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Abstract
Knowing how many manatees live in Florida is critical 

for conservation and management of this threatened spe-
cies. Martin et al. (2015) flew aerial surveys in 2011–2012 
and estimated abundance in those years using advanced 
techniques that incorporated multiple data sources. We 
flew additional aerial surveys in 2015–2016 to count 
manatees and again applied advanced statistical tech-
niques to estimate their abundance. We also made several 
methodological advances over the earlier work, including 
accounting for how sea state (water surface conditions) 
and synchronous surfacing behavior affect the availabili-
ty of manatees to be detected and incorporating all parts 
of Florida in the area of inference. We estimate that the 
number of manatees in Florida in 2015–2016 was 8,810 
(95% Bayesian credible interval 7,520–10,280), of which 
4,810 (3,820–6,010) were on the west coast of Florida and 
4,000 (3,240–4,910) were on the east coast. These esti-
mates and associated uncertainty, in addition to being of 
immediate value to wildlife managers, are essential new 
data for incorporation into integrated population models 
and population viability analyses.

Introduction
Abundance, or the number of organisms of a spe-

cies in a region at a given time, is a fundamental quantity 
in population and conservation biology (Williams et al. 
2002, Sutherland and Royle 2016). Therefore, obtaining 
robust and accurate estimates of abundance is essential in 
the study and management of threatened and endangered 
populations. For many animals it can be challenging for 
biologists to obtain these estimates. Challenges include 
widespread and changing distribution of animals and, 
during surveys, animals that are missed because they are 
either in the study area but not available to be detected 
by observers or are available to be detected but are still 
missed by observers. 

These issues make estimating abundance of the 
threatened Florida manatee (Trichechus manatus lat-
irostris) difficult. Manatees exhibit complex partial mi-
gration patterns (Deutsch et al. 2003). During warm-
er months, some manatees travel great distances from 
wintertime warm-water aggregation sites to feeding and 
breeding locations, some of which are outside of Flori-
da. Coastal and freshwater habitats in Florida alone cov-
er more than 11,500 km2 (FWC, unpublished GIS data), 
making any effort for a comprehensive census (complete 
enumeration of a population) impractical. In addition, 
as aquatic mammals, manatees are often too far below 
the surface to be visible from aircraft, depending on water 

clarity and other factors. Even when they are near the sur-
face, manatees can be missed by observers during aerial 
surveys. Failing to account for these sources of error can 
lead to substantial underestimation of abundance. This is 
problematic, as abundance is a key source of information 
used by natural-resource managers for the assessment of 
the conservation status of the Florida manatee (Runge et 
al. 2017, U.S. Fish and Wildlife Service 2017).

From 1991 through 2014, the only statewide mana-
tee counts came from aerial synoptic surveys, which are 
flown almost every year, during the coldest part of winter 
(Ackerman 1995, Martin et al. 2015, Fish and Wildlife Re-
search Institute 2018).  These surveys are intended to be 
comprehensive, but they do not account for the number 
of manatees that are missed because they are absent from 
surveyed sites, present at surveyed sites but not available 
to be detected, or available yet not detected. The high level 
of variability in the counts from synoptic surveys suggest 
large degrees of year-to-year variation in these factors. As 
such, synoptic surveys provide minimum counts that can 
be used as lower bounds of abundance, but they should 
not be considered an estimate of abundance or used to 
infer population trends.

In 2015 the Fish and Wildlife Research Institute 
(FWRI), a division of the Florida Fish and Wildlife Con-
servation Commission (FWC), accomplished one of its 
primary conservation goals by conducting and publishing 
the first statewide Florida manatee abundance estimate 
(Martin et al. 2015), for 2011 (when the west coast was 
surveyed) and 2012 (when the east coast was). Researchers 
used a stratified random sampling design and developed 
models for reducing errors associated with imperfect de-
tection and spatial variation in density and availability. 
Martin et al. (2015) estimated a statewide manatee pop-
ulation of 6,350 (95% Bayesian credible interval: 5,310–
7,390) manatees statewide, with 2,790 (2,160–3,540) on 
the west coast and 3,560 (2,850–4,410) on the east coast. 
These surveys provided a single estimate of abundance 
for a given year on a given coast (or over a pair of years for 
a statewide estimate). Repeating surveys not only updates 
estimates, it adds information that better characterizes 
the population, improving the reliability of the results. 

Martin et al. (2015) also identified several limitations to 
their approach, including the inability to include parts of 
the state in which no manatees were counted or to account 
for the effects of sea state (water surface conditions, as 
measured by the Beaufort scale) on the probability of man-
atee availability. Therefore, the goals of this study were: 1) 
to fly new surveys of both coasts, ideally at a time of year 
with better weather conditions; 2) to extend the availabil-
ity study to include more conditions, including sea state; 
3) to provide Florida manatee abundance estimates from 
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the new surveys; and 4) to provide updated abundance 
estimates from the original (2011 and 2012) surveys that 
account for the effects of both sea state and synchronous 
surfacing behavior on manatee availability and include all 
parts of Florida in the area of inference. We also discuss 
limitations to the inferences that might be drawn from 
these estimates, and we recommend enhancements to sur-
vey and estimation methods for this threatened mammal.

Methods
Field surveys

Abundance surveys
We conducted aerial surveys from Cessna 172 fixed-

wing aircrafts between February 28 and March 22, 2011, 
and during December 1–9, 2015, on the west coast and 
during March 5–13, 2012, and December 5–12, 2016, on 

the east coast (Martin et al. 2015; see Appendix I, Ta-
bles S1–S4 for exact dates by location). Estuaries, rivers, 
creeks, and coastlines from all or part of 26 counties on 
the west coast and 21 counties on the east coast were sur-
veyed. Each coast was divided into nine sampling regions 
(Figure 1). 

We used a stratified random sampling protocol in 
which all potential cool-season manatee habitat was in-
cluded in the sampling frame, and allocated survey effort 
to three strata (Dorazio et al. 2013, Martin et al. 2015). 
Potential habitat was stratified using a geographical infor-
mation system (GIS). Areas that were known to be suit-
able manatee habitat and likely to have manatees present 
during the survey (e.g., primary or secondary warm-wa-
ter aggregation sites) were included in stratum 1. Any area 
that was considered probable manatee habitat, as deter-
mined by the presence of manatees either through aerial 
sightings, telemetry locations, or carcass recoveries, were 

Figure 1. Sampling regions of abundance surveys.
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Figure 2. Example map of a sampling region (Tampa Bay). All plots are shown; colors indicate strata. In the panel on 
the left, plots flown in 2011 have a black outline; in the panel on the right, plots flown in 2015 have a black outline.

included in stratum 2. In areas where information about 
manatee presence was either not known or was sparse but 
that had water depths <3.7 m or that had seagrass beds 
present were likewise included in stratum 2. Areas with-
out seagrass or water >3.7 m (habitat areas less likely to 
have manatees) or with cold ambient temperatures and 
no warm-water sites (e.g., parts of the panhandle region) 
were included in stratum 3. 

