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Abstract

This thesis is comprised of three papers On the Design of R-Based Scalable Frame-
works for Data Science Applications. We discuss the design of conceptual and com-
putational frameworks for the R language for statistical computing and graphics
and build software artifacts for two typical data science use cases: optimization
problem solving and large scale text analysis. Each part follows a design science
approach. We use a verification method for the software frameworks introduced,
i.e., prototypical instantiations of the designed artifacts are evaluated on the basis
of real-world applications in mixed integer optimization (consensus journal ranking)
and text mining (culturomics).

The first paper introduces an extensible object oriented R Optimization Infras-
tructure (ROI). Methods from the field of optimization play an important role in
many techniques routinely used in statistics, machine learning and data science.
Often, implementations of these methods rely on highly specialized optimization
algorithms, designed to be only applicable within a specific application. However,
in many instances recent advances, in particular in the field of convex optimization,
make it possible to conveniently and straightforwardly use modern solvers instead
with the advantage of enabling broader usage scenarios and thus promoting reusabil-
ity. With ROI one can formulate and solve optimization problems in a consistent
way. It is capable of modeling linear, quadratic, conic, and general nonlinear opti-
mization problems. Furthermore, the paper discusses how extension packages can
add additional optimization solvers, read/write functions and additional resources
such as model collections. Selected examples from the field of statistics conclude the
paper.

With the second paper we aim to answer two questions. Firstly, it addresses the
issue on how to construct suitable aggregates of individual journal rankings, using
an optimization-based consensus ranking approach. Secondly, the presented appli-
cation serves as an evaluation of the ROI prototype. Regarding the first research
question we apply the proposed method to a subset of marketing-related journals
from a list of collected journal rankings. Next, the paper studies the stability of
the derived consensus solution, and degeneration effects that occur when excluding

journals and/or rankings. Finally, we investigate the similarities/dissimilarities of



the consensus with a naive meta-ranking and with individual rankings. The re-
sults show that, even though journals are not uniformly ranked, one may derive a
consensus ranking with considerably high agreement with the individual rankings.
In the third paper we examine how we can extend the text mining package tm
to handle large (text) corpora. This enables statisticians to answer many interesting
research questions via statistical analysis or modeling of data sets that cannot be
analyzed easily otherwise, e.g., due to software or hardware induced data size limi-
tations. Adequate programming models like MapReduce facilitate parallelization of
text mining tasks and allow for processing large data sets by using a distributed file
system possibly spanning over several machines, e.g., in a cluster of workstations.
The paper presents a plug-in package to tm called tm.plugin.dc implementing a dis-
tributed corpus class which can take advantage of the Hadoop MapReduce library
for large scale text mining tasks. We evaluate the presented prototype on the basis
of an application in culturomics and show that it can handle data sets of significant

size efficiently.

Keywords: binary optimization, consensus ranking, convex programming, cultur-
omics, distributed computing, Hadoop, high performance computing, journal rank-
ing, linear programming, MapReduce, mathematical programming, meta-ranking,
mixed integer programming, nonlinear programming, optimization, parallel com-

puting, quadratic programming, R, software design, text mining.
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Kurzfassung

Die vorliegende Dissertation On the Design of R-Based Scalable Frameworks for
Data Science Applications besteht aus drei wissenschaftlichen Artikeln. Wir disku-
tieren das Design von konzeptionellen und komputationalen Frameworks fiir R, eine
Sprache fiir statistisches Rechnen und Grafiken und entwerfen Software-Artefakte fiir
zwei typische Anwendungsfélle von Data Science: das Losen von Optimierungsprob-
lemen sowie rechen- und datenintensive Textanalyse. Jeder Teil folgt einem Design-
wissenschaftlichen Ansatz. Wir verwenden eine Verifikationsmethode fiir die vorge-
stellten Software-Frameworks, d.h. prototypische Instanziierungen der entworfenen
Artefakte werden auf der Grundlage von realen Anwendungen in der Gemischt-
Ganzzahligen-Optimierung (Consensus Journal Ranking) und im Text-Mining (Cul-
turomics) bewertet.

Der erste Artikel stellt eine erweiterbare objektorientierte R Optimierungsinfras-
truktur (ROI) zur Férderung einerseits der Nutzung von Optimierung in R und
andererseits von R als Werkzeug zur Optimierung vor. Entsprechende Methoden
spielen in vielen Bereichen der Statistik, des maschinellen Lernens und in der Data
Science eine wesentliche Rolle. Héufig sind die Implementierungen dieser Methoden
auf hochspezialisierte Optimierungsalgorithmen angewiesen, die so konzipiert sind,
dass sie nur in dem fiir sie bestimmten Anwendungsfall anwendbar sind. Die jling-
sten Fortschritte, insbesondere im Bereich der konvexen Optimierung, ermoglichen
es jedoch in vielen Fallen, moderne Loser komfortabel und unkompliziert einzuset-
zen, mit dem Vorteil, breitere Nutzungsszenarien zu ermoglichen und damit die
Wiederverwendbarkeit zu fordern. ROI ist in der Lage, lineare, quadratische, konis-
che und allgemeine nichtlineare Optimierungsprobleme in einer konsistenten Art
und Weise zu modellieren. Dartiber hinaus verwaltet die Infrastruktur zahlreiche
verschiedene Loser, Umformulierungen, Problemsammlungen sowie Funktionen zum
Lesen und Schreiben von Optimierungsproblemen in verschiedenen Formaten.

Mit dem zweiten Beitrag wollen wir zwei Fragen beantworten. Erstens, geht
es um die Frage, wie man ein geeignetes Aggregat von einzelnen Rankings wis-
senschaftlicher Publikationsformate (Fachzeitschriften) unter Verwendung eines op-
timierungsbasierten Konsens-Ranking-Ansatzes konstruiert. Zweitens dient die vor-

gestellte Anwendung als eine Art Evaluierung des ROI Prototypen. Was die er-
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ste Forschungsfrage betrifft, so wenden wir die vorgeschlagene Methode auf eine
Teilmenge von marketingbezogenen Zeitschriften aus einer Liste von gesammelten
Zeitschriftenrankings an. Wir untersuchen auch die Stabilitat der abgeleiteten Kon-
sensuslosung und die Degenerationseffekte durch den Ausschluss von Zeitschriften
und/oder Rankings. Schlieflich untersuchen wir die Ahnlichkeiten/Differenzen des
Konsenses zu einem naiven Meta-Ranking und den individuellen Rankings. Die
Ergebnisse zeigen, dass es moglich ist, auch wenn Zeitschriften nicht einheitlich
gereiht sind, ein Konsensus-Ranking mit sehr hoher Ubereinstimmung zu den einzel-
nen Rankings abzuleiten.

Im dritten Beitrag untersuchen wir, wie wir das Text-Mining-Paket tm fiir die
effiziente Verarbeitung groBer (Text-)Korpora erweitern konnen. Auf diese Weise
konnen Statistikerinnen und Statistiker viele interessante Forschungsfragen durch
statistische Analyse oder Modellierung von Datensétzen beantworten, die sonst nicht
einfach zu analysieren sind, z.B. aufgrund von software- oder hardwarebedingten
Datengrofienbeschrankungen. Entsprechende Programmiermodelle wie MapReduce
erleichtern die Parallelisierung von Text-Mining-Aufgaben und erméglichen die Ve-
rarbeitung grofler Datensatze unter Verwendung eines verteilten Dateisystems, das
sich gegebenenfalls iiber mehrere Maschinen erstreckt, z.B. in einem Cluster von
Workstations. Der Artikel stellt ein Plug-in-Paket fiir tm namens tm.plugin.dc vor,
das eine neue Klasse Distributed Corpus implementiert, die die Vorteile der Hadoop
MapReduce-Bibliothek fiir grof§ angelegte Text-Mining-Aufgaben nutzen kann. Wir
evaluieren den vorgestellten Prototyp anhand einer kulturwissenschaftlichen An-
wendung (Culturomics) und zeigen, dass er mit Datensitzen von erheblicher Grofie

effizient umgehen kann.

Schlagworter: Bindre Programmierung, Culturomics, Gemischt-Ganzzahlige Op-
timierung, Hadoop, Hochleistungsrechnen, Konsensusranking, Konvexe Program-
mierung, Lineare Programmierung, MapReduce, Mathematische Programmierung,
Meta-Ranking, Nichtlineare Programmierung, Optimierung, Parallelisierung, Qua-
dratische Programmierung, R, Software Design, Text-Mining, Verteiltes Rechnen,

Zeitschriftenrankings.
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Chapter 1
General Introduction

Already over 50 years ago Tukey (1962) pointed out that data analysis involves
more than doing statistical inference. It involves everything related to learning from
data (Chambers 1993). First labeled by Cleveland (2001), the new field of data
science emerged, which is a cross-disciplinary field that mainly builds on statistics
and computer science, but also on many others like communication, management,
economics, or sociology. It studies the methods involved in the analysis and pro-
cessing of data and proposes technology to improve methods in an evidence-based
manner (Donoho 2017).

Data science processes are typically supported by appropriate information sys-
tems employing computational methods to analyze data (of considerable size) using
mathematical or statistical models. In this thesis we discuss the design of concep-
tual and computational frameworks for the R language for statistical computing
and graphics (R Core Team 2019a) and build software artifacts for two typical data
science use cases: optimization problem solving and large scale text analysis. We
use a verification method for the software frameworks introduced, i.e., prototypical
instantiations of the designed artifacts are evaluated on the basis of real-world ap-
plications (consensus journal ranking and culturomics). In this sense we follow a
design science approach as elaborated in Hevner, March, Park, and Ram (2004).

Our main findings have been published in the Journal of Statistical Software and
the Journal of Business Research, respectively. The research work is contained in
three papers, of which this dissertation is composed.

The remainder of this chapter is organized as follows. In Section 1.1 we provide
the motivation as well as the purpose and scope of the conducted research. The
research design that was employed is discussed in Section 1.2. In Section 1.3 a
description of the types of artifacts we develop is given followed by a description of
the evaluation process (Section 1.4). At the end of this chapter, in Section 1.5, we

outline how the remainder of this dissertation is structured.



1.1 Overview of research work and objectives

This section gives an overview of the research work contained in this dissertation.
It provides the motivation as well as the purpose and scope of the artifacts to be
developed for each of the two data science use cases: optimization problem solving
(the first two papers, Chapters 2 and 3 of this dissertation) and large scale text
analysis (the third paper, Chapter 4).

1.1.1 Optimization problem solving

Chapter 2: ROI: an Extensible R Optimization Infrastructure

Optimization plays an important role in many methods routinely used in statistics,
machine learning and data science. Often, implementations of these methods rely
on highly specialized optimization algorithms, designed to be only applicable within
a specific application. However, in many instances recent advances, in particular
in the field of convex optimization, make it possible to conveniently and straight-
forwardly use modern solvers instead with the advantage of enabling broader usage
scenarios and thus promoting reusability. The paper introduces an R Optimization
Infrastructure package (ROI) which provides an extensible infrastructure to model
linear, quadratic, conic and general nonlinear optimization problems in a consistent
way. Furthermore, the infrastructure administers many different solvers, reformula-
tions, problem collections and functions to read and write optimization problems in

various formats.

Motivation

Optimization is the process of allocating scarce resources to a feasible set of alter-
native solutions in order to minimize (or maximize) the overall outcome. Given a
function fy : R — R and a set C C R™ we are interested in finding an z* € R™ that

solves
minimize fy(x)

(1.1)

subject to x € C.

The function fj is called the objective function. A point x is said to be feasible
if it satisfies every constraint given by the set C of all feasible points defining the
feasible region. If C is empty, then we say that the optimization problem (OP) is
infeasible. Since maximization problems can be expressed as minimization problems
by just changing the sign in the objective function, we subsequently will mainly deal
with minimization problems.

An OP can be bounded or unbounded. In the latter case, there are sequences



27 € C for which the value of the objective tends to —oo in a minimization problem,
symbolically fo(z7) — —o0 as j — +o00. Thus, a problem like in Equation 1.1 may
or may not have a solution. If the problem is neither infeasible nor unbounded then

we can often find a vector z* € C that satisfies

fo(@™) < fo(x), Vo €C,

which is commonly referred to as a solution of the OP.
Since any feasible set C can be expressed by the combination of constraint func-

tions, the OP from Equation 1.1 can be written as:

minimize fo(x)

(1.2)
subject to  fi(z) <b;, i=1,...,m,

where b € R™ is the so-called right-hand-side. The constraints f;, ¢ = 1,...,m
are sometimes referred to as functional constraints (Ben-Tal and Nemirovski 2001;
Nesterov 2004). Since any equality constraint can be expressed by two inequality
constraints and vice versa any inequality constraint can be expressed as an equality
constraint by adding additional variables (also called slack variables), it is common
practice to define OPs only in terms of either equality, less than or equal or greater
than or equal constraints, to avoid redundancies.

Based on the functional form of the objective function and of the constraints,
OPs can be divided into linear and nonlinear OPs (and sub-classes thereof). In this
dissertation we distinguish between the following problem classes: linear program-
ming, quadratic programming, conic programming and general nonlinear program-
ming. Furthermore, additional requirements are added to the optimization problem
if some of the objective variables can only be of type integer. Considering Equa-
tion 1.2, a problem is called a mixed integer problem (MIP) if the (type) constraint
x, € Z for at least one k is added.

Optimization in R For R, being a general-purpose tool for scientific computing
and data science, optimization and access to highly efficient solvers play an im-
portant role. The field of optimization already has many resources to offer, like
software for modeling, solving and randomly generating optimization problems, as
well as optimization problem collections used to benchmark optimization solvers.
In order to exploit the available resources more conveniently, over the years many
modeling tools have emerged. One of the first systems used to model linear opti-
mization problems is the so-called Mathematical Programming System (MPS) format
(see Kallrath 2004). Developed in the 1960’s, the MPS format today seems rather

archaic but it is still widely used to store and exchange linear problems and is



supported by most of the linear optimization solvers. Later, algebraic modeling
languages (AMLs) (e.g., GAMS (Bisschop and Meeraus 1982) and AMPL (Fourer,
Gay, and Kernighan 1989)) became available. AMLs are domain specific languages
(DSLs) dedicated to optimization. Today modern optimization systems are typically
implemented in high-level programming languages like Julia (Bezanson, Edelman,
Karpinski, and Shah 2017), MATLAB (The MathWorks Inc. 2017), Python (Python
Software Foundation 2017) or R.

Despite R having access to many modern optimization solvers which are capable
of solving a wide class of optimization problems (see, e.g., the CRAN optimization
and mathematical programming task view by Theufll, Borchers, and Schwendinger
2019a), it is still commonplace to develop highly sophisticated special purpose code
(SPC) for many statistical problems. The reasons are many. To name but a few:
1) availability, i.e., many solvers have not been easily available in R, 2) capability,
i.e., problems could not be solved due to a lack of adequate solvers, and 3) efficiency,
i.e., SPC tends to be faster.

Scope of the study and research questions

At first we survey available R packages concerned with solving problem classes as
introduced above. We then closely look at their commonalities and differences and
how optimization problems are to be formulated and solved using the respective

solver. This leads to our main research question of the paper.

Research question: How can we design a consistent framework for constructing
and solving optimization problems of different types providing a unified in-
terface to available solvers as well as a modeling mechanism borrowing its

strength from the rich language features R has to offer?

The main part of the paper then aims to elaborate the conceptual design of
ROI and how to use it to formulate and solve optimization problems. A proper
implementation of this design makes it more attractive to add new solvers to the
R solver landscape, e.g., to take advantage of recent advances in conic optimization
(increase availability). Furthermore, we discuss how extension packages can add ad-
ditional optimization solvers, read/write functions and additional resources (increase
capability). Furthermore, allowing package developers to plug-in new solvers quite
effortlessly not only makes it easy to use their highly efficient code for a given prob-
lem but possibly also in many other applications (eliminate efficiency detriments).

Selected examples from the field of statistics will conclude the paper.



Chapter 3: How to Derive Consensus Among Various Marketing Journal

Rankings?

Despite the increasing popularity of journal rankings to evaluate the quality of re-
search contributions, the individual rankings for journals that ranked below the
top-tier of publications usually feature only modest agreement. Attempts to merge
rankings into meta-rankings suffer from some methodological issues, such as mixed
measurement scales and incomplete data. The paper addresses the issue of how to
construct suitable aggregates of individual journal rankings, using an optimization-
based consensus ranking approach. We apply the proposed method to a subset of
marketing-related journals from a list of collected journal rankings. Next, the pa-
per studies the stability of the derived consensus solution, and degeneration effects
that occur when excluding journals and/or rankings. Finally, we investigate the
similarities/dissimilarities of the consensus with a naive meta-ranking and with in-
dividual rankings. The results show that, even though journals are not uniformly
ranked, one may derive a consensus ranking with considerably high agreement with

the individual rankings.

Motivation

There are two major challenges in aggregating journal ranking data sets, which
have not yet been adequately resolved by existing approaches: (1) The different
measurement scales used by the rankings and (2) incomplete information (Franke
and Schreier 2008; Mingers and Harzing 2007; Schrader and Hennig-Thurau 2009).
The first issue refers to the fact that the available rankings make use of quite different
scale levels including binary (yes/no), ordinal (e.g., by assigning grades A+, A, B,
etc.), or numeric scores (e.g., impact factors above 0) to construct their rankings.
This issue makes the aggregation of rankings with conventional statistical methods
cumbersome. Even more problematic appears to be the second issue, which is related
to the typically large amount of “missing observations” in ranking data sets. They
accrue because the various rankings cover only subsets of journals, which usually
coincide only partially. Thus, the sparsity of the data set is generally increasing
with broader rankings.

