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ABSTRACT

Recent global climate models with sufficient resolution and physics offer a promising approach for simu-

lating real-world tropical cyclone (TC) statistics and their changing relationship with climate. In the first part

of this study, we examine the performance of a high-resolution (;40-km horizontal grid) global climate

model, the atmospheric component of the Australian Community Climate and Earth System Simulator

(ACCESS) based on the Met Office Unified Model (UM8.5) Global Atmosphere (GA6.0). The atmospheric

model is forced with observed sea surface temperature, and 20 years of integrations (1990–2009) are analyzed

for evaluating the simulated TC statistics compared with observations. The model reproduces the observed

climatology, geographical distribution, and interhemispheric asymmetry of global TC formation rates rea-

sonably well. The annual cycle of regional TC formation rates over most basins is also well captured.

However, there are some regional biases in the geographical distribution of TC formation rates. To identify

the sources of these biases, a suite of model-simulated large-scale climate conditions that critically modulate

TC formation rates are further evaluated, including the assessment of a multivariate genesis potential index.

Results indicate that the model TC genesis biases correspond well to the inherent biases in the simulated

large-scale climatic states, although the relative effects on TC genesis of some variables differs between

basins. This highlights the model’s mean-state dependency in simulating accurate TC formation rates.

1. Introduction

The ability of climate models to simulate the observed

climatology of tropical cyclones (TCs) has gradually

improved over time (e.g., Camargo and Wing 2016).

While climate models with horizontal resolutions of
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about 100km can simulate tropical lows with some of the

characteristics of TCs, finer-resolutionmodels are essential

in order to generate a more accurate simulation of the

geographical distribution of TC formation and occurrence

due to the improved representation of topography in fine-

resolution models and the associated improvement in the

simulation of large-scale climate variables. The climate

model is one of themost important tools in developing and

testing our understanding of the relationship between cli-

mate and TCs, and particularly important in the absence of

an accepted quantitative climate theory of TC formation

(e.g., Walsh 2019). Finer-resolution climate models are

now able to generate a reasonable simulation of the ob-

served geographic pattern of TC formation along with its

interannual variability (e.g., Bell et al. 2014; Murakami

et al. 2015; Wehner et al. 2017; Yoshida et al. 2017). In

general, global annual TC formation rates can now be well

simulated, although there are remaining issueswith reliable

simulation of the formation rates in some TC formation

basins, particularly in the North Atlantic basin (Shaevitz

et al. 2014). Nevertheless, these models are valuable tools

for conducting experiments where climate variables are

modified and the changes in the model simulation of TC

formation are analyzed, as a way of improving our under-

standing of the variables that are crucial for TC formation.

Such climate model experiments include examining the

ability of climate models to perform seasonal predictions

of TC formation (Camargo et al. 2007a, 2010; Vitart et al.

2014); idealized aquaplanet experiments (Hayashi and

Sumi 1986; Merlis et al. 2013; Ballinger et al. 2015; Chavas

et al. 2017); and estimates of the effect of climate change on

TCs (Knutson et al. 2010; Walsh et al. 2016; Camargo and

Wing 2016). In all cases, it is important that the starting

point for such a series of experiments is a well-validated

model that increases our confidence that the response of

the model’s TC climatology to imposed climate variations

will likely mimic that seen in observations. The main pur-

pose of the first part of this two-part paper is that it provides

the verification of the climate model quality required for

the results of the second part to have any credibility.

In the second part of the paper (Walsh et al. 2019), we

move on to employ this validated modeling system to

conduct some experiments on the relationship between

climate and TCs.We use a combination of idealized SST

specifications, from a simple constant SST aquaplanet to

meridionally varying SST specifications. In this second

paper, a more complete review is contained of previous

work on aquaplanet experiments on TC formation.

The primary motivation of this work is to transform

the climate model from a simulated version of the real

world, as represented in this first part of the paper, to

the ‘‘tropical cyclone world,’’ where factors that in-

hibit vortex formation are removed, where possible

(Khairoutdinov and Emanuel 2013). For example, at a

minimum, TC world simulations would have no land,

as the presence of land can inhibit TC formation. The

model would require SSTs to be specified above the

threshold for TC formation in the simulated climate

(e.g., Merlis et al. 2013). The model would have little

or no mean vertical wind shear (e.g., Tang and Emanuel

2010). The influence of each of these changes on the

simulated tropical cyclone formation rate would be as-

sessed, using a series of diagnostics as established for the

current climate simulation described in the current paper.

The goal is to relate changes in TC formation quantita-

tively to changes in climate variables, using a series of

extreme climate experiments to amplify the signals indi-

cating these relationships in the climate system.

In this first part of the two-part paper, we present an

assessment of a new climate modeling system, with an

emphasis on evaluating the present-climate TC clima-

tology and associated large-scale climate conditions.

Section 2 provides an overview of the model and the

data and methods used to analyze its output, section 3

shows the relevant results, and section 4 provides some

concluding remarks on the model evaluation.