The study area was subdivided into 11,149 plots (each 
~1.3 km2 in area) using a GIS. For each coast and sampling 
region, plots were randomly selected within each habitat 
stratum to be included in the survey (except that all stra-
tum 1 plots were included). See Figure 2 for an example, 
and Appendix II, Tables S5 and S6 for data on plots select-
ed. Selected plots were overflown by two observers at an 
altitude of 750 ft and a speed of about 80 kts. Manatees 
were counted during two consecutive passes (each taking 
about 2 min) at each plot; if a group of manatees was ob-
served, a third pass was used to reconcile group locations 
between observers.

Availability study with manatee replica
To estimate the probability of manatees being available 

for detection by observers, we used the method described 
by Martin et al. (2015), which was inspired by Pollock et 
al. (2006). We constructed a replica of a manatee (see Fig. 
S3 in Martin et al. 2015) and lowered it at 0.5-m incre-
ments into the water from the surface to a depth of up to 
3 m. Observers in the plane recorded the depth at which 
the replica could no longer be seen. We flew around the 
replica at three surface distance categories (200 m, 300 m 
and 400 m) at 15 sites that varied in water clarity and sea 
state. Each site was assigned to one of four visibility cate-
gories, vk. A vk of 1 meant that the water was clear and the 
bottom was visible; a vkof 2 meant that the bottom was 
visible, but details were not clearly visible; a vk of 3 meant 
that it was difficult to evaluate water clarity because the 
water was too deep for the bottom to be seen; and a vk of 
4 meant that the water was turbid. We used observations 
from the more experienced observer to determine the 
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maximum water depth at which the replica could be seen 
under each combination of distances (d), visibility (vk), 
and sea state (Beaufort scale <3 vs. ≥3). There was at least 
one site and as many as four for all combinations except 
vk = 1, high sea state and vk = 4, high sea state. 

Statistical models

Model structure and general modifications
As the basis of our analyses, we used the model struc-

ture described in detail in Martin et al. (2015). As in that 
study, the number of manatees in strata 2 and 3 plots is as-
sumed to follow a zero-inflated Poisson (ZIP) distribution, 
and the number of manatees in stratum 1 plots is assumed 
to follow a Poisson distribution. Detection probability (p) 
is broken down into two components: the probability 
that a manatee present in a plot is available to be detected 
(near enough to the surface, for the current sea state and 
visibility conditions; Ap) and probability that an observer 
perceives a manatee, given that it is available to be detected 
(Dp). This is a modified N-mixture model (Royle 2004):

yit ~ bin(Ni, pit )

pit = Apit · 
Dpit

where yit is the count for pass t of plot i, Ni is the number 
of manatees in that plot, and bin is the binomial distribu-
tion. However, Ap and Dp come not from the N-mixture 
model itself but from the availability study and a dou-
ble-observer analysis, respectively. This modeling frame-
work is flexible, and, as additional information becomes 
available, we can update model parameters or model 
structure to improve estimates of abundance over time. 
Below we describe some of the changes to the original 
model implemented in this study.

1.  We accounted for sea state effects on manatee avail-
ability. In addition to having more observations in the 
study with which to estimate mean availability proba-
bilities, we used the updated availability study results 
(see above) to update the abundance estimation. First, 
we were able to include the effects of high sea state 
(Beaufort scale ≥3) on manatee availability directly, 
instead of excluding it or using ratios from a dugong 
study (Pollock et al. 2006, Martin et al. 2015). We only 
obtained two results for sea state 3: one at visibility 2 
and one at visibility 3. Therefore, we continued to as-
sume no sea state effect for visibilities 1 and 4. In some 
conditions (combination of visibility and distance), 
availability was higher in the high sea state in the new 
results. It is possible that weather conditions (such as 

cloud cover or glare) may make a single flight of the 
availability study not as reliable as multiple flights. Be-
cause we expect high sea state to only make availability 
worse or the same, for those conditions in which avail-
ability was higher in the high sea state, we substituted 
the low sea state probability for the high sea state one. 

2.  We relaxed the assumption that the probability of avail-
ability is 1 at visibility 1: The original study assumed 
that probability of availability was 1 at vk = 1, based 
in part on availability study results in which the repli-
ca could always be seen at that visibility (Martin et al. 
2015). The updated availability study allowed the man-
atee replica to be lowered to greater depths (to 3 m in-
stead of to 2 m). The new results for visibility 1 showed 
that manatees were not always available to be seen at 
greater depths. Therefore, we discarded the assumption 
that probability of availability is 1 at visibility 1 and es-
timated mean probability of availability for visibility 1 
using identical methods as for the other visibility levels. 
This generated mean probabilities for visibility 1 plots 
of average distance proportions of 0.96. See Appendix 
III, Figure S1 for all mean probabilities of availability.

3.  We allowed plots to have multiple values for covariates: 
Abundance survey observers sometimes indicated that 
a plot had a range of covariate values (visibility or sea 
state conditions) or divided a plot into sections with 
different covariate values, instead of using a single co-
variate value for a plot. For plots with sections of differ-
ent sizes, the old approach (Martin et al. 2015) was to 
use the covariate values of the largest part; when there 
was a range of covariate values or the sections were of 
equal size, they picked a value randomly. They did this 
because visibility and sea state are treated categorical-
ly in the abundance model, making it difficult to use 
an average covariate value. We developed an approach 
in which we applied covariate values using a weighting 
modification of the categorical approach already used 
(Martin et al. 2015) for coding the covariates. For ex-
ample, if an observer indicated that a plot was roughly 
75% visibility 3 and 25% visibility 4, under the old ap-
proach this plot would have been coded as visibility 3. 
Under the new approach, it is coded as 75% visibility 
3 and 25% visibility 4. Under this weighted average ap-
proach, the plot’s (mean) probability of availability is 
calculated by multiplying the estimated probability of 
availability under each condition by the proportion of 
visibility conditions observed.

4.  We changed uniform priors: In the earlier approach, 
the coefficients for the zero-inflated Poisson general-
ized linear equations (Martin et al. 2015, equations 

(1)
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2–4) had uniform priors between −10 and 10 for both 
the zero-inflation and Poisson parameters. In the new 
approach, the coefficient priors were between −5 and 5 
in most cases (for exceptions, see Model variations, In-
clude zero-count regions). This did not prevent the pri-
ors from being reasonably noninformative, as intended 
(Gelman et al. 2008); for example, these priors would 
allow the proportion of stratum 2 plots of average size 
without manatees (taking into account both sources of 
zeros from the ZIP distribution) within a region to vary 
between 0.00669 and 0.99998. However, restricting 
these ranges improved convergence. 

