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Abstract

Intramuscular fat (IMF) content plays a key role in the quality attributes of
meat, such as sensory properties and health considerations. The tenderness,
flavour and juiciness of meat are examples of sensory attributes influenced
by IMF content. Traditionally, IMF content in meat was determined using de-
structive, time consuming and at times unsuitable methods in industry appli-
cations. However, with recent advancement of technology, there has been an
interest in exlporing ways to ascertain meat quality without damage. Hyper-
spectral imaging analysis is an emerging technology that combines the use of
spectroscopy and computer imaging analysis to obtain both the spectral and
spatial information of objects of interest. Hyperspectral imaging was initially
developed for remote sensing, but has recently emerged as powerful tool for
non-destructive analysis of quality in the food industry and has had very ac-
curate results in the prediction of meat qualities such as IMF content. In this
thesis, we use a data set of 101 hyperspectral images of sheep carcasses to in-
vestigate the ability of multivariate statistical methods to accurately predict
IMF content.
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Chapter 1

Introduction

Hyperspectral Imaging is an emerging technique that combines conventional
spectroscopy imaging and computer imaging techniques, enabling an in-depth
analysis of images and objects that neither of the techniques can achieve in-
dependently. hyperspectral imaging has also been hailed as a non-invasive,
non-destructive and efficient technique in various fields such as medicine (Lu
and Fei (2014)(2014); Leavesley et al. (2016)(2016); Halicek et al. (2018)(2018)), pharmaceutics
(Ravn, Skibsted, and Bro (2008)(2008); Roggo et al. (2005)(2005)) and agriculture (Mehl et
al. (2004)(2004); Gowen et al. (2007)(2007); C.-H. Feng et al. (2018)(2018)). In comparison, tradi-
tional techniques such as human inspection or high performance liquid chro-
matography, are deemed destructive, inconsistent and time-consuming (D. Wu
and Sun (2013a)(2013a)).

Hyperspectral imaging is a branch of the spectral imaging family that collects
and analyses stacks of images. It was first used in the identification and classifi-
cation of various minerals such as carbonate minerals or iron oxides in remote
sensing (Cloutis (1996)(1996); Sabins (1999)(1999)). Other applications in remote sensing
have been the study of planetary objects (Van der Meer et al. (2012)(2012); C. A. Lee
et al. (2011)(2011)) and to correctly identify and map wetland vegetation (Adam, Mu-
tanga, and Rugege (2010)(2010)).

With advancements in computational processing power and technology (both
hardware and software), hyperspectral imaging became popular in other
fields. For example, it has been employed in pharmaceutical research and pro-
duction, to help identify and classify chemical components objects such as
mapping cutaneous tissue oxygen concentration (Miclos et al. (2015)(2015)). Pavu-
rala, Xu, and Krishnaiah (2017)(2017) used hyperspectral imaging to monitor the
uniformity of coat thickness in the manufacture of transdermal drugs, while
a study published by Wilczyński et al. (2016)(2016) built a hyperspectral imaging
tool to detect and identify counterfeit drugs.
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In the medical discipline, Calin et al. (2015)(2015) and Wahabzada et al. (2017)(2017) were
able to characterize and monitor wounds in patients using hyperspectral imag-
ing. Leavesley et al. (2016)(2016) developed a hyperspectral imaging fluorescence ex-
citation scan that enabled the classification and detection of colon cancer in pa-
tients. Halicek et al. (2018)(2018) used hyperspectral imaging with neural networks
to classify tumor margins in head and neck cancer. And recently, I.-C. Wu et
al. (2018)(2018) were able to use hyperspectral imaging in the early identification of
esophageal squamous neoplasm (esophageal cancer).

In agriculture, hyperspectral imaging has replaced traditional techniques ,
which were found to be destructive, tedious, reliant on human intervention,
time-consuming and sometimes environmentally unfriendly (Huang, Liu, and
Ngadi (2014)(2014)). Hyperspectral imaging offers various advantages compared to
traditional techniques, with the most significant advantage being its predic-
tion accuracy. For instance, the quality and physical attributes of fruits and
vegetables can be identified and predicted or classified with greater accuracy
using hyperspectral imaging (Nicolai et al. (2007)(2007); Oliveira and Franca (2011)(2011)).
In the meat industry, Kamruzzaman, Makino, and Oshita (2016)(2016) were able to
successfully predict the moisture content in meat, while Lohumi et al. (2016)(2016)
developed a calibrated model that could predict meat fat content. Naganathan
et al. (2016)(2016) built a forecasting model that predicted the tenderness of beef us-
ing hyperspectral imaging. These examples of the accuracy of hyperspectral
imaging and others, have allowed the meat processing industry to build tools
to rapidly classify quality levels of meat, reducing object detecting time, sav-
ing both cost and time on potentially destructive laboratory techniques (C.-H.
Feng et al. (2018)(2018))

There are numerous advantages to the application of hyperspectral imaging
as seen above. The aim of this chapter is to give an overview of what hy-
perspectral imaging analysis is, to explore some of the equipment used for
hyperspectral imaging applications and finally to provide an overview of the
standard analysis framework performed for acquired hyperspectral data. This
chapter is divided in the following way: The first section (1.11.1) gives a basic
overview of the techniques that hyperspectral imaging is derived from, then
alternatives are introduced to hyperspectral imaging such as multispectral and
full-spectral imaging. Exploration of the various hyperspectral image acquisi-
tion modes and the underlying data structures of a hyperspectral image is also
introduced.

As hyperspectral images cannot be taken without special equipment, the next
section (1.21.2) gives a description of the various components used to acquire
hyperspectral images. And finally, the last section (1.31.3) focuses on the anal-
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Figure 1.1: Different imaging methods. (A) A two-dimensional image of a sam-
ple showing the spatial (x,y) distribution. (B) RGB colour image with only three
bands (red, green and blue wavelengths respectively). (C) Spectroscopy graph
showing the spectral distribution. (D) A multispectral three-dimensional hy-
percube showing both the spatial and spectral distribution on a limited num-
ber of spectral bands. (E) A hyperspectral hypercube with a contiguous spec-
trum. Figure adapted from Li et al. (2013)(2013)

ysis framework for hyperspectral images. This section covers pre-processing
techniques required prior to analysis such reflectance calibration, spectral and
spatial pre-processing steps and image processing.

1.1 What is Hyperspectral Imaging?

To get an understanding about the underlying structure of hyperspectral imag-
ing, a brief introduction to the two fundamental techniques that it is derived
from is required. These techniques are computer vision and spectroscopy.

Computer vision, sometimes referred to as imaging analysis or computer
imaging, is a technique that operates by analysing an image on the visible
wavelength, particularly the red (564–580nm), blue (534–545nm) and green
(420–440nm) wavelengths. By operating on the visible wavelength, computer
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vision is able to extract shape-based features of objects within the image and
perform analysis of the image (D. Wu and Sun (2013b)(2013b), Abdullah et al. (2004)(2004)).
Recently, computer vision has been employed in the automotive industry to
build self-driving cars that rely partly on computer vision to display informa-
tion around the car. This information is then analysed and fed into the car’s
artificial autonomous system for further action, such as obstacle detection and
avoidance (Chen et al. (2015)(2015); Hadsell et al. (2009)(2009)).

Fig. 1.11.1 (B), shows the wavelengths that a standard computer vision system can
be applied to. However, computer vision has some big drawbacks including
the inability to accurately classifying two or more objects that have roughly the
same physical characteristics, such as the same shape and/or colour. It is also
unable to detect invisible defects on objects within an image or detect chemi-
cal components of objects for further analysis. To overcome these limitations,
computer vision is often coupled with other techniques in order to increase
accuracy (C. Zheng, Sun, and L. Zheng (2006)(2006); D. Wu and Sun (2013b)(2013b); Du and
Sun (2006)(2006)).

Spectroscopy is a technique that measures the interaction between electro-
magnetic radiation (simply known as optical properties) and light in the visible
wavelength range (340–740nm) to determine the chemical and physical char-
acteristics present in objects of interest (Bock and Connelly (2008)(2008); Cen and
Y. He (2007)(2007)). It categorizes an object’s interaction with the visible light range
into either transparent, translucent or opaque objects. In this context, trans-
parent indicates an object with little or no absorption and reflection, while
opaque objects tend to have high absorption and reflection rate. Translucent
objects have an absorption and reflection rate that is roughly between trans-
parent and opaque (Amigo, Babamoradi, and Elcoroaristizabal (2015)(2015)). Recent
studies have also considered using the near infra-red wavelength range (750–
2500nm) instead of the visible wavelength range, and have found promising
results in determining the chemical and physical characteristics in objects of
interest (Ravn, Skibsted, and Bro (2008)(2008); Oliveira and Franca (2011)(2011)).

Fig. 1.11.1 (C) shows a reflectance against wavelength plot, that measures how
much light has been reflected by an object of interest. This is produced in such
a way that as light photons enter the object, some are reflected (reflectance),
some pass through (transmission), some are refracted (refraction) and some
are absorbed (absorption) (Gowen et al. (2007)(2007)). This process identifies the op-
tical properties that are measured and analysed to derive information about
the chemical characteristics of an object from the reflected light (Cen and Y.
He (2007)(2007)). However, while computer vision is able to show the spatial dis-
tributions of an object within an image at selected wavelength bands (Fig. 1.11.1
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Figure 1.2: Spectral Reflectance Graph/Curve of a multi-spectral image (left)
and that of a hyperspectral image (right).

A), spectroscopy is incapable of displaying the spatial distribution of an object.
This limits where the technique can be applied.

Hyperspectral imaging integrates the advantages of computer vision and spec-
troscopy into one system, whereby it can extract both the spatial and spectral
distributions from an image, acquired using a camera with a spectrometer at-
tached to it. That is, hyperspectral imaging is a method that acquires an image
in various spectral (wavelength) bands that provides information on the in-
herent chemical and physical attributes of the object of interest. When coupled
with multivariate analysis methods, hyperspectral imaging is capable of ac-
curately displaying the content distribution of the objects within an image as
well as providing accurate classification and prediction of objects in the image
(Gowen et al. (2007)(2007); Kamruzzaman, G. ElMasry, et al. (2012a)(2012a)).

1.1.1 Principles of Hyperspectral Imaging

Types of spectral imaging

Types of spectral imaging include multispectral and full-spectral (also referred
to as ultra-spectral) imaging (Gowen et al. (2007)(2007); D. Wu and Sun (2013a)(2013a)).
These methods share the same underlying concept as hyperspectral imaging
with the difference being the number of spectral bands available in the spectral
image.

In multispectral imaging, Fig 1.11.1 (D), the number of spectral bands is normally
ten or less and in most cases cannot provide a real spectrum for every image.
As such, the spectral resolution of a multispectral imaging system tends to be
10 nanometers (nm) or larger, as illustrated by the left plot in Fig 1.21.2. Spec-
tral resolution measures the ability to resolve spectral features and bands into
their separate components. A resolution that is too low results in lost spec-
tral information, preventing correct identification and characterization of the
object, while a high resolution may result in a longer measurement time. The
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Table 1.1: Differences among RGB Imaging, Spectroscopy, Multispectral and
Hyperspectral Imaging techniques

Features
Computer
Imaging

Spectroscopy
Imaging

Multispectral
Imaging

Hyperspectral
Imaging

Spectral
information

× X Limited X

Number of
Spectral
bands

3
Several to
hundreds

3 to 10
Several to
hundreds

Spatial
information

X × X X

Multi-
constituent
information

× X Limited X

Detection of
small objects

× X Limited X

choice between low or high resolution is dependent on the application and
the desired information from the experiment (Huang, Liu, and Ngadi (2014)(2014);
Kamruzzaman, G. ElMasry, et al. (2012b)(2012b); Van der Meer et al. (2012)(2012)).