2. Model, data, and method

a. ACCESS model and simulation

We use the atmospheric component of a state-of-the-art

global climate model, the Australian Community Climate

and Earth System Simulator coupled general circulation

model (ACCESS) based on the UK Met Office Unified

Model (UM v8.5) Global Atmosphere (GA6.0) (Walters

et al. 2017), denoted here simply as ACCESS. The model

includes a dynamical core with a semi-implicit semi-

Lagrangian formulation, a comprehensive suite of physical

parameterizations split into slow processes (radiation,

large-scale precipitation, and gravity wave drag) and fast

processes (atmospheric boundary layer, turbulence, con-

vection, and land surface coupling), including the prog-

nostic cloud fraction and prognostic condensate (PC2)

scheme (Wilson et al. 2008). The model also uses the ra-

diation scheme of Edwards and Slingo (1996), a boundary

layer scheme that represents mixing over the full depth of

the troposphere (Lock et al. 2000), and a community land

surfacemodel, the JointUKLandEnvironment Simulator

(JULES; Best et al. 2011). More model details can be

found in Walters et al. (2017).

The model is run in atmosphere-only mode with spec-

ified observed sea surface temperatures (SSTs) at a hori-

zontal resolution of 0.56258 longitude 3 0.3758 latitude
(;40km) with 17 vertical levels. The interannually vary-

ing SSTs used to force the atmospheric model are taken
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from the AMIP-II experiment (Kanamitsu et al. 2002).

The high-resolution version of the ACCESS model was

developed specifically for this study. The ACCESS model

is integrated using AMIP-II SSTs from 1 September 1988

to 31 December 2010, and model outputs are saved

with a 6-h time interval. The initial few months of

simulations were discarded as a model spinup, and a

period of 20 years (1990–2009) of model simulation is

considered for evaluating the model performance in

simulating real-world TC climatology in this study.

Previous climatological simulations of TC formation

using specified observed SSTs were undertaken with a

previous version of theMetOfficeUnifiedModel (version

GA3.0) by Roberts et al. (2015), using horizontal resolu-

tion as fine as about 25km. They found that numbers of

simulated TCs increased with finer horizontal resolution.

Some changes in the formulation of the Unified Model

have occurred since then that could modify the simulated

TC climatology, as detailed inWalters et al. (2017). There

has been an increase in the specified rate of entrainment

for deep convection, which was shown to reduce errors in

simulated TC intensities bymaking themmore intense. A

major change was the introduction of a new dynamical

core [Even Newer Dynamics for General Atmospheric

Modelling of the Environment (ENDGame);Wood et al.

2014], which has improved the model simulation, in-

cluding its simulation of TCs (Reed et al. 2015).

b. TC detection algorithm

The simulated TC-like vortices are detected and

tracked using a modified version of the CSIRO cyclone

tracking algorithm (Horn et al. 2014). This tracking

method imposes a set of threshold physical criteria that

need to be satisfied before a low pressure system can be

declared a TC. The following criteria are used to detect

and track TCs; the text is derived from Horn et al.

(2014), with some minor modifications:

d Anabsolute value of 850-hPa cyclonic vorticity greater

than 1 3 1025 s21. This criterion is used to eliminate a

large number of points of weak vorticity that are not

associated with tropical cyclones.
d A closed pressure minimum within a distance in both

the x and y directions of 350km from a point satisfying

condition 1 above. This distance is chosen empirically

to give a good geographical association between vor-

ticity maxima and pressure minima. This minimum

pressure value is taken as the center of the storm.
d A mean wind speed in the region 700 km 3 700km

square around the center of the storm at 850 hPa is

greater than at 300 hPa.
d Maximum 10-m wind speeds exceeding a resolution-

dependent value as specified in Walsh et al. (2007).

Here, the value chosen for a model with a horizontal

resolution of 40 km is .16.5m s21.
d Finally, these detection criteria must be satisfied for a

period of 24 h for a TC to be declared.

The description of the analysis method and region

definitions follows that of Sharmila and Walsh (2017),

with some minor modifications as described in this

paragraph. The simulated TC formation rate or TC

genesis (TCG) frequency is defined as the number of

tropical storms that exceed amaximum 10-mwind speed

of 16.5m s21. The location of TCG is identified based on

the position of the tropical storms at which the maxi-

mum 10-m wind speed first exceeds 16.5m s21, and the

TCG distribution is computed per 48 3 48 grid box per

year. The TCs formed within the latitudes 308S–308Nare

considered in this study. The analysis considers the six

main oceanic regions displayingTCdevelopment (Table 1),

namely the western Pacific (WP), eastern Pacific

(EP), North Atlantic (NA), north Indian Ocean (NI),

south Indian Ocean (SI), and South Pacific (SP) within

the tropical domain (308S–308N). Generally, around 70%

of annual TCs form during the peak TC season in almost

all basins. We have used both annual and peak TC sea-

sons of each basin, which are selected based onmaximum

TC activity. This typically occurs during July–October

(JASO) in the WP, July–September (JAS) in the EP,

August–October (ASO) for the NA, October–December

(OND) for the NI, and January–March (JFM) for both

the SI and SP.

c. Data for verification

The model TC characteristics are compared with the

observed TC best track data from IBTrACS (Knapp

et al. 2010). To evaluate the model’s simulation of ob-

served large-scale atmospheric climate conditions, we

compare with the ERA-Interim reanalysis (Dee et al.

2011), while for precipitation, monthly data from the

Global Precipitation Climatology Project (GPCP v2.3)

are employed (Adler et al. 2003). We have interpolated

the model output to a 1.58 3 1.58 grid, for comparison

with reanalysis data.

