

varied between tick species, sequences from the members of Coxiellaceae, Francisellaceae, 

and Rickettsiaceae families (Phylum: Proteobacteria) were the most abundant. Although 

sample sizes varied among tick species, beta diversity analysis incorporating abundance 

(sequence number) and taxonomic relatedness, showed evidence of different bacterial 

communities among tick species (Supplementary File S3).

3.3 Presence of ‘taxa of interest’

In total, 37 OTUs were identified as ‘taxa of interest’ in the present study. Their taxonomic 

identity and abundance (number of sequences) in each sample is available in Supplementary 

File S4 (see Supplementary File S5 for fasta file of sequences). Phylogenetic analysis of the 

‘taxa of interest’ is represented in Fig. 6, showing tick species and Australian states and 

territory, where each OTU was identified. 
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A proposed novel Anaplasma sp. (OTU230, MK814412, 96.3% identity) was identified in a 

single B. concolor (1/20) collected from (ex) echidna from NSW. A second Anaplasma 

bovis-like OTU (OTU312, JN862824, 97.3% identity) was identified in Haemaphysalis 

bancrofti (3/10) ex red-necked wallaby and long-nosed bandicoot and Haemaphysalis 

humerosa (n = 1/13) tick ex long-nosed bandicoot, all from NSW. 

OTU5509 was assigned to the genus Bartonella and had a top BLAST hit of Bartonella 

bacilliformis (LN624026, 92.1% identity). OTU5509 was identified in two samples, 

however, was present in an extremely low number of sequences (2) in each case. Both 

samples were I. fecialis collected from two different quenda in WA. The low number of 

sequences means that in the case of statistical analysis, this OTU would have been filtered 

out. While there was no sufficient match to this sequence, it is noted that in many instances 

native Australian Bartonella species are lacking sequence information for this region of the 

16S gene (V1-2).

 

Two OTUs (OTU14, CP025785, 100% identity; and OTU4629, CP025785, 100% identity) 

were identified as ‘Ca. B. tachyglossi’. Sequences were identified in Bothriocroton concolor 

(8/20) ex echidnas from QLD & NSW and H. humerosa (1/13) ex northern brown bandicoot 

from QLD. 

  

A Coxiella-like organism (OTU12, CP032542, 95.5% identity) was identified exclusively in 

B. concolor (19/20) ex echidna from NSW and QLD. This was the second most abundant 

OTU identified in B. concolor, accounting for ~20% of the overall sequences. 

A Coxiella sp. (OTU15, KC170757, 100% identity) was identified in Haemaphysalis 

longicornis (3/4) ex red fox from NSW and, OTU represented ~61.4% of the overall assigned
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bacterial sequences.

  

A novel Ehrlichia sp. (OTU33, AY309970, 96.3% identity) was identified in I. fecialis (1/13)

ex quenda from WA. Other Ehrlichia OTUs (OTU16 and 1632) represented sequences from 

‘Ca. Ehrlichia ornithorhynchi’ in Ixodes ornithorhynchi (6/10) ex platypus QLD and these 

sequences accounted for the majority of sequences (~50.2%) from I. ornithorhynchi.

  

A Francisella endosymbiont (OTU5, AF001077, 98.0% identity) was identified in H. 

humerosa (11/13) ticks ex northern brown bandicoots from NT and QLD, and 

Haemaphysalis bremneri (2/4) ex possum (species unknown) in QLD. OTU5 was the most 

abundance sequence in H. bremneri and H. humerosa, representing 27.3% and 52.4% of the 

assigned sequences, respectively. A second Francisella endosymbiont (OTU10, AB001522, 

99% identity) was identified in H. bancrofti (8/11) ex red-necked wallabies from QLD and 

NSW, and ex a long-nosed bandicoot in NSW; and in a single H. humerosa (1/13) ex red-

necked wallaby from NSW. OTU10 was the most abundance sequences in H. bancrofti 

representing 27.0% of the assigned sequences. OTU40 (AF001077, 97.6% identity) was also 

identified as a Francisella-like endosymbiont from A. triguttatum (6/6) ex red kangaroo from 

WA. It was highly abundant in these ticks, accounting for 76.9% of the overall sequences. 