Hornik and Meyer (2007) have shown that given the above constraints it is
nevertheless possible to derive meta-rankings of journals by solving consensus opti-

mization problems.

Scope of the study and research questions

The paper has a clear application oriented focus since the implementation of the

presented methodology serves as the evaluation of the prototype introduced in



Chapter 2. In doing so we answer the following research question regarding the

aggregation of marketing-related journal rankings.

Research question: How can we derive a consensus ranking methodology which
optimally synthesizes the individual rankings, i.e., derives a ranking that shows

a considerable high level of agreement with the individual rankings?

To answer this question we pursue the following research plan. At first we in-
troduce the journal ranking data used in the study and the challenge of suitably
aggregating these rankings. We proceed with the cornerstones of the proposed con-
sensus ranking methodology and provide pointers for implementing the procedures
involved. Here, the software artifacts introduced in Chapter 2 play an important
role in supporting the research process. Subsequently, we apply the method us-
ing a subset of marketing-related journals provided by the Harzing Journal Ranking
Repository (http://www.harzing.com/jql.htm). We also explore the sensitivity of
the consensus ranking methodology to variations in the number of rankings and/or
journals by studying stability and degeneration issues. In addition, we compare it to
a naive ranking derived by a simple averaging of ranks. Finally, the paper concludes
with a discussion on the value of consensus rankings and outline some points for

future research.

1.1.2 Large scale text analysis

Chapter 4: A tm Plug-In for Distributed Text Mining in R

R has gained explicit text mining support with the tm package enabling statisticians
to answer many interesting research questions via statistical analysis or modeling of
(text) corpora. However, we typically face two challenges when analyzing large cor-
pora: (1) the amount of data to be processed in a single machine is usually limited
by the available main memory (i.e., RAM), and (2) the more data to be analyzed
the higher the need for efficient procedures for calculating valuable results. Fortu-
nately, adequate programming models like MapReduce facilitate parallelization of
text mining tasks and allow for processing data sets beyond what would fit into
memory by using a distributed file system possibly spanning over several machines,
e.g., in a cluster of workstations. In the paper we present a plug-in package to tm
called tm.plugin.dc implementing a distributed corpus class which can take advan-
tage of the Hadoop MapReduce library for large scale text mining tasks. We show
on the basis of an application in culturomics that we can efficiently handle data sets

of significant size.
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Motivation

The tm package (Feinerer 2018), originally presented in Feinerer, Hornik, and Meyer
(2008), provides sophisticated methods for document handling, transformations, fil-
ters, and data export (such as constructing document-term matrices). With a fo-
cus on extensibility based on generic functions and object-oriented inheritance, tm
makes it possible to apply a multitude of existing methods in the R world to text
data structures as well.

However, the endeavor to analyze huge text corpora using tm is the source of two
challenges: (1) the amount of data to be processed in a single machine is usually
limited by the available main memory (i.e., RAM), and (2) an increase of the
amount of data to be analyzed leads to higher demand for efficient procedures for
calculating valuable results. Thus, it is highly imperative to find a solution which
overcomes the memory limitation (e.g., by splitting the data into several pieces)
and to markedly reduce the run-time by distributing the workload across available
computing resources (such as CPU cores or virtual machine instances). Typically,
we consider distributed memory platforms like clusters of workstations for such
applications since they are scalable in terms of CPUs and memory (disk space and
RAM) employed. Furthermore, many different programming models and libraries
like the message passing interface (MPI) facilitate working with this kind of high
performance computing systems. Many of those libraries can directly be employed
in R (see Schmidberger, Morgan, Eddelbuettel, Yu, Tierney, and Mansmann 2009,
for further references). Still, one open question remains: is there an efficient way to

handle large corpora using R?

Scope of the study and research questions

The first step is to review tm as well as the typical workflow when using the package.
We expect to face two challenges which need to be tackled when working with large
data sets. Firstly, big data sets, i.e., data sets which do not fit into main memory like
corpora with several millions of documents, cannot easily be constructed and thus
processed with the basic facilities provided by tm. Secondly, iterations over several
millions of documents are rather time consuming. For example performing typical
preprocessing steps like stemming or stop word removal on raw text documents can
become quite expensive in terms of computing time when the corpus is very large.

Fortunately, operations such as applying transformations and filters are highly
amenable to parallelization by construction, as they can separately be applied to
each document without side effects. Furthermore, another concept in tm named
sources is used to abstract document acquisitions. Although we use different so-

phisticated mechanisms for corpus construction like using database back ends it is



conceptually appealing and possible to allocate the storage in a distributed manner
since communication is usually not limited by a single bottleneck. Ideally, even sub-
sets of the original data set (the corpus) are stored physically distributed on several
machines (e.g., in a cluster of workstations). This will not only allow us to increase
storage space for data (scaling with the number of participating machines) but also
reduce communication costs for parallel computation since only those documents
stored locally on a given machine are to be processed on the respective system.
Thus, we can use these two approaches (parallel processing, distributing data) to
tackle the challenges indicated above. This leads to our main research question of

the paper.

Research question: How can we design an extension to tm such that we are able
to transparently distribute the documents on one or several storage entities,
apply functions on the subsetted corpus possibly in parallel, and gather results

on a cluster of workstations or other (distributed) computing platforms?

In the following step we show that both requirements (parallel processing, dis-
tributing data) are often fulfilled by well-established distributed programming mod-
els such as MapReduce (Dean and Ghemawat 2008). Typically, MapReduce is used
in combination with another important building block: the distributed file sys-
tem (DFS, Ghemawat, Gobioff, and Leung 2003). This approach readily enables
and takes care of data distribution and suitable parallel processing of parts of the
data in a functional programming style (Lammel 2007). Given that the MapReduce
model fits to the workflow presented above and corresponding open source software
libraries are available, it seems an excellent choice when we need to process large
corpora in text mining scenarios.

After that we discuss the design of the package tm.plugin.dc building on func-
tionality provided by interfaces to tm and to MapReduce environments. We show
that by selecting appropriate building blocks we are not only able to employ the
tools provided by Hadoop but also any abstract registered (distributed) storage and
parallel computing environment. Furthermore, we provide a new distributed corpus
class along with corresponding methods which allow us to analyze large corpora
seamlessly without knowing how to use the underlying components of MapReduce

or other libraries.

1.2 Research design

Design science research typically involves the creation of an artifact and/or design
theory as a means to improve the current state of practice as well as existing re-
search knowledge (Vaishnavi, Kuechler, and Petter 2004/19; Baskerville, Baiyere,
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Gregor, Hevner, and Rossi 2018). When focusing on the development of artifacts,
then, according to Vaishnavi et al. (2004/19), design science research involves two
primary activities to improve and understand the behavior of aspects of informa-
tion systems: the creation of new knowledge through design of novel or innovative
artifacts and the analysis of the artifact’s use and/or performance with reflection
and abstraction. According to March and Smith (1995) the software artifacts de-
signed for that purpose can be of type constructs (vocabulary and symbols), models
(abstraction and representations), methods (algorithms and practices), and imple-
mentations/instantiations (implemented and prototype systems).

In the data science context, this could mean creating artifacts which allow us to
construct and solve optimization problems of different types providing a modeling
mechanism borrowing its strength from the rich language features R has to offer, or,
which are capable of extracting data from previously unanalyzable data sets (e.g.,
due to its large size) and/or creating innovations which improve the time required
to analyze such data sets. Knowledge and understanding of the problem and its
solution are achieved in building and application of the designed artifacts.

By adopting a proper design science research methodology this allows us to
answer the research questions stated in Sections 1.1.1 and 1.1.2 and contribute to
the knowledge base of how to design R-based scalable frameworks for data science

applications.

1.2.1 Methodology

Hevner et al. (2004) introduced seven guidelines for understanding, executing and
evaluating design science research. It requires (1) the creation of an innovative,
purposeful artifact; (2) for a specific problem domain; (3) yielding utility for the
specified problem, which is thoroughly evaluated; (4) solving an heretofore unsolved
problem or a known problem in a more efficient manner, (5) the artifact being
rigorously defined, formally represented, coherent, and internally consistent; (6)
the artifact (or the process creating it) incorporating or enabling a search process
to find an effective solution; and (7) effectively communicating the results of the
design science research.

In this thesis we follow these guidelines to conduct effective design science re-
search, i.e., we thoroughly define, build and evaluate a prototypical implementation
in order to solve the research questions at hand. In three published papers we

communicate our findings to the research community.



1.2.2 Application of the research design

Our chosen design search process is a two step approach (guideline 6). As a first step
we conducted a literature review on the problem domain of interest: optimization
problem solving and large scale text analysis as data science use cases on which
we want to work with the R language for statistical computing and graphics. This
enables us to get an overview on the topic and to identify research gaps (guideline 2).

After formalizing the building blocks that make up the artifact, the derived de-
sign is instantiated in the form of an early prototype (e.g., an R package) that is
evaluated using standard test libraries like the MIPLIB (Koch, Achterberg, An-
dersen, Bastert, Berthold, Bixby, Danna, Gamrath, Gleixner, Heinz, Lodi, Mit-
telmann, Ralphs, Salvagnin, Steffy, and Wolter 2011) (containing academic and
industrial MILP applications) or standard text collections like the Reuters-21578
corpus (Lewis 1997), respectively. Once we have proven the validity of the de-
sign, e.g., by comparing the output of our instantiations with that of similar arti-
facts (guidelines 3 and 5), we publish the early version of the package on CRAN!
(https://CRAN.R-project.org), the standard repository for R packages, and go
to step two.

In the second design step we start with the reflection of the previous design
step’s results and refine our design accordingly. In addition we incorporate feed-
back we have received through the presentation of the early instantiations at in-
ternational conferences covering topics ranging from domain-specific such as the
Computational Management Science, the Operations Research (OR, organized by
Gesellschaft fiir Operations Research e.V., https://www.gor-ev.de/), or high per-
formance and parallel computing (e.g., Euro-Par, https://euro-par.org) to gen-
eral R-related topics such as the R/Finance (https://www.rinfinance.com/), or
the useR/ (https://www.r-project.org/conferences/) as well as the feedback
we have received from early users of the published packages. We use this feedback
and additional theoretical knowledge to adapt our design. Subsequently we develop
an improved artifact based on the adapted design and conduct a second evaluation.

The final instantiation of the prototype then solves the data science use case: op-
timization problem solving (consensus journal ranking) and large scale text analysis
(culturomics), respectively. According to Gregor and Hevner (2013) the final design
can be classified as an improvement, a new solution for known problems (guidelines 1
and 4). The results are published in a renowned journal of the field and the artifacts

are made available as open source software on CRAN (guideline 7).

! An R package published on CRAN fulfills certain formal requirements (see the policies avail-
able at https://cran.r-project.org/web/packages/policies.html) in addition to the ones
outlined in R Core Team (2019b). Both, an artifact being a properly built R package and passing
the CRAN acceptance checks, can be seen as another test that the artifact “works” and is valid.
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1.3 Artifact description

In this section we describe the most important building blocks for implementing
the prototypes for the data science use cases. The conceptual framework (including
abstractions, constructs, and methods) and the implementation (instantiations) are
described for each of the two innovations in data science: A general optimization
infrastructure for R (optimization problem solving) and A tm plug-in for distributed

text mining in R (large scale text analysis).

1.3.1 A general optimization infrastructure for R

The basic requirements for a general optimization infrastructure for R in terms of

the conceptual framework and the implementation are as follows.

Constructs

The main constructs of a general optimization infrastructure are the optimization

problem and its solution. Both constructs are implemented as S3 classes.

Optimization problem Based on the review in Sections 1.1.1 it seems natural to
instantiate OPs based on an objective function, one or several constraints, types and
bounds of the objective variables, as well as the direction of optimization (whether
a minimum or a mazimum is sought). The elements of this class are constructs on
their own and possibly also implemented as S3 classes. Based on the functional form
of the objective function and of the constraints as well as the types of the variables
the problem class of the respective optimization problem is implicitly given (i.e,
being either a linear programming, quadratic programming, conic programming, or

general nonlinear programming problem; being an MIP or not).

Solution The solution class requires information about the solution, the objec-
tive value at optimum, and the solving process (at least the information if it was

successful or not).

Functions and methods

We use generic functions from the R language and define methods to compute on
objects of the defined classes (and sub-classes thereof). We add new generics where
appropriate. We define functions to construct (components of) the OP, extract
information from the OP and the solution object, and interact with the object.
The main computation on OPs is to solve it, i.e., to find a solution of the given

problem.
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Solving optimization problems The function to solve an optimization problem
typically considers an object containing the formulation of the OP of the class de-
scribed above, the reference to the solver to be used, and possibly further information

needed by the solver to properly interact with the OP.

Implementation

The artifact is implemented as an R package since this is the standard and proper
way of extending R (see R Core Team 2019b, for details on writing R extensions).
The package is called ROI. It implements all constructs, functions, and methods
described above.

As indicated in Section 1.1.1 a proper implementation of this design makes it
more attractive to add new solvers to the R solver landscape, or to add additional
optimization solvers, read/write functions and additional resources. Thus, the ar-
tifact is required to be modular allowing developers to plug-in new solvers or add
resources quite effortlessly. This is achieved by the artifact additionally providing
all the necessary classes and methods and managing the extensions, which in turn

are R packages.

1.3.2 A tm plug-in for distributed text mining in R

The basic requirements for a tm plug-in for distributed text mining in R in terms of

the conceptual framework and the implementation are as follows.

Abstractions

The bridge between MapReduce libraries and the tm infrastructure is characterized
by two main design concepts: distributed storage and parallel computation. The one
side of the bridge is designed in such a way that it provides a corpus implementation
which can transparently be used in combination with the existing tm infrastructure.
Via the other side of the bridge we can access and modify data stored on a (dis-
tributed) file system (e.g., the Hadoop Distributed File System, HDFS).

Constructs

The main construct of a scalable text mining framework extending tm to focus on
is the corpus implemented as an S3 class. The derived construct is the distributed

CoTpuUs.

Corpus In tm the main data structure is a corpus, an entity similar to a database

holding text documents in a generic way. It can be seen as a container to store
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a collection of text documents where additional metadata is provided on both the
corpus (e.g., date of creation, creator, etc.) and document level (e.g., annotations,

authors, language, etc.).

Distributed corpus Since tm corpora are lists of objects of a class describing
text documents enriched with metadata it seems only natural to encapsulate this
storage abstraction ensuring that the documents are distributed on one or several

storage entities instead of being held in memory.

Functions and methods

Distributed storage Appropriate methods for distributed corpus objects ensure
that the local files delivered by a source instance are transparently loaded into the

distributed storage and retrieved from the storage when needed.

Parallel computation Several methods have been implemented to abstract the
process of document manipulation, like transformations and filtering, and data ex-
port, like the construction of a so-called document-term matriz (DTM) holding
frequencies of distinct terms for each document. Once we have documents stored
on the distributed storage, we want to perform computations on the data pieces
local to each processing node. Such computations are highly parallel and scale with
the number of available workstations. Conceptually, for transformations or filtering
we would apply a map function (similar to the one known from functional program-
ming) to each element of the corpus. Other typical operations on distributed data
are collective operations. Functions of this type commonly gather or aggregate data
based on a given set of instructions, like reduce. Using (a combination of) map and
reduce operations allows us to transform documents and/or export other constructs

like DTMs in a very efficient, parallel, manner.

Implementation

Similar to the general optimization infrastructure the artifact for the use case large
scale text analysis is implemented as an R package. It is called tm.plugin.dc and

implements all constructs, functions, and methods described above.

1.4 Evaluation

We follow the epistemological approach as introduced in Section 1.2. According to
Gregor and Hevner (2013) the artifacts can be evaluated in terms of the following

criteria: validity, utility, quality, and efficacy.
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As indicated in Section 1.2.2, the design search process is defined as iterative,
i.e., the instantiated prototype of the derived design is evaluated by simply showing
that it does what it is meant to do. For both of our data science use cases we use
tests with suitable standard test data sets to continuously improve the artifact and
test instantiations thereof. We prove the validity of the design, e.g., by comparing
the output of our instantiations with that of similar artifacts.

The final utility and efficacy of the prototypical instantiation of the designed
artifact, i.e., packages ROI and tm.plugin.dc, is evaluated on the basis of real world
applications of the respective data science use cases (consensus journal ranking and
culturomics). This proof of concept answers the research questions formulated in
Section 1.1. Results of a benchmark experiment complete the analysis.

In addition, we can measure the utility of the developed R packages outside
the individual data science use cases, i.e., the development environment, by looking
at other community contributions when they directly or indirectly reuse code of
the respective package (Theufll, Ligges, and Hornik 2011). A higher number of

references to the package would indicate a higher utility for other use cases.

1.4.1 Standard test data sets

Test problems for ROI

Test problem collections are commonly used in optimization to evaluate and compare
the performance of solvers. As each class of optimization problems has its own
test sets stored in various formats, ROI currently provides access to NETLIB-LP,
MIPLIB and the globalOptTests package. ROI makes these data collections (test
problem sets) available in a common format, so users can easily compare the different
solvers and developers interested in creating optimization software can use them to

test their packages.

NETLIB-LP The NETLIB-LP (Gay 1985) is a collection of linear programming
problems, which, even though the main part was created more than 30 years ago is

still used today.