To assess the climate controls on simulated TCG

frequency, we evaluate monthly data of a suite of large-

scale climate conditions that influence the TC formation

rates (Sharmila and Walsh 2017). For instance, we use

vertical wind shear (VWS), relative vorticity (RVor),

relative humidity (RH), and maximum potential inten-

sity (MPI). VWS is defined as the magnitude of the

vector difference of winds between 200 and 850 hPa. The

MPI is a theoretical limit for TC intensity that depends

on sea surface temperature, sea level pressure, and

profiles of temperature and humidity. Based on monthly
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data, theMPI (Bister and Emanuel 1998) is calculated as

follows, as described in Sharmila and Walsh (2017):

MPI5
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whereTs is the SST,T0 is the mean outflow temperature,

Ck is the exchange coefficient for enthalpy, andCD is the

drag coefficient. The quantity CAPEe is the convective

available potential energy with reference to the envi-

ronmental sounding, and CAPEb is that of boundary

layer air.

To better summarize themultivariate climate controls

on the simulated TC statistics, we further utilize a gen-

esis potential index (GPI) developed by Emanuel and

Nolan (2004). The GPI relates observed climate vari-

ables to observed TC formation and thus provides a

means of analyzing whether the model is able to

generate similar relationships, as a test of its physi-

cal fidelity. Many other alternative indices have also

been developed using different predictors, however

(Murakami and Wang 2010; Emanuel 2010; Tippett

et al. 2011; Bruyère et al. 2012). The GPI is a statistical

fit of relationship between the environmental factors

and the likelihood of TC genesis, and widely adopted

in several previous studies (Camargo et al. 2007b,

2010, 2014):
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A general form of the Eq. (2) can be written as GPI 5
T1 3 T2 3 T3 3 T4.

Here,Vshear5magnitude of vertical shear from 850 to

200 hPa (m s21) in T1, h 5 absolute vorticity at 850 hPa

(s21) in T2,H5 relative humidity at 700 hPa (%) in T3,

andVpot5maximum potential intensity (MPI; m s21) in

T4 as described above.

We also use a nonparametric statistical bootstrap

method (Efron and Tibshirani 1993) to estimate the

95% confidence level of significant biases in the spatial

distribution of TCG, and the two-tailed Student’s t test

for estimating significant biases in climate conditions.

3. Results and discussion

a. Simulated distribution of TC formation rates

1) DETECTED TCG LOCATIONS AND SIMULATED

ANNUAL PRECIPITATION

As an obvious starting point to evaluate the robust-

ness of the fine-resolution GCM, we examine the spatial

distribution of the detected TCG points, along with the

simulated annual-mean tropical precipitation. Figure 1

represents the model simulated geographical distribu-

tions of TCG points (red dots, Fig. 1b) compared to the

observed IBTrACS data (red dots, Fig. 1a) for the pe-

riod 1990–2009, overlaid with the model simulated

(shaded, Fig. 1b) and GPCP (shaded, Fig. 1a) annual-

mean tropical precipitation. Here, the model precipi-

tation is interpolated to the GPCP grid (18 3 18) for

estimating the model biases. Based on the CSIRO de-

tection scheme, the model captures the geographic loca-

tions of TCG reasonably well compared to the observed

positions. The overall positions of the simulated TCG

detected match closely to those in IBTrACS. However,

the model also exaggerates the simulated TCG over the

Southern Hemisphere, particularly over the SP, near

Madagascar in the SI, and in the South Atlantic. In con-

trast, the simulated TCG points are highly reduced

compared with observations in the North Atlantic, and

off the northwest coast of Australia. Nevertheless, this

fine-resolution model simulates the global pattern of

tropical precipitation quite reasonably, but it has exces-

sive precipitation in a number of regions in the tropics,

as noted by Walters et al. (2017). There are some re-

gional differences, as the model overestimates precipi-

tation over the WP, in the western part of equatorial

Indian Ocean, and in the NA, while it underestimates

over the eastern equatorial Indian Ocean and near the

northwest coast of Australia. Interestingly, the geo-

graphic locations of TCG are typically at the pole-

ward edges of the equatorial precipitation maxima in

both observations and the model simulation, re-

flecting the typical formation of TCs within or near

the poleward edge of the monsoon trough (Molinari

and Vollaro 2013).

TABLE 1. Definitions of the basins used in this study, as well as their peak seasons.

Basin (acronym) Geographical domain Peak season

Western Pacific (WP) 08–308N, 1008E–1808 July–October (JASO)

Eastern Pacific (EP) 08–308N, 180.018E to American coast July–September (JAS)

North Atlantic (NA) 08–308N, American to African coast August–October (ASO)

North Indian (NI) 08–308N, 408–1008E October–December (OND)

South Indian (SI) 08–308S, 08–1308E January–March (JFM)

South Pacific (SP) 08–308S, 130.018–2408E January–March (JFM)
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2) TCG FREQUENCY

The analysis of the statistics of TCG frequency gives

us more detailed information on the model perfor-

mance.We calculate themodel simulated climatology of

TC formation rates, at global and regional scales (Fig. 2).

On average, about 80 TCs form every year across the

globe (Emanuel 2003), and the mean number of TCs

forming during the period 1990–2009 analyzed here

from IBTrACS is about 80. The TC formation rates at

the regional scales vary from basin to basin depending

largely on the size of the basins, and availability of TC

favorable conditions. Figure 2a shows that the model

well captures the observed climatology of global annual

number of TCs at the 95% confidence level, but with

varying interquartile ranges. At the regional scale, the

model has some ability to reproduce the observed in-

terbasin differences but there are some substantial bia-

ses in some basins (Fig. 2b); for example, the model

overestimates TC formation rates in the WP and SP,

while it underestimates over the NA and the SI, all sig-

nificant at the 95% confidence level. The annual fractions

(Fig. 2c) in each basin relative to each hemisphere, as well

as the peak seasonal formation rates (Fig. 2d) across the

basins (Table 1) compared to IBTrACS best track data

are also shown. The model is relatively more TC active

over the Southern Hemisphere, with a slightly higher

percentage (34.7%) of global TC formation compared to

IBTrACS (30.6%) for the period 1990–2009. The overall

performance of the model is reasonable during the peak

seasons, although the TCs are considerably fewer than

observed over the NA, while there are more than ob-

served over the SP (Fig. 2b).