Midichloria (OTU6, FM992372, 100% identity) was identified in I. holocyclus (20/36) ex 

long-nosed bandicoots from NSW and QLD, I. fecialis (1/13) ex red-necked wallaby NSW, 

H. bancrofti (1/11) ex long-nosed bandicoot NSW, and H. humerosa (1/13) ex long-nosed 

bandicoot NSW. Midichloria (OTU7, FM992373, 100% identity) was identified in I. 

holocyclus (15/36) ex long-nosed bandicoots from NSW and QLD, I. fecialis (1/13) ex red-

necked wallaby NSW and H. bancrofti (1/11) ex long-nosed bandicoot NSW. Overall a total 

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

12

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/807131doi: bioRxiv preprint 

https://doi.org/10.1101/807131
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 15 ticks had both OTU6 and OTU 7, which included I. holocyclus (13/36) ex long-nosed 

bandicoots from NSW and QLD, I. fecialis (1/13) ex red-necked wallaby NSW and H. 

bancrofti (1/11) ex long-nosed bandicoot NSW. While the CMm blocking primer was 

incorporated into the PCRs conducted on I. holocyclus, Midichloria sequence were still 

observed in 2/9 females, 3/6 males and 16/21 nymphs. Midichloria was the most abundant 

sequence from I. holocyclus accounting for 36.1% of assigned sequences. 

  

Three Neoehrlichia OTUs were identified. ‘Ca. Neoehrlichia arcana’ (OTU25, KT203914, 

99.3% identity) was identified in eight ticks, I. tasmani (4/51), I. holocyclus (2/36), H. 

bancrofti (1/11) and H. humerosa (1/13), ex long-nosed bandicoots NSW and QLD. ‘Ca. 

Neoehrlichia australis’ (OTU29, KT803957, 100% identity) was identified in 10 ticks, I. 

holocyclus (8/36) and I. tasmani (2/51), ex long-nosed bandicoots NSW and QLD. Three 

ticks (I. tasmani and I. holocyclus) were co-infected with both ‘Ca. N arcana’ and ‘Ca. N. 

australis’. A novel Neoehrlichia species (OTU31, MG670107, 97.3% identity) was identified 

in I. fecialis (2/13) and I. australiensis (2/26) ex quenda from WA, and I. antechini (2/29) ex 

brown antechinus from NSW.

Due to the conserved nature of the Rickettsia genus at the 16S gene, reported previously 

(Roux and Raoult, 1995; Stothard and Fuerst, 1995), resolution to species level was not 

possible using the sequences obtained in the present study. Rickettsia sp. (OTU2, KF318168, 

99.7% identity) had a widespread distribution among samples and was detected in 61 ticks 

(B. concolor, H. bancrofti, H. humerosa, I. antechini, I. australiensis, I. holocyclus and I. 

tasmani) from three states and one territory (NSW, NT, QLD, WA). Rickettsia was the most 

abundant sequence from B. concolor and I. antechini ticks accounting for 63.3% and 12.0% 

of the assigned sequences, respectively
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A Rickettsiella-like sp. (OTU1, LC388767, 92.7% identity) was identified in I. australiensis 

(22/26) and was the most abundant sequence accounting for 76.8% of assigned sequences. A 

Rickettsiella-like sp. (OTU3, EU430251, 95.1% identity) was identified in I. tasmani (11/51) 

ex Tasmanian devils and eastern barred bandicoot from TAS. A Rickettsiella-like sp. (OTU4, 

U97547, 98.4% identity) was identified in, I. tasmani (36/51) ex bandicoots, possum and a 

sugar glider from NSW, TAS and QLD; I. australiensis (1/26) ex western grey kangaroo 

from WA; and I. holocyclus (1/36) ex long nosed bandicoot NSW. OTU4 accounted for 

30.2% of the overall sequences assigned for I. tasmani.