Hyperspectral imaging systems tend to acquire hundreds of images of the
same object, with contiguous/connecting wavelengths (with a spectral reso-
lution of less than 10nm), as shown in Fig 1.11.1 (E). Every pixel in the hyperspec-
tral image contains its own spectrum over a contiguous wavelength range,
as illustrated by the reflectance graph on the right of Fig 1.21.2. This improves
the accuracy of prediction/classification produced by a hyperspectral analy-
sis as opposed to multispectral analysis, but at the cost of image acquisition
speed. The ultra-spectral (full-spectral) imaging system is the successor of hy-
perspectral imaging systems, with an even finer spectral resolution, allowing
an even finer representation over the contiguous wavelength range (D. Wu and
Sun (2013a)(2013a)).

Table 1.11.1 summarizes the differences between computer imaging, spec-
troscopy, multispectral imaging and hyperspectral imaging, as discussed
above, highlighting the difference between multispectral and hyperspectral
imaging.
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Hyperspectral Data

The spectral cube (also known as hypercube, data-cube or hyperspectral cube)
is a three-dimensional (3-D, (x, y, z)) block of data that is comprised of a two-
al (2-D, (x, y)) image of the object and the spectral information on the 3rd-
dimension (usually denoted by λ). The spectral cube is formed by obtaining
the 2-D image (spatial information) of the different spectral bands one at a
time, and then the 3-D image is formed by stacking the 2-D images together.
This is illustrated in Fig. 1.11.1 (D) and (E). Note that for the remainder of this
thesis, we will use the terms spectral bands and wavelengths interchange-
ably.

Image acquisition

To acquire the 3-D hyperspectral image cube, there are 4 main approaches com-
monly used in research and industry. These approaches are the whisk-broom
method, push-broom method, area scanning and single shot method (Lu and
Fei (2014)(2014); Gowen et al. (2007)(2007); Adão et al. (2017)(2017)). The whisk-broom method,
commonly referred to as point scanning, allows for an individual point to be
scanned, providing the required spectrum of this point. Then either the cam-
era is moved to another point along the spatial dimension of the object or the
object is moved to allow the camera to capture the spectrum at another point.
This process is repeated until the entire object has been scanned. An illustra-
tion of the whisk-broom method is depicted in Fig. 1.31.3 (A).

Push-broom scanning (line scanning), scans a whole line of the object along
one spatial dimension (either x or y) capturing the spectral information corre-
sponding to each pixel on the line (Fig. 1.31.3 (B)) . To construct the hypercube
in a push-broom scanning approach, the object is then moved in a direction
orthogonal to the scanned line.

The area scanning approach differs from point and line scanning, because
instead of having to move either the object or the camera, it acquires a
monochrome 2-D spatial image of the object at a single wavelength at a time.
The 3-D hypercube is then constructed by repeating the scanning over the
whole wavelength range (Zuzak et al. (2001)(2001)). The single shot mode is a fairly
new method, that has been shown to be capable of capturing both the spa-
tial and spectral information using a large area detector to capture the images.
However, it is still in the early stages of development, and it currently is limited
in acquiring spatial and spectral information (D. Wu and Sun (2013a)(2013a), Adão et
al. (2017)(2017)).
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Figure 1.3: Hyperspectral Imaging Acquisition modes. (A) represents point
scanning or whisk-broom method; (B) represents line scanning or push-broom
method; (C) represents area scanning and (D) represents single shot, a fairly
new approach. Adapted from Adão et al. (2017)(2017)

Figure 1.4: Schematic of the Hyperspectral Imaging configuration. Adapted
from H.-J. He and Sun (2015)(2015)

1.2 Hyperspectral Imaging Equipment

The schematic of hyperspectral imaging equipment is illustrated in Fig. 1.41.4.
The main components include a computer with software to control the im-
age acquisition process, a light source, a spectrograph, a charge-couple device
camera and a translation stage.

The light source generates the required light that acts as an information car-
rier to illuminate the target. It is an integral part of the hyperspectral sys-
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tem, as it allows the detection of the physical structure and the chemical com-
ponents of the object of interest (Nanyam et al. (2012)(2012); Y.-Y. Pu, Y.-Z. Feng,
and Sun (2015)(2015); H. Pu, Kamruzzaman, and Sun (2015)(2015)). Various light sources
are used depending on the application of the hyperspectral technique such
as halogen lamps, lasers, tunable light and light emitting diodes. D. Wu and
Sun (2013a)(2013a) examined each of these sources and their advantages and applica-
tions in detail.

The camera used in the image acquisition stage has the ability to quantify the
intensity of the captured light. Quantifying is done by converting the light
photons into electrons. Two widely used cameras in hyperspectral imaging
are the charge-coupled device (CCD) and the complementary metal oxide-
semiconductor (CMOS) (D. Wu and Sun (2013a)(2013a), C.-H. Feng et al. (2018)(2018),
Huang, Liu, and Ngadi (2014)(2014), Gowen et al. (2007)(2007)). A lens may be included
in the imaging equipment to ensure there is enough focus as well as to po-
tentially delineate the field of view (C.-H. Feng et al. (2018)(2018); Kamruzzaman,
Makino, and Oshita (2015)(2015)). The spectrograph is another important component
used in the image acquisition stage. It is mainly used to disperse captured light
into different continous spectral ranges. The captured light is usually detected
by a charge-couple device camera. Using the camera in conjunction with the
spectrograph, as stated by both Kamruzzaman, Makino, and Oshita (2015)(2015) and
C.-H. Feng et al. (2018)(2018), allows a limited amount of light to reach the camera,
which is controlled by the spectrograph. D. Wu and Sun (2013a)(2013a) state that a
spectrograph is one example that can be used in dispersing the light captured.
Other commonly used examples include filter wheels, acousto-optic tunable
filters, liquid crystal tunable filters, single shot imagers and Fourier transform
imaging spectrometers.

Depending on the acquisition mode, the translation stage is movable to al-
low the spatial dimension to be formed with the object moving. Finally, the
computer with software to control the image processing, is used when further
analysis is required. It can also be used to control the exposure time and wave-
length range, store any acquired images and develop models from the stored
data. (C.-H. Feng et al. (2018)(2018)).

1.3 Analysis framework

The process involved in hyperspectral data analysis differs greatly depending
on the objects and/or characteristics of the object of interest. This means that
a highly accurate process applied to a hypercube of object A would not yield
the same level of accuracy when applied to another object B. As such, several
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Figure 1.5: Flowchart of typical steps used when analyzing Hyperspectral
Imaging Data

studies have proposed basic or standard guidelines to be used when analysing
hyperspectral images (Amigo, Babamoradi, and Elcoroaristizabal (2015)(2015); G. M.
ElMasry and Nakauchi (2016)(2016); Kamruzzaman, G. ElMasry, et al. (2012b)(2012b); D.
Wu and Sun (2013a)(2013a); Huang, Liu, and Ngadi (2014)(2014); Gowen et al. (2007)(2007)). These
are shown graphically in Figure 1.51.5. Initially a raw hyperspectral image (hy-
percube) is obtained using one of the image acquisition techniques discussed
in section 1.1.11.1.1. The raw hypercube is then calibrated using reflectance calibra-
tion to minimize any camera effect. The calibrated hypercube then undergoes
spatial and spectral pre-processing that allows the selection of regions of in-
terests (ROIs) and spectral extraction. After this, a qualitative or quantitative
model is created, calibrated and validated using a multivariate statistical tech-
nique. This section provides an overview of these steps.

1.3.1 Reflectance Calibration

Reflectance calibration converts the raw intensity value of the raw hyperspec-
tral image obtained by the camera sensor to relative reflective values. This cor-
rection minimizes the effect of the residual electric current flowing in a camera
(dark current), as well as minimizing the influence of the background spectral
response of the spectrography (G. M. ElMasry and Nakauchi (2016)(2016)).
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1.3.2 Pre-processing

Spatial Pre-processing (Image Segmentation)

Spatial pre-processing, commonly referred to as image segmentation, is a very
important step in any image analysis procedure, since it has been found that
any subsequent analysis is dependent on this operation (Sun and Du (2004)(2004)).
This step allows the extraction of object/s of interest from an image, for which
further analysis is to be carried out. It also allows for edges of other objects
in the image to be detected, as well as the use of techniques that would im-
prove the image quality of the objects of interest (G. ElMasry, Wang, and
Vigneault (2009)(2009)). It is usually at this stage of a hyperspectral data analysis
that Region of Interests (ROIs) are selected. That is, the regions which the re-
searchers are interested in analysing in detail (Kamruzzaman, G. ElMasry, et
al. (2013)(2013)). The general basic procedure of selecting a ROI involves creating a
mask with the same spatial dimension as the image, however only information
for the pixels in the ROI are preserved. This can vary from creating a matrix
of 0’s and 1’s, where 1’s represent the ROI, to advanced techniques such as
partial-differential equation based methods, edge detection, histogram-based
methods, Fourier transforms (FT), wavelet transforms (WT) or thresholding
(Esquerre et al. (2012)(2012); Bong and Rajeswari (2011)(2011); Zhang (1996)(1996)).

Of the aforementioned advanced techniques, thresholding is commonly used
in image segmentation due to the simplicity of implementation. It is achieved
by selecting a threshold value that allows a clear contrast between the object/s
of interest and the background. This is done by denoting pixels with intensi-
ties above a threshold value as 1 and the remaining pixels are set to 0, indi-
cating background. However, selection of the threshold value can require hu-
man intervention and can be a challenging, time-consuming and tedious task
(Yang et al. (2007)(2007); Samopa and Asano (2009)(2009)). This is because there is a com-
promise in the selection of a threshold value, between choosing a low value to
increase the possibility of distinguishing the main object from the background
and choosing a high value to remove the background. The process is repeated
for each wavelength in the hypercube. It is prone to error if there are many
bands in the hypercube (with each band requiring a different threshold value).
To make the selection of the threshold value automated with no human inter-
vention, an automatic threshold scheme can be used. Such a scheme allows
for image detection and the selection of ROIs by setting an initial threshold
value based on their gray-level distribution (Al-Amri, Kalyankar, et al. (2010)(2010);
Ng (2006)(2006)).
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Spectral Pre-processing

Spectral pre-processing is used to improve the extracted spectral data by both
avoiding the influence of undesirable effects coming from the measurement or
instruments, such as light scattering or spectral noise, and distinguishing the
differences between the spectra that would help in any subsequent analysis.
Methods that can be applied during spectral pre-processing include smooth-
ing, derivatives, standard normal variates (SNV), multiplicative scatter correc-
tion (MSC), Fourier Transforms (FT) and Wavelet Transforms (WT) (Rinnan,
Van Den Berg, and Engelsen (2009)(2009); Prakash and Y. C. Wei (2011)(2011)).