Model variations
Martin et al. (2015) presented model variations with 

and without an outlier group seen in the third pass in 
the west coast 2011 survey. Because 1) we believe that the 
model with the outlier is more accurate, 2) no outlier 
data points were detected in the 2012, 2015, and 2016 
surveys, and 3) this model variation has already been 
presented, we present only results with the outlier. The 
other source of model variation presented in Martin et 
al. (2015) pertained to manatee availability at high sea 
state conditions. Our new availability study results make 
this model variation moot (see Model structure and gen-
eral modifications). The models we ran in this study 
include four new model variations: include zero-count 
regions; beta–binomial probability of availability; sur-
vey-level probability of perception; and model-averaged 
probability of perception.

Include zero-count regions.—The original abun-
dance estimation excluded 1) sampling regions in which 
no manatees were seen during abundance surveys (LO 
and EG; Figure 1) and 2) strata 2 and 3 in sampling re-
gions when no manatees had been seen in those strata 
(CH; Martin et al. 2015; no manatees were seen in LO 
and EG again during the new surveys, but no manatees 
were seen in strata 2 and 3 of FD instead of CH). These 
were excluded because their inclusion would have caused 
convergence and parameter identifiability problems for 
the zero-inflated abundance model. While excluding re-
gions with zero observed manatees prevented inflated 
variances of abundance estimates, it is still likely that at 
least one manatee existed in those regions but were not 
detected, and including all regions is ideal for a statewide 
abundance estimate. Still, two problems could result from 
including these regions in the model. First, having zero 
observed manatees in a region does not provide the model 
with sufficient information to estimate what proportion 
of these zeros arises from the Poisson (zeros likely arising 
from chance variation from low overall density) versus the 

zero-inflation portion of the model (abundance is zero in 
that plot, but not necessarily low in other plots of the re-
gion). This makes abundance estimates unstable because 
only a small fraction of plots was sampled. The other 
problem is the lack of sensible lower bounds on density. 

To overcome the convergence and parameter identi-
fiability issues arising from the inclusion of regions with 
zero observed manatees, we changed the distributional 
assumptions of the model and included external informa-
tion on minimum abundance. To include the zero-count 
sampling regions in the analyses and address the problem 
with two sources of zeros, we changed the distribution for 
these regions from zero-inflated Poisson to Poisson. This 
greatly reduces the possibility of large groups in unsam-
pled plots, because under the Poisson distribution the ze-
ros observed suggest low overall density. To address the 
lower bound problem, we used incidental observations 
from the abundance surveys and data from other surveys 
and telemetry. In 2012, one manatee was spotted on the 
abundance survey in LO, although not in one of the sam-
pled plots. In December 2015, telemetry data indicated 
there was at least one manatee in EG. Therefore, we ad-
justed density priors in those years so that the expected 
number of manatees in those sampling regions was at 
least one. There was no direct evidence of manatees in 
EG in 2011 or in LO in 2016, but manatees have been seen 
in those regions at those times of year in other years, so 
we adjusted priors so that the expected number was at 
least 0.5. 

Beta–binomial probability of  availability.—Martin 
et al. (2011) developed a version of the N-mixture model 
that addresses nonindependence in detections of individ-
ual animals, as well as heterogeneity in detection prob-
ability over space. Generally, such nonindependence can 
arise from multiple sources. For example, the correlated 
singing patterns of birds and amphibians could lead to 
most of the animals being detected in some survey sites, 
with very few of the animals present being detected in 
other sites. With respect to aerial surveys of Florida mana-
tees, nonindependence might arise from synchronous sur-
facing behavior among individuals. Under a traditional 
binomial N-mixture model, nonindependent detections 
can lead to biased estimates of abundance (Martin et al. 
2011). Martin et al. (2011) addressed nonindependence of 
detections using a beta–binomial model:

yit ~ bin(Ni , pit )

pit ~ beta(α, β)

where yit is the manatee count at site i and pass or survey 
t, Ni is the abundance at site i, pit is the detection probabil-

(2)
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ity at site i and survey t, bin corresponds to the binomial 
distribution, and beta to the beta distribution with shape 
parameters α and β. This model can also be written as:

yit ~ beta–bin(Ni, p
–, ρ)

where p– is the mean detection probability and ρ is its cor-
relation, given by

Martin et al. (2011) estimated ρ between 0.33 and 0.35 
for their manatee example data set, depending on the mod-
el used for N. They emphasized that this was an example 
data set that was not intended to reflect the true abundance 
or detection of Florida manatees. However, a preliminary 
independent analysis of a different set of aerial survey data 
for the Florida manatee estimated very similar ρ values 
(between 0.27 and 0.3; Edwards et al. pers. comm.). 

Martin et al. (2011) did not separate detection compo-
nents, but the beta–binomial model can be applied to ei-
ther probability of availability or probability of perception, 
as appropriate. Because we believe the primary reason for 
nonindependent detections of manatees is synchronous 
surfacing behavior, we applied the beta–binomial model 
to probability of availability. However, the previous proce-
dure for estimating availability brings in multiple sources 
of information, including probabilities of manatees being 
at different depths, visibility (water clarity), and sea state 
(surface conditions) at each plot, proportions of each plot 
in different distance categories from the plot’s edge, and 
average results from the manatee availability study (Mar-
tin et al. 2015). We wanted an approach that would allow 
for synchronous surfacing behavior without omitting that 
information. To do this, we calculated the expected prob-
ability of availability for each plot (Ap–i) from the multiple 
sources of information, assuming ρ = 0.33, and reversed 
equation 4 to compute αi and βi at the plot level as:

We modeled probability of availability as varying on 
the plot and pass level using the beta–binomial distribu-
tion, similar to Martin et al. (2011). 

Survey-level probability of  perception.—The original 
method modeled probability of perception (Dpit) as beta–

binomial-distributed at the plot level (Dpit ≡ Dpi), informed 
by a double observer (backseat observer and front-seat 
observer) perception analysis (Martin et al. 2015). This 
had the effect of treating the uncertainty in front-seat 
perception probability as variability between plots. Prob-
ability of perception may vary within a survey, but there 
is little reason to believe that it varies at the plot level. 
Therefore, we developed a model variation in which the 
probability of perception is beta–binomial-distributed at 
the survey level (Dpit ≡ Dp), which treats the uncertainty in 
perception probability as uncertainty in survey-level per-
ception probability.