4. Discussion

Currently there is a scarcity of detailed information about the life cycles of Australian ticks, 

however it is generally assumed that, as with other hard tick species around the world, the 

majority will exhibit a three-host life cycle (Barker and Walker, 2014). Despite these 

limitations, the opportunistic sampling strategy used in this study provides an economical 

way to survey a wide range of tick and wildlife fauna across a range of geographical areas 

across Australia. The paucity of larvae from this data set is also a limitation of this type of 

sampling. Tick larval stages, which may indicate the presence of transovarially-transmitted 

organisms (Kwan et al., 2017), are difficult to see with the naked eye, and in situations where

collection of ticks is not the main objective, they are easily overlooked (Lydecker et al., 

2019). Furthermore, the opportunistic nature of the sampling precluded assessment of the 

infestation rates of the various hosts. In future, if TBPs of humans and the wildlife 

themselves are identified, further extensive surveys of tick-pathogen-wildlife ecologies will 

require more targeted and comprehensive approaches in order to gather sufficient relevant 
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epidemiological data. 

As with previous studies (Swei and Kwan, 2016; Zolnik et al., 2016) alpha diversity 

measures were highly variable both within and between tick species. This may be driven by a

variety of factors such as; starting material (i.e. size/life stage of tick), extraction methods, 

library preparation, normalisation of DNA input concentrations for sequencing, batch 

sequencing effects and bioinformatics (Greay et al. 2018). Within the present study, 

sequencing depth was likely most impacted by sample input type and normalisation of DNA 

concentrations, as all samples went through the same library preparation and bioinformatic 

analysis. Overall, bacterial diversity of ticks started to plateau by 50,000 sequences however, 

it is noted that in some cases this plateau was not achieved and deeper sequencing would be 

required in order to confidently characterise the full suite of bacterial taxa present. This was 

most evident in A. triguttatum, B. auruginans, I. trichosuri and I. ornithorhynchi and 

therefore we recommend a minimum of 100,000 sequences per sample for future bacterial 

16S amplicon studies in these species to be confident that the complete bacterial community 

has been sampled. Studies that investigate the shift of the core microbiome (i.e. most 

abundant bacteria taxa) relative to a given parameter may not require the same depth of 

sequencing, as seen in previous studies investigating the effect of temperature (Thapa et al., 

2019) and life stage (Andreotti et al., 2011). 

After bioinformatic analysis, including stringent quality filtering, a large number of OTUs 

remained with relatively low number of reads. This has been noted in previous studies of the 

tick microbiome (Budachetri et al., 2016; Zolnik et al., 2016) and in the broader field of high-

throughput microbiome studies (Pollock et al., 2018). Depending on bioinformatic analysis 

and quality filtering, the number of OTUs and therefore diversity can vary greatly among 
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studies (Greay et al., 2018). In addition, current practice in microbiome studies is to 

normalise count data, however models show that this can oversimplify the data (McMurdie 

and Holmes, 2014).

Ordination analysis demonstrated that tick species was the strongest predictor of bacterial 

composition. Beta-diversity analysis showed that the common marsupial tick, I. tasmani, 

exhibited a variable bacterial composition. This diversity may be explained by the wide 

geographic distribution of this tick in Australia, its own high genetic diversity (Burnard and 

Shao, 2019), and its ability to parasitise many marsupial species. In the present study, 

bacterial profiling of I. tasmani included ticks from three states (NSW, QLD, TAS) and seven

host species. With this in mind, we suggest that future studies should combine careful 

taxonomic status identity with data on microbial communities of I. tasmani. Although sample

sizes were limited in ‘host-specialist’ ticks B. auruginans (wombats), H. bremneri (possums),

I. antechini (antechinus) and I. ornithorhynchi (platypus), these specimens showed less 

diversity of bacterial communities between samples. 