Smoothing is used to reduce noise from the hypercube without reducing the
number of spectral variables. This method is usually combined with other pre-
processing techniques and can be necessary as it is able to optimize the signal-
to-noise ratio. Examples of the most common smoothing techniques include
moving smoothing/average, median filter and Gaussian filter (Zeaiter, Roger,
and Bellon-Maurel (2005)(2005)).

Derivatives, especially 1st and 2nd derivatives, are used to correct baseline ef-
fects in the spectra by minimising the spectral noise, reducing background ef-
fects and highlighting the differences between spectra in the hypercube. The
most common derivative algorithm employed in spectral pre-processing is
Savitzky-Golay developed by Savitzky and Golay (1964)(1964). The basic concept of
the technique involves using a moving window on the data and fitting a low-
degree polynomial using linear least squares. The solution to the least-squares
equations can be found using analytical methods and expressed as a single set
of convolution coefficients that is applied to all windows. This application then
produces derivatives (estimates) at the middle point of each window which are
used to smooth the spectra.

Other popular spectral pre-processing methods are the SNV and MSC, which
centre and scale individual spectra, hence reducing any multiplicative interfer-
ence or the spectral variability of scatter and baseline shifts. They also correct
both multiplicative and additive scatter effects in the spectra of the hypercube.
The FT and WT both separate noise from the spectra in the frequency domain
(Burnase and Swamy (2002)(2002); Mager and Abernethy (2007)(2007)).

1.3.3 Image processing

G. M. ElMasry and Nakauchi (2016)(2016) and D. Wu and Sun (2013a)(2013a) comment that
many recent papers about hyperspectral imaging analysis stop once optimal
wavelengths have been identified and the validated model is built, after which
it is then applied to real-time applications. They argue that the general frame-
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Figure 1.6: Hyperspectral analysis of an apple with image processing done to
produce meaningful output. Image from G. M. ElMasry and Nakauchi (2016)(2016)

work used in conducting hyperspectral analysis should include a final step
after the model has been built to reduce any misleading results due to extrap-
olation or interpolation when applying the model to every single pixel. This
final step is image processing or post-processing. It should be used to produce
an output form that can be used to enhance the visualisation for displaying
important hidden information in the hyperspectral image when applied to the
content distribution maps produced by the models. Various techniques can be
used in the enhancement of the visualisation of the analysis such as scaling,
mapping, erosion, pseudo-colour representation or dilation. Fig. 1.61.6 illustrates
the different types of image processing operations that could be applied to the
hypercubes or a collection of hypercubes to produce meaningful outputs de-
pending on the problem that needs solving. Commonly used image processing
techniques are colour mapping with intensity scaling or greyscale. This tech-
nique is used to show the difference in the component distribution between
the individual pixels in the hyperspectral image. Pseudo-colour images are
also widely used, where two or more images at different spectrum bands are
merged to form a new image (Pohi and Van Genderen (1998)(1998)). Pseudo-colour
images are used to display a greater difference between various important re-
gions of a sample.

1.4 Outline of Thesis

As discussed previously, hyperspectral imaging has proven to be a powerful
analytical tool in non-destructive food analysis. This project will explore the
use of hypersectral techniques to analyse and predict the IMF content in sheep
images in the visible light wavelength range. In this analysis, 101 hyperspec-
tral sheep images were used to build and validate several multivariate mod-
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els. We also explore the classification accuracy of the models when the IMF
content is split into groups as defined by industry standards. Prior to predic-
tion and classification, we investigate calculating the reflectance of each image
using various methods. We then segment the images and performing spatial
pre-processing to select and extract the pixels corresponding to each sheep car-
cass. A brief introduction of commonly used multivariate methods is given, as
well as various forms that the extracted spectral data can take as input to these
methods. Finally, we look at the results and discuss the outcome of the analy-
sis.
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Chapter 2

Imaging Data

In this chapter, we provide an overview of the sheep dataset and the image
pre-processing steps. As described in Chapter 1, hyperspectral imaging is a
technique that combines spectroscopy and imaging analysis, so as to analyse
both the spectral and spatial attributes of objects. We describe the sheep images
including the equipment used in acquisition of the image. We then briefly de-
scribe the processes used in calibrating the sheep images to produce reflectance
values. Lastly, we pre-process the calibrated sheep images to segment between
the background and the sheep carcass.

2.1 Introduction

Intra-muscular fat (IMF) content is known to play a major role in the quality
attributes of meat, such as sensory properties and health considerations. The
sensory attributes generally influenced by IMF content include the tenderness
of meat, flavour and juiciness. A low IMF content indicates a much less ap-
pealing or tasty meat (Newcom, Baas, and Lampe (2002)(2002)).

IMF content in meat corresponds to the amount of fat within muscles , and is
normally located between and within muscle fibers. It is sometimes referred
to as marbling in the meat industry, and has a significant impact on marketing
fresh meat. The degree of marbling is the primary determinant of the quality
grade, where a higher grade means more expensive meat. Therefore, IMF con-
tent is a big indicator of meat quality and is an important factor in catergorising
carcasses in the meat industry (Nunes et al. (2015)(2015)). Fig. 2.12.1 illustrates the re-
lationship between the percentage of intramuscular fat content and marbling
score.

Traditionally, IMF content in meat was determined using drip loss, filter pa-
per test, cooking loss or centrifugal force. All these techniques in assessing the
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Figure 2.1: Relationship between IMF content, Marbling score and carcass
quality grade. Adapted from Lonergan, Topel, and Marple (2018)(2018)

IMF content in meat are time consuming, destructive and in most cases un-
suitable for industry applications (Kamruzzaman, G. ElMasry, et al. (2012a)(2012a).
This prompted the development of modern techniques to estimate IMF con-
tent in meat. Nowadays, IMF can be measured by various analytical methods
such as spectroscopy (Hocquette et al. (2010)(2010)) or in real time via the use of
ultrasound (Hassen et al. (2001)(2001), Newcom, Baas, and Lampe (2002)(2002)) and H1-
NMR techniques (Boesch et al. (1997)(1997)). Recently, spectroscopy and computer
imaging have been used to estimate the IMF content in meat. Individually
the techniques are not very accurate, since spectroscopy techniques such as
near-infrared spectrometry only measure the spectral properties of the meat,
while computer imaging measures the spatial properties. One technique that
has shown promise in estimating the IMF content is hyperspectral imaging
because it combines the use of spectroscopy and computer imaging analysis.
It has been shown to have good precision in recent work on pork and beef
(Kamruzzaman, G. ElMasry, et al. (2012b)(2012b)). The use of hyperspectral imag-
ing has been favourable to traditional techniques given its non-invasive, non-
destructive and efficient process.

In this thesis, we use three software packages in the reading, calculation
and analysis of the hyperspectral images. Sycven, a software package devel-
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Figure 2.2: Hyperspectral imaging acquisition stage. Left panel shows the
setup of the Hyperspectral equipment. Right panel shows the recovered
pseudo-colour image of a sheep carcass. Adapted from Robles-Kelly and R.
Wei (2015)(2015)

oped by Scyllarus CSIRO for analysing hyperspectral images, was used in
the reflectance calculation of the sheep images. Matlab was used to convert
the images to text files using a toolbox develop by Scyllarus CSIRO (Habili
and Oorloff (2015)(2015)). All statistical analyses and image segmentation were con-
ducted in R, where models were trained and tested using the caret package
(Kuhn (2008)(2008)).

2.2 Data

One hundred and one hyperspectral images of sheep carcasses were acquired
at the WAMMCO Katanning abattoir in Katanning, Western Australia and was
provided by Dr Graham Gardner and Dr Khama Kelman. The sheep carcasses
were cut in such a way to show a cross-section of the eye muscle. Using two
tungsten lamps for illumination, the sheep carcass was positioned in front of
the camera. The left panel of Fig 2.22.2 shows the set up used for acquiring the
hyperspectral image, while the right panel in the same figure, shows the re-
covered pseudo-colour image of a sheep. That is, the hyperspectral image was
rendered in colour.

The camera used in the acquiring of the sheep images, as depicted in Fig 2.22.2,
was an OKSI Turnkey system based upon liquid crystal tunable filters (LCTFs)
with a spatial resolution of 2Mp. The camera produces hyperspectral images in
the visible wavelength range, that is, a wavelength range between 400nm and
700nm, with steps of 10nm (Robles-Kelly and R. Wei (2015)(2015)). This results in a
hyperspectral image with 31 different wavelengths per sheep, giving in total
3131 images in our dataset. Each image comprised of 1,447,680 pixels (1392 x
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1040).

The rest of this chapter describes in detail the reflectance calculation and spa-
tial pre-processing steps used on this dataset. Section 2.32.3 discusses the methods
used to calculate the reflectance. Section 2.42.4 illustrates our choice of illuminants
in the reflectance calibration. Finally, section 2.52.5 discusses the methods used in
spatial pre-processing of the images.

2.3 Reflectance Calibration

As discussed in section 1.3.11.3.1, calculating the reflectance values of an image
decreases the effect of the residual electric current from the camera and mini-
mizes the influence of the background spectral response. The process to obtain
the reflectance values from the acquired raw image involves the use of two ref-
erence images, that we will define as dark and white image. The dark image is a
reference image with approximately 0% reflectance that is acquired by placing
the camera’s opaque cap on its lens. Similarly, the white image is a reference
image with approximately 100% reflectance that is acquired by placing a uni-
form white ceramic tile over the camera’s lens. It is also sometimes referred
to as the background image (Kamruzzaman, Makino, and Oshita (2016)(2016)). With
the two reference images acquired, the reflectance values (R) of the raw hyper-
spectral image are calculated using the following formula: (G. ElMasry, Sun,
and Allen (2013)(2013)):

R =
Object− Dark
White− Dark

.

This process is popular in real world applications given the ease of acquir-
ing the reference images. However, in some cases acquiring the reference im-
ages may not be possible due to unforeseeable circumstances as is our case
in this thesis. In such cases there are other methods (Rahman and Robles-
Kelly (2013)(2013)). In the next section, we look at the dichromatic model, a method
developed by Shafer (1985)(1985) and adapted by a group at National ICT Australia
(now part of CSIRO), which we refer to as NICTA throughout.

2.3.1 Dichromatic Model

The dichromatic model assumes that the total radiance Lt of the reflected light
is the sum of two independent parts: the radiance Lj of the light reflected at
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the interface and the radiance Lb of the light reflected from the surface body
(Shafer (1985)(1985)). That is:

Lt (λ, j, e, h) = Lj (λ, j, e, h) + Lb (λ, j, e, h) , (2.1)

where λ is the wavelength of light, j the angle of incidence between the illu-
mination direction and the surface normal (i.e. direction perpendicular to the
surface of the object), e the angle of emittance representing the angle between
the surface normal and the viewing direction and h the phase angle represent-
ing the angle between the illumination and viewing directions.

The NICTA adaptation of this dichromatic model states that the light reflected
at the interface can be denoted by surface reflectance and the radiance of the
light reflected from the surface of the body denoted by surface radiance. The
adaptation involves decomposing the surface radiance into a diffuse and spec-
ular component (Huynh and Robles-Kelly (2010)(2010)), resulting in the dichromatic
model

I (λ, i) = g (i) L (λ) S (λ, i) + k (i) L (λ) . (2.2)

This is achieved by letting an object with surface radiance I (λ, i) at pixel
i and wavelength λ be illuminated by an unknown illuminant whose spec-
trum is L (λ). The other parameters of the model include the shading factor
g(i) which governs the percentage of diffuse light and depends solely on the
surface geometry, specular coefficient k (i), light spectrum L (λ) and the spec-
tral reflectance S(λ, i) at pixel i and wavelength λ from the spectral radiance
I(λ, i).