3) TCG ANNUAL CYCLE

Another metric of interest is how the model simulates

the annual/seasonal cycle of TC formation over indi-

vidual ocean basins, which provides a measure of the

FIG. 1. Annual mean precipitation (mmday21; shaded) over basins and the geographical locations of TCG (red

dots) for (a) GPCP (shaded) and IBTrACS, and (b) model simulation for the period of 20 years (1990–2009).

(c) Model bias (shaded) in the annual mean precipitation. The values significant above the 95% confidence level in

(c) are crosshatched in black.
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model’s TC response to variations in climate forcing at

the seasonal scale. Figure 3 shows the model-simulated

annual cycle of mean TC formation rates per basin (red

bar) as a function of month compared to IBTrACS (blue

curve). In general, the model captures the peak seasonal

cycle of TCs over individual ocean basins quite realis-

tically, despite having biases in TC formation rates in

some basins (Fig. 2b). Another definite exception is the

NI basin (Fig. 3f), where the model has failed to capture

the observed annual cycle, which has dual peaks in the

NI during the pre- and postmonsoon seasons. The bi-

modal annual cycle in the NI has been attributed to the

annual cycle of background vertical shear as strong

monsoonal shear inhibits TC formation during boreal

summer. The simulation of TC-like storms in the NI

during the monsoon season has been noted in several

recent global models (Camargo andWing 2016). Possible

reasons may be due to the underestimated monsoonal

shear and/or limitation of the detection scheme in

overestimating the strength of boreal summer mon-

soonal low pressure systems over the NI basin (Murakami

et al. 2012).

4) SPATIAL DISTRIBUTION OF TCG DENSITY

Next, we examine the geographic distribution of TCG

density, defined as the number of TCs per 48 3 48 grid
box per year or peak season. Figure 4 shows the ob-

served (Fig. 4a) and the simulated (Fig. 4b) annual TCG

density and the model biases (model minus observation;

Fig. 4c). The model reproduces the spatial distribution

of the annual TCG density reasonably well, but with

some key differences. The most noticeable difference is

the highly underestimated TCG density in the main

development region (108–208N, 608–158W) over the NA

basin, a common issue noted in the majority of recent

climate models (Shaevitz et al. 2014). Inherent modest

FIG. 2. Box diagrams of annual mean (a) global and (b) basin-scale TCG frequency for IBTrACS (blue) and

model (red) for period 1990–2009. The horizontal line inside the boxes shows the median number of TCs per year,

the top and bottomof the boxes represent the 75th and 25th percentiles, respectively, with thewhiskers extending to

the maximum and minimum number of TCs per year in each case. (c) The annual fraction of total TCs formed in

each hemisphere (NH and SH) and each basin (Table 1), and (d) average number of simulated TCs in each basin

during peak seasons are also shown compared to IBTrACS.
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model biases can easily lead to a reduction of the TC

activity in that region. Other differences include un-

deractive TC formation in the EP that appears to have

insufficient westward extension of the main region of

observed formation, and in the eastern half of the SI in

the region close to the northwest coast of Australia. In

addition, the model overestimates TCG density in the

central-to-northeast region of the WP, north of the Bay

of Bengal in the NI, over the western half of the SI, and

in the SP, where a general overestimation of formation is

observed along with an extended TCG region farther

east compared to the observations.

5) BASIN-WISE TCG DENSITY DURING PEAK

SEASONS

We also estimate how the model captures the basin-

wise seasonal patterns of TCG density for the individual

basin peak TC seasons (Fig. 5). The overall basin-wise

TCG densities are moderately well simulated during

peak TC seasons (Figs. 5g–l) compared to observation

(Figs. 5a–f), and the differences (Figs. 5m–r) in the

basin-to-basin regional patterns during peak TC seasons

are quite comparable to the biases noted in the simu-

lated annual TCG density. However, a few more re-

gional differences are also noticed during peak TC

seasons, such as the lower TCG density prominent in

the WP (around 1208–1508E) (Fig. 5m), and also in the

Bay of Bengal, that appear to be linked with the

poorly simulated seasonal cycle of TCG in the NI basin

(Fig. 5p). The identified TCG biases could potentially be

caused partly by the inadequate representation of the

TC-favorable seasonal large-scale climatic conditions.

b. Interannual variability of TCG

Since this is an AMIP-style simulation, we assess the

ability of the model to simulate the interannual vari-

ability of TC formation rates. Figure 6 shows the simu-

lated global number of TCG per year for the model (red

bars) compared to IBTrACS (blue bars), as well as for

the individual basins separately. To quantify the ability

of the model to reproduce the interannual variability of

observed TCs in individual basins, we calculate the cor-

relation coefficient between the model-simulated and

observed TCG per year in each basin. The correlation is

FIG. 3. Annual cycle of mean tropical cyclones per month and per basin for model simulations (red bars) compared

to observations (blue curve).
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high and significant at the 95% confidence level only in

the NA and EP basins, mostly driven by the dominant

mode of tropical climate variability, El Niño–Southern
Oscillation (ENSO), which significantly affects the spatial

distribution and the statistics of TCs (e.g., Camargo et al.