An important caveat on the relative diversity of bacterial communities in the present study 

was the use of a blocking primer inhibiting the amplification of ‘Ca. M. mitochondrii’. The 

inclusion of this blocking primer it vital to explore the full bacterial community of I. 

holocyclus (see Gofton et al., 2015), however it does impact the analysis and interpretation of

the data. Due to the inhibition of this bacteria, there is an inherent bias in the bacterial 

community, and comparisons in alpha and beta-diversity measures must account for this. In 

the case of highly abundant organisms, the use of a blocking primer assay will likely not 

completely inhibit amplification, and thus a reduced level of the organisms may be still 

detected, as was the case in the present study. In this instance, the use of diversity measures 
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that rely on presence/absence data will not be affected by this granted there is still some level 

of detection (i.e. number of species observed for alpha diversity and Jaccard index for beta-

diversity). The use of more advanced, and usually preferred, diversity indexes may be 

impacted by the manipulation of bacterial composition, and care must be taken when 

comparing results with other studies (Greay et al., 2018). Despite these limitations, the use of 

blocking primers has shown to be vital in the context of investigating known tick-borne 

pathogens and novel related taxa from tick samples. In the present study we have 

characterised the bacterial communities of ten tick species for the first time. This information 

provides the first step of focusing future research and where this established technique should

be applied. 

Members of the Proteobacteria represented the most diverse and abundant (as determine by 

number of sequences) in Australian hard ticks analysed in the present study. This finding is 

consistent with previous microbiome studies from tick species, such as Ixodes scapularis 

(Sperling et al., 2017; Thapa et al., 2019), Ixodes persulcatus (Zhang et al., 2014; Kurilshikov

et al., 2015) and Amblyomma americanum (Fryxell and DeBruyn, 2016). Additionally the 

identification of novel bacterial taxa in native Australian ticks species is consistent with 

recent findings (Gofton et al., 2015b; Panetta et al., 2017). 

Currently in Australia, the ecology, epidemiology, and incidence of human TBDs remains 

largely a matter of conjecture, having received little scientific study compared with many 

other parts of the world (Graves and Stenos, 2017). Despite significant national interest, 

including a federal government senate inquiry (Radcliffe et al., 2016), the prevailing 

scientific opinion concludes that Lyme borreliosis (caused by B. burgdorferi sensu lato), for 

example, is absent from Australia (Chalada et al., 2016; Irwin et al., 2017). In the unique 
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Australian environment, long isolated in geological terms, it is likely that unidentified tick-

host life cycles have evolved, given the endemic wildlife (including tick fauna) present 

(Long, 2017; Beati and Klompen, 2019). It is possible that these cycles may contribute to 

zoonotic illness when humans encroach these sylvatic ecologies and become exposed to 

native ticks. Indeed, it is well documented that in endemic areas in Europe and North 

America, the causative agent of Lyme borreliosis is readily identified in wildlife (such as 

white-tailed deer, Odocoileus virginianus, and white-footed mice, Peromyscus leucopus) as 

well as their natural tick species (Bosler et al., 1984). The present study therefore is one of 

the first to explore the concept that Australian wildlife ticks should be a promising source to 

identify exotic and novel TBPs, and we focussed our search towards taxa known to be 

associated with TBDs overseas (‘taxa of interest’), namely Anaplasma, Bartonella, Borrelia, 

Coxiella, Ehrlichia, Francisella, Midichloria, Neoehrlichia, Rickettsia and Rickettsiella.

A new genetic variant of Anaplasma bovis was recently described from questing A. 

triguttatum ticks in WA and the nearby Barrow Island (Gofton et al., 2017). In the present 

study we report a range expansion of a genetically similar A. bovis along the east coast of 

Australia from two widespread Haemaphysalis species. As suggested by Gofton et al., 

(2017), this finding further supports the hypothesis that it is likely that endemic A. bovis 

genotypes exist in sylvatic cycles within native Australian ticks and wildlife fauna. Further 

research on the phylogenetic position of these A. bovis sequences is needed to understand 

their likely evolutionary history and relatedness to A. bovis genotype Y11 identified in 

Western Australia. While three other species of Anaplasma (A. marginale, A. centrale and A. 

platys) have been introduced to Australia (Rogers and Shiels, 1979; Callow, 1984; Angus, 

1996), the present study did not identify any of these species in ticks from wildlife. This is 

likely due to the absence of the cattle tick (R. (B.) australis) and the brown dog tick (R. 
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sanguineus) specimens from wildlife hosts in the present study. A species of Anaplasma 

identified exclusively in B. concolor from echidnas sheds more light on the diverse range of 

microbes that have been described from this specialist tick (Loh, 2018).