MIPLIB Mixed integer optimization problems are commonly evaluated using MI-
PLIB (Koch et al. 2011), an extensive collection of academic and industrial MILP

applications.

globalOptTests The globalOptTests (Mullen 2014a) package contains 50 box con-

strained nonlinear global OPs for benchmarking purposes.
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Test problems for tm.plugin.dc

Reuters-21578 The Reuters-21578 data set (Lewis 1997) contains stories col-
lected by the Reuters news agency. The data set is publicly available and has
been widely used in text mining research within the last decade. It contains 21,578
short to medium length documents in XML format (obtainable e.g., from http://
ronaldo.cs.tcd.ie/ess1li07/data/) covering a broad range of topics, like merg-

ers and acquisitions, finance, or politics. To download the corpus use:

NSF Research Awards Abstracts This data set consists of 129,000 plain text
abstracts describing NSF awards for basic research submitted between 1990 and
2003. The data set can be obtained from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/). The corpus is divided into three parts. We

used the largest part (Part 1) in our experiments.

Reuters Corpus Volume 1 Lewis, Yang, Rose, and Li (2004) introduced the
RCV1 consisting of about 800,000 (XML format) documents as a test collection
for text categorization research. The documents contained in this corpus were
sent over the Reuters Newswire (https://www.reutersagency.com/en/products/
newswires/) during a l-year period between 1996-08-20 and 1997-08-19. RCV1
covers a wide range of international topics, including business & finance, lifestyle,
politics, sports, etc. The stories were manually categorized in three category sets:

topic, industry and region.

NYT Annotated Corpus The largest data set in our experiment contains over
1.8 million articles published by the New York Times between 1987-01-01 and 2007-
06-19 (Sandhaus 2008). Documents and corresponding metadata are provided in an
XML like format: News Industry Text Format (NITF).

1.4.2 Use case: optimization problem solving

A prototypical instantiation of the designed artifact, i.e., package ROI, is evalu-
ated on the basis of real-world applications. One set of applications is dedicated
to solving statistical inference problems which goes hand in hand with solving op-
timization problems (OPs). As such statisticians, data scientists, and others who
regularly employ computational methods ranging from various types of regression
(e.g., constrained least squares, regularized least squares, nonlinear least squares),
and classification (e.g., support vector machines, convex clustering) to covariance es-
timation and low rank approximations (e.g., multidimensional scaling, non-negative

matrix factorization) benefit from advances in optimization.
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Another set of applications is solving consensus optimization problems. Hornik
and Meyer (2007) propose a methodology that obtains consensus rankings from
paired comparisons among a set of individual rankings. Accommodating mixed
types of measurement scales and being relatively robust for sparse data, this op-
timization problem can be solved efficiently using any state-of-the-art mixed in-
teger programming solver. The paper How to Derive Consensus Among Various
Marketing Journal Rankings? answers the second research question formulated in
Section 1.1.1.

1.4.3 Use case: large scale text analysis

The prototype tm.plugin.dc is evaluated by answering a typical question from the
field of culturomics (Michel, Shen, Aiden, Veres, Gray, The Google Books Team,
Pickett, Hoiberg, Clancy, Norvig, Orwant, Pinker, Nowak, and Aiden 2011), which
deals with the development of human behavior and culture reflected in language and
word usage. We investigate how the text coverage in newspaper articles has devel-
oped over time. Specifically, we analyze the multitude of text documents published
by the New York Times between 1987-01-01 and 2007-06-19. The corresponding
corpus consists of 1,855,658 short- to medium-length articles from various genres
with a mean of 552 terms per document. As such, this corpus is too large for being
handled with the standard text mining tool chain available in R. However, we would
be able to use the distributed text mining framework in order to process the corpus
quite efficiently making it possible to not only investigate the culturomics question

at hand, but also to subject the corpus to a variety of other statistical analyses.

1.5 Structure of this dissertation

The remainder of this dissertation, which is comprised of three papers On the De-
sign of R-Based Scalable Frameworks for Data Science Applications, is organized as
follows. Chapter 2 (the first paper) introduces an extensible object oriented R Op-
timization Infrastructure (ROI). Then, with Chapter 3 (the second paper), we aim
to answer two questions. Firstly, it addresses the issue on how to construct suitable
aggregates of individual journal rankings, using an optimization-based consensus
ranking approach. Secondly, the presented application serves as an evaluation of
the ROI prototype. In Chapter 4 (the third paper) we examine how we can extend
the text mining package tm to handle large (text) corpora. Chapter 5 concludes

this dissertation.
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Chapter 2

ROI: An Extensible R

Optimization Infrastructure

An earlier version of the paper is available online:

Theufll S, Schwendinger F, Hornik K (2019). “ROI: An Extensible R Optimization
Infrastructure.” Research Report Series / Department of Statistics and Mathematics
133, WU Vienna University of Economics and Business, Vienna. URL https://
epub.wu.ac.at/5858/.

The paper, with minor changes, was conditionally accepted for publication in the

Journal of Statistical Software in March 2019.
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2.1 Introduction

Optimization is at the core of inference in modern statistics since solving statistical
inference problems goes hand in hand with solving optimization problems (OPs). As
such statisticians, data scientists, and others who regularly employ computational
methods ranging from various types of regression (e.g., constrained least squares,
regularized least squares, nonlinear least squares), and classification (e.g., support
vector machines, convex clustering) to covariance estimation and low rank approx-
imations (e.g., multidimensional scaling, non-negative matrix factorization) benefit
from advances in optimization, in particular in mixed integer and convex optimiza-
tion. For example, Bertsimas, King, and Mazumder (2016) show that, thanks to a
striking speedup factor of 450 billion in mixed integer optimization in the period of
1991-2015, the NP-hard best subset problem (Miller 2002) can now be solved reason-
ably fast (number of observations in the 100s and number of variables in the 1000s is
solved within minutes). O’Donoghue, Chu, Parikh, and Boyd (2016) introduce the
SCS solver for convex optimization problems, which can be used to solve among oth-
ers (logistic) regression with [g oy regularization, support vector machines, convex
clustering, non-negative matrix factorization and graphical lasso.

For R (R Core Team 2019a), being a general-purpose tool for scientific com-
puting and data science, optimization and access to highly efficient solvers play an
important role. The field of optimization already has many resources to offer, like
software for modeling, solving and randomly generating optimization problems, as
well as optimization problem collections used to benchmark optimization solvers.
In order to exploit the available resources more conveniently, over the years many
modeling tools have emerged. One of the first systems used to model linear opti-
mization problems is the so-called Mathematical Programming System (MPS) format
(see Kallrath 2004). Developed in the 1960’s, the MPS format today seems rather
archaic but it is still widely used to store and exchange linear problems and is
supported by most of the linear optimization solvers. Later, algebraic modeling lan-
guages (AMLs) (e.g., GAMS (Bisschop and Meeraus 1982) and AMPL (Fourer et al.
1989)) became available. AMLs are domain specific languages (DSLs) dedicated
to optimization. Today modern optimization systems are typically implemented in
high-level programming languages like Julia (Bezanson et al. 2017), MATLAB (The
MathWorks Inc. 2017), Python (Python Software Foundation 2017) or R. Among the
modern optimization systems, many are DSLs specially suited for convex optimiza-
tion, such as YALMIP (Lotberg 2004) and CVX (Grant and Boyd 2014) in MATLAB,
CVXPY (Diamond and Boyd 2016) and CVXOPT (Andersen, Dahl, and Vanden-
berghe 2019) in Python, Convex.jl (Udell, Mohan, Zeng, Hong, Diamond, and Boyd
2014) in Julia and CVXR (Fu, Narasimhan, and Boyd 2017) in R. JuMP (Lubin and
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Dunning 2015) is a DSL implemented in Julia designed for mixed-integer program-
ming. pyOpt (Perez, Jansen, and Martins 2012) is a Python package for nonlinear
constrained optimization.

Despite R having access to many modern optimization solvers which are capable
of solving a wide class of optimization problems (see, e.g., the CRAN optimiza-
tion and mathematical programming task view by Theufll et al. 2019a), it is still
commonplace to develop highly sophisticated special purpose code (SPC) for many
statistical problems. The reasons are many. To name but a few: 1) availability, i.e.,
many solvers have not been easily available in R, 2) capability, i.e., problems could
not be solved due to a lack of adequate solvers, and 3) efficiency, i.e., SPC tends to
be faster.

The paper introduces an extensible object oriented R Optimization Infrastructure
(ROI) promoting the usage of optimization in R and R as a tool for optimization.
In doing so it strives to enable users to formulate problems and experiment with
different solvers in a straightforward way, help researchers to find the appropri-
ate solver for their particular problem, or assist package developers to streamline
their package dependencies. The framework is composed of package ROI (Theufl,
Schwendinger, Hornik, and Meyer 2019b) and its (at the time of this writing) 23
companion packages.

In contrast to DSLs, the ROI package does not aim to create a new language
but provides a modeling mechanism borrowing its strength from the rich language
features R has to offer. Optimization problems are constructed in a consistent
way and stored in a single object. This makes it possible that problems are easily
altered (reused) and shared before they are passed to a unified solve function. Such
problems are then formulated and manipulated by using the provided R functions
instead of special syntax from DSLs for which highly specialized knowledge would
be required. Moreover, we believe that this approach makes it more attractive
to add new solvers to the R solver landscape, e.g., to take advantage of recent
advances in conic optimization (increase availability). Another key feature of ROI
is that it is designed to be extensible. Companion packages equip ROI with state
of the art optimization solvers, benchmark collections and functions to read and
write optimization problems in various formats (increase capability). Furthermore,
allowing package developers to plug-in new solvers quite effortlessly not only makes it
easy to use their highly efficient code for a given problem but possibly also in many
other applications (eliminate efficiency detriments). Currently ROI can be used
to model and solve linear, quadratic, second order cone, semidefinite, exponential
cone, power cone and general nonlinear optimization problems as well as mixed
integer problems. This covers many optimization problems encountered in statistics,

machine learning and data science (see, e.g., Koenker and Mizera 2014, for a survey
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of convex problems in statistics).

The remainder of the paper is organized as follows: In Section 2.2 we discuss the
basic optimization problem classes, with a special focus on the newer developments
in convex optimization. A survey of available R packages concerned with solving
these problem classes is given in Section 2.3. Sections 2.4 and 2.5 show, respectively,
how to formulate and solve optimization problems with the ROI package. Based
on the tools presented in the previous sections, Section 2.6 provides basic examples.
Section 2.7 is dedicated to the extension of ROI. Applications in the field of statistics

are presented in Section 2.8. Section 2.9 concludes the paper.

2.2 Problem classes

Optimization is the process of allocating scarce resources to a feasible set of alter-
native solutions in order to minimize (or maximize) the overall outcome. Given a
function fy : R” — R and a set C C R™ we are interested in finding an x* € R” that

solves
minimize fo(x)

(2.1)
subject to x € C.

The function fj is called the objective function. A point x is said to be feasible
if it satisfies every constraint given by the set C of all feasible points defining the
feasible region. If C is empty, then we say that the optimization problem is infeasible.
Since maximization problems can be expressed as minimization problems by just
changing the sign in the objective function, we subsequently will mainly deal with
minimization problems.

An OP can be bounded or unbounded. In the latter case, there are sequences
27 € C for which the value of the objective tends to —oo in a minimization problem,
symbolically fo(2/) — —oo as j — +oo. Thus, a problem like in Equation 2.1 may
or may not have a solution. If the problem is neither infeasible nor unbounded then

we can often find a vector z* € C that satisfies
fO(x*) S fO(x)a V.Z' S Ca

which is commonly referred to as a solution of the OP.
Since any feasible set C can be expressed by the combination of constraint func-

tions, the OP from Equation 2.1 can be written as:

minimize fo(x)

. (2.2)
subject to  fi(x) <b;, i=1,...,m,

where b € R™ is the so-called right-hand-side. The constraints f;, + = 1,...,m
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are sometimes referred to as functional constraints (Ben-Tal and Nemirovski 2001;
Nesterov 2004). Since any equality constraint can be expressed by two inequality
constraints and vice versa any inequality constraint can be expressed as an equality
constraint by adding additional variables (also called slack variables), it is common
practice to define OPs only in terms of either equality, less than or equal or greater
than or equal constraints, to avoid redundancies.

Equation 2.2 is also sometimes referred to as the primal problem, which highlights
the fact that there exists an alternative problem formulation the dual problem. The
dual problem is typically defined via the Lagrangian function (Lagrange duality)
(Nocedal and Wright 2006).

Several interconnected characteristics exist which determine how efficiently a
given OP can be solved, namely convexity, the functional form of the objective,
the functional form of the constraints and if the variable z is binary, integer, or
continuous. An OP as displayed in Equation 2.1 is convex, if f; is convex and
the set C is convex. Whereas modern solvers can efficiently solve a wide range of
convex OPs and verify that a global solution (i.e., one as good or better than all other
feasible solutions) was obtained, the same is mostly not true for non-convex problems
(several local optima may exist). More information about convex programming can
be found in, e.g., Boyd and Vandenberghe (2004); Ben-Tal and Nemirovski (2019).

Based on the functional form of the objective function and of the constraints, OPs
can be divided into linear and nonlinear OPs. Furthermore, the class of nonlinear
OPs can be further subdivided into conic, quadratic and general nonlinear OPs. In
the following we give a formal definition of the different classes of OPs and overview

their properties.

2.2.1 Linear programming

A linear program (LP) is an OP where all f; (i =0,...,m) Equation 2.2 are linear.
Thus an LP can be defined as:

minimize ag

. 23)
subject to Az <b

where z is the vector of objective variables which has to be optimized. The coeffi-
cients of the objective function are represented by ay € R". A € R™*"™ is a matrix of
coefficients representing the constraints of the LP. Hence, in accordance with Equa-
tion 2.2, Az < b could also be written as a] x < b;, i = 1,...,m (here a, refers to
the i—th row of the coefficient matrix A). All LPs are convex and usually solved
via interior-point or simplex methods. For more information about the origination

and mathematical properties of these methods we refer the reader to the book of
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Nocedal and Wright (2006).

A typical statistical problem which falls into this problem class is solving the
least absolute deviations (LAD) or L; regression problem. Following, e.g., Brooks
and Duld (2013) the objective function

n
minimize »_ |y; — G|
i
can be expressed as

n
minimize Y e +e;
ﬂ07679+7e_ i=1

subject to
50+5Txi+e:“—e;:0 1=1,...,n
Bi=-1
ef,e; >0 i=1,....n
given a set of points x; € R™, i = 1,...,n and the j** column representing the

dependent variable.

2.2.2 Quadratic programming

A quadratic program (QP) is a generalization of the standard LP shown in Equa-
tion 2.3, where the objective function contains a quadratic part in addition to the
linear term. The quadratic part is typically represented by a matrix )y € R"*".

Therefore QPs can be expressed in the following manner:

PN . T
minimize 5r Qox + ayw

(2.4)
subject to Az <b.

Unlike LPs, not all QPs are convex. A QP is convex if and only if Q) is positive

semidefinite. A generalization of the QP is the quadratically constrained quadratic

program (QCQP):

i 1T T
minimize 5z’ Qox +agx

2.5
subject to %xTQi:U+aiT:B <b, 1=1,...,m. (2:5)

A QCQP is convex if and only if all @; (i = 0,...,m) are positive semidefinite
(Lobo, Vandenberghe, Boyd, and Lebret 1998). Whereas convex QP or even QCQP
are commonly solved by reformulations (transformations) to second-order cone pro-

gramming (SOCP) or semidefinite programming (SDP) (see Section 2.2.3), the ques-
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tion how to obtain a reliable global solution for non-convex QCQP is still an active
field of research. Details on the necessary transformations to cast convex QCQP into
an SOCP or SDP can be found in, e.g., Lobo et al. (1998); Alizadeh and Goldfarb
(2003); Bao, Sahinidis, and Tawarmalani (2011).

2.2.3 Conic programming

Conic programming refers to a class of problems designed to model convex OPs.
The most prominent members of this class are LP, SOCP and SDP. We follow the

common practice to define a conic program (CP) as:

minimize ag

subject to Axr+s=10 (2.6)
s e,

where the set I is a nonempty closed convex cone.

The standard form of CP as given in Equation 2.6 minimizes a linear objective
over a convex cone (b— Az = s € K). As Nemirovski (2006) points out, representing
CPs in this form has two main advantages. First, this formulation has strong uni-
fying abilities which means only a few cones allow modeling of many different types
of OPs. Additionally, the nonlinearities are no longer represented by general non-
linear objective and constraint functions but vectors and matrices which allows the
algorithms to utilize the structure present in the convex OPs. Second, the convexity
is built-in into the definition of CPs. At the same time, theoretically, any convex
OP can be reformulated into the form given in Equation 2.6. Thereby nonlinear ob-
jective functions are expressed in epigraph form (see, e.g., Boyd and Vandenberghe
2004):

minimize ¢
subject to  fo(x) <t (2.7)
fi(z) < b;.
Practically the number of OPs which can be solved via CP is limited by the number
of cones supported by a given optimization solver. State of the art solvers distinguish
between up to eight different types of cones. Following the definitions in Diamond
and Boyd (2015) and O’Donoghue et al. (2016), a convex cone K is typically a

Cartesian product from simple convex cones of the following types.

Zero cone and free cone

The zero and free cones are, respectively, given by

ICzero = {0}7 ]Cfree =R=K,

Z€ero’
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where for a cone K we write K* = {y|zTy > 0 for all z € K} for the dual cone
(see, e.g., Boyd and Vandenberghe (2004) for more information about dual cones).

From Equation 2.6 it can be immediately seen, that in the case of linear equality
T

constraints s; has to be zero, i.e., s; € K,oro <= s; = b; — aiT:U =0 < a; =10

Linear cone (non-negative orthant)

The linear cone is, given by
Kin={rx €R |z >0} (2.8)

This cone is used to represent linear inequality (less than or equal) constraints, by
requiring s; to be non-negative, i.e., s; € Ky, <= s; = b; — aiTx >0 <—
al v < b;.