To recover the surface reflectance for further analysis, (2.22.2) can be rearranged
to form:

S (λ, i) =
1

g (i)

(
I (λ, i)
L (λ)

− k (i)
)

. (2.3)

It can be noted that, if the specular coefficient k (i), shading factor g (i) and il-
luminant power spectrum L (λ) are readily available, it is easy to compute the
surface reflectance of the object using (2.32.3). However, in some instances these
components are not readily available and would need to be recovered by ap-
plying methods such as those presented in Huynh and Robles-Kelly (2010)(2010). A
more in-depth description of parameter recovery, as well as the optimal ap-
proach is detailed in Huynh and Robles-Kelly (2008)(2008).

In order to calculate the surface reflectance we need to first estimate the illu-
minant power spectrum L (λ). Therefore, in the next section 2.3.22.3.2 we look at
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various ways to estimate the illuminant power spectrum. Section 2.3.32.3.3 gives a
brief overview of the approach taken by NICTA in the estimation of L (λ) as
well as the other parameters in the (2.32.3).

2.3.2 Illuminant Estimation

The illuminant power spectrum L (λ) is a mathematical representation of a the-
oretical light source. It is used in the calculation of tri-stimulus values from a
spectrophotometric measurement. That is, the calculation of the light intensity
based on the three primary colour values (Red, Green, Blue). The tri-stimulus
values represent the relative power of the theoretical source for specific wave-
lengths in the visible spectrum. The use of the theoretical representation of
the light source is mainly due to the relative power distribution of a real light
source, which may be difficult to standardize.

For the initialisation of the illuminant power spectrum L (λ) we briefly con-
sider the following algorithms: Finlayson and Schaefer (Finlayson and Schae-
fer (2001)(2001)), grey world (Buchsbaum (1980)(1980)), white patch (W.-R. Lee, Hwang,
and Jun (2011)(2011)), shades of grey (Finlayson and Trezzi (2004)(2004)) and grey edge
(Van De Weijer, Gevers, and Gijsenij (2007)(2007)).

Finlayson and Schaefer

The method proposed relies on the dichromatic plane hypothesis. That is,
the model implies a two-dimensional colour space of pixels in patches with
homogeneous reflectance. Illumination estimation is viewed as an optimisa-
tion problem to maximise the total projection length of the light colour on all
dichromatic planes. As such, the approach predicts the illuminant as the in-
tersection of the dichromatic planes. The approach was developed on trichro-
matic images, but can be adapted to multispectral/hyperspectral images by
providing homogeneous surface patches to the colour constancy algorithm
and then solving the eigen-system of the sum of the projection matrices on
the dichromatic planes. The resulting eigenvector with the largest correspond-
ing eigenvalue is deemed to be the illuminant for that patch (Finlayson and
Schaefer (2001)(2001)).

Grey World

Grey world is a renowned colour-constancy method that assumes, on average,
the world is grey (Buchsbaum (1980)(1980)). This means that the average value of
each wavelength in an image will be close to 1

2 , when calculated using the
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following formula:

λi =
1
n ∑

x,y
J(x, y) = Li

1
n ∑

x,y
G (x, y) Ri(x, y), (2.4)

where i is the number of wavelengths in the image, n is the number of pixels,
λi is the ith wavalength and J is the input image, that is acquired by an imaging
device with the corresponding formula:

J (x, y) = G (x, y) Ri (x, y) Li (x, y) , (2.5)

with G (x, y) a factor due to the scene geometry at position (x, y), Ri (x, y)
the reflectance at the position (x, y) and Li (x, y) the illuminant at position
(x, y).

Taking the expectation of GR, when considering the range of the reflectance to
be [0, 1],

E [GRi] = E [G] E [Ri] = E [G]

(∫ 1

0
x dx

)
= E [G]

1
2

(2.6)

Therefore, taking the expected value of each wavelength λi, we get:

λi = Li
1
n ∑

x,y
G (x, y) Ri(x, y) ≈ LiE [GRi] = E [G]

1
2

(2.7)

And the illuminant Li as well as the output image oi(x, y) could be estimated
using:

Li ≈
2

E [G]
λioi (x, y) =

Ji (x, y)
Li

≈ G (x, y) Ri (x, y) . (2.8)

White Patch

The white patch method is a simplified version of the Retinex method with the
aim to compute the luminosity of an image using logarithms and iterations
(W.-R. Lee, Hwang, and Jun (2011)(2011)). The difference between the two methods
is that white patch assumes that the scene includes a white patch and that the
light source affects the whole scene equally. As such, the illuminant is esti-
mated by selecting the maximum value per wavelength.

Li,max = max
x,y
{Ji(x, y)}, (2.9)

since the patch would reflect the maximum of the incident light at each wave-
length. The output image can be reproduced using (2.82.8) with Li,max instead of
Li.
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Shades of Grey

The shade of grey method follows from both the grey world and white patch
method being forms of the Minkowski-norm:(∫

( f (x))pdx∫
dx

) 1
p

= ke, (2.10)

where k is a multiplicative constant, p ∈ [0, ∞] and e is the vector of the light
source colour. Finlayson and Trezzi found that the shades of grey method can
be represented by the Minkowski-norm, with a p value of 6. Coincidentally,
they found that when p is 1, (2.92.9) had similar results to the grey world method,
whereas, when p is ∞, the results are similar to the white patch method (Fin-
layson and Trezzi (2004)(2004)). The shades of grey method shares the same proper-
ties of both the white patch and grey world methods.

Grey Edge

Another renowned state-of-the-art method in colour constancy is the grey edge
method. This methods works on the assumption that the average of the re-
flectance differences in a scene is achromatic. It can also be represented as a
Minkowski-norm: (∫ ∣∣∣∣∂n f σ(x)

∂xn

∣∣∣∣p dx
) 1

p

= ken, p,σ, (2.11)

where the parameters, {n, p, σ}, for the grey edge are {1, 1, 6}.

2.3.3 NICTA Parameter Estimation

Using the estimation of the illuminant power spectrum L (λ) from any of the
methods described in section 2.3.22.3.2 and (2.22.2), the parameters g (i), k (i) and
S (λ, i) can be estimated.

The parameter estimation can be achieved by minimising the dichromatic
cost function F (I) of a hyperspectral image I, where the cost function is the
weighted sum of the dichromatic error and a regularisation term R (i) for each
image location (Huynh and Robles-Kelly (2008)(2008)). That is,

F (I) = ∑
i∈I

[
n

∑
j=1

[
I
(
λj, i

)
− L

(
λj
) (

g (i) S
(
λj, i

)
+ k (i)

)]2
+ αR (i)

]
, (2.12)

where α is a constant that acts as a balancing factor between the regularisation
term R (i) and the dichromatic error.

Before defining the regularisation term R (i), Huynh and Robles-Kelly (2008)(2008)
notes that without any further constraints, minimising the cost function pro-
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duces an underdetermined problem. Given that an image that has n wave-
lengths with m pixels each, we would need to minimise over 2m + n +

(m × n) variables, however there are only m × n terms in the cost function
F (I). By further constraining the model to smooth surfaces made of the same
material, two constraints can be imposed on the cost function.

Firstly, a common diffuse reflectance is shared across all locations on the sur-
face. Therefore, it is assumed that a uniform albedo surface, that is the propor-
tion of light reflected by a surface, P will have the same reflectance for each
pixel, i.e. i ∈ P, S

(
λj, i

)
= SP (λi). This constraint reduces the number of un-

knowns S
(
λj, i

)
from m× n to N× n, where N denotes the number of surface

albedos in the scene.

The second constraint involves applying a smoothing variation on the geome-
try of P that allows the derivation of the regularisation term R (i) as a function
of the shading factor g (i) and is not dependent on the wavelength. This im-
plies that the shading factor g (i) should vary smoothly across P and can be for-
mulated by minimising the variation of the gradient magnitude of the shading
map. Effectively, preventing discontinuities in the shading map of P,

R (i) =

[
∂g (i)
∂x (i)

]2

+

[
∂g (i)
∂y (i)

]2

(2.13)

where x (i) and y (i) are the coordinates for the pixel at location i. Thus, by
imposing the first and second constraints mentioned previously on the cost
function the dichromatic model parameters can be recovered by minimising
F∗ (I) as an alternative to F (I), where:

F∗ (I) = ∑
p∈P

F (P) (2.14)

= ∑
p∈P

∑
i∈P

[
n

∑
j=1

[
I
(
λj, i

)
− L

(
λj
) (

g (i) SP
(
λj
)
+ k (i)

)]2
+ αR (i)

]
. (2.15)

To find parameters L
(
λj
)
, SP

(
λj
)
, g (i) and k (i) that would yield the mini-

mum of the cost function, an iterative approach is adopted. Defining:

• L = [L (λ1) , . . . , L (λn)]
T spectral power vector of the illuminant,

• SP = [SP (λ1) , . . . , SP (λn)]
T common spectral reflectance vector for

each surface P,

• gP = [g (i1) , . . . , g (il)]
T shading map of all pixels in surface P, with

i1, . . . il being all the pixels in the surface P
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• kP = [k (i1) , . . . , k (il)]
T specularity map of all pixels in the surface P

It can be seen that at each iteration t, the cost function can be minimised with
respect to L and {gP, kP, SP} in separate steps for each P.

The dichromatic variables {gP, kP, SP} can then be optimised with respect to
the image radiance and the illuminant L, when indexed to t iterations. This
suggests that once the variables {gP, kP, SP} are at hand, then it is possible to
obtain a closed form solution for L.

The method is then decomposed into two interleaved minimisation steps. It
begins with the initialisation of the light spectrum L (λ). This can either be the
illuminant power spectrum L (λ) estimated by the methods in section 2.3.22.3.2 or
by the using Huynh and Robles-Kelly (2008)(2008) initialisation, which employs the
light spectrum estimated by the brightest pixel per band. They argue that the
radiance of a surface cannot be greater than the irradiance of the illuminant,
therefore the highest radiance across the pixels for each wavelength can be
used as a lower bound estimate of the light spectrum.

The first step of the interleaved minimisation steps involves estimating an opti-
mal surface reflectance and geometry using the light spectrum Lt−1. This step,
therefore, is reduced to minimising

F (P) |Lt−1 = ∑
i∈P

[∥∥∥I (i)− g(i)Dt−1
P − k(i)Lt−1

∥∥∥2
+ αR(i)

]
, (2.16)

where I (i) = [I (λ1, i) , . . . , I (λn, i)]T is the spectral radiance vector at image
pixel i, Dt−1

P =< Lt−1, SP > is the L2-norm of the illuminant power vector and
the spectral reflectance vector that defines the diffuse radiance components for
the surface P and ‖.‖ denotes the inner product. This shows that at iteration
t, the unknowns gt

P, kt
P and St

P can be solved separately for each surface
P.