Model-averaged probability of  perception.—The 
probability-of-perception estimate for the 2015 survey 
(west coast) was considerably lower than those for the 
other three surveys (Table 1). Some variation in percep-
tion rates may be expected between years and coasts, e.g., 
due to changes in weather and habitat. But there are sever-
al reasons that we found it inconsistent that the 2015 esti-
mate was lower than the 2011 estimate on the same coast. 
Conditions were better overall in 2015 (compare Tables S1 
and S3), and the observers were mostly the same people, 
but more experienced. Our double-observer perception 
model may be too simple to fully encompass the uncer-
tainty in perception probabilities. 

Therefore, we developed a model variation that takes 
into account more uncertainty in west coast perception 
probability. We did this by borrowing from methods used 
for averaging estimates from more than one model (Burn-
ham and Anderson 2002):

Survey Coast Dp SE(Dp) Dα Dβ
2011 west 0.730 0.039 93.5 34.5

2012 east 0.763 0.029 166.1 51.6

2015 west 0.617 0.032 142.7 88.6

2016 east 0.731 0.039 97.5 35.9

2011/2015 west 0.674 0.067 32.5 15.8

Table 1. Estimates of probability of perception from the 
double-observer analysis for each abundance survey, and 
the model-averaged probability of perception for the two 
west coast surveys. The parameter Dp is the estimated 
probability of perception, SE(Dp) is its standard error, 
and Dα and Dβ are the shape parameters for a beta 
distribution with that estimate and standard error.

(5)

(3)

(4)

(6)
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where Dp– is the model averaged estimate of perception 
probability, s is an index variable for the two surveys, ws 
is the weight for survey s, Dps is the estimate of percep-
tion probability from survey s, SE(Dps) is the estimate of 
standard error for perception probability from survey s, 
and SE(Dp–) is the unconditional standard error estimate 
across surveys. We used the same weight (0.5) for both 
surveys. The model-averaged estimate was used as the pri-
or for probability of perception for both west coast sur-
veys in this model variation.

 We ran four or five models per survey, building on 
the previous model to change one model variation at a 
time (Table 2). Model e, which included the model aver-
aged probability of perception, was run only for the west 
coast surveys. We consider model e to be the most rea-
sonable and useful for 2011 and 2015 and model d to be 
so for 2012 and 2016, and we refer to these as the baseline 
models. So, model variation e is the baseline model for the 
west coast and d is the baseline for the east coast.

Model implementation and goodness-of-fit 
testing

We developed all models in JAGS version 4.2.0 
(Plummer 2003), an implementation of the BUGS lan-
guage (Lunn et al. 2000), adapting code developed for 
earlier abundance estimates (Martin et al. 2015). Mod-
els were run using the jagsUI package (Kellner 2016) in 
program R, version 3.4.2 (R Development Core Team 
2017). Except where otherwise indicated, we used non-
informative priors for estimation. Posterior summa-
ries were based on three Markov chain Monte Carlo 
(MCMC) chains run for 80,000–100,000 iterations af-
ter an initial burn-in of 20,000, with no thinning. We 
confirmed model convergence using the Gelman–Ru-
bin statistic (Gelman and Rubin 1992) and visual ex-
amination of the chains. At least 1,000 samples were 
drawn from the posterior distribution of each model 
with minimal autocorrelation.

We used the means of the posterior distributions as 
the point estimates, which is the most common standard 
in Bayesian analysis and minimizes mean-squared error 

of the estimate relative to the posterior (Link and Barker 
2009). We used the 0.025 and 0.975 quantiles of the poste-
riors as the 95% Bayesian credible intervals, one measure 
of uncertainty. Another measure of uncertainty, coeffi-
cient of variation (CV), is the standard deviation divided 
by the mean and is unitless and therefore useful for com-
paring the uncertainties of estimates of different magni-
tudes. We made abundance estimates at the statewide, 
coastal (west and east), and management unit (northwest 
or NW and southwest or SW on the west coast and Upper 
St. Johns or USJ and Atlantic Coast or ATL on the east 
coast) scales.

Goodness-of-fit testing, also known as model check-
ing, is the process of comparing observed data with mod-
el outputs to look for systematic discrepancies that may 
indicate the model assumptions and distributions chosen 
do not conform to the data (Williams et al. 2002, Conn et 
al. 2018). These tests may be less often applied for Bayes-
ian models, but not for any lack of importance. The main 
method used for Bayesian goodness-of-fit testing is poste-
rior predictive tests, which can be used to generate Bayes-
ian p-values and ĉ values, or overdispersion parameters 
(Kéry and Royle 2015, Conn et al. 2018). The idea is that, 
for each MCMC iteration used in the posterior, a discrep-
ancy function, such as χ2, is used to compare the observed 
count data to their expected values, given the parameter 
values in that iteration:

where χ2(y,θ) is the discrepancy function for count data 
y and parameter vector θ, E(yi | θ) is the expected value 
for a given count (in this case, the estimated abundance 
times the availability and perception probabilities), and e 
is a small value added to the denominator to prevent divi-
sion by zero. For each iteration, simulated count data are 
generated from the distributional assumptions and cur-
rent parameter values of the model, and equation 7 is ap-
plied to the simulated count data as well. Inference about 
goodness-of-fit or lack thereof comes from comparisons 
of the two discrepancy function results. Bayesian p-values 

Model Surveys Description

a All Exclude zero count regions, informed binomial availability, plot-level perception from specific survey

b All Include zero count regions, informed binomial availability, plot-level perception from specific survey

c All Include zero count regions, informed beta–binomial availability, plot-level perception from specific survey

d All Include zero count regions, informed beta–binomial availability, survey-level perception from specific survey

e 2011 and 
2015 Include zero count regions, informed beta–binomial availability, model averaged survey-level perception

Table 2. Abundance models run.

(7)
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are estimated as the proportion of iterations in which the 
χ2 value is greater for simulated than for observed count 
data, with values near 0 or (less often) 1 indicating lack of 
fit. The comes from the mean ratio of the χ2 value from 
the observed data to the χ2 value from the simulated data, 
and how far it is from 1 indicates the magnitude of the 
lack of fit. Generally, the goal is to have p-values above 
0.05 and ĉ close to 1.