From the definition of the free cone and non-negative cone, it is apparent that

any LP can be written as a CP where K is a product of free and non-negative cones.

Second-order cone

The second-order cone is given by

n
ICSOC

={(t,7) eR" |z € R" ' teR, ||z||; <t} (2.9)

This cone is used to model sums of norms as well as convex QP and QCQP (Lobo
et al. 1998; Alizadeh and Goldfarb 2003). CPs where K is a product of free, non-

negative and second-order cones are commonly referred to as SOCP.

Positive semidefinite cone

The positive semidefinite (PSD) cone is given by

n={X|Xe8" 2" Xz>0forall z € R"}. (2.10)

psd

Here 8™ refers to the space of real-symmetric n x n matrices. CPs restricted to
the positive semidefinite cone are referred to as SDPs. They are commonly used for
solving combinatorial problems (e.g., maximum cut problem) and for solving convex
QPs and QCQPs (Vandenberghe and Boyd 1996; Helmberg 2000; Freund 2009; Bao
et al. 2011). Lobo et al. (1998) show that each SOCP can be rewritten as an SDP.
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Exponential cone

The primal exponential cone is defined as

Kespp = {(7,y,2) €ER® | y > 0, yev <z} U{(z,0,2) e R® | 2 <0, z>0}. (2.11)
Its dual is given by

Kexpa = {(u,v,w) € R® | u < 0, —uer < ew} U{(0,v,w) € R® | v, w>0}. (2.12)

As can be inferred from Equation 2.11, the exponential cone can be used to
model exponential functions and logarithms. More details about the exponential

cone and functions representable by the exponential cone can be found in Chares

(2009) and Serrano (2015).

Power cone

The 3-dimensional primal power cone has already been investigated in Koecher
(1957) and is defined as

Koo ={(r,y,2) €eR® | 2, y >0, 2%y~ > |z|}, where a € [0, 1]. (2.13)

powp

Its dual is given by

« 11—«
O wd = {(u,v,w) ER’ |u, v>0, (u) (1 Y ) > |w|}7 where « € [0, 1].
Q@ —a
(2.14)
The power cone can be used to model powers and p-norms. For more information
about the power cone and its modeling capabilities we refer to Chares (2009).
Putting the hierarchies described above all together we get the following ordering

among OPs

LP C convex QP C convex QCQP ¢ SOCP c SDP c CP.

2.2.4 Nonlinear optimization

The most general problem class is nonlinear optimization or nonlinear programming
(NLP). This is the problem where at least one f;, i = 0, ..., m in Equation 2.2 is not
linear. NLPs are not required to be convex, which makes it in general hard to obtain
a reliable global solution. Contrary to the convex case, in a non-convex setting most
optimization algorithms only find the extrema of f; in the neighborhood of the

starting value (local optimum).
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2.2.5 Mixed integer programming

A mixed integer program (MIP) adds the additional requirement to the optimization
problem that some of the objective variables can only take integer values. Consider-
ing Equation 2.2, a problem is called a mixed integer problem if the (type) constraint
x, € Z for at least one k is added. In the case where all n objective variables are
integral we speak of a pure integer programming (IP) problem. An IP where all
variables are bounded between zero and one, i.e., x € {0,1}", is called a binary
(integer) program.

Since MIPs are non-convex, even mixed integer linear programs (MILP) can
already be hard to solve. Nevertheless an increase in quantity and quality of free
and nonfree solvers was observed in the last decade (Linderoth and Ralphs 2005;
Bixby 2012). Typically solvers use branch-and-bound (Land and Doig 1960) and the
cutting plane (Gomory 1960) algorithms or a combination of both. The algorithms
avoid solving the problem directly, but instead solve multiple relaxations where the

integer constraint is dropped.

2.3 Software

Recently, an increase of the available packages handling many different OPs in R
has been observed. The CRAN optimization and mathematical programming task
view (TheuBl et al. 2019a) currently lists around 100 different optimization related
packages. The capability these packages provide range from solvers which can solve
a wide range of optimization problems (e.g., optimx (Nash and Varadhan 2011; Nash
2014a)) to very specialized solvers which are created to solve a specific problem type
very fast (e.g., nonlinear regression solvers). This section provides an overview of
the solver landscape in R. The insights gained in this section will be used to derive
a consistent solver infrastructure. First, we investigate the available (open source)
solvers, splitting these into linear solvers, quadratic solvers, conic solvers and general
purpose solvers. We then discuss commercial solvers (i.e., any solver developed for
sale) and the NEOS server.

2.3.1 Overview

As pointed out in Section 2.2, in the field of optimization we are typically facing
different problem classes. The possibly three most important distinctions are be-
tween linear versus nonlinear problems, integer versus continuous and convex versus
non-convex problems.

Ordered based on increasing complexity, an objective function might be of type

linear, (convex) quadratic, conic (i.e., any objective expressible as a CP) or func-
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tional (i.e., any objective expressible as function). Similarly constraints are typically
of type box, linear, (convex) quadratic, conic or functional. Box constraints (or vari-
able bounds) are a special type of linear constraints which enforce lower and upper
bounds on the objective variables.

The terms conic objective/constraints are used in a general way and refer to
any linear and nonlinear objective/constraints that can be reformulated as a conic
problem. Therefore this also includes problems with linear and convex quadratic
objective/constraints. Note that, solvers that take as input values a linear objective
and conic constraints are also applicable to OPs with conic objective and conic
constraints by making use of the epigraph form transformation. The most general
form are functional objective/constraints which includes all linear and nonlinear
objective/constraints.

Table 2.1 gives an overview on optimization packages available at CRAN (https:
//CRAN.R-project.org) with a focus on open source solvers. The position of a par-
ticular package in the table indicates its ability to solve a given problem. Each prob-
lem class to the left and above of the current position can be handled by the package
including its current position. For instance, the ECOSolveR (Fu and Narasimhan
2019) package which provides an interface to the ECOS (Domahidi, Chu, and Boyd
2013) library can solve conic problems restricted to combinations of the zero, non-
negative, second-oder and primal exponential cone. Since ECOS is equipped with
a branch-and-bound algorithm, it can also be used to solve mixed integer conic

problems.

2.3.2 The R solver landscape

The solver landscape can be split into two parts. First, solvers where the functional
form is fixed and only the coefficients are provided, which includes all LP, QP,
QCQP and CP solvers currently available in R. Second, solvers which can optimize
any functional form expressible as an R function. This includes most NLP solvers,

sometimes summarized as general purpose solvers.

Linear solvers

Interfaces to several open source LP and MILP solvers are available in R. Most of
these packages provide a high-level access to the solver, those explicitly designed to
provide a low-level access are commonly marked with the suffix API.

The Computational Infrastructure for Operations Research (COIN-OR) project
(https://www.coin-or.org/) provides an open source software framework for the
operations research community including the COIN-OR linear programming (Clp,
Forrest, de la Nuez, and Lougee-Heimer 2004) and the SYMPHONY (Ralphs and
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. Objective
Constraints . . . :
linear quadratic conic functional
no BB, mize, trustOptim
DEoptim, dfoptim,
GenSA, 1bfgsb3,
box . e
metaheuristicOpt,
minga, optimx, Rcgmin,
rgenoud, Rmalschains,
Rvmmin, soma, stats,
ucminf
clpAPI*, coneproj*,
Rglpk**, Dykstra*,
linear IpSolve* ", kernlab,
rcdd®, LowRankQP*,
Rsymphony*™ osqp*,
quadprog®,
ROI.plugin.qpoases
quadratic
cccp”,
CLSOCP*,
conic ECOSolveR*",
Rcsdp®,
Rdsdp*,
scs”*
functional alabama, deoptimr,
clue, NlcOptim, nloptr,
Rsolnp

Table 2.1: Selected R packages displayed based on the types of optimization prob-
lems they are applicable to. Here * indicates that the solver is restricted to convex
problems and * indicates that the solver can model integer constraints.

Gizelsoy 2005, 2011) solver. Clp is mainly used as library and provides methods
for solving LPs via interior point methods or the simplex algorithm. In R Clp is
available through clpAPI (Roettger, Gelius-Dietrich, and Fritzemeier 2019) which
provides a low level interface to Clp. SYMPHONY is a flexible MILP solver written
in C++, that transforms the MILP into LP relaxations to be solved by any LP solver
callable through the Open Solver Interface (OSI). Rsymphony (Hornik, Harter, and
Theufll 2017a) provides an interface to the SYMPHONY solver, where by default
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the LP relaxations are solved by the Clp solver.

GNU Linear Programming Kit (GLPK, Makhorin 2011) is a solver library writ-
ten in ANSI C, for solving LP and MILP. The low level interface glpkAPI (Roettger,
Gelius-Dietrich, and Luangkesorn 2018) and the high level interface Rglpk (Theufl
and Hornik 2019) are available in R.

Ip_solve (Berkelaar, Eikland, and Notebaert 2016) uses the simplex algorithm
combined with branch-and-bound to solve LPs and MILPs. It furthermore al-
lows modeling of semi-continuous and special ordered sets problems. Packages lp-
Solve (Berkelaar 2019) and IpSolveAPI (Konis 2019) provide access to the Ip__solve
solver in R.

Additionally the function 1pcdd () from package redd (Geyer and Meeden 2019)
and the function simplex() from package boot (Canty and Ripley 2019) can be
used to solve LPs via the simplex algorithm.

By taking a closer look at the elements needed by packages capable of solving
LPs and MILPs! we can conclude that the following elements should be present in a

consistent and convenient optimization infrastructure for modeling LPs and MILPs.
objective: A numeric vector giving the coefficients of the linear objective.
constraints:

o Includes a constraint matrix A (see Equation 2.3),
 a vector giving the direction of the constraints (i.e., ==, <= or >=), and

 a vector giving the right hand side b (see Equation 2.3).
bounds: Two vectors giving the lower and upper bounds.
types: A vector storing the type information, i.e., binary, integer and numeric.

maximum: A boolean indicating if the objective function should be maximized or

minimized.

Note that the elements bounds and maximum, as well as the constraint directions and
the binary types are not strictly necessary. Their inclusion is motivated by the fact

that they are supported by many solvers and simplify the problem specification.

Quadratic solvers

As Table 2.1 shows, most of the quadratic solvers are designed to solve convex
quadratic problems with linear constraints. The quadprog (Turlach and Weinges-
sel 2019) package uses the dual method described in Goldfarb and Idnani (1983).

IThis includes commercial and non-commercial solvers.

29



LowRankQP (Ormerod and Wand 2018) is based on an interior point algorithm
described in Fine and Scheinberg (2001). Dykstra (Helwig 2018) implements Dyk-
stra’s cyclic projection algorithm (Dykstra 1983), coneproj (Meyer and Liao 2018)
transforms the original QP problem into a cone projection problem (Liao and Meyer
2014) and osqp (Stellato, Banjac, Goulart, and Boyd 2019) uses the alternating di-
rection method of multipliers described in Stellato, Banjac, Goulart, Bemporad, and
Boyd (2017).

Additionally, the package ROILplugin.qpoases (Schwendinger 2018) and the func-
tion ipop() from kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004; Karat-
zoglou, Smola, and Hornik 2019) can be used to obtain solutions for non-convex
quadratic problems with linear constraints. However, for the non-convex case there
is no guarantee that the returned solution is a global optimum. ROI.plugin.qpoases
is an interface to the qpOASES (Ferreau, Kirches, Potschka, Bock, and Diehl 2014;
Ferreau, Potschka, and Kirches 2017) library, which uses an online active set strategy
to solve quadratic optimization problems.

QP solvers generally take the same arguments as LP solvers plus an additional

matrix parameter storing the coefficients of the quadratic term Q).

Conic solvers

Most of the conic solvers use a standard form similar to Equation 2.6, where the
objective function is assumed to be linear and the vector b — Ax is restricted to a
certain cone IC. Nevertheless, in Table 2.1 they are shown to have a conic objective
function and conic constraints to express that they are able to solve any LP and
convex NLP expressible by a CP. Therefore, which types of NLPs a given solver can
solve, depends on the types of cones the solver can model. Table 2.2 shows the conic

solvers available in R and the types of cones they support.

1S3
9 2 5 N &
& IS < $ S
% 5 S S
> 3 o &
5 < N S Qﬁ' <
s & ¢ s & 3 S
§ § ¢ £ & S g %
CLSOCP v v v
ccep v v v v
ECOSolveR v VvV v v
Resdp v v v v
Rdsdp v v v v
scs v v v v v v v v

Table 2.2: Conic packages and the supported cones.
Package CLSOCP (Rudy 2011) is specialized in solving SOCPs, it is a pure R
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implementation of the one-step smoothing Newton method based on the algorithm
described in Tang, He, Dong, and Fang (2012). For solving SDP there exist the
specialized packages Resdp and Rdsdp. Since any SOCP can be transformed into
an SDP they can also be used for solving SOCPs. Resdp (Bravo 2016) is an inter-
face to the CSDP (Borchers 1999) library which is part of the COIN-OR project.
Rdsdp (Zhu and Ye 2016) is an interface to the DSDP (Benson and Ye 2008) library.
Both packages can read and Resdp can also write sdpa files, which is a file format
commonly used to store SDPs. The ccep (Pfaff 2015) package provides functions
to solve LPs, QPs, SOCPs and SDPs, the algorithms are reported to be similar to
those in CVXOPT (Andersen et al. 2019). CVXOPT is a Python package for solv-
ing convex OPs via interior-point methods (more information about the algorithms
can be found in Andersen, Dahl, Liu, and Vandenberghe 2012). ECOSolveR (Fu
and Narasimhan 2019) is an interface to the embedded conic solver ECOS (Dom-
ahidi et al. 2013). A special feature of ECOS is that it combines convex optimization
with branch-and-bound techniques, therefore it can be used to solve CPs where some
variables are required to be integer. The scs (Schwendinger and O’Donoghue 2019)
package is an interface to the Splitting Conic Solver (SCS, O'Donoghue 2015) library,
which uses a version of the alternating direction method of multipliers (ADMM) for
solving CPs. SCS is designed to solve large cone problems faster than standard
interior-point methods. More information about the algorithm and a comparison to

other solvers can be found in O’Donoghue et al. (2016).

General purpose solvers

Solvers capable of handling nonlinear objective functions without further restrictions
are called general purpose solvers (GPS). These solvers can minimize (or maximize)
any functional form representable as an R function with — depending on solver
capabilities — different types of constraints, where again the most general form of
constraint is the functional constraint (i.e., an R function). The generality of GPS
comes at the price of performance and that there is usually no guarantee that a

global optimum is reached.

Global GPS Local GPS
Gradient free Gradient Gradient free Gradient
No Constraint 6 0 7 19
Box Constraint 28 4 8 12
Functional Constraint 2 0 7 7

Table 2.3: Overview of general purpose solvers.

Important properties of GPS are whether they are designed to search for a local

or global optimum, if gradient information has to be provided or the method is
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gradient free and which type of constraints can be set. Table 2.3 shows the number of
GPS methods grouped by these properties (the counts are based on Table A.2 where
additional details can be found) and reveals some interesting details about the R GPS
landscape. Around 60 percent of the GPS are designed for local optimization, even
though most of the local solvers utilize gradient information, only four of the global
solvers use gradient information. The difference in distribution of gradient based and
gradient free optimization algorithms between global and local GPS can be explained
by the fact that in global optimization, metaheuristics like evolutionary methods or
particle swarm optimization are commonly used. In a recent study Mullen (2014a)
surveys the continuous global optimization packages available in R and compares
their performance on a set of tests bundled in the globalOptTests (Mullen 2014b)
package. Table A.2 gives an extensive listing of which methods are designed to
search for a global solution. For more information about the methods we refer to
Mullen (2014a).

Based on the type of constraints, the GPS can be divided into no constraints,
box constraints, linear constraints, quadratic constraints and functional constraints.
As Table 2.3 shows, most of the GPS support no constraint or box constraints. For-
tunately, package optimx (Nash and Varadhan 2011) provides a unified interface to
many of these solvers, consolidating methods from packages stats, ucminf (Nielsen
and Mortensen 2016), minga (Bates, Mullen, Nash, and Varadhan 2014), Recg-
min (Nash 2014b), Rvmmin (Nash 2018) and BB (Varadhan and Gilbert 2009).
It was designed as a possible successor of optim which is part of the stats package
and can be used to solve OPs with box constraints. Another package which incorpo-
rates many different algorithms is nloptr (Ypma, Borchers, and Eddelbuettel 2018).
It is an R interface to the NLopt (Johnson 2019) library, which bundles several
global and local optimization algorithms. Depending on the algorithm it can solve
NLPs with box-constraints or functional-constraints.

Most of the GPS able to handle functional constraints allow to specify functional
equality and /or functional inequality constraints. Since specifications may vary from
one solver to the other a general optimization infrastructure should be designed in a
way that the functional form employed can be transformed into the commonly used
forms.

To model functional equality constraints the following two forms are most com-

monly used:
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e hi(x) =0, 1 =1,...,k (e.g., alabama (Varadhan 2015), DEoptimR (Con-
ceicao 2016), NlcOptim (Chen and Yin 2019), nloptr::auglag, nloptr::isres,
nloptr::slsqp, and Rnlminb2 (Wiirtz 2014)?)

o hi(x)=10b;, i=1,...,k (e.g., Rsolnp (Ghalanos and Theufil 2015))

where h is a function and b € R* gives the right hand side. Similarly, functional

inequality constraints are commonly given in one of the following three forms:

e gi(x) <0, 5 =Fk+1,...,m (eg., DEoptimR, nloptr:mloptr, NlcOptim,
Rnlminb2, csr::snomadr (Racine and Nie 2018))

e gi(z) >0, j=k+1,...,m (e.g., alabama, neldermead (Bihorel and Baudin
2018), nloptr::auglag, nloptr::cobyla, nloptr::ires, nloptr::mma, and nloptr::

slsqp)

o I;<gj(x) <uj, j=k+1,...,m (e.g., ipoptr (Ypma 2011)?, Rdonlp2 (Wiirtz
2017)?, Rsolnp).

where ¢ is a function and | € R™ %, u € R™* are the lower and upper bounds of
the constraints.