Although the presence of a Bartonella sp. was identified by only four sequences, its absence 

in control samples means that this likely represents a true finding in female I. fecialis, which 

were parasitising different individuals of the same host (quenda) in south-west WA. Recent 

studies have shown that Australian marsupials and native rodents harbour a range of distinct 

Bartonella species; ‘Ca. Bartonella antechini’ has been identified in ticks (I. antechini) and 

fleas (Acanthopsylla jordani) from mardo (Antechinus flavipes) in south-west WA 

(Kaewmongkol et al., 2011c), ‘Ca. Bartonella woyliei’ in woylie ticks (I. australiensis) and 

fleas (Pygiopsylla hilli) in south-west WA, and ‘Ca. Bartonella bandicootii’ in fleas 

(Pygiopsylla tunneyi) from western barred bandicoots (Perameles bougainville) on Bernier 

and Dorre Island (Kaewmongkol et al., 2011a). Reports of Bartonella spp. occurring outside 

south-west WA include Bartonella australis ex eastern grey kangaroos (Macropus giganteus)

(Fournier et al., 2007). Molecular detection of Bartonella DNA from Australian ticks has also

been reported in ticks (I. tasmani) parasitising koalas (Phascolarctos cinereus) from Philip 

Island, VIC (Vilcins et al., 2009b). Additional studies on Bartonella in Australia wildlife 

include those by Gundi et al. (2009), Kaewmongkol et al. (2011a) and Dybing et al. (2016). 

Due to the limited size and region of the 16S amplicon generated in the present study, there 

were insufficient relevant reference sequences available from other Australian Bartonella 

species for comparison. A study by Kaewmongkol et al. (2011b) into flea-derived Bartonella 

from native and introduced Australian species suggests co-evolution of marsupial hosts, their 

fleas and the Bartonella species.
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‘Ca. Borrelia tachyglossi’ was identified in 8/20 B. concolor ticks from echidnas in QLD and 

NSW, an anticipated finding given previous research into this organism (Loh et al., 2016). 

Importantly however, the present study provides the first evidence of ‘Ca. B. tachyglossi’ 

sequences from a female H. humerosa tick parasitising a northern brown bandicoot from 

QLD. In addition, no Bothriocroton ticks were present in the extraction batch of the positive 

H. humerosa sample, and there was no evidence of Borrelia sequences from any controls. 

Despite the wide geographical range of H. humerosa ticks, the restricted finding of ‘Ca. B. 

tachyglossi’ from QLD supports Loh et al. (2016), suggesting a restricted geographical 

distribution along the east coast of Australia.

In tick microbiome studies overseas, Coxiella spp. are commonly identified (Khoo et al., 

2016; Machado-Ferreira et al., 2016). Additionally, recent studies on Australian ticks have 

also identified Coxiella spp. in A. triguttatum (Cooper et al., 2013; Gofton et al., 2015b), B. 

auruginans (Vilcins et al., 2009c), I. holocyclus (Cooper et al., 2013) and R. sanguineus 

(Oskam et al., 2017). Interestingly the present study did not identify the widespread presence 

of Coxiella spp. with only two unique OTUs identified from B. concolor and H. longicornis, 

both of which appear to be host specific to those tick species, and the causative agent of Q-

Fever (C. burnetii) was not identified from ticks in the present study. 

Ehrlichia sequences (‘Ca. E. ornithorhynchi’) from platypus ticks, I. ornithorhynchi, were 

recently described (Gofton et al., 2018). In the present study, ‘Ca. E. ornithorhynchi’ was 

exclusively observed within I. ornithorhynchi, suggesting this genetically distinct Ehrlichia 

species has a unique and host-specific relationship with the platypus. During this study, a 

potentially novel species of Ehrlichia was identified in an I. fecialis female tick from a 

quenda in WA. BLAST results show it is a close relative to an Ehrlichia sp. detected in 
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Haemaphysalis ticks from Japan (Inokuma et al., 2004). No sequences from the recently 

described ‘Ca. E. occidentalis’ (Gofton et al., 2017) were identified in the present study, 

however it is noted A. triguttatum were only represented by six samples. 