Unfortunately, posterior predictive tests are conser-
vative, with p-values biased toward 0.5 and ĉ’s toward 
1. Even when that conservatism is taken into account, 
small violations of the assumptions of N-mixture mod-
els often fail to trigger lack of fit in posterior predictive 
tests, even when they cause large biases in estimates of 
abundance (Link et al. 2018). In the case of our models, 
however, it is unclear whether this issue applies or wheth-
er N-mixture-model-specific alternative approaches 
(Duarte et al. 2018) can be used, because estimated de-
tection probabilities come from other sources than the 
N-mixture model itself. Even a test result demonstrating 
lack of fit may not be conclusive, because the count data 
being compared to model outputs do not represent the 
full relevant data set (which also includes backseat-ob-
server-group counts and external data on availability). 
We calculated Bayesian p-values and ĉ values for each 
model, but primarily for exploratory purposes, and 
warn readers to interpret both passing and failing results 
with skepticism in this case.

Results
Observer assessments of general weather conditions 

were mixed during the March surveys but were good to 
excellent during the December surveys (Appendix I, Ta-
bles S1–S4). At least 253 manatees were seen by front-seat 
observers during the first two passes in March 2011 and 
455 in December 2015 (west coast); the totals were 494 
and 467 in surveys conducted in March 2012 and Decem-

ber 2016 (east coast), respectively. The number and per-
centage of plots surveyed, broken down by region and 
strata, are given in Appendix II.

Baseline models
The updated baseline estimated abundance of 

manatees in Florida was 6,810 (95% Bayesian cred-
ible interval: 5,680–8,110; estimates rounded to the 
nearest ten) in 2011–2012 and 8,810 (7,520–10,280) in 
2015–2016 (Figure 3, Table 3). On the west coast, the 
estimate from 2011 was considerably lower than the 
estimate from 2015, although the broad credible inter-
vals allow for a range of population trajectories (albeit 
mostly those of growth; Figure 4, Table 3). The east 
coast estimate from 2012 was similar to the estimate 
from 2016, although, again, the broad credible inter-
vals would permit a range of population trajectories 
(Figure 4, Table 3). 

Uncertainty was even higher when coastwide abun-
dance estimates were split into management units (Figure 
5, Table 3; CVs ranged from 0.108 to 0.252). Both east 
coast management units had similar abundance estimates 
in March 2012 and December 2016, although with some-
what lower uncertainty in the later survey. West coast 
management unit abundance estimates showed unusual 
patterns (see Discussion).

Model variations
Incorporating the general changes had minor effects 

on estimates of abundance for 2011 and 2012 (–3% and 
–2% changes, respectively; Figure 6, compare models 
“pub” and a). Including zero-count regions had little effect 
on estimated abundance for any of the surveys (Figure 6, 
compare models a and b). Incorporating a beta–binomial 
availability probability increased estimated abundance es-
timates for all surveys (4–14%; Figure 6, compare models 

 

Region
2011/2012 survey 2015/2016 survey

Estimate 95% CRI CV Estimate 95% CRI CV

Statewide 6,810 5,680–8,110 0.092 8,810 7,520–10,280 0.080

West coast 2,940 2,190–3,880 0.147 4,810 3,820–6,010 0.116

East coast 3,870 3,060–4,820 0.116 4,000 3,240–4,910 0.107

NW 660 390–1,030 0.252 270 160–470 0.299

SW 2,270 1,620–3,090 0.166 4,460 3,500–5,610 0.121

USJ 90 50–180 0.350 70 60–110 0.182

ATL 3,790 3,000–4,740 0.117 3,920 3,160–4,830 0.108

Table 3. Baseline abundance estimates (with 95% credible intervals and coefficient of 
variation) by region and survey. Estimates and 95% CRI are rounded to the nearest 10.



 Updated Statewide Abundance Estimates for the Florida Manatee 9

b and c). Switching to survey-level perception probabil-
ity slightly reduced estimated abundance for all surveys 
(0 to –3%) but increased uncertainty (CV change 4–9%; 
Figure 6, compare models c and d). Incorporating mod-
el-averaged perception probabilities on west coast sur-
veys increased estimated abundance by 5% in 2011 and 
reduced it by 9% in 2015 (Figure 6, compare models d and 
e). In both years, however, uncertainty increased with this 
change (9% and 8%, respectively).

We provide two example goodness-of-fit plots for 
the 2015 survey in Figure 7. The top panel (model b) 
shows evidence of lack of fit: all actual-data χ2 values 
are greater than simulated-data χ2 values, so the points 

are all below the x = y line and p = 0. The average degree 
of overdispersion, however, is only moderate (ĉ = 1.53). 
The bottom panel (model e) shows much less evidence 
of lack of fit, with between one-seventh and one-eighth 
of the points above the line (p = 0.133, ĉ = 1.18). For 
all surveys, models a and b showed clear evidence of 
lack of fit (p = 0, ĉ = 1.81–2.68; Figure 8). Models c, 
d, and e, in contrast, showed more evidence for model 
fit (p = 0.10–0.19, ĉ = 1.16–1.23; Figure 8). The base-
line models’ Bayesian p-values were 0.10, 0.16, 0.13, and 
0.18 for 2011, 2012, 2015, and 2016, respectively; the 
baseline models’ ĉ values were 1.23, 1.20, 1.18, and 1.17, 
respectively. 

Figure 3. Violin plots of baseline estimates and posterior probability distribution 
densities of statewide manatee abundance. Violin plots show rotated and mirror-
imaged densities of all values of the posterior, with the width indicating how common 
a value is. The dots indicate the means and the horizontal lines the median and 95% 
Bayesian credible intervals.
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Discussion
We estimated statewide manatee abundance at 6,810 

(95% credible interval: 5,680–8,110) in 2011–2012 and 
8,810 (7,520–10,280) in 2015–2016. Several considerations 
should be taken into account in putting these results into 
context. The estimates of abundance have relatively 
broad credible intervals and CV of 0.080 and 0.092 for the 
statewide estimates (more for regional estimates; see Ta-
ble 3), indicating a reasonably high degree of uncertainty. 
We emphasize that it is important to consider the 95% 
credible intervals and not only the measures of central 
tendencies (i.e. mean and median) when interpreting our 
results. Assuming that the model is correct and that it is a 
good reflection of reality, we are 95% confident that the 
true abundance is within the 95% credible interval. Thus, 
given the large uncertainty associated with the models, we 
encourage the reader to be more focused on the credible 
interval than on the mean. 