An analysis of the above solver spectrum reveals that the critical arguments to
GPS are:

start: The initial values for the (numeric) parameter vector.
objective: The function to be optimized.

constraints: Depending on the GPS the constraints can be none, linear, quadratic,
functional equality or functional inequality constraints. To model functional
constraints consistently with linear and quadratic constraints the following
elements are needed.
o A function representing the constraints,

» a vector giving the direction of the constraints, and

e a vector giving the right hand side.
bounds: Variable bounds, commonly given as lower and upper bounds.

Additionally some GPS make use of the gradient and/or Hessian of the objective

and the Jacobian of the constraints. The optional elements can be summarized by:

2Note the packages ipoptr, Rnlminb2, and Rdonlp2 are not available on CRAN but on R-Forge.
Information about the installation of ipoptr can be found at https://www.coin-or.org/Ipopt/
documentation/nodel0.html.
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gradient: A function that evaluates the gradient of the argument objective.
hessian: A function that evaluates the Hessian of the argument objective.
jacobian: A function that evaluates the Jacobian of the argument constraints.

maximum: A boolean indicating whether the objective function should be maximized

or minimized.
control: Further control arguments specific to the solver.
Return values include:
par: The “solution” (parameters) found.
value/objective: The value of the objective function evaluated at the “solution”.

convergence, status: An integer information about the convergence and exit sta-

tus of the optimization task.
gradient: The gradient evaluated at the solution found.
hessian: The Hessian evaluated at the solution found.

message: A text message giving additional information about the optimization /

exit status.

iterations/evaluations: The number of iterations and / or evaluations.

2.3.3 Other optimization back-ends

Commercial solvers

Since commercial solver packages often bundle a variety of solvers, it is often not
possible to assign them to a certain problem class. At the time of this writing
R interfaces are available to the commercial solver software CPLEX (ILOG 2019),
MOSEK (ApS 2019), Gurobi (Gurobi Optimization, LLC 2018), Lindo (Lindo Sys-
tems 2013) and localsolver (Benoist, Estellon, Gardi, Megel, and Nouioua 2011). To
cover also the commercial side, the interface packages Replex (Theufl and Bravo
2016) and Rmosek (Friberg 2019) were included in defining the requirements for a

consistent solver infrastructure.
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Network-Enabled Optimization System (NEOS)

The NEOS (Czyzyk, Mesnier, and Moré 1998; Dolan 2001; Gropp and Moré 1997)
server (https://neos-server.org) provides free access to more than 60 numerical
optimization solvers. It can be accessed via the internet by submitting OPs via
the homepage, email, the XML-RPC application programming interface or Kestrel.
Depending on the solver the OPs have to be formulated in different ways, overall
most solver support input from AMPL and GAMS. The R packages rneos (Pfaff
2017) and ROILplugin.neos (Hochreiter and Schwendinger 2019) use the XML-RPC
API to communicate with the NEOS server. In order to upload OPs with rneos,
the OPs have to be formulated in the input format supported by the solver (e.g.,
AMPL, GAMS, MPS). In contrast to that, ROIL.plugin.neos supports OPs generated
with ROI, internally each OP is transformed to GAMS before they are submitted to

the server. The result is again converted back into a suitable solution format.

2.4 A general optimization infrastructure for R

After reviewing the optimization resources available in R, it is apparent that the
main function of a general optimization infrastructure package should take at least

three arguments:

problem representing an object containing the description of the corresponding
OP,

solver specifying the solver to be used (e.g., "glpk", "nlminb", "scs"),

control containing a list of additional control arguments to the corresponding

solver.

The arguments solver and control are easily understood, since from the avail-
able solver spectrum we only have to choose those which are capable to handle the
corresponding OP and (optionally) supply appropriate control parameters. How-
ever, building the problem object, in a general and intuitive way, is a challenging
task which leads to several design issues.

Based on the review in Sections 2.2 and 2.3 it seems natural to instantiate OPs
based on an objective function, one or several constraints, types and bounds of the
objective variables, as well as the direction of optimization (whether a minimum or
a mazximum is sought).

In the remainder of this section we discuss the conceptual design of ROI and how
to use it to formulate optimization problems. For illustrative purposes we already

use functionality of package ROL.

R> library("ROI")
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2.4.1 Objective function

The survey of optimization solvers in Section 2.3 reveals that the way the objective
function is stored depends primarily on its functional form. If the objective function
is linear (L), i.e., ag z, then it is common practice to only supply a coefficient vector
ap € R". For quadratic objective functions (Q) of the form %azTQox + aj x most
solvers take a vector ap € R™ and a matrix () € R™*" as input. General nonlinear
objective functions (F, i.e., nonlinear functions which cannot be represented as an
QP or CP), are represented as an R function which takes the vector of objective
variables as argument and returns the objective value. Depending on the type of
the objective function, i.e., F, Q, or L, only a subset of the solver spectrum can be
used.

Objective function types and corresponding constructors implemented in ROI

are:

F The most general form of an objective function is created with the construc-
tor F_objective(F, n, G, H, names) by simply supplying F, an R function
representing fo(x), and n the length of z. Optionally, information about the
gradient and the Hessian can be provided via the arguments G and H. If no
gradient is provided it will be calculated numerically if needed. The optional
names argument is propagated to the solution object to make the solution

more readable.

Q Objective functions representing a quadratic form as outlined above can be eas-
ily created with the Q_objective(Q, L, names) constructor taking Q, the
quadratic part g, and optionally L, the linear part ag, as arguments. The

names argument is again optional.

L If the objective to be optimized is a linear function then one should use the
L_objective(L, names) constructor supplying L (the coefficients of the ob-

jective variables) as a numeric vector. The names argument is again optional.

All three constructors return an object inheriting from class ‘objective’.

2.4.2 Constraints

To model all the problem classes introduced in Section 2.2, four different types of
constraints are sufficient. Thereby arguments with the same name have the same
functionality irrespective of the constraint type and will therefore be explained only

once.

F The most general form of constraints can express any constraint representable

by an R function. They are created via F_constraint(F, dir, rhs, J,
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names). Here F is either a function or a list of functions, dir is a character
vector giving the direction of the constraint and rhs is a numeric vector giving
the right hand side of the constraint. The optional arguments J and names

can be used to provide the Jacobian and the variable names of the constraints.

C Conic constraints are constructed via the function C_constraint(L, cones,
rhs, names), where L can be either a numeric vector of length n or a matrix
of dimension m x n. In accordance with Equation 2.6 the cones impose
a restriction on the slack variable s. A conic constraint can be comprised
of several cones, where each cone type can occur multiple times. The cone
constructors all start with K_ followed by a short cut of the cone name, as
defined in Section 2.2.3. Currently ROI implements constructors for the cones
K_zero, K_1in, K_soc, K_psd, K_expp, K_expd, K_powp, and K_powd. To

combine different cones the generic combine c() can be used.

Q Quadratic constraints as defined in Equation 2.5 can be easily created with the
constructor Q_constraint(Q, L, dir, rhs, names). The quadratic con-
straints Q are given as a list of length m where the entries are either of n x n

matrices or NULL.

L Linear constraints are constructed via the function L_constraint (L, dir, rhs,

names).

All constructors return an object inheriting from class ‘constraint’ Since in
many situations it is desirable to optimize a given objective function subject to
composite constraints of different kinds, ROI can combine multiple constraints into
a single constraint using the generic functions c() or rbind(). Since the matrices
L and Q can become huge but are typically sparse we use the simple triplet matrix
format from the slam (Hornik, Meyer, and Buchta 2019) package to store them
internally. In the simple triplet matrix format (sometimes referred to as coordinate
list format) only the row indices, the column indices and the values of the non-zero
elements are stored in a list. We choose the slam package not only for efficiency

reasons but also due to the fact that many solver APIs demand such a format.

2.4.3 Objective variable types

As it is common practice in mixed-integer solvers to distinguish between the variable
types continuous, integer and binary we encode the variable choice with the following
characters: "C" for continuous, "I" for integer and "B" for binary. By default all

the variables are assumed to be of continuous type.

37



2.4.4 Bounds

A variable bound is a special type of constraint used to restrict an objective vari-
able between a real lower and upper bound. Therefore, variable bounds are often
also called “box bounds” or “box constraints”. Although variable bounds could be
easily modeled as linear constraints, many GPS only support variable bounds (see
Table 2.3). Furthermore, most solvers that support any type of constraint allow
to specify variable bounds directly. Thus, it is reasonable but also convenient to
consider them separately.

Typically, implementations of optimization algorithms differentiate between five
types of objective variable bounds: free (—o0,0), upper (—oo,ub|, lower [lb, ),
double bounded [lb, ub], and fixed bounds. In ROI variable bounds are represented
as a list with two elements—upper and lower, where only the non-default values
are stored in a simple sparse format. In this sparse format only indices and the non-
default values are stored. For the lower bounds the default value is zero and for the
upper bounds the default value is infinity. Thus, for OPs where all the variables are
required to take values in the interval [0, 00) no bounds have to be specified. Upper
and/or lower bounds are specified by providing the index ¢ of the corresponding
variable (arguments 1i, ui) and its lower (1b) or upper (ub) bound, respectively.
Therefore, the box constraints —oo < z; < 4, 0 < 29 < 100, 2 < 23 < 00 and

0 < x4 < 00 are constructed in ROI as follows:

R> V_ bound(li = 1:4, wui = 1:4, 1b = c¢(-Inf, 0, 2, 0),
+ ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

If all upper and lower values are provided (default values are not omitted) the indices

can be left out:

R> V_bound(ib = c¢(-Inf, 0, 2, 0), ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

If the default values are omitted the number of objective variables has to be provided.

R> V_bound(1i

+ ub

c(1L, 3L), wui = c¢(i1L, 2L), 1b = c(-Inf, 2),
c(4, 100), nobj = 4L)
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ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

Consider the box constrains 0 < z3 < 20 and —20 < z; < 20 for all i € I = {1,2,4}.
The default lower and upper bound can be changed by the arguments 1d and ud.
Thus, this variable bound can be constructed by the following ROI code.

R> V_bound(li = 3, 1b = 0, 1d = -20, ud = 20, nobj = 4L)

ROI Variable Bounds:

3 lower and 4 upper non-standard variable bounds.

2.4.5 Optimization problem

In ROI, a new optimization problem is created by calling
OP(objective, constraints, types, bounds, maximum) .

As an example consider the LP

maximize 3r1 + Txe — 1225

subject to 5x; + Tze + 223 <61
3v; + 21y — 913 <35 (2.15)
r1 + 3xy + rs <31

T1,To Z O, T3 € [—10, 10]
This problem can be constructed by the following ROI code.

R> A <- rbind(c(5, 7, 2), c(3, 2, -9), c(1, 3, 1))

R> dir <- c("<=", "<=", "<=")

R> rhs <- c¢(61, 35, 31)

R> 1p <- OP(objective = L_objective(c(3, 7, -12)),

+ constraints = L_constraint(4, dir = dir, rhs = rhs),

+ bounds = V_bound(1i = 3, ui = 3, 1b = -10, ub = 10, nobj = 3),

+ maximum = TRUE)
Alternatively, an OP can be formulated piece by piece, by creating an empty OP
R> 1p <- OPQ)

and using the setter/getter functions objective(), constraints(), bounds(),

types(), and maximum() to set/get the corresponding element.
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R> objective(lp) <- L_objective(c(3, 7, -12))

R> constraints(lp) <- L_constraint(A, dir = c("<=", "<=" 6 "<="),

+ rhs = rhs)

R> bounds(1p) <- V_bound(li = 3, ui = 3, 1b = -10, ub = 10,
+ nobj = 3)

R> maximum(lp) <- TRUE

R> Ip

ROI Optimization Problem:

Maximize a linear objective function of length 3 with

- 3 continuous objective variables,

subject to
- 3 constraints of type linear.

- 1 lower and 1 upper non-standard variable bound.

The setter functions make it easy to alter previously created OPs. The getter
function objective () returns the objective as function, which can be directly used
to evaluate parameters. The number of parameters required, can be obtained by

the generic function length().

R> param <- rep.int (1, length(objective(lp)))
R> objective(1p) (param)

[1] -2
To access the data of the objective, the generic function terms() should be used.

R> terms(objective(lp))

$L
A 1x3 simple triplet matrix.

$names
NULL

For all the other elements the corresponding getter function returns directly the
underlying data representation.
Function OP() always returns an S3 object of class ‘OP” which stores the entire

OP. Storing the OP in a single R object has many advantages, among others:

o the OP can be checked for consistency during the creation of the problem,
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o the different elements of the OP can be easily accessed after the creation of

the problem,

o and the OP can be easily altered, e.g., a constraint can be added, bounds can

be changed, without the need to redefining the entire OP.

The consistency checks verify that the dimensions of the arguments fit together.

2.5 Package ROI

The R optimization infrastructure is structured into the package ROI and its accom-
panying extensions (plug-ins and models). Package ROI provides all the necessary
classes and methods and manages the extensions (i.e., automatically loads plug-ins
and manages meta data about the plug-ins). The extension packages add optimiza-
tion solvers, read/write functions and additional resources (e.g., model collections).
The plug-in extensions play a special role, hence all plug-ins are loaded automat-
ically when ROLI is loaded. When a plug-in is loaded it provides data about its
capabilities. This data is stored in an in-memory database and includes information
about to which problems the plug-in is applicable, which formats it can read/write
and the control arguments available from the solver and how the solver specific
control arguments relate to arguments commonly used.

This mechanism makes it possible that ROI is aware of all the installed plug-
ins, without the need to change ROI when a new plug-in is added. To make
the automatic loading possible the plug-ins have to follow the name convention
ROI.plugin.<name>, where <name> is typically the name of an optimization
solver (e.g., ROLplugin.glpk (Theufil 2017)). The prefix ROI.models is used for
data packages with predefined OPs (e.g., ROL.models.netlib (Schwendinger 2019)).
In Section 2.5.6 we give an overview about the data packages available in the ROI

format.

2.5.1 Solving optimization problems

After formulating an OP as described in Section 2.4, it can be solved by calling the
function ROI_solve(x, solver, control, ...). This function takes an R object
of class ‘OP’ containing the formulation of the OP, the name of the solver to be
used and a list containing solver specific parameters as arguments. The solver
and control arguments are optional, if no solver argument is provided ROI will
choose an applicable solver automatically (see Section 2.5.7). Alternatively the
solver specific parameters can be specified via the dots arguments.

The problem stated in Equation 2.15 can be solved by the following ROI code:
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R> (1p_sol <- ROI_solve(lp, solver = "glpk"))

Optimal solution found.
The objective value is: 8.670149e+01

2.5.2 Solution and status code

Status code

Solver status codes are used to inform the user about the exit status of the solver.
Despite the common usage of status codes in optimization solvers there is no widely
used standard. Nevertheless, we believe it is desirable to provide unified status
codes. The status codes used in ROI_solve are simple and consistent with the
common practice, to return 0 on success (if a “solution” meeting the solver specific
requirements was found) 1 otherwise. For optimization solvers specialized on solving
convex LPs; QPs and CPs it can be assumed that a global solution was found, if the
status code is 0. Unfortunately, the same is not true for non-convex QPs and GPS,
here status codes are less informative. Some packages like optimx and alabama
check the Karush-Kuhn-Tucker (KKT) conditions to verify that the solution found

meets the criteria of a local minimum.

Solution

To make the solutions of the various solvers easy to understand, all the solutions are
canonicalized within the plug-ins. After the canonicalization each solution contains

the following components:

solution the solution of the OP,
objval the optimal objective value,
status the canonicalized status code,
message the original solver message,

and a meta attribute containing the solver name and additional optional arguments.
To obtain the (primal) “solution” one can use the generic function solution(x,

type):

R> solution(lp_sol)

[1] 0.000000 9.238806 -1.835821
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Some OPs have multiple solutions, in the case of BLP (MILP) some solvers can
retrieve all (multiple) solutions. For MILPs it is in general not possible to obtain

all the solutions but only multiple solutions, since even this simple MILP

minimize 1 — To
X
subject to 1 — 29 =0 (2.16)
T1,T9 € 7L

has an infinite number of solutions. The following example is based on Fischetti and
Salvagnin (2010) and will be used later to illustrate how multiple solutions can be
obtained.
minizmize —T1 — Xg — T3 — Tg — 9925
subject to r1+ 19 <1
T3 +x4 <1 (2.17)
Ty +a5 <1
x; € {0,1}
The "msbinlp" solver allows to retrieve all the solutions to the OP defined in
Equation 2.17, here method gives the solver used within the inner loop and nsol _max
the maximal number of solutions to be returned. Since we have a pure binary

problem and five objective variables, we set nsol_max to 32,

R> blp <- OP(objective = L_objective(c(-1, -1, -1, -1, -99)),

+ constraints = L_constraint(L = rbind(c(1, 1, 0, 0, 0),
+ c(, 0, 1, 1, 0), c(0, 0, 0, 1, 1)),

+ dir = c("<=", "<=" 6 "<=")  rhs = rep.int(1, 3)),

+ types = rep("B", 5L))

R> (blp_sol <- ROI_solve(blp, solver = "msbinlp", method = "glpk",

+ nsol_max = 32))

2 optimal solutions found.
The objective value is: -1.010000e+02

R> solution(blp_sol)

[[1]1]
[1] 10101

(211
(1101101
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alternatively it is also possible to set nsol_max to Inf. This is advantageous if an
upper bound on the number of solutions is hard to guess and all the solutions should
be retrieved .