2010). Although the simulated global number of TCs in

this model is comparable to the observed number, the

global interannual variability is not well captured in this

model. Note that the relationship between ENSO and TC

formation differs in polarity between some of the basins,

and this cancellation effect probably explains the low

correlation between observed and simulated global TC

numbers. Similarly, the SP basin has two regions of

opposite ENSO polarity within it, divided by the 1708E

meridian (e.g., Basher and Zheng 1995), so the low

correlation there is not surprising either (Shaevitz

et al. 2014).

We further assess how the model captures the ENSO-

driven influence on the regional TCG locations and

frequency for the period 1990–2009. The annual TCG

density composites for the El Niño and La Niña years

are computed separately for the Northern and Southern

Hemispheres. We use an standard ENSO index (the

oceanic Niño index from the Climate Prediction Center,

available at http://www.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ensoyears.shtml) to iden-

tify the El Niño and La Niña seasons where the Northern

(Southern) Hemisphere season definitions are based on

FIG. 4. Annual mean TC genesis density (31021) per 48 3 48 grid box in each basin for the period 1990–2009 for

(a) IBTrACS, (b) model simulation, and (c) model bias (model minus IBTrACS). The values significant above the

95% confidence level are stippled using a bootstrap method.
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the state of ENSO in the August–October (January–

March) seasons, where the SouthernHemisphere seasons

are defined from July to June, encompassing parts of two

calendar years (Table 2). The observed and the simulated

TCG density difference between El Niño and La Niña
years over the period 1990–2009 are shown in Fig. 7. The

IBTrACS data (Fig. 7a) show the well-known ENSO-

driven influences on TCs, such as the increased and

southeast shift of TCs toward the date line in the WP

(Wang and Chan 2002; Camargo et al. 2007a), a south-

west shift in the EP (Chia and Ropelewski 2002), and

suppressed TC activity in both the NA (Kossin et al.

2010) and in the Bay of Bengal (Felton et al. 2013) during

El Niño years. In the Southern Hemisphere, reduced

TCG to the west of Australia and enhanced TCG in both

the western part of SI and closer to the east coast of

Africa, and also the southeastern part of SP, is observed

during El Niño years (Kuleshov et al. 2008). It is evident

that the model can realistically capture the spatial pat-

terns of the observed difference in TCG density between

El Niño and La Niña conditions in most TC basins

(Fig. 7b), in reasonable agreement with the observations.

FIG. 5. Regional TC genesis density (31021) per 48 3 48 grid box per peak season for individual ocean basins

for (a)–(f) IBTrACS and (g)–(l) model, and (m)–(r) corresponding model biases (model minus IBTrACS)

over each basin, for the period 1990–2009. The regions selected as the regions of positive (negative) biases are

shown in solid (dashed) boxes. The values significant above the 95% confidence level are stippled using a

bootstrap method.
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An exception is in the NA basin where TCs are poorly

detected compared to the observed TCG density, a

common issue inmany recent climatemodels (e.g.,Walsh

et al. 2016). Consistent with the above discussion, the

model also could not reproduce the enhanced TCG in the

western SI as evident in the observations, especially over

the area from 408 to 808E. To examine the possible causes

of the model biases in TC formation rates, in the next

subsection we assess the ability of themodel in simulating

the large-scale tropical climate conditions that influence

the TC formation rates.

c. Influence of simulated tropical climate conditions

The number of TCs that form each year and in each

basin depends largely on the specific large-scale trop-

ical environment (e.g., Sharmila and Walsh 2017).

Thus, a systematic evaluation of the model’s perfor-

mance in simulating climate conditions that are crucial

for TC formation is essential, focused primarily during

the TC-active seasons. Any systematic model biases in

the large-scale patterns of TC-favorable dynamical

and thermodynamical conditions can influence the

realistic simulation of TCG climatology. As an initial

step, we use a Taylor diagram (Taylor 2001) to dem-

onstrate the model’s overall fidelity in simulating the

FIG. 6. Simulated interannual variability of TC formation rates (number of TCs per year): IBTrACS (blue) and

model (red) for global and individual ocean basins. The correlation between model-simulated and observed TC

formation rates is shown in parentheses. The correlation values of EP andNA are statistically significant at the 95%

confidence level.

TABLE 2. El Niño and La Niña years for Northern (Southern)

Hemispheres based on warm and cold ENSO states in the ASO

(JFM) seasons of Climate Prediction Center. (Note that here the

annual TCG density over the Southern Hemisphere is calculated

from July to June, encompassing two calendar years.)

Northern Hemisphere Southern Hemisphere

El Niño La Niña El Niño La Niña

1991 1995 1991/92 1995/96

1994 1998 1994/95 1998/99

1997 1999 1997/98 1999/2000

2002 2000 2002/03 2000/01

2004 2007 2005/06

2006 2007/08

2009
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seasonal-mean large-scale climate (such as precipita-

tion, low- and high-level winds, vertical shear, mid-

level relative humidity, ascending motion, etc., along

with MPI and GPI) during boreal summer (JAS) and

austral summer (JFM), which covers most of the TC

peak seasons over the tropics (308S–308N) in terms of

their spatial pattern correlation, root-mean-square

difference, and the ratio of variances compared to

observation (Fig. 8). The diagram reveals that the

model reasonably captures the overall spatial patterns

of tropical large-scale climate variables, although it

performs slightly better during JFM. However, the

model also produces larger variance for most of the

variables compared to the observations. We noted

earlier that precipitation is one of the worst simulated

variables here, as expected.