In the second step of each iteration t, Lt can be solved, given gt
P, kt

P and St
P, in

a closed form as

Lt (λ) =
∑p∈P ∑i∈P I (λ, i)

(
gt (i) St

p (λ) + kt (i)
)

∑p∈P ∑i∈P

(
gt (i) St

p (λ) + kt (i)
)2 . (2.17)

It is noted that the second term R (i) in the cost function disappears, this is
due to it being independent of the illuminant. The closed form solution can
also be found by differentiating equation (2.152.15) with respect to the illuminant
irradiance and equating the resulting expression to zero.
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Figure 2.3: Recovered pseudo-colour image of a Sheep carcass using (a) Grey
World (b) White Patch (c) NICTA (d) Shades of Grey (e) Grey edge and (f)
Finlayson Shaefer. Images are cropped

2.4 Illuminant Choice

There are no known advantages or disadvantages in using one illuminant re-
covery method over another. However, we explored the different methods in-
troduced in section 2.3.22.3.2, to determine which might be most suitable for the
dataset under consideration.

Scvyen was used to recover the reflectance using each of the six illuminant
recovery methods mentioned in sections 2.3.22.3.2 and 2.3.32.3.3. That is, NICTA, Fin-
layson and Schaefer, Grey edge, Grey World, Shades of Grey and white patch.
Fig 2.32.3 shows the recovered pseudo-images for each of the different illuminant
recovery methods for a sheep carcass chosen at random from the dataset.

To determine if there is a difference between the illuminant recovery methods,
we calculated the correlation between each of the methods. Fig 2.42.4 shows a
plot of the pairwise Pearson correlations between the various methods. Over-
all, from the figure we note that all possible combinations of methods have a
correlation of 85% or greater for each wavelength. This suggests that the meth-
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Figure 2.4: Correlation graph for all possible combinations of the 6 different
methods Grey World, White Patch, NICTA Reflectance, Shades of Grey, Grey
Edge and Finlayson and Shaefer

ods are highly correlated in this sheep dataset. Alternatively, using the Spear-
man correlation (see Appendix Fig 5.15.1), it can again be seen that the methods
are highly correlated, with correleation coefficient of at least 96%. We also note
that there appears to be no difference between the grey edge and shades of
grey methods (correlation = 1) across each wavelength. In contrast, the grey
edge and finlayson and schaefer method are strongly correlated with a cor-
relation of more than 97%. On the basis of these results, the default method
in Scyven, NICTA, is adopted for the illuminant initialisation, as well as the
reflectance calculation for the rest of the analysis in this thesis and for the pre-
diction of the intramuscular fat content and classification of the marbling score
in the sheep carcasses.

2.5 Spatial Pre-processing

Spatial pre-processing refers to pre-processing done to an image prior to con-
ducting any analysis. In our case, it involves the identification of the sheep
carcass, the region of interest (ROI), from the image. That is, creating a ma-
trix with the same pixel dimension as the sheep image and setting the location
of the pixels denoting the sheep carcass to 1 and the rest to 0. Once the ROI
has been identified, the original sheep image as well as the hypercube can be
masked, leaving only the ROI and removing the background. This is usually
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Figure 2.5: Illustrates the masking process. Left the pseudo-colour image and
the ROI. Right same image with only the ROI selected and the rest as back-
ground

a necessity in hyperspectral imaging since there may be various objects in the
image and the researcher is often be interested in only some of them.

In Fig. 2.52.5 we illustrate the masking process of identifying and selecting our
ROI. In the left panel, we show the pseudo-colour image and the area in the
red square which delineates our ROI. In the right panel, we have extracted the
spectral features of the image in the ROI and rendered a pseudo-colour image
to display the ROI we are interested in.

There are various methods that can be employed in the selection of the ROI.
We, however, found the use of k-means, an unsupervised clustering method, to
be consistent and worked very well in identifying the ROI without further edit-
ing of the masked images. We compared using 2, 4, 6 or 8 clusters to determine
which would be able to successfully segment the sheep from the background
in the image. In Fig. 2.62.6, we show a visual representation of the different clus-
ters.

We note, from Fig 2.62.6, that the clustering algorithm K-means with 2 clusters
(B) is not able to accurately distinguish between the background and the ROI
and would therefore not provide a good mask for the hypercube. (C) and (D),
4 and 6 clusters respectively, provide a fairly good mask that can be applied on
the hypercube, with (D) showing a better mask. While 8 clusters (E) provides a
more detailed image than the rest of the values, the drawback is the computa-
tional cost. At the same time, K-means with 4-6 clusters produces a fairly good
mask with lower computational cost. Therefore, we consider between 4 and 6
clusters when masking the rest of the images for the selection of the ROI in this
thesis.
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Figure 2.6: Showing the original Pseudo-image (A) as well as Cluster image
and corresponding binary image of 2 cluster (B), 4 cluster (C), 6 cluster (D) and
8 cluster (E)
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Chapter 3

Multivariate Analysis

In this chapter, we provide an overview of the IMF data corresponding to the
sheep images. We propose three formats in which data can be extracted from
the segmented sheep images. We also briefly provide an overview of some of
the common multivariate methods used in hyperspectral imaging that we will
employ in the analysis of the sheep images and IMF data. These methods in-
clude multiple linear regression, principal component analysis and regression,
partial least squares regression and discriminant analysis, linear discriminant
analysis, support vector machines and artificial neural networks. Lastly, we
provide an overview of how we can measure model performance.

3.1 Introduction

The hyperspectral image contains a wealth of data that are commonly ex-
tracted as texture-based, morphological-based (Shape) and intensity-based
features. The use of multivariate techniques is usually required to decompose
the features contained in the hyperspectral image into valuable information.
This information can then be used to explore the desired object’s character-
istics/attributes. The use of multivariate as opposed to univariate techniques
is preferred as multivariate techniques are capable of simultaneously analyz-
ing data collected on more than one variable, especially when two or more
variables are not orthogonal to each other, i.e. there is high correlation be-
tween variables. Some multivariate techniques are also capable of variable se-
lection or dimension reduction. That is, they either select a small number of
wavelengths that are able to explain the hypercube (i.e. remove any redun-
dant wavelengths) or group wavelengths that share the same characteristics
(i.e. reduce the number of dimensions considered during the model creation).
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Figure 3.1: Classification of multivariate analysis techniques into methods
widely employed in hyperspectral data analysis

Generally, multivariate methods can be classified into quantitative regression
or qualitative classification as illustrated in Fig. 3.13.1. Prior to the use of any
quantitative or qualitative techniques, the hypercube needs to be in a format
that can easily be used. Fig. 3.23.2 illustrates the change from the hypercube to a
spectral data matrix with each row representing a different wavelength.

The general aim of using quantitative regression methods is to build a model
that is able to establish a relationship between the object’s numeric and con-
tinous attributes to the wavelength and/or spatial information contained in

Figure 3.2: Spectral data unfolding of a hyperspectral hypercube to a spec-
tral data matrix that can be used as an input into the multivariate techniques.
Adapted from Roggo et al. (2005)(2005)
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Figure 3.3: Hyperspectral image analysis on an apple. Adapted from Keresztes
et al. (2017)(2017)

the hypercube. Furthermore, quantitative methods can be either linear or non-
linear, with multiple linear regression (MLR), principal component regression
(PCR) and partial least squares regression (PLS-R) being the most widely used
linear methods and support vector machines (SVM) with non-linear kernels or
artificial neural network (ANN) used for non-linear models.

Alternatively, the purpose of qualitative classification is to build a model us-
ing the wavelength and/or spatial information contained in the hypercube to
classify certain binomial or categorical characteristics of the sample. Qualita-
tive classifications can be further classified as supervised and unsupervised.
Supervised classification maps an input (spectra and/or spatial information
contained in the hypercube) to a desired output (target characteristic) based on
given sample input-output pairs. Methods include linear discriminant analysis
(LDA), SVM, ANN and PLS with a discriminant analysis extension (PLS-DA).
Unsupervised classification uses only the input (wavelength and/or spatial in-
formation contained in the hypercube) with no corresponding output defined,
hence the classifier generally tries to find patterns using the given informa-
tion, methods include principal component analysis (PCA) and ANN cluster-
ing.

To illustrate the use of quantitative and qualitative techniques on hyperspec-
tral analysis, consider an apple used in a study conducted by Keresztes et
al. (2017)(2017), displayed in Fig. 3.33.3. The qualitative approach of model creation
would result in a model able to classify between different objects in the image.
The model would also be able to determine whether or not there was a bruise
(defect) in a given apple, as illustrated by the step-wise or multi-class bruise
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prediction on the figure. The quantitative approach would result in a model
that is able to predict the time after bruising for the apple, the firmness of the
apple, the moisture content within the apple and/or the chemical attributes of
the apple.

In this thesis, our overall aim was to predict the IMF content of sheep using
hyperspectral image analysis. To do this, we processed the sheep images as
depicted in Chapter 2. Now we would like to see if the processed sheep image
can be used to predict the IMF content using some of the multivariate methods
mentioned above.

In the following sections, we let Y denote a (n× q) matrix of response (depen-
dent/outcome) variables, the object’s attributes of interest is the hyperspectral
image, in our case the IMF content (quantitative) or the marbling score (qual-
itative). Let X denote a (n × p) design matrix of explanatory (independent)
variables, i.e. the spectral bands of the sheep hypercube. Let β denote a (p× 1)
coefficient matrix corresponding to the explanatory variables and ε denote a
(n × q) matrix of errors that are independent identically distributed normal
with a mean of 0 and a variance-covariance matrix of σ2In, where In is the
identity matrix. Note that q is the number of the object’s attributes to be con-
sidered, p is the number of spectral values in the hypercube and n is the total
number of observations.

3.2 Data Matrix

Before discussing the various methods that can be applied to the data in order
to predict the intra-muscular fat content or classify the marbling score, we first
consider the format the data needs to be in. We investigated several alternative
ways to extract information from the sheep hypercube into the design matrix
X, described below in more details. We also provide summary statistics of the
IMF content data in our response variable Y.

3.2.1 Intramuscular Fat content

In order to perform any analysis on the sheep images, corresponding IMF con-
tent values are required. Fig. 3.43.4 (a) shows the distribution of the 101 IMF con-
tent values of the sheep in our dataset. The distribution of the IMF content val-
ues appears slightly skewed with a right-tail. From this, we see that the vast
majority of sheep have IMF content values between 2.5 and 5.5, with very few
sheep with IMF content values in the range of 6 to 7. The IMF content values
seem to be centered around 4%. Table 3.13.1 shows the exact summary statistics
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(a) (b)

Figure 3.4: Histogram of the IMF content shows a slightly right-tailed distri-
bution.

in the total row for the IMF content values in the dataset.

We can group the IMF content values into 4 categories corresponding to mar-
bling scores of Slight–, Slight+, Small and Modest. Fig 3.43.4 (b) shows the dis-
tribution of the IMF content values grouped by the marbling score. For the
Slight– group, the figure shows a symmetrically distributed boxplot with mean
and median of approximately 2.8 as depicted by Table 3.13.1. Similarly, for the
Modest group with mean and median of approximately 6.3. The Slight+ and
Small group appear to have slighlty different means and medians, with the
former having a mean of approximately 3.5 and a median of approximately
3.6 and the latter having a mean of 4.6 and median of 4.5.