As stated below, the survey methods and models have 
limitations. The ambiguous goodness-of-fit results from 
even the best-fitting models suggest that the estimat-
ed parameters might not adequately describe variation 
in the observed data, although they may also represent 
merely the inadequacy of current goodness-of-fit tests 
for these models. We have developed these methods to be 
as accurate as possible and to account for conditions en-

countered during aerial surveys, but factors not included 
in our models likely also contributed to lack of fit. With 
only two abundance estimates, each with some degree of 
uncertainty, we recommend against inferring population 
trends or population growth rates for the state or for any 
region within it by comparing the two point estimates 
(see below for a better approach that we are planning). 
Instead, we emphasize the role of sampling variability in 
generating the uncertainty around these estimates. Re-
ducing sampling variability allows for more precise esti-
mation of the parameters of interest (abundance), which 
leads to stronger ecological inference. We now have abun-
dance estimates from two points in time, which improves 
the reliability of the information available compared to 
that from one abundance estimate. As more surveys are 
conducted and more information becomes available, re-
liability should improve and our confidence in the esti-
mates increase.

We note that N-mixture models can be highly sensi-
tive to nonindependence and heterogeneity of detections 
(Martin et al. 2011, 2015, Dorazio et al. 2013; also see sec-
tion Beta–binomial probability of availability); therefore, 
we conducted the availability study to estimate the prob-
ability of availability independently from the N-mixture 
model. Nevertheless, we retained the basic structure of an 
N-mixture approach, so the estimated lack of fit is not 
surprising. Using a probability of availability based on the 

Figure 4. Baseline coastwide abundance estimates and probability densities.
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availability study should reduce any errors induced by fit-
ting an N-mixture model in which detection is estimated 
directly from the repeated surveys.

We have at least partly addressed two possible sourc-
es of bias highlighted by Martin et al. (2015): we now 
include regions with zero counts, and we now can (part-
ly) account for the effects of sea state on manatee avail-
ability. Some possible sources of bias remain, however. 
We still do not account for effects of group size on de-
tectability of those groups or address detectability of in-

dividuals within groups. The model assumes that man-
atee diving depth distribution is the same throughout 
the manatee’s range in Florida, but that may not be true. 
Edwards et al. (2016) found that the proportion of time 
that manatees spent within 1.25 m of the surface was 
strongly related to the depth of the water. In addition, 
we still do not fully account for the effects of conditions 
such as sea state, glare, and cloud cover on manatee 
availability. Because weather conditions were worse for 
the first set of surveys (Appendix I), this last source of 

Figure 5. Baseline management unit abundance estimates and probability densities. Note that the 
panels have different y-axis ranges.



12 Jeffrey A. Hostetler, Holly H. Edwards, Julien Martin, and Paul Schueller  

bias may affect the 2011–2012 estimates more than the 
2015–2016 estimates.

In general, uncertainty in abundance estimates in-
creased as the scale at which they were examined de-
creased. We especially recommend against inferring pop-
ulation growth rates from two population estimates at 
the management-unit or a finer scale. The point estimates 
showing large and, we think, unrealistic changes in the 
abundance of manatees in the NW and SW management 
units were surprising and difficult to explain. However, 
we considered several possible explanations for the de-

crease in the NW estimate between March 2011 and De-
cember 2015 and the large increase in the SW estimate 
from March 2011 to December 2015 (Appendix IV). 

Improvements in estimating abundance
We have made several improvements in the survey and 

abundance methods. These include accounting for new 
availability study results and using weighted averages of 
survey conditions for plots with a range of values. In addi-
tion, models b–e allowed us to include the zero-count re-

Figure 6. Model-specific estimates and probability densities of coastwide abundance. Model “pub” is the published 
baseline estimates (Martin et al. 2015, models 2 and 4) for 2011 and 2012. For other model definitions, see Table 2. 
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Figure 7. Example goodness-of-fit plots from the 2015 survey. For the full set of plots see Figure 8. 
The top panel represents model b (include zero count regions, binomial availability, plot-level 
perception from specific survey) and the bottom panel model e (include zero count regions, beta–
binomial availability, model-averaged survey-level perception). Each point represents an iteration 
in the model posterior, with its x position being the χ2 discrepancy of the actual data (equation 7) 
and the y position being the same discrepancy function calculated for simulated data. The point’s 
color emphasizes on which side of the x = y line it exists. In the box are two summaries of this 
comparison: the Bayesian p-value (p), the proportion of points above the line; and ĉ, the mean ratio 
of the actual data χ2 value to the simulated data χ2 value.
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Figure 8. Full set of goodness-of-fit plots. For model definitions, see Table 2; for plot elements see Figure 7. 
Highlighted panels show the baseline models. Better fit is indicated when p is closer to 0.5 (above 0.05) and 
ĉ is closer to 1.
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gions and make this a truly statewide abundance estimate. 
Models c–e accounted for extra variation in manatee 
availability over space and time; models d and e allowed 
for uncertainty in survey-level perception probability; 
model e (west coast only) accounted for extra uncertainty 
in the perception probability estimates generated by our 
double observer model for those surveys.

We also hope to further improve our abundance sur-
vey and estimation methods. Additions and changes may 
include: obtaining more information about the effects of 
conditions (glare, cloud cover, sea state, and visibility) on 
availability; accounting for any effects of floating, emer-
gent, or overhanging vegetation on perception; obtaining 
more diving data for manatees in areas with variable water 
depth; determining optimal allocations of survey effort 
across regions and strata based on current results; eval-
uating improvements in seasonal timing of surveys (<50 
manatees in strata-1 plots, post–warm season migration); 
encouraging more calibration between observers for co-
variate levels; accounting for differences in mean water 
depth between plots and its possible effects on availabil-
ity and perception (Edwards et al. 2016); accounting for 
perception probability at both the group and individual 
manatee levels (Clement et al. 2017); using models that 
account for variation in perception probability among 
observers; and modeling perception or availability sepa-
rately for calves and adults. 

We are working on more robust methods for inferring 
both abundance and annual population growth rates. 
These include an integrated population model (IPM), 
which is a single, unified analysis of population count 
data and demographic data (Schaub and Abadi 2011, 
Zipkin and Saunders 2018). By integrating survival, re-
productive, and abundance estimates, carcass recovery 
data, and possibly other data streams, researchers should 
be able to increase accuracy of estimates of abundance, 
population growth rates, survival rates, reproductive 
rates, and the effects of unusual mortality events for Flor-
ida manatee populations. Although FWRI and U.S. Geo-
logical Survey (USGS) are starting IPM work in the SW 
management unit, the plan is to develop models for all 
Florida manatee populations. 
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Appendix I: Survey weather conditions