If the status code is not zero, solution will return NA, to prevent the user from

using solutions with a status code different from 0.

R> 1p_inaccurate_sol <- ROI_solve(lp, solver = "scs", tol = 1e-32)

R> solution(lp_inaccurate_sol)
[1] NA NA NA

However in a few situations it can be desirable to obtain solutions even if the solver
signals no success. In these cases ROI can be forced to return the solution provided

by the solver regardless of the status code.

R> solution(lp_inaccurate_sol, force = TRUE)
[1] 3.214054e-15 9.238806e+00 -1.835821e+00

The “solution” to the dual problem can be retrieved by:

R> solution(lp_sol, type = "dual")
[1] -4.298507 0.000000 0.000000

Furthermore, solution() can be employed to retrieve auxiliary variables,

R> solution(lp_sol, type = "aux")

$primal
[1] 61.0000 35.0000 25.8806

$dual
[1] 0.5820896 1.4626866 0.0000000

the original solver message,

R> solution(lp_sol, type = "msg")

$optimum
[1] 86.70149

$solution
[1] 0.000000 9.238806 -1.835821
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$status
[1] 5

$solution_dual
[1] -4.298507 0.000000 0.000000

$auxiliary
$auxiliary$primal
[1] 61.0000 35.0000 25.8806

$auxiliary$dual
[1] 0.5820896 1.4626866 0.0000000

$sensitivity_report
[1] NA

the objective value,
R> solution(lp_sol, type = "objval")
[1] 86.70149

the status,

R> solution(lp_sol, type = "status")

$code
[1] O

$msg
solver glpk
code 5
symbol GLP_OPT
message Solution is optimal.

roi_code O

and the status code

R> solution(lp_sol, type = "status_code")
(1] o
of the OP.
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2.5.3 Reformulations

Reformulations are often used to transform a problem of class A into a problem of
class B, where the solution of the original problem can be derived from the solution
of the reformulation (which is typically easier to solve). Although reformulation
techniques are commonly used in optimization, the functions performing these re-
formulations are generally hidden within the optimization software. To facilitate
the comparison of different reformulation algorithms, ROI provides functions for
managing reformulations. Function ROI_registered_reformulations() lists the
available reformulations and ROI_reformulate(x, to, method) performs the re-
formulation. Following Boros and Hammer (2002) we illustrate the transformation
of a binary QP into a MILP. The code for the reformulation is based on the imple-
mentation in the relations (Meyer and Hornik 2019) package.

minixmize 6 —z—4y—z+3zy+yz

(2.18)
z,y,z € {0,1}

R> Q@ <- rbind(c(0, 3, 0), c(0, 0, 1), c(0, 0, 0))

R> bgp <- OP(Q_objective(qQ = Q + t(Q), L = c(-1, -4, -1)),
+ types = rep("B", 3))

R> glpk_signature <- ROI_solver_signature("glpk")

R> head(glpk_signature, 3)

objective constraints bounds cones maximum C I B

1 L X X X TRUE TRUE FALSE FALSE
L L X X TRUE TRUE FALSE FALSE

L X X X TRUE FALSE TRUE FALSE

R> milp <- ROI_reformulate(x = bgp, to = glpk_signature)
R> ROI_solve(milp, solver = "glpk")

Optimal solution found.
The objective value is: -4.000000e+00

Here ROI selects the applicable reformulations based on the provided signatures. A
method is considered to be applicable if it can transform the given OP into a new
OP, where the signature of the new OP is a subset of the signature provided in the
argument to. Since it is possible that several methods are applicable, the argument

method can be used to select a specific reformulation method.
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2.5.4 ROI solvers

ROI can currently make use of more than thirty different solvers, applicable to
a wide range of OPs. Inspired by R’s available.packages() function, ROI can
return a listing of the solver plug-ins available at CRAN, R-Forge (https://r-forge.
r-project.org/, Theufll and Zeileis 2009) and GitHub (https://github.com/).
ROI available solvers() without an argument lists all the available solvers. If

an OP is provided as argument, only the available solvers applicable will be returned.

R> ROI_available_solvers(bgp) [, c("Package", "Repository")]

Package Repository
6 ROI.plugin.neos https://r-forge.r-project.org/src/contrib
10 ROI.plugin.cplex http://R-Forge.R-project.org
14 ROI.plugin.gurobi http://R-Forge.R-project.org
17 ROI.plugin.mosek http://R-Forge.R-project.org
19 ROI.plugin.neos http://R-Forge.R-project.org

28 ROI.plugin.gurobi https://github.com/FlorianSchwendinger
29 ROI.plugin.mosek https://github.com/FlorianSchwendinger

A listing of all the available plug-ins on CRAN and R-Forge could be easily compiled
by just using the available.packages() function. But to be able to find all the
solvers available and applicable to a given OP also the solver signature is needed.
Therefore a database (an rds file on R-Forge) containing the solver signatures and
the information provided by available.packages() was compiled and is queried
whenever ROI_available solvers() is called.

A vector of all solvers installed and loaded (registered) can be obtained by

ROI registered_solvers(),

R> head (ROI_registered_solvers(), 3)

nlminb alabama cplex

"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cplex"

similarly

R> ROI_applicable_solvers(1p)

[1] "alabama" "cplex" "ecos" "glpk" "lpsolve" '"neos"

[7] "gpoases" "scs" "symphony"

returns a vector giving the names of the registered solvers applicable to a given

problem. Both return values are based on the solver registry, which stores the solver
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. Objective
Constraints . . . .
linear quadratic conic functional
no
box optimx
Ip* *+ glpk* " i
linear CP,cgc - 8lpk™ ipop,
Ipsolve*™, msbinlp*™, quadprog®,
symphony** gpoases
. lex™
quadratic gflll)'(flfi - 7
mosek* ™
neos™
) ecos*T,
conic }
scs
. alabama,
functional .
deoptim,
nlminb, nloptr

Table 2.4: Currently available ROI plug-ins displayed based on the types of op-
timization problems they are applicable to. Here * indicates that the solver is
restricted to convex problems and * indicates that the solver can model integer
constraints. Note all the plug-ins have the prefix ‘ROI.plugin’ and the modeling
capabilities of the plug-ins do not necessarily represent the modeling capabilities of
the underlying solvers.

method and information about the solver registered by the plug-ins. The solver
registry is an in-memory database based on the registry (Meyer 2019) package.

ROI_installed_solvers() gives a listing of all the installed plug-ins (not nec-
essarily loaded) delivered directly with ROI and found by searching for the prefix
‘ROI.plugin’ in the R library trees.

R> head(ROI_installed_solvers(), 3)

nlminb alabama cplex

"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cplex"

An overview on the currently available solver plug-ins based on the problem
types is given in Table 2.4. Please note that the functionality provided in a plug-in

does not necessarily have to be the same as the functionality of the solver, e.g.,
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ROI.plugin.nlminb can take functional constraints, while nlminb can only take box
constraints.
Furthermore we want to emphasize that ROI was built to be extended, as shown

in Section 2.7.

2.5.5 ROI read/write

OPs are commonly stored in flat file formats, different solvers allow to read/write
different types of this file formats. ROI manages the reader/writer registered in the

plug-ins, thus allows to write

R> 1p file <- tempfile()
R> ROI_write(lp, lp_file, "lp_lpsolve")
R> writeLines (readLines(1p_file))

/* Objective function */
max: +3 Cl1 +7 C2 -12 C3;

/* Constraints */

+5 C1 +7 C2 +2 C3 <= 61;
+3 C1 +2 C2 -9 C3 <= 35;
+C1 +3 C2 +C3 <= 31;

/* Variable bounds */
-10 <= C3 <= 10;

and read OPs in various formats.

R> ROI_read(lp_file, "lp_lpsolve")

ROI Optimization Problem:

Maximize a linear objective function of length 3 with

- 3 continuous objective variables,

subject to
- 3 constraints of type linear.

- 1 lower and 1 upper non-standard variable bound.

Information about the available reader/writer can be obtained via the functions

ROI_registered_reader() and ROI_registered_writer().
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2.5.6 ROI models

Test problem collections are commonly used in optimization to evaluate and com-
pare the performance of solvers. As each class of optimization problems has its own
test sets stored in various formats, ROI currently provides access to NETLIB-LP,
MIPLIB and the globalOptTests package. The NETLIB-LP (Gay 1985) is a collec-
tion of linear programming problems, which, even though the main part was created
more than 30 years ago is still used today. Mixed integer optimization problems are
commonly evaluated using MIPLIB (Koch et al. 2011), an extensive collection of
academic and industrial MILP applications. The globalOptTests (Mullen 2014a)
package contains 50 box constrained nonlinear global OPs for benchmarking pur-
poses. These libraries were transformed into ROI optimization problems and can be
accessed through packages ROIL.models.netlib, ROI.models.miplib (Schwendinger
and Theu$l 2019) and ROI.models.globalOptTests (Schwendinger 2017). Since MI-
PLIB provides no license file, the OPs are not included in the package but can be

easily obtained with the miplib_download_x*() functions.

R> library("ROI.models.miplib")
R> if ( length(miplib()) == OL ) {
+ miplib_download_benchmark(quiet = TRUE)

+ miplib_download_metainfo ()
+ }

R> ops <- miplib("ns1766074")
R> ops

ROI Optimization Problem:

Minimize a linear objective function of length 100 with
- 10 continuous objective variables,

- 90 integer objective variables,

subject to
- 182 constraints of type linear.

- 0 lower and O upper non-standard variable bounds.

Since the problems are stored as objects of class ‘0OP’, they can be directly entered

into ROI_solve.

R> library("ROI.models.netlib")
R> agg <- netlib("agg")
R> ROI_solve(agg, "glpk")
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Optimal solution found.
The objective value is: -3.599177e+07

ROI makes these data collections (test problem sets) available in a common
format, so users can easily compare the different solvers and developers interested
in creating optimization software can use them to test their packages. Furthermore,
the intuitive structure of ROI objects and its use of sparse data structures makes
it possible to directly derive a new format for the exchange of linear, quadratic and

conic optimization problems.

R> library("jsonlite")

R> nested_unclass <- function(x) {

+ x <- unclass(x)

+ if ( is.list(x) )

+ x <- lapply(x, nested_unclass)
+ X

+ }

R> agg_json <- toJSON(nested_unclass(agg))
R> tmp_file <- tempfile()
R> writeLines(agg_json, tmp_file)

The resulting text file can be easily imported into any programming language
supporting JavaScript Object Notation (JSON). JSON is an open-standard file for-
mat that can be parsed by almost all programming languages. For historic reasons,
OP collections are commonly provided in flat file formats (e.g., MPS, QPS). We be-
lieve, that today it would be advantageous to store them in general data exchange
formats like JSON or XML.

2.5.7 ROI settings

The function ROI_options() can be used to set or modify many general and/or

solver-related settings. Apart from that ROI recognizes some environment variables.

Gradient and Jacobian

When creating a plug-in, the function G should be used to derive the gradient and
J should be used to derive the Jacobian. In ROI the gradient and Jacobian are
derived analytically for linear and quadratic terms. For the derivation of nonlinear
terms, by default, the numDeriv (Gilbert and Varadhan 2019) package with the
Richardson extrapolation is used. However, this can be easily changed by providing

customized functions to derive the gradient or Jacobian function.
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R> simple_gradient <- function(func, x, ...) {

+ numDeriv: :grad(func, x, method = "simple", ...)

+ F

R> ROI_options("gradient", simple_gradient)

R> simple_jacobian <- function(func, x, ...) {

+ numDeriv::jacobian(func, x, method = "simple", ...)
+

R> ROI_options("jacobian", simple_jacobian)

Solver selection

In the case no solver is provided in ROI_solve, the default solver set in ROI_options

will be used.

R> ROI_options("default_solver")
[1] "auto"

By default the option "default_solver" is set to "auto" which enables automatic
solver selection, if any other solver name (e.g., "glpk") is provided the automatic

solver selection is discarded in favor of the specified solver.

R> ROI_options("default_solver", "glpk")
R> ROI_options("default_solver", "auto")

Load plug-ins

The plug-ins are loaded automatically. However, in some situations it is desirable to
deactivate the automatic loading and require plug-in packages one at a time. This
can be accomplished by setting the environment variable "ROI_LOAD_PLUGINS" to
FALSE.

R> Sys.setenv(ROI_LOAD_PLUGINS = FALSE)

Afterwards the default load behavior of ROI is altered and only the "nlminb" solver
(which is included in ROI) gets registered when library("ROI") is called. There-
fore, all the other plug-ins have to be loaded manually if needed (e.g., for the "glpk"
solver one calls 1ibrary ("ROI.plugin.glpk")).

2.6 Examples

In this section we provide small examples to introduce the reader into the modeling

capabilities of ROI.
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2.6.1 Linear optimization problems

Consider the LP
maximize 1+ 279
subject to  x7 + 8xy =9
514+ 22 <6
1 €1-9,9], 2o € [-7,7].

To solve this LP we use the following ROI code:

R> 1p <- 0P(c(1, 2), maximum = TRUE,

+ L _constraint(L = rbind(c(1, 8), c(5, 1)),
+ dir = c("==", "<="), rhs = c(9, 6)),
+ bounds = V_bound(1lb = c(-9, -7), ub = c(9, 7)))

R> (1p_sol <- ROI_solve(lp, "glpk"))

Optimal solution found.
The objective value is: 3.000000e+00

R> solution(lp_sol)

(1] 11

2.6.2 Quadratic optimization problems

Consider the QP

1
minimize i(aﬁ +22) — 1
x

subject to 4x; + 629 > 10

T1, T2 Z 0.

(2.19)

(2.20)

Recall that for quadratic terms ROI uses the standard form %xTQx +a'x (see

Equation 2.5). Therefore, this problem can be solved by the following ROI code:

R> gp <- OP(Q_objective(Q = diag(2), L = c(-1, 0)),
+ L_constraint(c(4, 6), ">=", 10))
R> (gp_sol <- ROI_solve(qp, "qpoases"))

Optimal solution found.
The objective value is: -1.538462e-01

R> solution(gp_sol)

[1] 1.4615385 0.6923077
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To add the constraint 7z; + 11z — 22 — 23 > 40 we combine the new constraint

with the existing constraint.

R> qcgp <- gp
R> constraints(qcqp) <- rbind(constraints(qp),
+ Q_constraint (-diag(c(2, 2)), L = c(7, 11), ">=", 40))

In ROI a QCQP can be solved by the solvers
R> ROI_applicable_solvers(qcqp)
[1] "alabama" "cplex"  "neos"

where among these solvers cplex and gurobi are best suited for this type of problem.

However for reproducibility we use the open source solver alabama:

R> (qcgp_sol <- ROI_solve(qcqp, "alabama'", start = c(5, 5)))

Optimal solution found.
The objective value is: 9.447513e+00

R> solution(qcqp_sol)
[1] 2.845720 4.060584

and the NEOS server:

R> (qcqp_sol <- ROI_solve(qcqp, "neos", method = "mosek"))

Optimal solution found.
The objective value is: 9.447513e+00

R> solution(qgcqp_sol)

[1] 2.845695 4.060596

2.6.3 Conic optimization problems

Conic optimization problems in standard form (see Equation 2.6) are comprised
of a linear objective function and conic constraints. The requirement of a linear
objective function is not restrictive, since by making use of the epigraph form (see
Equation 2.7) any CP can be transformed into the standard form. In conic optimiza-
tion conic constraints are used to express predefined linear and nonlinear constraints
by the equation Az + s = b, where the slack variable s is required to lie in a specific

cone b — Az =s € K.
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Zero cone

The zero cone is used to model linear equality constraints, since Ax = b is equivalent
to Az 4+ s =10, s € Kero. The linear constraint 7 + 8z =9 <= 9—(1 8z =s¢€

K,ero can be expressed as follows:

R> cpeq <- C_constraint(c(1, 8), K_zero(1), 9)

Linear cone

The linear cone is used to model linear less than equal constraints, since Az < b
is equivalent to Ax + s = b, s € Kj;,. The linear constraint 5z; + 1o < 6 <~

6— (5 1)xr =s € Ky, can be expressed as follows:
R> cpleq <- C_constraint(c(5, 1), K_1in(1), 6)

By combining the zero cone constraint with the linear cone constraint the LP

stated in Equation 2.19 can also be formulated as a CP.
R> zlcp <- 1p
R> constraints(zlcp) <- c(cpeq, cpleq)

R> (zlcp_sol <- ROI_solve(zlcp, solver = "ecos"))

Optimal solution found.
The objective value is: 3.000000e+00

R> solution(zlcp_sol)
(11 11

Note that since in the definition of C,q, and Ky, only one variable is involved,
a single zero cone or linear cone constraint can be expressed by a single row of the
constraint matrix A. For all the other cones at least two rows of the of the constraint

matrix A will be needed to express a single conic constraint.