Table 3.1: Descriptive statistics for the IMF content in the Dataset

Intramuscular Fat Content

n Mean Median SD Range

Slight– 4 2.847 2.885 0.114 0.525

Marbling Slight+ 51 3.587 3.652 0.242 0.937

Score Small 43 4.612 4.582 0.438 1.433

Modest 3 6.349 6.304 0.317 0.629

Total 101 4.077 3.882 0.756 3.950
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The Modest and the Slight– have less than 5 IMF content observations. Unfor-
tunately, classification models would not be capable of accurately classifying
these two groups due to the small samples. We therefore decided to merge
the Slight– group with the Slight+ group and the Modest group to the Small
group. We were therefore able to explore predicting the actual IMF content val-
ues (quantitative variable, continous value) or the marbling score (0/1, that is
Small vs Modest, qualitative variable) in this dataset.

3.2.2 Column-Average

The first format we propose involves taking the average of the ROI for each
wavelength after spatial pre-processing of the hypercube. That is we simply
take the column average in the spectral data matrix (see Fig. 3.23.2). The resulting
data matrix would be 1× n, where n denotes the number of wavelengths in
the hypercube. When combining all images in the dataset, the resulting matrix
would be 100× 31, i.e. 100 images and 31 wavelengths.

This data matrix is the easiest to compute of the alternatives considered here.

Figure 3.5: Visualisation of the Column-Average data matrix. Formed by tak-
ing the average for each column in the spectral data matrix . Adapted from
Roggo et al. (2005)(2005)
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It is also the simplest, but at the cost of losing information due to taking the
mean. An advantage over the other two formats would be, the identification of
optimal wavelengths. Fig. 3.53.5 visualizes the data extraction process. This data
format is also widely used in real world applications when building models
for the prediction or classification of an attribute, such as the IMF content or
marbling score.

3.2.3 Row-Average

The second format we propose involves taking the average across the wave-
lengths for every pixel after selecting and extracting information from the ROI
in the hypercube. That is, we simply take the row average in the spectral data
matrix (see Fig. 3.23.2). The resulting data matrix would be m× 1, where m is the
number of pixels in the ROI. When combining all images into one dataset, the
resulting matrix would ideally be m× 101. However due to different sheep im-
ages having different numbers of pixels in the ROI, we instead sample a fixed
number of pixels from each ROI.

Figure 3.6: Visualisation of the Row-Average data matrix, that is formed by
taking the average for each row in the spectral data matrix. Adapted from
Roggo et al. (2005)(2005)

Compared to the first data matrix in 3.2.23.2.2, this matrix has a high computa-
tional cost. It also loses information from each individual wavelength and is
not able to identify optimal wavelengths. Fig 3.63.6 visualizes the data extraction
process.
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3.2.4 Individual Wavelengths

Lastly, the third data format proposed involves using individual wavelengths
for each sheep image after selecting and extracting information from the ROI
in the hypercube. The resulting format, after combining all images, would be
a m× 101× 31 datacube, where m is the number of pixels in the ROI.

This datacube is the most computationally expensive of the three proposed
data matrices. The first step, as with the row-average matrix, is to sample the
number of pixels, which is pre-defined. Then, the first matrix containing only
data from the first wavelength for each of the images is used as input to the
multivariate method(s) and the results obtained. This is then repeated for each
of the remaining wavelengths in the datacube.

The advantage of this data format compared to the other two, is that it will
be possible to determine which wavelength is able to most accurately predict
the IMF content or classify the marbling score. The drawback, besides com-
putational cost, is that a model containing a combination of information from
several wavelengths is not possible.

3.3 Multiple Linear Regression (MLR)

MLR is an extension of simple linear regression models. A simple linear re-
gression aims at explaining the relationship between one continuous response
variable and one explanatory variable. However, in most cases there is more
than one potential response or explanatory variable, therefore MLR aims at ex-
plaining the relationship between the continuous response variable(s) and two
or more explanatory variables (Pan et al. (2016)(2016); D. Wu, Shi, et al. (2012)(2012)). The
MLR model equation can be written as:

Y = βX + ε. (3.1)

MLR would not be suitable unless there is prior knowledge of which explana-
tory variables (spectral bands) to include in the model, since depending on the
spectral resolution used in acquiring the hyperspectral image, the number of
variables (spectral bands) would range from 10 to hundreds. As such other
statistical/machine learning techniques are generally preferred.

A common adaptation used in multivariate analysis is penalized linear regres-
sion for quantitative regression or penalized logistic regression for qualitative
classification (Kyung et al. (2010)(2010)). They are also referred to as shrinkage meth-
ods, a terminology which we will use henceforth. In particular, the least abso-
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lute shrinkage and selection operator (known simply as lasso), ridge regression
and elastic net are commonly used penalized regression methods. These adap-
tations penalize the explanatory variables and minimize the residual sum of
squares based on the penalties applied. The penalties are normally applied on
the individual regression coefficients, which can cause them to tend to zero, in
other words shrink. For the lasso and ridge regression, the loss function that
minimizes the residual sum of squares are given below:

Losslasso = (Y− X′β)′(Y− X′β) + λ|β|

Lossridge = (Y− X′β)′(Y− X′β) + λβ′β

The loss function for both the lasso and ridge regression allow explanatory
variables (spectral bands) that are weakly related to the response variable(s)
to tend to zero, reducing the number of variables included in the final model.
The drawback of ridge regression is the final model still incorporates all ex-
planatory variables, though variables that are weakly related to the response
variables have a coefficient close to zero. A drawback of the lasso is when two
or more variables are highly correlated, the lasso tends to choose one at ran-
dom so that the final model may include variables that are highly significant in
predicting the response but may not make much practical sense. These draw-
backs led to the introduction of the elastic net by Zou and Hastie (2005)(2005). The
elastic net, in simple terms, is a mixture of both the lasso and ridge regression
without their inefficiencies.

3.4 Principal Component Analysis (PCA) and Re-

gression (PCR)

PCA is a dimension reduction method developed by Pearson (1901)(1901) that con-
verts possible correlated explanatory variables, the wavelengths in our case,
into a linear combination of uncorrelated variables called principal compo-
nents (PC). The first PC aims to explain the greatest amount of variability in
the spectral data matrix and the second PC aims at explaining any variabil-
ity not explained by the first PC and the third PC aiming to explaining any
variability not explained by the first two PC and so on. Eventually, the maxi-
mum number of PCs would match the number of explanatory variables, where
such a case would indicate that all spectral bands are uncorrelated with each
other. Technically, PCs are eigenvectors of the covariance matrix of the spectral
data matrix with the eigenvalue of the corresponding eigenvector denoting the
variance in the data along the eigenvector. PCA then sorts the eigenvectors in
decreasing order of their eigenvalue. Principal component regression (PCR) is
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an extension of PCA that uses the PCs that have high eigenvalues and forms
a MLR using the model (3.13.1) with the response variables being the object’s
attributes of interest, such as the IMF content in our case.

3.5 Discriminant Analysis (DA)

DA is a supervised classification method that aims at maximizing the degree
of separation between classes (binomial or categorical) in as few dimensions
as possible. There are many forms of DA in use with LDA being more widely
used than any other. LDA uses discriminant functions, linear combinations
of the explanatory variables, that provide the greatest separation between the
classes. The first discriminant function provides the greatest separation, af-
ter which the separation decreases with each successive discriminant func-
tion. The maximum number of discriminant functions is determined by the
min{p, g− 1}, with g being the number of classes in the categorical response
variable and p being the number of spectral bands in the dataset. LDA bears
a similarity to PCA since it also aims at dimension reduction by forming com-
binations of the explanatory variables, but unlike PCA which is unsupervised
and therefore looks at explaining the variance in the spectral data matrix, LDA
uses the response variable class and aims at maximizing the separation be-
tween the classes (Fisher et al. (1936)(1936)).

3.6 Partial Least Squares (PLS)

PLS-R is another dimension reduction method that bears similarity to PCR,
developed by Wold et al. (1984)(1984). As discussed above, PCR projects the vari-
ables onto a new space (PC) that is able to describe as much of the variation
in the data as possible but there is no guarantee that the PC with the highest
eigenvalue will be relevant to the prediction of the response. PLS-R, on the
other hand, is able to use the response variable when choosing the projection
onto the new space (called Latent variable (LV)). Therefore, PLS-R chooses pro-
jections that would describe the possible covariation between the explanatory
variables and the response variable. The projection onto the LVs is a linear
combination of the original explanatory variables, with the first LV capturing
the biggest variation and correlation between the explanatory variables and
the response variables. A regression model is then built using the latent vari-
ables. By extending the PLS method to allow use of DA, PLS is capable of per-
forming classification task. This extension is usually denoted as PLS-DA.
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Figure 3.7: Support vector machines illustration using (A) a simple example
with clearly separable classes ; (B) Example with non-separable classes

3.7 Support vector machine (SVM)

SVM is a supervised classification algorithm that finds one or more hyper-
planes which best divides the data into two or more classes (binary or cate-
gorical respectively). To define what a hyperplane is in this context, imagine a
simple 2-class example (Fig. 3.73.7A), i.e. the response variables has only 2 classes
(-1, +1), with a line that can clearly separate the data when plotted in a scatter-
plot. The hyperplane in this example would be the line that linearly separates
and classifies the data into the two classes. The position of this line is depen-
dent on the data points nearest to it, these data points are referred to as support
vectors. Continuing with the simple 2-class example, finding the optimal hy-
perplane would require finding the greatest possible margin (distance between
the hyperplane and the support vectors) between the hyperplane and the data
that would result in a greater chance of any new data being correctly classified
(Cortes and Vapnik (1995)(1995)).

However, most cases aren’t this simple, therefore consider a case where the
data can not be clearly linearly separated using a line when plotted in a scat-
terplot (fig. 3.73.7B). In this case, SVM maps the data into higher and higher di-
mensions until a hyperplane can be formed to separate the data into 2 classes.
This method of mapping data into higher dimensions is referred to as the ker-
nel trick (or kerneling). Note that when applying the kernel trick, the hyper-
plane can no longer be a line and therefore becomes a plane (Camps-Valls and
Bruzzone (2005)(2005)). This forms the basis of the SVM algorithm. Extending the
SVM with a least-squares kernel allows for a non-linear regression model to
be created that can be used in explaining non-linear data (Suykens and Vande-
walle (1999)(1999)).
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Figure 3.8: Basic structure of a feed-forward Artificial Neural Network

3.8 Artificial Neural Network (ANN)

ANNs are not used in this project, however they are widely used in real world
applications and it is therefore worth briefly mentioning. An ANN is an algo-
rithm designed to mimic the organization and knowledge acquisition skills of
the human brain. It consists of input and output layers, as well as either one
or more hidden layers as illustrated in Fig. 3.83.8. The layers of an ANN consist
of a number of highly interconnected processors, referred to as neurons, that
are connected by weighted links passing signals from one neuron to another.
The neurons may receive more than one input from the input signals, but out-
put only one signal through the outgoing connection that branches out to the
input signals of other neurons in the network. This forms the basic structure
and process that an ANN goes through when analysing data for either clas-
sification or regression. The most used ANN is the back-propagation neural
network, a type of feed-forward neural network. Fig. 3.83.8 shows a simple feed-
forward neural network. In such a network, the input signals are propagated
in a forward direction in a layer by layer formation (Lorente et al. (2013)(2013)). Thus
for a back-propagation neural network, the neural network uses the training
data to propagate the input pattern layer by layer until the output is gener-
ated. If the generated output is different from the desired output then the error
is calculated and propagated backwards through the network from the output
layer to the input layer. As the errors gets propagated backwards, the weights
are readjusted and modified.
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Aside from the great accuracy an ANN provides in most cases, there are two
big drawbacks to the method. ANNs are labeled as black boxes because there
is no indication as to the formula the ANN used to produce the generated out-
put. ANNs also require a large amount of training data in order to have a high
accuracy, which in some cases can be expensive or impossible to acquire. In-
creasing the number of hidden layers or the number of hidden neurons in the
hidden layer can improve the accuracy but this is at the cost of the computa-
tional time it takes to train the neural network. Regardless of these drawbacks,
ANNs are increasingly widely used.