Francisella-like endosymbionts have been widely reported in ticks overseas, such as 

Dermacentor spp. (Scoles, 2005), Dermacentor occidentalis (Gurfield et al., 2017), 

Haemaphysalis longicornis (Wang et al., 2018) and Hyalomma rufipes (Szigeti et al., 2014), 

and Francisella sequences have previously been identified in A. fimbriatum ticks from 

reptiles in the Northern Territory of Australia (Vilcins et al., 2009a). In the present study, a 

Francisella-like endosymbiont was identified in 100% of A. triguttatum ticks, and in a high 

proportion. The high prevalence and relative abundance of the Francisella-like organisms in 

A. triguttatum may be of medical relevance with respect to this common human-biting tick, 

particularly given the recent report of Francisella bacteraemia in WA (Aravena-Román et al.,

2015). Importantly, as noted previously for I. holocyclus ticks, organisms in lower abundance

may be masked by abundant endosymbionts, unless samples are sequenced deeply and/or a 

blocking primer is used (Gofton et al., 2015a). Therefore, future bacterial profiling studies of 

A. triguttatum should take these factors into consideration.

While ‘Ca. M. mitochondrii’ has been documented in I. holocyclus, the present study 

provides the first report of ‘Ca. M. mitochondrii’ within additional species of native 

Australian ticks (I. fecialis, H. bancrofti and H. humerosa). Despite this expansion among 

tick species, identification of ‘Ca. M. mitochondrii’ remains confined to NSW and QLD as 

previously reported (Gofton et al., 2015a). ‘Ca. M. mitochondrii’ has been detected overseas 

in laboratory models (Cafiso et al., 2019), wildlife (Serra et al., 2018), and humans 

(Mariconti et al., 2012). Despite the use of a CMm blocking primer by Gofton et al. (2015a) 
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in the library preparation of I. holocyclus, the bacteria was still identified in the majority of 

ticks (21/36); however its abundance was greatly reduced to an average of 26.1% of reads per

sample in comparison to previous research demonstrating a relative abundance of 98.2% 

(Gofton et al., 2015a).

A recent addition to the Anaplasmataceae family, ‘Ca. Neoehrlichia mikurensis’ was first 

isolated from wild rats and their ticks (Ixodes ovatus) in Japan (Kawahara et al., 2004). In 

Europe, the hedgehog (Erinaceus spp.), a common peri-urban dweller, has been shown to 

play an important role in the life cycle of ‘Ca. N. mikurensis’ (Földvári et al., 2014; Jahfari et

al., 2017). A high proportion of bandicoot ticks were infected with Neoehrlichia spp. in this 

study, suggesting that these marsupials may play an important role in the life cycle of this 

bacterium on the Australian continent. Bandicoots also frequently inhabit gardens and have 

relatively close contact with humans (Carthey and Banks, 2012). Closer study of these 

marsupials may provide vital information about the life cycle of these microbes and the 

potential risk for human infection. 

Rickettsia spp. are among the only currently recognised TBPs affecting people in Australia, 

however, as previously outlined, the conserved nature of the 16S gene in Rickettsia precludes 

rigorous species delimitation from the relatively short sequences generated in this dataset. In 

addition to the known human pathogens (R. australis and R. honei) (Graves and Stenos, 

2017), the presence of Rickettsia has been demonstrated from a variety of Australian tick 

species. Rickettsia gravesii has been described from A. triguttatum (Li et al., 2010; Abdad et 

al., 2017) and Rickettsia sequences have been previously identified in I. tasmani ex 

Tasmanian devils (Vilcins et al., 2009c) and Amblyomma fimbriatum from reptiles (Vilcins et

al., 2009a).
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The diversity and significance of the Rickettsiella genus remains largely unknown globally. 

Phylogenetic analysis of sequence data places the genus within the Coxiellaceae family 

(Fournier and Raoult, 2005; Leclerque and Kleespies, 2012). While the presence of these 

organisms has been well documented in tick species around the world and in some cases, they

have been identified as pathogenic to arthropods (Kurtti et al., 2002; Leclerque et al., 2012), 

disease causation within the vertebrate hosts remains unknown at the present time. A study 

by Vilcins et al. (2009c) identified Rickettsiella in I. tasmani ex koalas from Phillip Island, 

just off the coast of south eastern Australia. A genetically similar sequence was identified in 

the present study (OTU3) from I. tasmani exclusively in Tasmania. 