Survey date Survey location  
by aircraft Survey region Overall survey 

condition 

28 February 2011 Sarasota/Charlotte MS/CH fair/poor

28 February 2011 W. Charlotte/N. Lee CH/LE fair

28 February 2011 Lee/Collier LE/CO fair/good

28 February 2011 Collier CO good

28 February 2011 Monroe (#1) MM very good

28 February 2011 Monroe (#2) MM fair/good

28 February 2011 Charlotte/Lee/Collier CH/LE/CO fair/good

01 March 2011 Citrus/Hernando/Pasco LP good

01 March 2011 S. Pasco/N. Tampa Bay LP/TB poor/good

01 March 2011 Tampa Bay (#1) TB fair/good

01 March 2011 Tampa Bay (#2) TB fair

01 March 2011 Tampa Bay (#3) TB not recorded

01 March 2011 Levy/Citrus LP very good

03 March 2011 Manatee/Sarasota MS very good

03 March 2011 S. Pasco/W. Pinellas LP/TB good

03 March 2011 Wakulla/Dixie FD fair/good

03 March 2011 Franklin/Dixie FD excellent

21 March 2011 St Joe’s/Destin EG very good

22 March 2011 Destin to Stateline EG excellent/very good

Table S1. Survey conditions during the 2011 abundance survey (west coast). 
The survey was delayed because of a cold front. Sea fog present in some areas. 
Cloudy, windy, warm, and some showers on day of some surveys. For survey 
region codes, see Figure 1.

Survey date Survey location  
by aircraft Survey region Overall survey 

condition

5 March 2012 Florida Keys (#1) MK good

5 March 2012 Florida Keys (#2) MK fair

5 March 2012 Florida Keys (#3) MK very good

5 March 2012 Florida Keys (#4) MK poor/fair

5 March 2012 Florida Keys (#5) MK good

5 March 2012 Florida Keys (#6) MK very good

7 March 2012 Jacksonville NE fair

7 March 2012 St. Johns River (#1) NE poor

7 March 2012 St. Johns River (#2) NE poor

7 March 2012 St .Johns River (#3) NE fair/good

7 March 2012 Blue Spring NE poor

Table S2. Survey conditions during the 2012 abundance survey (east coast). 
Survey was postponed by one day because of rainy and windy weather. There 
was mild weather during the survey. For survey region codes, see Figure 1.

(continued)
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Survey date Survey location 
by aircraft Survey region Overall survey 

condition

8 March 2012 Brevard/Indian River BV not recorded

8 March 2012 Brevard (#1) BV very good

8 March 2012 Brevard (#2) BV good

8 March 2012 Brevard (#3) BV good

8 March 2012 Volusia VO good

9 March 2012 Miami-Dade (#1) MI very good

9 March 2012 Miami-Dade (#2) MI not recorded

9 March 2012 Broward BW very good

9 March 2012 Palm Beach PB fair

9 March 2012 Martin/St Lucie MA not recorded

12 March 2012 Jacksonville/St. 
Augustine NE very good

13 March 2012 Lake Okeechobee LO excellent/very good

Table S2 (continued).

Survey date Survey location  
by aircraft Survey region Overall survey 

condition

1 December 2015 Monroe (#1) MM very good

1 December 2015 Monroe (#2) MM very good

1 December 2015 Collier CO very good

1 December 2015 Charlotte/Lee (#1) CH/LE excellent

1 December 2015 Charlotte/Lee (#2) CH/LE very good

2 December 2015 Sarasota-Manatee MS very good

2 December 2015 Tampa Bay (#1) TB very good

2 December 2015 Tampa Bay (#2) TB good

2 December 2015 Citrus to Pinellas LP very good

2 December 2015 Citrus/Levy LP good

3 December 2015 Franklin/Dixie FD good

3 December 2015 Franklin/Levy FD/LP good

4 December 2015 Panhandle EG good/very good

7 December 2015 Pinellas EG very good

9 December 2015 Monroe MM excellent/very good

Table S3. Survey conditions during the 2015 abundance survey (west coast). 
Survey followed a dip in temperatures. Weather during the survey was mild. 
Conditions were rated as good or better throughout the areas surveyed. For 
survey region codes, see Figure 1.
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Survey date Survey location by 
aircraft Survey region Overall survey 

condition

5 December 2016 Florida Keys (#1) MK good

5 December 2016 Florida Keys (#2) MK excellent

5 December 2016 Florida Keys (#3) MK very good

5 December 2016 Florida Keys (#4) MK good

5 December 2016 Florida Keys (#5) MK good

5 December 2016 Miami-Dade MI good

5 December 2016 Florida Keys (#6) MK excellent

6 December 2016 Miami-Dade (#1) MI very good

6 December 2016 Miami-Dade (#2) MI good

6 December 2016 Broward BW good

6 December 2016 Palm Beach PB good

6 December 2016 Martin/St Lucie MA poor

7 December 2016 Brevard (#1) BV very good

7 December 2016 Brevard (#2) BV excellent/very good

7 December 2016 Brevard/Indian River BV/MA excellent

7 December 2016 Brevard (#3) BV good

7 December 2016 Volusia VO very good

8 December 2016 St Johns (#1) NE excellent

8 December 2016 St Johns (#2) NE very good

8 December 2016 St Johns (#3) NE very good

8 December 2016 Jacksonville NE excellent

8 December 2016 St Johns (#4) NE excellent

12 December 2016 Lake Okeechobee LO excellent

Table S4. Survey conditions during the 2016 abundance survey (east coast). 
Survey followed a dip in temperature. Windy during the early part of the 
survey, otherwise good conditions. For survey region codes, see Figure 1.
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Appendix II: Plots surveyed

Region Stratum 1 Stratum 2 Stratum 3 Total

NW 9 (100) 102 (7) 36 (2) 147 (5) 

SW 17 (100) 222 (10) 63 (5) 302 (9)

USJ 1 (100) 44 (12) 7 (9) 52 (12)

ATL 16 (94*) 370 (14) 133 (8) 519 (12)

West coast 26 (100) 324 (9) 99 (4) 449 (7)

East coast 17 (94*) 414 (14) 140 (8) 571 (12)

State-wide 43 (98*) 738 (11) 239 (5) 1,020 (9)

* One plot not flown in 2012 due to air-space conflict.

Table S5. Number (and %) of plots surveyed in first set of 
abundance surveys (2011–2012), by region (management 
unit or coast) and stratum with totals. 