3.9 Validation and evaluation

To validate the regression or classification models developed in this thesis, the
original dataset was randomly split into a 75:25 ratio with the training set hav-
ing 75% of the dataset and the testing set having 25% of the dataset. The model
was developed and calibrated using 10-fold repeated cross-validation with 10
repetitions. That is, the training set of images was further split into 10 folds
with approximately the same number of images in each fold. A model was
built using 9 of the 10 folds and tested on the remaining fold and the perfor-
mance metric for the test set calculated. This was repeated 10 times with one
model created for each fold. Based on either the minimum Root-mean-square-
error (RMSE) or the maximum Accuracy measure, the best model in the train-
ing process was chosen and tested using the test images to predict the IMF
content or to classify the marbling score and the error calculated. Note that
Accuracy, in this case is defined as the number of correctly classified images
divided by the total number of images.

RMSE was chosen as the performance measure for the regression techniques
as it captures the spread of the residuals, while Accuracy was used for the clas-
sification methods to check how well they were able to classify new data.
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Chapter 4

Results

In this chapter we look at the results obtained after performing analysis on the
pre-processed set of images. The chapter is divided into: Section 4.14.1, shows
how we extracted the sheeps spectral data from the hypercube. In Section
4.24.2, we present our results of the classification analysis on the sheep data,
and in section 4.34.3, we present our results when using continous IMF content
value.

4.1 Spectral data extraction

The white pixels (i.e. the non-zero elements) in the final mask (Fig. 2.62.6) of the
sheep images after the masking step was used as the ROI to extract the sheep
carcass (spectral data) from the hyperspectral image. Then, we employed the
column-average data matrix discussed in section 3.2.23.2.2, that is, the dataset was
formed by calculating the average spectral value of all pixels in the ROI for
each wavelength. This procedure was then repeated to obtain the average
value from all 101 sheeps in our dataset and saved in a matrix X with the
sheeps as rows and the wavelengths as the columns. The matrix was then
pre-processed using mean-centering before any subsequent analysis was con-
ducted.

Fig 4.14.1 shows the distribution of the mean reflectance values in the ROI per
wavelength. We can see that there appears to be several outliers, with the
most significant being sheep images 151, 160 and 163. As there is no reason
to delete the values, we will conduct two analyses with one being the full data
set (named full, n = 101) and one where the potential outliers (named reduced,
n = 98) were removed (see Appendix Fig. 5.25.2).
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Figure 4.1: Boxplot of the Sheep carcasess showing the distribution of the mean
reflectance values of the ROI per wavelength

4.2 Classifying Marbling Score

The classification models used to classify the marbling score were briefly in-
troduced in section 3.33.3, specifically LDA, PLS-DA, SVM and MLR using the
logistic regression. As mentioned previously, LDA and PLS-DA both perform
dimension reduction by either using discriminant functions that provide the
greatest separation between marbling scores or by capturing the biggest vari-
ation and correlation between wavelengths and marbling scores. In contrast,
SVMs find one or more hyperplanes which best divides the data into two or
more marbling scores and has the ability to be kerneled allowing non-linear
data to be analysed. The MLR aims to explain the relationship between the
binary reponse (e.g. the marbling score) and the wavelengths, where use of
shrinkage methods allows for dimension reduction.

In this section, we look at finding the optimal parameters using the training
set of images. Afterwards, we test the calibrated model using the test set and
compare the performance of the different techniques.

4.2.1 Tuning Parameters

Besides the traditional MLR technique, all other methods consist of parameters
that define them. For LDA and PLS-DA, the number of discriminant functions
and latent variables respectively, needs to be determined. For SVMs, the cost
parameter, that controls the trade-off between a hyperplane with the largest
minimum margin and a hyperplane that correctly separates as many instances
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as possible, needs to be determined. While for the shrinkage methods, the reg-
ularization terms (λ) needs to be determined.

Fig. 4.24.2 shows the results of the parameter tuning using 10-fold repeated cross-
validation as described in section 3.93.9 on the full dataset. Fig. 4.24.2 (a) shows
the number of discriminant functions against model accuracy for the LDA
method. We can see that there is no difference between them, therefore, the
number of discriminant functions chosen for the LDA model is 1 with an accu-
racy of 0.59. This is expected as LDA chooses the discriminant function using
min{p, g − 1}, where p = 31 and g = 2. In Fig. 4.24.2 (b), it is clear that the
number of latent variables with the highest accuracy for the PLS-DA function
is 21 with an accuracy of 0.61. For the SVM (c), the cost parameter that had
the highest accuracy in the training set was 0.3, with an accuracy of 0.545. The
ridge regression method (d) had an accuracy of approximately 0.54 with a reg-
ularization value of 0.1. The lasso method (e) had a regularization value of
0.0205 with an accuracy of approximately 0.512. Lastly, the elastic net had an
accuracy of 0.538 for regularization values of 0.1 and 0.03.

For the reduced dataset (see Appendix Fig. 5.35.3), the parameters for LDA and
SVM for both datasets were similar to the full dataset, however the accuracy
for the LDA model was less by approximately 0.07, while the accuracy for the
SVM was greater by approximately 0.04. There was a slight change in the pa-
rameters for the shrinkage methods, with the lasso regularization parameter
being slightly less (0.0161) for the reduced dataset, however had an increased
accuracy by 0.05. The ridge model had a regularization value of 0.16, slightly
more than the same model using the full dataset, with an accuracy of 0.56
which is approximately similar to the same model using the full dataset. The
elastic net model parameters for the two dataset were similar, with an accuracy
of approximately 0.54 for both datasets. Lastly, the PLS-DA model had 3 latent
variables for the reduced dataset, a difference of 18 from the same model using
the full dataset. There was not much difference in the accuracy of the models
using both datasets.

4.2.2 Results

With the models developed and calibrated, we used the test set of sheep im-
ages to determine whether the models are able to correctly classify the mar-
bling score of the ’new’ hyperspectral sheep images. Table 4.14.1 compares the
accuracy measurements of the models using the test images.

It can be seen that the shrinkage methods performed better in classifying the
marbling score using the test set of images of the reduced dataset, with accuracy
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(c) (d)

(e) (f)

Figure 4.2: Parameter tuning using 10-fold cross-validation on the full dataset
for (a) LDA (b) PLS-DA (c) SVM (d) ridge method (e) lasso method (f) elastic
net method
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Table 4.1: Classifaction model performance metrics for the test images for both
the full and reduced datasets. The specificity and sensitivity is also recorded.

Classifaction Model Metrics

Models full reduced

Speci f icity (Sens) Accuracy Speci f icity (Sens) Accuracy

MLR 0.27 (0.69) 0.50 0.45 (0.42) 0.43

Lasso 0.15 (0.77) 0.50 0.45 (0.67) 0.57

Ridge 0.18 (0.69) 0.46 0.45 (0.75) 0.60

Elastic-net 0.36 (0.62) 0.54 0.45 (0.75) 0.61

LDA 0.45 (0.46) 0.46 0.36 (0.58) 0.49

PLS-DA 0.45 (0.38) 0.42 0.45 (0.58) 0.52

SVM 0.36 (0.77) 0.54 0.45 (0.67) 0.52

values of 0.61, 0.60 and 0.57 for the elastic net, ridge and lasso models respec-
tively. The LDA and MLR had accuracies of 0.49 and 0.43 respectively, on the
reduced dataset. And the PLS-DA and SVM models had an accuracy of 0.52, on
the reduced dataset.

For the full dataset, the shrinkage methods had accuracies of 0.54, 0.50 and
0.46 for the elastic net, lasso and ridge models respectively. These were less
than the accuracies observed when using the reduced dataset, suggesting that
the models were affected by the outliers. In fact this seem to be the case for the
LDA and PLS-DA, with both models having lower accuracies when using the
full dataset than the reduced dataset. The MLR and SVM are the only models
that seem not to be affected by the outliers, with both having an increase in
accuracy of 0.07 and 0.02 respectively.

4.2.3 Model Specific Wavelength Importance

Using the final model developed during the training phase, we are able to
determine the importance of a specific wavelength in a model. The impor-
tance measurement measures the percentage of "influence" a wavelength has
on the model. For linear models, the percentage is measured by the absolute
value of the t-statistic for each model parameter. For the shrinkage methods,
the absolute value of the wavelength coeffiecients corresponding to the final
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Figure 4.3: Importance percentage of the spectral bands shown as a Heatmap
for the Classification models. Where the full dataset is denoted by F and the
reduced dataset is denoted by R

model are used. For the LDA, PLS and PCR, the measurement is based on
the weighted sums of the absolute regression coeffiecents. And for the SVM,
a loess smoother is fit between the marbling score and the wavelength and
the R2 statistic is then calculated for the model against the intercept only
model.

Fig. 4.34.3 shows the heatmap of the importance percentage of the spectral bands
against the classification models. From this, we see that the lasso models for
both data sets have the least number of spectral bands in the final model. This
is expected given the property of the lasso to shrink non-important variables
to zero. In the lasso model for the reduced data, only 3 spectral bands 490nm,
400nm and 660nm were important. The least important band in the final lasso
model, 660nm, has an importance percentage of less than 25%. The LDA and
SVM models appear to have similar spectral bands for the full and reduced data
set. The reduced data set for both models has at least 20 bands with importance
percentages of above 50%, while PLS-DA, elastic net and lasso models had
only about 3-4 bands above 50%.

The 400nm spectral band appears in all classification model at varying levels
of importance. The 420nm band appears in all but the lasso model when con-
sidering the reduced dataset while the 490nm band appears in all models except
the lasso with the full data set. The 630nm band also appears in all models ex-
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cept the lasso and the MLR model with the reduced data set, as does the 660nm
band in the full dataset.

The bands with 100% importance value in different models were: 610nm for
the elastic net and ridge method on the full data set, 400nm for the elastic net,
PLS-R and ridge method on the reduced data set and the LDA on the full data
set, 630nm for the lasso on the full data set, 490nm for the lasso on the reduced
data set, 410nm for the LDA and the SVM on the reduced dataset, 550nm for
PLS-DA and MCR models on the full dataset, 540nm for the MCR on the re-
duced data set. We also note that the bands 570nm and 580nm appear to have
an average importance of less than 15% for all models, with both not appear-
ing in either the elastic net or lasso model for both data sets under considera-
tion.

4.3 Predicting Percentage of Intramuscular Fat Con-

tent

To predict the IMF content, we use regression techniques introduced in sec-
tion 3.33.3. These are PCR, PLS-R, SVM, MLR and shrinkage methods. As men-
tioned previously, PCR is a dimension reduction technique that uses a linear
combinatination of principal components as explanatory variables. The other
methods used in this section have already been briefly mentioned in section
4.24.2.

In this section, we look at finding the optimal parameters using the training set
of images. We then test the calibrated model using the test set of images and
compare the different techniques.