 

While this is the first study to characterise the bacterial communities within native Australian 

wildlife ticks, it is apparent that much research is still required in order to better understand 

the tick-associated microbial life cycles and their ecologies, let alone elucidating their 

potential for transmission and pathogenicity in vertebrate hosts, including humans. 

Furthermore, whilst cost-effective, ticks were collected opportunistically resulting in an 

inherent geographical bias, confining sampling largely to urban areas along the east coast of 

the Australian continent. Nevertheless, this area is also where most humans receive tick bites,

although reliable data about this is also lacking. In addition, the present study suggests that 

‘taxa of interest’ are largely restricted to a combination of geographical location and tick 

species. For example, ‘Ca. Midichloria’ was identified in H. humerosa and I. fecialis from 

NSW only and was absent in samples from NT for H. humerosa and WA and TAS for I. 

fecialis.

The analysis of ticks removed from wildlife hosts comes with the inherent complication of a 
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blood meal. The host blood meal has been recently shown to influence both the tick 

microbiome composition and the presence of pathogens (Landesman et al., 2019; Swei and 

Kwan, 2017). Further targeted studies are needed to assess the source of microbes with 

respect to a tick or host origin (Irwin et al., 2018). In addition, limitations in the current 

sequencing technologies mean that high-throughput methods favour short amplicons which 

may not be able to accurately discriminate bacterial species, as is the case with Rickettsia in 

particular (Gihring et al., 2012). Furthermore, important caveats to consider in metabarcoding

microbial diversity analysis include PCR efficiency (including primers used and length of 

target amplicon), variations in 16S gene copy number (Ahn et al., 2012), sequencing depth, 

machine cross-talk, bioinformatic analysis and taxonomic assignment. While there have been 

some recent attempts to correct these biases (Kembel et al., 2012; Rosselli et al., 2016), their 

application to uncharacterised metagenomic samples remains limited. While 16S 

metabarcoding continues to be vital in bacterial biodiversity discovery (Carpi et al., 2011; 

Tessler et al., 2017), future molecular studies incorporating metagenomics and 

metatranscriptomics, to detect actively expressed genes (Cabezas-Cruz et al., 2018; Greay et 

al., 2018), will be useful in characterising the full suite of micro-organisms present in 

Australian ticks. A multi-disciplinary approach incorporating cell culture, in vitro tick studies

and morphological techniques (e.g. fluorescence microscopy) will also be needed to assess 

the potential for transmissibility and pathogenicity of these novel tick-associated organisms.

5. Conclusions

With over 75% of emerging human infectious pathogens originating from wildlife (King, 

2014), surveillance methods that target these species are important for investigations of 

emerging and exotic infectious disease. Research into the interactions of wildlife hosts, ticks 
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and pathogens in Europe and North America continues to highlight the complexity of these 

dynamic systems (Ostfeld et al., 2018; Tomassone et al., 2018). Results from the present 

study build on recent research into Australian tick-associated microbes, further highlighting 

the diversity of organisms present that appear related, yet distinct from their overseas 

counterparts. With the evolutionary history of Australia’s unique tick species (Beati and 

Klompen, 2019) and wildlife fauna, it is likely that reports of their tick-associated microbes 

(potential pathogens) will continue to reveal taxonomic differences from those described in 

the northern hemisphere. As such, future research on emerging tick-borne zoonoses should 

include methods that are able to detect novel micro-organisms in humans and reservoirs and 

include a variety of sample types such as blood, tissue (e.g. skin, spleen etc.) and tick from 

both the host and environment (questing). As anthropogenic changes to the environment 

continue to grow in Australia, a greater emphasis on wildlife disease surveillance is critical to

ensure the early detection of potential infectious diseases affecting humans, livestock, 

companion animals and wildlife (Woods et al., 2019). Advances in pathogen detection and 

characterisation are greatly enhanced by collaboration; the authors advocate for continued 

multidisciplinary efforts between health professionals, researchers, land managers and local 

communities.