Although the overall patterns of large-scale climate

variables are quite reasonably captured over the tropical

domain, it is also important to examine the basin-wise

model performance. We selected four climate variables

(dynamical: vertical wind shear and relative vorticity at

850hPa; and thermodynamical: relative humidity at

700hPa and MPI) crucial for TC formation rates [fol-

lowing Sharmila and Walsh (2017)] and compared the

basin-specific peak-TC seasonal model climatology with

the observed climatology. These variables have been

regularly utilized in the various previous genesis indices

(Camargo et al. 2007b; Camargo and Wing 2016). The

identified systematic regional biases in relevant climate

variables are shown in Fig. 9.

FIG. 7. Differences in annual TC genesis density (31021) per 48 3 48 grid box between El Niño and La Niña
periods for (a) observation and (b) model. Here, TCG density difference in the Southern Hemisphere is calculated

from July to June, encompassing parts of two calendar years.

FIG. 8. Taylor diagram showing the performance of the model in

simulating large-scale climate variables over the tropics (308N–308S)
for boreal summer (red dots) and winter (blue dots).
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1) MODEL BIASES IN DYNAMICAL CONDITIONS

Weak vertical wind shear and strong low-level cy-

clonic vorticity are considered as favorable conditions

for TCG frequency. Thus, any substantial inherent

model bias in those conditions could influence the sim-

ulated TC formation rates and may partly explain the

TCG biases. In the WP basin (Fig. 9Ia), the model has

positive shear bias in the deep tropics (08–158N) and

negative bias poleward of 208Nup to 308N. Concomitant

bias in the low-level relative vorticity but of opposite

sign (Fig. 9Ib) is also present, which could influence the

estimated TC formation rates in this region (Fig. 3). The

model further simulates stronger wind shear over the

entire EP (Fig. 9IIa), the NA (Fig. 9IIIa), and the NI

(Fig. 9IVa), which tend to simulate low TC formation

rates (Fig. 5). In the EP, a possible connection between

the bias in vorticity and TCG bias is a little ambiguous,

although positive wind shear bias southwest of the Baja

Peninsula appears to be inhibiting the extension of

simulated TC formation as far west as observed. In the

NA region, the suppression of cyclonic vorticity would

tend to suppress TCG, and thus could act to amplify the

suppressive effect of the positive wind shear bias on

TCG. Both the positive shear bias and the negative

relative vorticity bias in the main development region of

NA might help to explain the highly reduced simulated

TC formation rates over that region (Fig. 5o). Over the

Southern Hemisphere, the model produces a highly cy-

clonic vorticity bias from the eastern Australian coast to

the east of the date line in the TC development region,

FIG. 9 Regional biases (model minus reanalyses) in climate conditions over the (I)–(III) NH basins (WP, EP, NA) during peak TC

seasons, for (a) vertical wind shear (VWS), (b) relative vorticity at 850 hPa (RVor850), (c) relative humidity at 700 hPa (RH700), and

(d) maximum potential intensity (MPI). The values significant above the 95% confidence level are stippled using the Student’s t test. The

observed TCG main development region over each individual basin is shown using a 0.2 3 1021 black contour.
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concomitant with overestimated TCs in the SP, while

weaker shear east of 1708E andmodest positive biases in

wind shear off the coast of Queensland are also noted. In

the SI basin, the reduced TCG near the northwest coast

of Australia is well collocated with the large anticyclonic

vorticity bias (Fig. 9Vb), and slightly positive shear in

the TCG region of the SI basin (Fig. 9V), while the

positive TCG bias in the west is partly associated with

the accompanying bias in the dynamical conditions.

2) MODEL BIASES IN THERMODYNAMICAL

CONDITIONS

In general, the model mostly has a large positive bias

in the relative humidity during the peak TC seasons of

individual basins (Fig. 9c). For example, the model

overestimates the relative humidity in the entire WP,

except near the equatorial warm pool region (Fig. 9Ic).

In contrast, the relative humidity is highly underestimated

over the main TC development region in the EP except

east of 1008W (Fig. 9IIc). Interestingly, in the NA, the

simulated relative humidity shows considerable positive

bias in the TC inactive regions, although a large plume of

drier-than-observed air is also evident near the African

coast (Fig. 9IIIc). Similarly, the positive humidity bias in

theNI has no clear associationwith the negative TCGbias

(Fig. 9IVc), suggesting that the negative TCG bias is

mainly owing to the biases in the dynamical conditions

(Fig. 9IVa). Turning to the Southern Hemisphere ba-

sins, the model consistently overestimates the relative

humidity in the SI (Fig. 9Vc), although a considerable

dry zone near the warm pool and northwest coast of

Australia are also evident, suggesting a clear association

with the negative TCG bias in that region. However, a

similar dry zone near the east coast of Australia is noted

FIG. 9 IV2VI. As in (I)2(III), but for the NI and for the SH basins (SI and SP).