4.3.1 Tuning Parameters

The parameter tuning process for the regression techniques is similar to that
of the classification techniques in section 4.2.14.2.1. The difference being that the
outcome variable is continous instead of binary, i.e. the IMF content instead
of the marbling score. The other difference is the selection of the best model.
Instead of maximizing the Accuracy of the model as was done in the classi-
fication case, here we are minimizing the RMSE. The parameters that require
tuning for the PLS-R, SVM and MLR with shrinkage methods have been men-
tioned in section 4.2.14.2.1. For PCR, the number of principal components needs to
be determined.

Fig. 4.44.4 shows the results of the parameter tuning using 10-fold repeated cross-
validation as described in section 3.93.9 on the full dataset. Fig. 4.44.4 (a) shows that
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Parameter tuning using 10-fold cross-validation on the full dataset
for (a) PCR (b) PLS-R (c) SVM (d) ridge method (e) lasso method (f) elastic net
method. Full dataset is denoted by F and reduced dataset by R
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the number of principal components against the model RMSE for the PCR
method. We can see the number of principal components chosen for the PCR
model is 1 with a RMSE value of 0.779. In Fig. 4.44.4 (b), it is clear that the num-
ber of latent variables with the lowest RMSE for the PLS-R method is 3 with
a RMSE value of 0.786. And for the SVM (c), the cost parameter that had the
lowest RMSE value in the training set was 0.03, with RMSE value of 0.783.
Ridge regression (d) had a RMSE value of approximately 0.782 with a regu-
larization value of 10. The lasso method (e) had a regularization value of 0.03
with a RMSE value of approximately 0.797. Lastly, the elastic net had a RMSE
value of 0.788 for the regularization values of 0.7 and 0.03.

For the reduced dataset see Appendix Fig. 5.45.4. The parameters for two of the
shrinkage methods, i.e. lasso and ridge, had the same value for the parameter
for both datasets under consideration. The RMSE was slightly higher in the
full dataset than the reduced dataset for both models (0.721 and 0.707 respec-
tively). PLS-R and PCR had 2 latent variables and 3 principal components,
respectively, on the reduced dataset with an RMSE value of approximately
0.693, which were the best models in the training phase for both datasets. The
SVM had a cost parameter of 0.01 on the reduced dataset with an RMSE dif-
ference of 0.07 between the two datasets. Lastly, the elastic net had regular-
ization parameters of 1 and 0.03 with a RMSE of 0.715, a difference of 0.073
from the full dataset. Overall, the reduced dataset had better performance in
the training phase with an average RMSE difference of 0.157 between the two
datasets

4.3.2 Results

Once the models were developed and calibrated, we used the test set of sheep
images to measure the RMSE of the models. That is, we measured how far the
predicted IMF content values were from the actual IMF content values. Table
4.24.2 compares the RMSE measurements of the models using the full and reduced
datasets.

It can be seen that the shrinkage methods performed better in predicting the
IMF content using the test set of images of the full dataset, with RMSE values
of 0.583, 0.595 and 0.597 for the lasso, elastic net and ridge models respectively.
The PCR and MLR had RMSE values of 0.601 and 0.958 respectively, on the full
dataset. And the PLS-R and SVM models had RMSE values of 0.606 and 0.609
respectively, on the full dataset.

For the reduced dataset, the shrinkage methods had RMSE values of 0.894 for
both elastic net and lasso models, while the RMSE value of the ridge model
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Table 4.2: Regression model performance metrics for the test images for both
the full and reduced datasets. The R2 and Mean-Absolute-Error (MAE) are also
recorded.

Regression Model Metrics

Models full reduced

RMSE R2 MAE RMSE R2 MAE

MLR 0.958 0.00436 0.759 1.572 0.199 1.133

Lasso 0.583 0.0632 0.492 0.894 0.00204 0.686

Ridge 0.597 0.0671 0.492 0.901 0.105 0.688

Elastic-net 0.595 0.0525 0.504 0.894 0.00204 0.686

PCR 0.601 0.0139 0.494 0.893 0.000793 0.676

PLS-R 0.606 0.0519 0.514 0.960 0.0759 0.717

SVM 0.609 0.0513 0.499 0.974 0.1089 0.724

was 0.901. These were greater than the RMSE values observed when using the
full dataset, suggesting that the models were affected by the outliers. In fact this
seem to be the case for the PCR and PLS-R, with both models having higher
RMSE values when using the reduced dataset than the full dataset. Similarly for
the MLR and SVM models, with RMSE values of 1.572 and 0.974.

Clearly, the results presented in Table 4.24.2 suggest that the outliers had an effect
in the prediction of IMF content on the test set of sheep images, with models for
the full dataset performing better than for the reduced dataset. The best model
identified for the reduced dataset was the PCR model, although the lasso and
elastic net model had almost similar performance (difference of 0.001 in RMSE
value). For the full dataset, the best model was the lasso for predicting the IMF
content in the test set of sheep images.

4.3.3 Model Specific Wavelength Importance

Using the final model developed during the training phase, we are able to de-
termine the importance (see section 4.2.34.2.3) of a specific wavelength on a model.
Fig. 4.54.5 shows the heatmap of the importance percentage of the spectral bands
against each of the regression models.

From the figure, we see that the lasso and elastic net models appear to be sim-
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Figure 4.5: Importance percentage of the spectral bands shown as a Heatmap
for the Regression models. Where the full dataset is denoted by F and the re-
duced dataset is denoted by R

ilar as determined by the same number of wavelengths deemed important for
the reduced dataset. This is expected as both models had similar regularization
values as seen in Fig. 4.44.4. We also note that both the elastic net and lasso regres-
sion for both data set have the smallest number of spectral bands in the final
model after the calibration of the model using the training set. While the PCR,
PLS-R and SVM models for the full dataset had almost every band, besides the
460nm band for the PCR and SVM models and 630nm for the PLS-R model, in
the final model.

It can be noted that the spectral bands 400nm and 420nm appear in all re-
gression models at varying levels of importance. The spectral bands 530nm
and 660nm also appear in every regression model, besides the lasso on the full
dataset. The bands deemed very important in the models were: 630nm for the
elastic net and ridge regression on the full data set, 490nm for the elastic net,
lasso and ridge regression on the reduced data set, 420nm for the lasso on the
full data set and PLS-R for both data sets, 530nm for the MLR on the full data
set, 410nm for the MLR on the reduced dataset, 620nm for the PCR and SVM
on the full data set and 680nm for the PCR and SVM on the reduced data set.
Lastly, we note that the bands 450nm and 460nm appear to have an average
importance of approximately 10% for all models, with both not appearing in
the elastic net and lasso regression for both data sets.
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Chapter 5

Discussion

The use of hyperspectral imaging analysis for the prediction and classification
of food quality and food safety has proven to be a powerful analytical tool for
non-destructive analysis (Gowen et al. (2007)(2007)). This thesis has demonstrated
the application of this technique in predicting the IMF content and classifying
the marbling score of sheep carcasses. Prior to the analysis, reflectance calibra-
tion was conducted using the methods described in section 2.32.3. Image segmen-
tation to differentiate between the sheep pixels and the background was con-
ducted using k-means. The sheep pixels were then extracted into three datasets
discussed in section 3.23.2 to be used as inputs to classification and regression
methods discussed in section 3.33.3. Several regression and classification models
were created, calibrated and validated using two datasets, full and reduced. The
reduced dataset did not contain data from 3 sheep images (150, 160 and 161) as
they appeared to be extreme values with average pixel values exceeding the
interquartile range for each wavelength in the dataset (see Fig. 4.14.1). These ex-
treme value were removed as they may affect the development and prediction
accuracy of the models, however models were created using the full dataset
and the results of the two datasets compared.

As seen in Table 4.24.2, we found that the models performed better in predict-
ing new hyperspectral image data using the full dataset. The results obtained
are comparable to the results reported by National ICT Australia (NICTA) for
determining IMF content in sheep carcasses (Robles-Kelly and R. Wei (2015)(2015)).
We compared the Mean-Absolute-Error of our models and that of the model
created by NICTA ( = 0.748), and found that almost all our models per-
formed better except the MLR model. This can be attributed to the fact that,
while we opted to use K-means to segment and extract our ROI in the spa-
tial pre-processing stage, they used all pixels in the image segmented us-
ing a method they developed which is akin to K-means (Robles-Kelly and R.
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Wei (2015)(2015)).

We also developed and validated models that would classify the hyperspec-
tral images into a categorical marbling score, based on IMF content. Using the
Accuracy metric to evaluate a models performance, we found in this instance,
performance of the models was slightly better if the reduced dataset was used.
This was expected as classification methods are highly susceptible to the pres-
ence of extreme values, affecting the model’s efforts to generalize. The elastic
net model was identified as the best model with an accuaracy of 61%, indicat-
ing that the model would have a 61% probability of correctly classifying a new
image. Overall the classification model performances were not significantly
different to random chance unfortunately.

In spite of being able to predict the IMF content and classify the marbling score
using hyperspectral images, we were unable to test the process using the row-
average and individual wavelength data formats. We found that the maximum
number of pixels that could be used as independent variables was approxi-
mately 15,000 that accounted to 3-7.5% of the pixels in one sheep image. Any
more variables would cause memory issues, as the resulting data matrix would
be too big to hold in memory and perform analysis on it. This also posed the
problem of overfitting in the development of the models in the training phase,
as there are more independent variables than the number of sheep images. We
also note that the Modest and the Slight– group had to be merged with the
Small and Slight+ groups respectively due to the small number of sheep in the
dataset. We suspect, this loss of information could have attributed to the poor
performance of the classification models. In fact, we found the LDA model
had a better classification accuracy (results not shown) when only considering
dataset with Small and Slight+ marbling scores.

Despite these limitations, we were able to showcase the predictive ability of
the hyperspectral image analysis. In this thesis, we were able to show the ef-
fectiveness of hyperspectral image analysis in the prediction of IMF content
from hyperspectral sheep images. Possible future works includes considera-
tion to using more robust multivariate techniques to reduce the effects outliers
would have in the model calibration and validation. We may also consider us-
ing high performance computing in the analysis given the vast amount of pro-
cessing power it may have, especially in the case for the row-average and indi-
vidual wavelength where the number of independent variables exceed 15,000.
We may also consider a further segmentation of the masked image to different
parts such as the muscle, bone, fat etc. and performing the analysis on a combi-
nation of the average values of the newly segmented areas for each wavelength
to predict the IMF content. Lastly, as the analysis was conducted in the visible
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spectrum, perhaps performing the same analysis in the near-infrared spectrum
would yield better prediction accuracy.
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Appendix A

Spearman Correlation

Figure 5.1: Spearman Correlation graph for all possible combinations of the
6 different methods Grey World, White Patch, NICTA Reflectance, Shades of
Grey, Grey Edge and Finlayson and Shaefer
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Appendix B

Extreme Values

Figure 5.2: Boxplot of the mean reflectance value for each wavelength with
outliers removed
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Appendix C

Parameter Tuning
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Parameter tuning using 10-fold cross-validation on the reduced
dataset for (a) LDA (b) PLS-DA (c) SVM (d) ridge method (e) lasso method(f)
elastic net method
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Parameter tuning using 10-fold cross-validation on the reduced
dataset for (a) PCR (b) PLS-R (c) SVM (d) ridge regression (e) lasso regression
(f) elastic net regression
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