Second-order cone

The second-order cone is used to express constraints of the type ||ulls < w (see

Equation 2.9), where the variables v € R"! and w € R are expressed by b — Ax €
T

K. Specifically, w is expressed by by — a # and u; is expressed by b; — a/ x, i €
2,..,Mm.
Consider the SOCP
maximize Y1 + Yo
(y:t)
subject to \/(2 +3y1)2 + (4+5y)2 <6+ Tt (2.21)

Y1, Yo €ER, t € (—00,9]
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for z = (y1,y2,t)", the constraint

V(243512 + (44 5y)? <6+ Tt

is equivalent to

\/(bg —ag )2+ (b3 —ajx)2 < by — a; x,

where
0 0 -7 6
A=|-3 0 0o]l,b=12]. (2.22)
0 -5 O 4

Given the constraint matrix A and the right hand side b this can be directly
translated into the following OP:

R> socl <- 0P(c(1, 1, 0),
+ C_constraint (L = rbind(c(0, 0, -7), c(-3, 0, 0), c(0, -5, 0)),

+ cone = K soc(3), rhs = ¢c(6, 2, 4)), maximum = TRUE,
+ bounds = V_bound(1ld = -Inf, ui = 3, ub = 9, nobj = 3))
R> (socl_sol <- ROI_solve(socl, solver = "ecos"))

Optimal solution found.
The objective value is: 2.535571e+01

R> solution(socl_sol)
[1] 19.055671 6.300041 9.000000

Consider the SOCP
minimize /a% + 23
subject to x1 + 19 = 2 (2.23)

Ty, T3 >0

by making use of the epigraph form the OP can rewritten into the standard form.

minimize t
(z,t)

subject to Wﬁt (2.24)

$1+I2:2

Ty, T3 >0
This problem can be solved by the following ROI code:

R> A <- rbind(c(0, 0, -1), c(-1, 0, 0), c(0, -1, 0))
R> soc2 <- OP(objective = L_objective(c(0, 0, 1)),
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+ constraints = c¢(C_constraint (4, c(K_soc(3)), c(0, 0, 0)),
+ L _constraint(c(1, 1, 0), "==", 2)))

R> (soc2_sol <- ROI_solve(soc2, solver = '"ecos"))

Optimal solution found.
The objective value is: 1.414214e+00

R> solution(soc2_sol)

[1] 1.000000 1.000000 1.414214

Exponential cone

The primal exponential cone is used to express constraints of the type ver < w (see
Equation 2.11), here u € R, v € R, w € R and v > 0. Since three scalar variables
are evolved one primal exponential cone adds three rows to the constraint matrix
A. The variables u, v and w are again expressed by the corresponding elements of
b — Az. Specifically, u := b, — a] z, v := by — agx and w := b3 — a; =.

Counsider the CP

maximize vy; + 2y,
(y:t)

subject to exp(7 + 3y; + 5ya) < 9+ 117 + 12t (2.25)
Y1, Y2 € (—00,20], ty, ty € (—00,50]

the constraint exp(7 + 3y; + by2) < 9 + 11t; + 12ty can be represented by the
exponential cone by recognizing that u = 7+3y; +5y2, v = 1 and w = 9+ 11¢; +12¢,.

For x = (y1,ya,t1,t2) " this leads to the matrices

-3 -5 0 0 7
A=l0 0o o 0 |,b=|1], (2.26)
0o 0 —-11 -—12 9

and the following conic constraint:

R> cexpp <- C_constraint(L = rbind(c(-3, -5, 0, 0), c(0, 0, 0, 0),
+ c(0, 0, -11, -12)), cone = K_expp(1), rhs = c(7, 1, 9))

Therefore this CP can be solved by the following ROI code:

R> exppl <- 0P(c(1, 2, 0, 0), cexpp, maximum = TRUE,
+ bounds = V_bound(ld = -Inf, ub = ¢(20, 20, 50, 50)))
R> (exppl_sol <- ROI_solve(exppl, solver = "ecos"))
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Optimal solution found.
The objective value is: 6.685104e+00

R> solution(exppl_sol)
[1] -33.31490 20.00000 49.99996 49.99996

In many statistical models the objective contains logarithmic and exponential
terms (e.g., logistic regression, relative risk regression, Poisson regression). As a

simple example consider the CP

maximize log(9 + 7x)

(2.27)
subject to 0 <z <1,
or in the epigraph form
maximize ¢
(z,t)
subject to log(9+ 7x) >t (2.28)

0<z<1.

Taking the exponential of log(w) > wu gives w > exp(u), therefore the constraint
log(9 + 7x) > t can be represented by the exponential cone by recognizing that
u=1t,v=1and w =9+ 7z, which yields the matrices

0 -1 0
A= 0 o |,b=|1]. (2:29)
-7 0 9

Therefore this CP can be solved by the following ROI code:

R> A <- rbind(c(0, -1), c(0, 0), c(-7, 0))
R> logl <- OP(L_objective(c(0, 1), c("x", "t")),

+ C_constraint (A, K_expp(1), rhs = c(0, 1, 9)),
+ bounds = V_bound(lb = ¢(0, -Inf), ub = c(1, Inf)),
+ maximum = TRUE)

R> (logl_sol <- ROI_solve(logl, solver = "ecos"))

Optimal solution found.
The objective value is: 2.772589e+00

R> solution(logl_sol)

X t
1.000000 2.772589
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Power cone

The primal power cone is used to express constraints of the type u®v!™* > |w|
(see Equation 2.13), here u € R, v € R, w € R, u,v > 0 and a € [0,1]. Since
three scalar variables are involved, one primal exponential cone adds three rows
to the constraint matrix A. The variables u, v and w are again expressed by the
corresponding elements of b — Az. Specifically u := by — a{ ¥, v := by — ag x and
w:= bz —ag x.
Consider the CP
miniymize 3y1 + Y2
subject to 5+ y; > (2+ y2)? (2.30)
y1 >0, y2 > 2.

The constraint 5 + y; > (2 + y2)* can be represented by the power cone by
recognizing that u =5+ 1y, v =1, w =24y, and a = i. For z = (y1,92)" this

leads to the matrices

-1 0 5)
0 —1 2

and the following conic constraint:

R> A <- rbind(c(-1, 0), c(0, 0), c(0, -1))
R> cpowp <- C_constraint (A, K_powp(1/4), rhs = c(5, 1, 2))

Therefore, this CP can be solved by the following ROI code:

R> powpl <- OP(c(3, 5), cpowp, bounds = V_bound(lb = c(0, 2)))
R> (powpl_sol <- ROI_solve(powpl, solver = "scs", max_iter = 1e6))

Optimal solution found.
The objective value is: 7.630000e+02

R> solution(powpl_sol)

[1] 250.999986  2.000001

Positive semidefinite cone

The positive semidefinite cone is used to express constraints of the type X € & and
2T Xz >0 for all z € R" (see Equation 2.10). Positive semidefinite constraints are

expressed by the constraint matrix A and right hand side b. To express the linear

d

matrix inequality >, x;F; < Fy which is equivalent to Fy — >0, F; € /Cpsd,

in terms of b — Az € K,sq the symmetric matrices F; € R™? are transformed
into vectors by a half-vectorization. Half-vectorization is a special kind of matrix

vectorization for symmetric matrices, which transforms a symmetric matrix
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R> (A <- matrix(c(1, 2, 3, 2, 4, 5, 3, 5, 6), nrow = 3))

(,11 [,2] [,3]
[1,] 1 2 3
[2,] 2 4 5
[3,] 3 5 6

into a vector. The function vech correspondingly transforms n symmetric d x d

matrices into a (d(d + 1)/2) x n matrix:

R> vech(4)

[,1]
(1,]
(2,]
(3,]
(4,]
(5,]
(6,]

O O W N

Consider the SDP

minimize x4+ x92 — T3

. 10 3 6 —4 8 1 16 —13
subject to x1 + 24 + x5 <
3 10 —4 10 1 6 —-13 60

xy, 22,23 > 0.

This problem can be solved by the following ROI code:

R> F1 <- rbind(c(10, 3), c(3, 10))

R> F2 <- rbind(c(6, -4), c(-4, 10))

R> F3 <- rbind(c(8, 1), c(1, 6))

R> FO <- rbind(c(16, -13), c(-13, 60))

R> psd <- OP(objective = L_objective(c(1, 1, -1)),

+ constraints = C_constraint(L = vech(F1, F2, F3),
+ cone = K_psd(3), rhs = vech(F0)))
R> (psd_sol <- ROI_solve(psd, solver = "scs"))

Optimal solution found.
The objective value is: -1.486458e+00

R> solution(powpl_sol)

[1] 250.999986 2.000001
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2.6.4 General nonlinear optimization problems

The following example from Rosenbrock (1960) is known as Rosenbrock’s post office
problem.
maximize w1 3 T3
subject to 1 + 225 + 223 < 72
T, To, w3 € [0,42]

R> nlp_1 <- OP(maximum = TRUE, bounds = V_bound(ud = 42, nobj = 3L))
R> objective(nlp_1) <- F_objective(F = function(x) prod(x), n = 3,

+ G = function(x) c(prod(x[-1]), prod(x[-2]), prod(x[-3])))

R> constraint <- function(x) x[1] + 2 * x[2] + 2 * x[3]

R> constraints(nlp_1) <- F_constraint(F = constraint, dir = "<=",
+ rhs = 72, J = function(x) c(1, 2, 2))
R> nip_1

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with

- 3 continuous objective variables,

subject to
- 1 constraint of type nonlinear.

- 0 lower and 3 upper non-standard variable bounds.

Alternatively the linear constraint z1 + 2xs + 2x3 < 72 could and should be modeled

directly as a linear constraint,

R> nlp_2 <- nlp_1
R> constraints(nlp_2) <- L_constraint(L = c(1, 2, 3), "<=", 72)
R> nilp 2

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with

- 3 continuous objective variables,
subject to

- 1 constraint of type linear.

- 0 lower and 3 upper non-standard variable bounds.
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using L and Q constraints rather than F_constraint has the advantage that for L

and Q constraints the Jacobian is derived analytically if needed and not provided.
In contrast to LP, QP and CP solvers almost all GPS require that users specify

starting values. The choice of the starting values has a big influence on how fast

and to which solution the algorithm will converge.

R> (nlp_1_s_1 <- ROI_solve(nlp_1, "alabama", start = c(10, 10, 10)))

Optimal solution found.
The objective value is: 3.456000e+03

R> solution(nlp_1_s_1)
[1] 24.00002 11.99999 11.99999
R> (nlp_1_s_2 <- ROI_solve(nlp_1, "alabama", start = c(20, 20, 20)))

No optimal solution found.

The solver message was: Convergence due to lack of progress in
parameter updates.

The objective value is: 1.314286e+308

R> solution(nlp_1_s_2)
[1] NA NA NA

There are several possibilities to help the algorithm to find a good solution. In
almost all practical applications it is possible to specify lower and upper bounds.
Carefully chosen bounds can improve the quality of the solution and decrease the
runtime of the algorithm. The runtime of the algorithm also strongly depends on
the tolerances set, if the tolerances are set to small the algorithm will reach the

maximum number of iterations before convergence.

R> (nlp_1_s_3 <- ROI_solve(nlp_1, "alabama", start = c(10, 10, 10),
+ tol = 1E-24))

No optimal solution found.

The solver message was: ALABaMA ran out of iterations and did not
converge.

The objective value is: 3.456000e+03

R> solution(nlp_1_s_3, force = TRUE)
[1] 24.00002 11.99999 11.99999
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Last but not least the chosen method has a big influence on the solution. As
mentioned before some algorithms are designed to search for a global solution others
are designed to search for a local solution. ROI.plugin.deoptim provides access to
the packages DEoptim (Mullen, Ardia, Gil, Windover, and Cline 2011) and DE-
optimR which implement a differential evolution algorithm for global optimization.
For more information about continuous global optimization in R we refer to Mullen
(2014a).

R> (nlp_1_s_4 <- ROI_solve(nlp_1, "deoptimr", start = c(20, 20, 20),
+ max_iter = 400, tol = 1E-6))

Optimal solution found.

The objective value is: 3.456000e+03

R> solution(nlp_1_s_4)

[1] 23.99990 12.00002 12.00003

In general it is often hard to obtain a global optimum for non-convex optimization
problems. Often the only option is to try different algorithms, parameters and
starting values and hope that one of the solutions is a global optimum. ROI lowers
the burden to compare different algorithms and therefore can assist in finding a

global solution.

2.6.5 Mixed integer problems

Consider the MIP

minixmize Bx1 + Txo
subject to bxy + 3wy > 7
Tx1+ 1x9 > 9
x1 € {0,1}, 29 > 0,29 € Z

(2.32)

this problem can be solved by the following ROI code:

R> A <- rbind(c(5, 3), c(7, 1))

R> milp <- OP(c(5, 7),

+ constraints = L_constraint(A, c(">=", ">="), c(7, 9)),
+ types = c("B", "I"))

R> (milp_sol <- ROI_solve(milp, solver = "glpk"))

Optimal solution found.
The objective value is: 1.900000e+01

R> solution(milp_sol)

[1]1 1 2
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2.7 Extending ROI

To stay abreast of changes and to further the availability of different solvers in the
ROI ecosystem, ROI allows developers to integrate their own extensions, so called
plug-ins. This can be seen as a key feature, since it allows the use of new solvers
with no or minimal code changes.

Extending ROI with a new solver method can be split into three parts. First, a
function to be called by ROI has to be written. Second, the function plus information
about the function are added into the ROI solver registry. Third, a mapping from
the solver specific arguments and the status codes to their ROI counterpart has to

be provided.

2.7.1 Signatures

In order to establish a connection between the OP and the solvers provided via plug-
ins, both are equipped with a signature. The signature captures all the information

necessary to determine which solver is applicable to a given problem.

R> OP_signature(1lp)

objective constraints bounds cones maximum C I B
1 L L v X TRUE TRUE FALSE FALSE

New signatures are created by the function ROI_plugin make signature(). The

following shows how to create the signature for the glpk solver,

R> glpk_signature <- ROI_plugin_make_signature(objective = "L",
+ COHStI'aintS = HLH, types = C(HCH’ HIH’ IIB”, HCIH, HCBH, HIBII,
+ "CIB"), bounds = c("X", "V"), maximum = c(TRUE, FALSE))

where the objective and the constraints have to be linear. Furthermore, this signa-
ture indicates that, the variable types are allowed to be binary ("B"), integer ("I"),
continuous ("C") or any combinations of them. The bounds have to be variable
bounds ("V") or no bounds at all encoded by "X". The last argument maximum

specifies that GLPK can find both maxima and minima.

2.7.2 Writing a new solver method

Any function supposed to add a solver to ROI has to take the arguments x and
control, where x is of class ‘OP” and control a list containing the additional argu-
ments. Furthermore, the solution has to be canonicalized before it is returned. The

following shows the code from ROILplugin.glpk for solving linear problems.

64



=)
\%

glpk_solve_OP <- function(x, control = list()) {
control$canonicalize status <- FALSE

glpk <- list(Rglpk_solve_LP, obj = terms(objective(x))[["L"]],

mat = constraints(x)$L, dir = constraints(x)$dir,

rhs constraints (x)$rhs, bounds = bounds(x),

types = types(x), max = maximum(x), control = control)
mode (glpk) <- "call"
if ( isTRUE(control$dry_run) )

return(glpk)

out <- eval(glpk)

ROI_plugin_canonicalize_solution(solution = out$solution,

optimum = out$optimum, status = out$status, solver = "glpk",

message = out)

+ + + + + + + + + + + + + o+

}

As can be seen from this example, most plug-ins support the optional control argu-
ment dry_run, which returns the solver call. This is especially useful for debugging
wrapper functions with more transformation steps, so the data used in the solver

call can be easily shared and inspected.

2.7.3 Register solver methods

Registering a solver method can be seen as telling ROI which function it should
use when ROI_solve() with argument solver set to the name of the plug-in (e.g.,
"glpk") is called. In order to avoid ambiguity, each plug-in should at most provide
one method for each problem type. Solver methods are registered via the function
ROI_plugin register_solver_method(), which takes as arguments the problem
types (as signatures), the solver name and a wrapper function ROI_solve() is dis-
patched to.

ROI_plugin_register_solver_method(glpk_signature, "glpk",
glpk_solve_0P)

After the solver registration the name of the solver will appear among the registered

solvers.

2.7.4 Adding additional information

To be able to provide a consistent interface, each plug-in has to define a mapping
between the solver specific status codes and the status codes used by ROI, as well

as a mapping between solver specific control variables and ROI control variables.

65



Status codes

Status codes are added via the function ROI_plugin_add_status_code_to_db():

ROI_plugin_add_status_code_to_db(solver = "glpk", code = 5L,
symbol = "GLP_OPT",
message = "Solution is optimal.",

roi_code = OL)

Here, the "glpk" specific status code 5L is mapped to the canonicalized ROI status

code OL, which signals that the solution is optimal as indicated by the status message.

Control variables

Plug-ins are contracted to provide a mapping between the names of the control
variables used by ROI and the names of the control variables used by the plug-in.
The following maps the glpk argument tm_limit to the ROI equivalent max time.

ROI_plugin_register_solver_control(solver = "glpk",

args = "tm_limit", roi_control = "max_time")

2.7.5 Register reformulations

While in Section 2.5.3 we showed how to use reformulations, here we explain how
new reformulations can be added through plug-ins. Again, the signature is used to

define which transformations can be performed by a given method.

R> bgp_signature <- ROI_plugin_make_signature (objective = "Q",

+ constraints = c("X", "L"), types = "B", bounds = c("X", "V"),

+ cones = c("X"), maximum = c(TRUE, FALSE))

R> milp_signature <- ROI_plugin_make_signature(objective = "L",

+ constraints = c("X", "L"),

+ types = c¢("C", "1", "B", "CI", "CB", "IB", "CIB"),

+ bounds = c("X", "V"), maximum = c(TRUE, FALSE), cones = c("X"))

ROI_plugin register_reformulation( from = bqgp_signature,
to = milp_signature, method_name = "bqp_to_lp",

method = bgp_to_lp, description = "", cite = "", author = "")

The code above registers the function bgp_to_1p(), which is based on the func-
tion .linearize BQP() from the relations package, as a new reformulation named
"bgp_to_1p". The parameter from defines which signatures the original problem is

allowed to have and to defines all possible signatures the reformulation could have.
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2.7.6 Register reader/writer

Plug-ins can also add new read and write functions. Any method to be registered
as read function has to take as arguments the file name file and ... for optional

additional arguments.