15 FEBRUARY 2020 SHARM ILA ET AL . 1467



in the SP, suggesting its inconsistent association with the

positive TCG bias in this region (Fig. 9VIc). We also

note that there is no systematic association between the

local MPI biases and the TCG biases (Fig. 9d) except

over the NA. In summary, while there appears to be

some relationship between regions of relative humidity

bias and biases in TCG, this relationship is not entirely

consistent.

3) GPI SIMULATION

We compute the model GPI climatology for peak TC

seasons of individual basins (see section 2c) and com-

pare with reanalysis GPI climatology. The model can

reasonably capture the spatial pattern, the well-known

TC active regions with respect to GPI maxima com-

pared to the reanalysis GPI (figure not shown). The

model generally overestimated the magnitude in

most basins, however (Fig. 10). It shows that the

simulated regional GPI biases are not necessarily

consistent with all regional TCG biases. For in-

stance, the model shows highly positive GPI bias

north of 208N in the NA but has highly reduced TC

activity.

To investigate the competing influence of large-scale

climate factors contributing to the biases in the simu-

lated GPI, and to relate the corresponding biases in the

simulated TCG, we select a few specific boxes (Table 3)

in the individual basins, over which the model shows

notable positive (solid box) or negative (dashed box)

biases in TCG density (Fig. 5) during the peak TC sea-

sons. Then we compute the box-averaged GPI, and each

of the four contributing terms corresponding to the

region-dependent biases in TCG (see Fig. S1 in the on-

line supplemental material). We calculated the relative

error of simulatedGPI along with each four components

[following Camargo et al. (2007)] compared to the GPI

and all four terms from reanalysis. The relative error is

defined as the difference between the model climatol-

ogy and the reanalysis climatology normalized by the

magnitude of the reanalysis climatology. Although the

net relative error in GPI cannot be described as the sum

of the contributions from the four factors due to its

FIG. 10.Model bias (modelminus reanalysis) in regionalGPI for individual basins during peak TC seasons.Here,

the regional boxes of positive (solid line) and negative (dashed line) TCG are also displayed (Table 3). The values

significant above the 95% confidence level are stippled using the Student’s t test.
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nonlinearity, it can provide an adequate quantification

of the role of each of the different factors. The estimates

of box-averaged relative errors for each component

along with GPI corresponding to the positive and neg-

ative TCG biases (red dots, right y axis) over the

individual basins (Fig. 5) are shown in Fig. 11. The box-

averaged relative error in the GPI (gray bar), and all

four contributing terms in Eq. (2), namely T1 (vertical

wind shear; blue bar), T2 (absolute vorticity; maroon

bar), T3 (relative humidity; green bar), and T4 (maxi-

mum potential intensity; orange bar), are shown in

Fig. 11. The figure shows that the estimated relative

error in GPI is consistent with the sign of TCG biases in

most of the selected locations (Table 3), but with some

differences. Note that the GPI is inversely proportional

to the square of vertical shear, so the positive contri-

bution of theGPImeans lower shear. In theWP, the sign

of TCG biases matches with the estimated relative error

in the GPI; for example, for the positive bias in GPI, all

terms except T4 (related toMPI) contributed positively,

although relative humidity is the dominant one among

them. In contrast, in the region of the WP with a nega-

tive bias, the negative contribution from dynamical

terms plays the dominant role, consistent with the

stronger shear and negative vorticity bias identified in

this region (Figs. 9Ia,b and Fig. S2). The stronger shear

in the region east of the Philippines is likely caused by a

substantial positive anomaly in convection simulated in

the equatorial Indian Ocean, which could lead to in-

creased shear in the western part of theWP basin due to

associated increased upper-level outflow over the Indian

Ocean and resulting increased westerlies to the east of

the convective anomaly, similar to the mechanism that

links positive convective anomalies in the eastern Pacific

to increased shear in the North Atlantic (e.g., Aiyyer

and Thorncroft 2006). To make this physical link more

robust, some GCM experiments with specified SST

anomalies would have to be conducted, however. In the

WP, there is also there is a slight northward and east-

ward shift away from the Philippines in the location of

themonsoon trough, likely causing a corresponding shift

in the simulated regions of tropical cyclone formation

(e.g., Molinari and Vollaro 2013). In the EP, the GPI

bias is primarily contributed by the relative humidity

bias, while the biases in the dynamical terms are of

cancelling signs. Although the model simulates stronger

vertical shear, this term is of a lower exponent compared

to relative humidity in the GPI. In the NA main devel-

opment region, the relative errors in the vertical shear

and relative humidity terms play the dominant roles for

the negative GPI biases. It is likely that the stronger

shear in this region is caused by excessive convection

in the eastern Pacific, as this link is a well-known effect

of the positive SST anomalies in the eastern Pacific as-

sociated with El Niño conditions (e.g., Aiyyer and

Thorncroft 2006). The stronger shear and low MPI are

the main reasons for the negative GPI bias in the NI.

Over the Southern Hemisphere, all four terms contrib-

uted to the positive GPI error in the SI corresponding to

FIG. 11. Estimated relative error of genesis potential index (GPI;

gray bar), and individual contributing terms: T1: VWS (blue), T2:

Avor850 (maroon), T3: RH700 (green), and T4: MPI (orange)

corresponding to the selected regions (Table 3) of positive (1) and

negative (2) TCG biases shown as boxes in Fig. 5, for individual

ocean basins. The relative bias in the TCG (as red dots) is also

shown on the right y axis.

TABLE 3. The regional domain for calculating area-averaged relative error in each term of GPI.