Region Stratum 1 Stratum 2 Stratum 3 Total

NW 9 (100) 103 (7) 36 (2) 148 (5)

SW 17 (100) 224 (10) 56 (5) 297 (9)

USJ 1 (100) 33 (9) 7 (9) 41 (10)

ATL 17 (100) 372 (14) 135 (8) 524 (12)

West coast 26 (100) 327 (9) 92 (4) 445 (7)

East coast 18 (100) 405 (13) 142 (8) 565 (12)

State-wide 44 (100) 732 (11) 234 (5) 1,010 (9)

Table S6. Number (and %) of plots surveyed in the 
second set of abundance surveys (2015–2016), by region 
(management unit or coast) and stratum, with totals.
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Appendix III: Mean probability of availability,  
by visibility and sea state

Figure S1. Mean probabilities of availability estimated from manatee replica study 
(uncertainty is not shown, as it varies with abundance model) by visibility and sea state 
category. Visibility categories are: 1) clear water, bottom is visible; 2) bottom visible 
but details are unclear; 3) difficult to tell water clarity because the bottom is not visible 
due to depth; and 4) water is turbid. Sea state categories are: Low, Beaufort scale <3 
and High, Beaufort scale ≥3. Many of the probabilities of availability were estimated 
directly from one or more sites with that combination of sea state and visibility. Some 
high-sea-state combinations were either not available (visibilities 1 and 4) or were 
available only from a single site with anomalously high estimated availability, so were 
taken from the low-sea-state results with the same visibility.
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The observed changes in population estimates for NW 
and SW were unexpected and not concordant with other 
information available to us. For instance, the NW estimate 
for 2015 was 270 (95% credible interval 160–470), which 
is less than that for the 2011 survey (Table 3, Figure 5). 
Traditional aerial survey counts in the Crystal River area 
in December are quite variable both between and within 
years, ranging from <50 to more than 600, but are usual-
ly >300, including that for the survey later in 2015–2016 
winter (J. Kleen, USFWS, pers. comm.). The difference 
suggests either that manatees were missed during our De-
cember abundance survey because they were out of the 
survey area (out of state, in the SW region, offshore, or 
up rivers and creeks beyond the survey boundaries) or the 
NW abundance estimate was biased low.

Manatees in the SW management unit experienced a 
major unusual mortality event in 2013 due to an intense 
red tide. The estimated additional mortality rate due to 
this event (and a similar one in 1996) was 15.6% (95% 
Bayesian credible interval 10.0–23.0) for calves and 6.7% 
(5.2–8.4) for subadults and adults (Runge et al. 2017). 
Thus, it is counterintuitive or unexpected that the abun-
dance estimates point to a large increase in population in 
the SW over the period that covers the 2013 event. Fur-
thermore, the annual rate of growth necessary to account 
for such changes is beyond what is biologically feasible via 
internal regional recruitment.

We considered several possible explanations for the 
decrease in the estimate in the NW from March 2011 to 
December 2015 and the large increase in the estimate in 
the SW from March 2011 to December 2015. These ex-
planations fall into two categories: sampling-related and 
shifts in distribution. 

Possible sampling-related explanations include: poor 
weather conditions during surveys in 2011, especially in 
the SW; some manatees being outside state waters during 
one of the surveys; movement of animals between strata 
in the NW; nonrepresentative sampling of strata 2 and 3; 
and chance events. Observer-reported flight conditions 
were considerably worse in March 2011 than in December 
2015 (Appendix Tables S1 and S3), especially for the earli-
er flights, which were largely in the SW. These conditions 
were, in fact, a major impetus for shifting the surveys’ 
timing from March to December. Although, in theory, the 
conditions that affect manatee availability or detectabil-
ity are accounted for in the models, we strongly suspect 
that the estimates from the surveys in March 2011 are un-
derestimates, especially in the SW. It is also possible that 

some manatees were outside state waters during one or 
more surveys, although surveys were timed to avoid this 
possibility. In any case, we doubt that there were enough 
manatees outside of Florida waters during any of the sur-
veys to make much of an impact on abundance estimates. 

Although the point estimate of abundance in the NW 
was higher for March 2011 than for December 2015, the 
raw counts from observers in 2015 were slightly higher. 
When counts are broken down by both region and stra-
tum, one sees that the increase in the counts were all in 
stratum 1 (counts in strata 2 and 3 decreased). This pro-
vides a proximate explanation for the discrepancy: the 
models extrapolate abundance estimates from surveyed 
stratum-2 and -3 plots to unsurveyed plots of the same 
strata, but in stratum 1, all plots are usually surveyed, so 
no extrapolation is done. If the sampling of strata 2 and 
3 was done representatively (and it appears to be so on 
maps), then on an average survey the extrapolation should 
lead to an unbiased estimate of abundance. However, it is 
possible that by chance the sampling of strata 2 and 3 was 
not representative with regards to manatee abundance in 
at least one of the surveys.  

Another possible explanation is a shift in manatee 
distribution across management units between surveys. 
Shifts can be characterized as annual (changing between 
years), seasonal (changing between seasons), and season-
al by annual (changing between seasons, but in different 
ways different years). An annual shift (not a seasonal 
migration, but large numbers of manatees moving their 
winter or year-round habitation from NW to SW) seems 
highly unlikely. Such a shift would likely also show up on 
synoptic counts, but the proportion of manatees seen in 
the SW during synoptic surveys has been relatively sta-
ble (Figure S2). When temperatures rise manatee often 
disperse from winter aggregation areas. While some re-
main near their winter refuges during warmer weather, 
others travel extensive distances along the coast and far 
up rivers and canals (Weigle et al. 2001). Manatees exhibit 
a range of migration patterns on both coasts (Weigle et al. 
2001, Deutsch et al. 2003), so a seasonal (some manatees 
migrating from the SW to the NW at some point each 
year between early December and March) or seasonal by 
annual (seasonal movements between management units 
that are variable by year or weather) shift seems more 
plausible. Based on a review of long-term photo-identi-
fication data, we do not believe that these putative shifts 
result from manatees changing their preferred overwinter-
ing site (management units). It is possible that before tem-

Appendix IV: Possible explanations for anomalous changes 
in regional abundances on Florida’s west coast
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peratures drop below 18°C, for example in early Decem-
ber, some manatees may still be in regions other than their 
overwintering location. Therefore, it is possible that some 
NW manatees were still in the SW region during the early 
December survey before moving northward for winter.

It may not be plausible to postulate that NW-win-
tering manatees move to the SW each summer (or fall) 
in numbers large enough to 1) offset any movement the 
opposite direction, 2) explain the apparent decrease in 
the NW, and 3) explain the apparent high increase in the 
SW. But such movement does occur, and the variability of 

Figure S2. Proportions of each west coast synoptic count within the SW management unit.

movement patterns (Weigle et al. 2001) and counts (Kleen 
and Breland 2014; J. Kleen, USFWS, pers. comm.) in these 
regions means we can’t rule it out as having happened 
in 2015, and in numbers large enough to at least partly 
explain the anomalous changes in abundance estimates. 
Variability in counts in both traditional surveys and abun-
dance surveys could have other explanations, however, 
such as small-scale movements to plots not sampled. Any 
of those scenarios might be possible, but more years of 
data are needed to determine the magnitude of these in-
fluences on estimates at the smaller scales.