Supporting Information

Data availability

Associated metadata output from bioinformatic analysis and subsequent data visualisation is 

available on FigShare repository https://doi.org/10.6084/m9.figshare.c.4608803.v1. Next-

generation sequencing data can be accessed from NCBI Sequence Read Archive under 

BioProject: PRJNA559059 (BioSample accession numbers: SAMN12512474 – 
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SAMN12512711).
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Legends to Figures

Fig. 1. Chord diagram showing tick-wildlife associations recorded in the present study. The 

wildlife hosts recorded are represented on the lower half of the plot, and tick species across 

the top. Thickness of bar relative to number of ticks. Host records that could not be assigned 

to species level are not represented in this plot. A complete list of records is available in 

Supplementary File S1. Introduced wildlife species are denotes with an asterisk. Silhouette 

wildlife images sourced from phylopic.org.

Fig. 2. Alpha diversity of bacterial communities in ticks parasitising Australian wildlife 

measured as; observed number of operational taxonomic units (OTUs), Chao1 index, 

Shannon index and Simpson index. Tick species abbreviated to; A. triguttatum (A. tri), B. 

aurugians (B. aur), B. concolor (B. con), H. bancrofti (H. ban), H. bremneri (H. bremneri), 

H. humerosa (H. hum), H. longicornis (H. lon), I. antechini (I. ant), I. australiensis (I. aus), I.

fecialis (I. fec), I. holocyclus (I. hol), I. myrmecobii (I. myr), I. ornithorhynchi (I. orn), I. 

tasmani (I. tas), and I. trichosuri (I. tri).

Fig 3. Rarefaction plot of 16S rRNA bacterial sequences clustered into 97% operational 

taxonomic units (OTUs) from ticks parasitising Australian wildlife. 

Fig 4. Non-metric multidimensional scaling (NMDS) plot of operational taxonomic units 

(OTUs) based on Bray-Curtis dissimilarity matrix. Taxa filtered to only display OTUs that 

were present at least twice in >10% of tick samples.

Fig 5. Stacked barplot of bacterial composition (shown at family level) from Australian ticks 

represented as percentage of assigned sequences. Taxa at the family level that represented 

<10% of the relative sequences within each tick species were grouped as “Low abundant”. 

Sequences not able to be accurately assigned to family taxa are displayed as “Unclassified”.

Fig 6. Neighbour-joining phylogenetic tree displaying taxa of interest prevalence and 
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distribution among tick samples. Geographic data relating to tick collection is represented by 

state and territory; New South Wales (NSW), Northern Territory (NT), Queensland (QLD), 

Tasmania (TAS) and Western Australia (WA). Evolutionary histories were inferred based on 

the Tamura 3-parameter model with bootstrap analysis (10,000 replicates) (bootstrap values 

>60 are displayed). Tick samples were considered positive for taxa of interest if >100 

sequences present. Information on number of sequences, taxonomic identity (as inferred from

NCBI MegaBLAST analysis with nucleotide database), and sequences can be found in 

supplementary information (Supplementary File S4 & S5).

Supplementary Files

Supplementary File S1. Sample metadata of tick-wildlife records identified from the present

study.

Supplementary File S2. Sequence information from 16S rRNA bacterial profiling of ticks 

on the Illumina MiSeq platform after bioinformatic analysis; (a) number sequences assigned 

to 97% operational taxonomic units (OTUs) and (b) number of sequences per sample.

Supplementary File S3. Principal coordinate analysis (PCoA) plot of the weighted UniFrac 

distance matrix. Plots show beta diversity of tick bacterial communities, displayed by tick 

species and life stage. Operational taxonomic units (OTUs) that represented <100 sequences 

in a tick sample were removed.

Supplementary File S4. Number of sequences relating to the taxa of interest in tick samples.

The top hit from NCBI BLAST results showing GenBank accession number, percent identity 

and E-value are given, and final evaluation of taxonomic assignment. 

Supplementary File S5. Fasta sequences for operational taxonomic units (OTUs) used in the

taxa of interest investigation.
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