Basin (sign of TCG bias) Sign of GPI bias Geographical domain (lat, lon)

WP (1) 1 158–258N, 1508–1758E
WP (2) 2 38–158N, 1208–1458E
EP (1) 1 58–208N, 2558–2758E
EP (2) 2 58–208N, 2258–2508E
NA (2) 2 58–208N, 3108–3458E
NI (2) 2 38–158N, 808–958E
SI (1) 1 108–258S, 358–608E
SI (2) 1 58–208S, 908–1208E
SP (1) 1 58–208S, 1508E–1808
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the positive TCG bias, although the vorticity and rela-

tive humidity bias are the dominant among them. In

contrast, the model fails to capture the negative bias in

GPI corresponding to negative TCG in the northwest

coast of Australia, although the negative contribution of

relative humidity to the positive GPI error suggests the

influence of simulated drier-than-observed air (Fig. 9Vc,

Fig. S2) in inhibiting TCG in this region. In the SP, the

positive GPI error relative to positive TCG bias is pre-

dominantly contributed by the vorticity term consistent

with the stronger vorticity bias in this region (Fig. 9VIb,

Fig. S2). It is interesting to note that the contribution of

the MPI remains weak or minimal in most of the basins,

consistent with Fig. 9 and Fig. S2. The analysis suggests

that GPI biases corresponding to TCG biases are pre-

dominantly influenced by the relative errors in the ver-

tical wind shear and midlevel relative humidity, while

vorticity bias has some region-specific dominance, es-

pecially over the SP. These results are quite consistent

with the contrasting roles of regional climate conditions

in modulating observed TCG frequency over the indi-

vidual basins (Sharmila and Walsh 2017).

4. Summary and conclusions

In this part of this study, the ability of a high-

resolution (;40 km in the horizontal) atmospheric

GCM in simulating present-climate global and regional

TC formation rates is systematically assessed. We use

the atmospheric component of ACCESS model forced

with observed SST and the modified CSIRO-TC tracking

scheme is applied to derive TCs from 20 years of model

integration.

Overall, the model reproduces the observed present-

climate climatology and interhemispheric asymmetry

of global TC formation rates reasonably well, although

the model is moderately more TC active than observed

in the Southern Hemisphere. The annual cycle of re-

gional TC formation rates over most of the basins

(except the NI) is also well captured. In addition, the

model can reproduce the interannual variability of TC

frequency in the NA and North Pacific basins to some

extent, along with capturing the geographical differ-

ence in TC formation rates between El Niño and La

Niña years. The model reproduces the spatial distri-

bution of the annual TCG density moderately well but

suffers from notable regional biases over individual

ocean basins. For instance, the model highly under-

simulates TCG density in the NA basin, and moder-

ately in the EP and eastern half of the SI, while it

oversimulates TCG density in the SP, northeast of the

WP, and in the western half of the SI compared to the

observed.

To investigate the cause of TCG biases, we systemati-

cally evaluate a suite of model simulated mean-state

large-scale climate conditions that critically modulate

the TC formation rates, including the assessment of a

multivariate GPI, along with all four contributing com-

ponents. It is found that the TCG biases identified in this

study are closely related to the systematic model biases in

the TC-favorable large-scale mean-state dynamical and

thermodynamical conditions. For instance, a large mean-

state positive model bias of vertical wind shear could in-

hibit the generation of TC-like vortices in theNA, while a

large negative bias in the relative humidity in the EP is

consistent with the large negative bias in TCG over these

regions. In contrast, the high cyclonic vorticity bias in the

SP is concomitant with oversimulated TCG in this region.

The analysis based on GPI relative errors also sug-

gests the consistent influence of the identified large-scale

mean-state model biases on the TCG biases. We note a

basin-specific influence of the model biases in the gov-

erning climate conditions on corresponding biases in the

TC formation rates, although mostly influenced by the

biases in the large-scale dynamical conditions. However,

most of the identified climatological biases (e.g., a high

shear bias in the main development region over the

NA) are common in recent climate models (Camargo

and Wing 2016). It is an ongoing issue that the simu-

lated global TC frequency in recent climate models is

extremely sensitive to the details of the convection

schemes used in those models (Camargo andWing 2016),

particularly parameterizations of deep convection. For

instance, a change in convective parameterization can

change the rate of latent heat release at upper levels,

causing a change in the meridional temperature gradient

and a resulting change in the vertical wind shear through

the thermal wind relationship. As Camargo and Wing

(2016) state, this is likely to remain an issue until the

modeling community is able routinely to run long climate

model simulations of TC formation at horizontal resolu-

tions fine enough to remove the need for convective pa-

rameterization and to also achieve a good simulation of

the observed intensity distribution. Simulations with re-

gional models suggest that this resolution is likely to be

less than 5km (e.g., Knutson et al. 2015). However, res-

olution and convective parameterizations are not the only

factors that influence the simulation of TCs, and work is

ongoing to address some of the issues noted here.

The overall quality of TC simulation as demonstrated

by this high-resolution ACCESS model utilized here thus

enables us to construct idealized model experiments with

the goal of understanding the climatic controls on TC

formation rates. Hence, in the second part of this work,

we will show the results from a series of idealized ex-

periments by employing this same high-resolution model
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but in an aquaplanet configuration (Hayashi and Sumi

1986) to investigate the sensitivity of the global TC forma-

tion rates to various systematic changes in SST distribution

and the associated large-scale atmospheric circulation. This

approach is expected to elucidate the possible mechanisms

of a climate theory of TC formation.
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