R> library("slam")

R> json_reader_lp <- function(file, ...) {

stopifnot(is.character(file))

y <- read_json(file, simplifyVector = TRUE)

to_slam <- function(x) do.call(simple_triplet_matrix, x)

x <= 0P()

objective(x) <- L_objective(
to_slam(y[["objective"]][["L"]]),
yl[["objective"]] [["names"]])

constraints(x) <- L_constraint(
to_slam(y[["constraints"]][["L"]1]),
y[["constraints"]][["dir"]], y[["constraints"]][["rhs"]],
y[["constraints"]][["names"]])

types(x) <- y[["types"]]

bounds (x) <- structure(y[["bounds"]],

class = c("V_bound", "bound"))
maximum(x) <- as.logical(y[["maximum"]])

X

+ + + + + + + + + + + + + + 4+ o+ o+

}

The write functions need the additional argument x, which is the OP to be written.

R> json_writer_lp <- function(x, file, ...) {

+ writeLines (toJSON (nested_unclass(x), null = "null"),
+ con = file)

+ }

Using the JSON based exchange format proposed in Section 2.5.6, we illustrate how

to register simple JSON read and write functions for linear problems.

R> plugin_name <- "io"
R> ROI_plugin_register_writer("json", plugin_name, milp_signature,
+ json_writer_1p)

R> ROI_plugin_register_reader("json", plugin_name, json_reader_lp)

After the registration of the functions they can be used in the typical way.
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R> fname <- tempfile()
R> file <- ROI write(lp, file = fname, type = "json")
R> (1p_json <- ROI_read(file = fname, type = "json"))

ROI Optimization Problem:

Maximize a linear objective function of length 2 with

- 2 continuous objective variables,

subject to
- 2 constraints of type linear.

- 2 lower and 2 upper non-standard variable bounds.

2.7.7 ROI tests

Writing tests is an important task in software development. The ROI.tests package
provides a collection of tests which should be applied to any ROI plug-in during
development. Since ROI knows the signature of each solver, ROILtests can select

the appropriate tests based on the solver name.

R> library("ROI.tests")
R> test_solver("glpk")

LP-01: OK!

LP-02: OK!

LP-03: OK!

MILP-01:

ERROR in MILP-01@01
OK!

MILP-02: OK!

2.8 Applications

In the following we demonstrate how ROI can be used to solve selected problems
from statistics, namely L; regression, best subset selection, relative risk regression,

sum-of-norms clustering, and graphical lasso.

2.8.1 L; regression

The linear programming formulation of the L; regression problem as shown in Sec-

tion 2.2.1 can be constructed using ROI methods via the following R function.
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R> create_L1_problem <- function(x, j) {

+ m <- ncol(x) + 1L

+ n <- 2 * nrow(x)

+ beta <- double(m + n)

+ betal[j + 1] <- 1

+ OP(objective = L_objective(c(rep(0, m), rep(1, n))),
+ constraints = rbind(

+ L_constraint(L = cbind(1, x, diag(nrow(x)),

+ -diag(nrow(x))),

+ dir = eq(nrow(x)), rhs = rep(0, nrow(x))),

+ L _constraint(L = beta, dir = "==", rhs = -1)),

+ bounds = V_bound(li = seq_len(m), 1b = rep(-Inf, m),
+ nobj = length(beta)))

+

}

One can solve e.g., Brownlee’s stack loss plant data example from the stats package
using the above OP and the solver GLPK as follows.

R> data("stackloss")

R> 11p <- create_L1_problem(as.matrix(stackloss), 4)
R> L1_res <- ROI_solve(llp, solver = "glpk")

R> solution(L1l_res)[1:ncol(stackloss)]

[1] -39.68985507 0.83188406 0.57391304 -0.06086957

The first value corresponds to the intercept and the others to the model coefficients.

2.8.2 Best subset selection

Recently Bertsimas et al. (2016) reported a bewildering 450 billion factor speedup
from 1991 to 2015 for solving MIP, which is partly due to algorithmic improvements
and partly through hardware speedups. They show how this speed gain can be
utilized to solve the best subset selection problem in regression (see for example
Miller 2002), which is an NP-hard combinatorial OP. The best subset selection
problem is a variable selection scheme which extends linear least-squares by adding

a constraint on the number of predictor variables.

1 p
mini/gnize §||y — XB|[3 subject to > g0y < k (2.33)
i=1

As Equation 2.33 suggests, the best subset selection is in spirit similar to ridge

regression and lasso. However instead of the ls and [; norm best subset selection
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uses the [y norm which makes it non-convex and therefore hard to solve. The
leaps (Lumley 2017) package implements an efficient branch-and-bound algorithm
which is significantly faster than exhaustive search. Using a optimization solver has
the additional advantage that it is possible to impose additional restrictions, e.g., if
the quadratic term of a covariate is selected to be in the equation the linear term
has also to be selected. In ROI best subset selection can be either implemented as
mixed integer quadratic problem or as mixed integer second order cone problem.
This problem can be solved with a mixed integer QP solver or a mixed integer
SCOP solver. An implementation of the second order cone version can be found in
the Appendix B.1.

2.8.3 Relative risk regression

Generalized linear models (GLM) are often the statisticians’ first choice for regres-
sion analysis of binary response data. The most prominent model of the GLM family
is logistic regression® A GLM which is mainly used in epidemiology but closely re-
lated to logistic regression is relative risk regression. The main difference between
these two models is the fact that relative risk regression uses the log link and there-
fore estimates relative risks instead of the odds ratio. Lumley, Kronmal, and Ma
(2006) reviews the algorithms purposed in the literature to perform relative risks

regression. Luo, Zhang, and Sun (2014) suggest to use a log-binomial model with

maxiﬁmize >y X8+ (1—y;) log(1—exp(X;3)) subject to X3 <0. (2.34)
i=1 i=1

Here X, refers to the i-th row of the data matrix X, the constraint X5 < 0

ensures that the estimated probabilities are in the interval [0, 1]. The log-binomial

regression model can be formulated as a general nonlinear optimization problem

R> logbin_gps <- function(y, X) {
loglikelihood <- function(beta) {

xb <- drop(X 7*7/, beta)

if (any(xb > 0)) NalN

else sum(y * xb + (1 - y) * log(1 - exp(xb)))
}

gradient <- function(beta) {
exb <- exp(drop(X 7/*J beta))
drop(crossprod(X, (y - exb) / (1 - exb)))

+ + + + + + + + o+

3An example for logistic regression can be found on the ROI homepage.
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OP(F_objective(loglikelihood, n = ncol(X), G = gradient),
L_constraint(L = X, dir = leq(nrow(X)),
rhs = double(nrow(X))),
bounds = V_bound(ld = -Inf, nobj = ncol(X)), maximum = TRUE)

+ + + + + + o+

}

which can be solved by any GPS which allows to specify linear constraints (e.g.,
alabama). Alternatively the log-binomial regression model can be solved by any
CP solver which supports the linear and the primal exponential cone (e.g., scs).
This formulation has attractive theoretical and numerical convergence guarantees

without the need to find suitable starting values.

R> logbin_cp <- function(y, X, rhs_eps = le-7) {

y_is_0 <- y == OL

n_y_is_0 <- sum(y_is_0)

o <= 0P(c(y %*J} X, double(n_y_is_0), rep(1, n_y_is_0)),

maximum = TRUE)

L1 <- cbind(X, matrix(0, nrow(X), 2 * n_y_is_0))

loglexp <- function(xi, j, n_y_is_0) {

M <- matrix(0, nrow = 6, ncol = length(xi) + 2 * n_y_is_0)
M[1, seq_along(xi)] <- -xi

M[3, length(xi) + j] <- -1

M[4, length(xi) + n_y_is_0 + jl <- -1

M[6, length(xi) + jl <- 1

M

}

L2 <- mapply(loglexp, split(X[y_is_0,], seq_len(n_y_is_0)),
seq_len(n_y_is_0), MoreArgs = list(n_y_is_0 = n_y_is_0),
SIMPLIFY = FALSE)

rhs <- c(c(0, 1, 0), c(0, 1, 1))

rhs <- c(rep(-rhs_eps, nrow(X)), rep(rhs, n_y_1is_0))

cones <- c(K_lin(nrow(X)), K_expp(2 * n_y_1is_0))

L <- do.call(rbind, c(1ist(L1), L2))

constraints (o) <- C_constraint(L, cones, rhs)

bounds (o) <- V_bound(ld = -Inf, nobj = length(objective(o)))

(@)

+ + + + + + F+ + + + + o+ o+ o+ + o+ o+ o+ o+ o+ o+ o+ o+ o+

-
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To illustrate the estimation of GLMs with binary responses using ROI, we gen-

erate a data set similar to an example in the rms (Harrell Jr 2019) manual.

R> generate_data <- function(n) {

treat <- factor(sample(c('a','b','c'), n, TRUE))
num.diseases <- sample(0:4, n, TRUE)

age <- rnorm(n, 50L, 10L)

cholesterol <- rnorm(n, 200L, 25L)

weight <- rnorm(n, 150L, 20L)

sex <- factor(sample(c('female', 'male'), n, TRUE))

# Specify population model for log odds that Y = 1
L<-(-1+0.1 * (nun.diseases - 2) + 0.045 * (age - 70)
+ (log(cholesterol - 10) - 5.2) - 2 * (treat == 'a')

+ 0.5 * (treat == 'b') - 0.5 * (treat == 'c') )

# Simulate binary y to have Prob(y = 1) =1 / (1 + exp(-L))
y <- as.double(runif(n) < exp(L))

A <- cbind(intercept = 1, age, sex, weight,
logchol = log(cholesterol - 10), num.diseases,
treatb = (treat == "b"), treatc = (treat == '"c"))

return(list(y =y, A = A))

+ + + + + + + + + + + + + + + + 4+ o+ 0+

}

R> set.seed(1234)
R> dat <- generate_data(1500L)

R> start <- c(log(0.2), double(ncol(dat$A) - 1))

R> prob_login_bin_gps <- logbin_gps(dat$y, dat$A)

R> s1 <- ROI_solve(prob_login_bin_gps, "alabama", start = start)
R> solution(s1)

[1] -1.312349e+01 3.673749e-02 9.992758e-03 -5.263405e-04
[6] 1.420533e+00 3.308212e-02 2.631972e+00 1.271524e+00

R> prob_login_bin_cp <- logbin_cp(dat$y, dat$A)
R> s2 <- ROI_solve(prob_login_bin_cp, solver = "ecos")
R> head(solution(s2), ncol(dat$A))

[1] -1.309742e+01 3.674558e-02 1.007736e-02 -5.345493e-04
[6] 1.414958e+00 3.307946e-02 2.636203e+00 1.275390e+00
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R> obj_fun <- objective(prob_login_bin_gps)
R> obj_fun(head(solution(s2), ncol(dat$A))) - obj_fun(solution(sl))

[1] 0.0001827799

We see that both approaches yield a similar result.

2.8.4 Sum-of-norms clustering

Borrowing ideas from regularization, sum-of-norms (SON) clustering (convex clus-
tering) is an interesting alternative to established clustering approaches like hierar-
chical or k-means clustering, which has attracted a lot of research in recent years
(Pelckmans, De Brabanter, De Moor, and Suykens 2005; Lindsten, Ohlsson, and
Ljung 2011; Hocking, Joulin, Bach, and Vert 2011; Zhu, Xu, Leng, and Yan 2014;
Chi and Lange 2015; Tan, Witten, and others 2015). Pelckmans et al. (2005);
Hocking et al. (2011) describe SON clustering as a convexification of hierarchical
clustering and Lindsten et al. (2011) establish that SON clustering can be seen as a
convex relaxation of k-means clustering. Due to its convexity, SON clustering is not
dependent on the starting values, which is a clear advantage over the non-convex
k-means and hierarchical clustering.

SON clustering solves the following convex OP,

minimize ;; 1 X5 — My |5 + A; | My — M|, (2.35)
where ¢ € {1,2,00}, X € R™" is the data matrix and M;, the i-th row of the
optimization variable M. The regularization term A Y-, || M, —Mj, ||, induces equal
rows M;,. For A = 0 all rows are unique and M is equal to X, when A increases the
number of unique rows of M will decrease. This gives a clustering where all equal
rows belong to the same cluster. By solving Equation 2.35 for different \;, where
Al < Ay < -+ < A1 < Ak, one can obtain a hierarchical clustering tree (Pelckmans
et al. 2005).

At least two implementations of SON clustering exist in R, Chi and Lange
(2015) provide a fast implementation of SON clustering on CRAN (https://cran.
r-project.org/package=cvxclustr) and Hocking et al. (2011) provide their code
on R-Forge (https://r-forge.r-project.org/projects/clusterpath/).

A ROI formulation as SOCP of SON clustering can be found in the Appendix B.2.

2.8.5 Graphical lasso

Obtaining good estimates of the covariance matrix X is important in modern statis-

tics. Often X is not estimated directly but its inverse, the precision matrix © = X!
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is (e.g., Meinshausen and Biithlmann (2006)). Estimating the precision matrix in-
stead of the covariance matrix has the advantage that there is a direct connection
between the precision matrix and Gaussian graphical models, in the sense that the
precision matrix defines the structure of the Gaussian graphical model. Since the
elements of the precision matrix are the partial correlations, ©;; is zero if and only
if 7 and j are conditionally independent. Translated to Gaussian graphical models,
two edges A and B are only connected if the corresponding entry in the precision
matrix is non zero (Lauritzen 1996).

Several authors proposed an algorithm connected to the lasso (Tibshirani 1996),
to obtain a sparse estimate of the precision matrix, the so-called graphical lasso
(glasso) (Friedman, Hastie, and Tibshirani 2008). The glasso solves the following
convex OP,

minimize  — log(det(©)) + tr(S ©) + A || X1 (2.36)

where the data matrix X € R™*? is assumed to be generated from a p-dimensional
multivariate normal distribution N,(u, ) and S is the sample covariance matrix of
X. Making use of the exponential and semidefinite cone, this can be brought into
the CP standard form and solved by ROI using SCS. The corresponding R code can
be found in the Appendix B.3.

2.9 Conclusions

In the paper we presented the ROI package and its extensions. ROI provides a
consistent way to model OPs in R. ROI makes strong use of R’s generic functions,
such that users already familiar with R are not obliged to learn a new language. The
plug-in packages equip ROI with optimization solvers and predefined optimization
models. ROI is currently applicable to linear, quadratic, conic and general nonlinear
OPs and provides access to nineteen solvers and three model plug-ins.

We illustrated how ROI can be used to solve OPs from many different problem
classes. Furthermore, we have shown how ROI can be used to solve challenging sta-
tistical problems like best subset selection, convex clustering and glasso. The plug-in
package ROLplugin.msbinlp (Hornik, Meyer, and Schwendinger 2017b) serves as an
example to highlight the benefit of the development of new packages based on ROI.
The main benefit is that there is no need to have a dependency on a specific solver
which could be also interesting for the implementation of nonlinear optimization
algorithms (e.g., sequential quadratic programming). Another benefit is that pack-
age authors can reuse test cases from other packages based on ROI and the plug-in
package ROIL.tests provides a standardized way to test new solver plug-ins.

Although ROI already is able to cope with a wide range of optimization prob-
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lems, there are still many possibilities for extensions. These include extending the
supported functional forms of the objective functions and constraints as well as
adding additional solvers or model collections through plug-ins. The following gives

an overview of the planned extensions.

o Currently, ROI is lacking a plug-in capable of solving general nonlinear op-
timization problems with mixed integer constraints. Within the COIN-OR
project the Couenne (Belotti, Lee, Liberti, Margot, and Wachter 2009) and
the Bonmin (Bonami and Lee 2013) solvers are designed to try to obtain a
global solution for non-convex MINLPs. Therefore both solvers would be a

valuable extension of ROI.

o Another popular solver from the COIN-OR project is Ipopt (Wéchter and
Biegler 2006), which aims to solve general nonlinear optimization problems. As
mentioned before, there exists already the ipoptr package, but since there are
many steps needed for the installation we assume it is currently not accessible

to many R users.

o Add reader for the QPLIB file format (Furini, Traversi, Belotti, Frangioni,
Gleixner, Gould, Liberti, Lodi, Misener, Mittelmann, Sahinidis, Vigerske, and
Wiegele 2017).

e Add plotting methods.

o Explore possibilities of supervised solver recommendation.
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Chapter 3

How to Derive Consensus Among
Various Marketing Journal
Rankings?

The paper was published in the May 2014 issue of the Journal of Business Research:

Theufll S, Reutterer T, Hornik K (2014). “How to Derive Consensus Among Vari-
ous Marketing Journal Rankings?” Journal of Business Research, 67(5), 998-1006.
doi:10.1016/j.jbusres.2013.08.006.
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3.1 Introduction

Academics in the field of business research and related sub-disciplines encounter an
increasing number of journal rankings (see, e.g., Anne- Wil Harzing via the web site
http://www.harzing.com/jql.htm, for an up-to-date compilation). The majority
of these journal rankings are based on stated preferences (i.e., judgments among
academic peers; e.g., Fry, Walters, and Scheurmann 1985; Hult, Neese, and Bashaw
1997; Theoharakis and Hirst 2002; Schrader and Hennig-Thurau 2009), revealed
preferences (i.e., citation rates as a surrogate measure of publication impact; e.g.,
Bakir, Vitell, and Rose 2000; Baumgartner and Pieters 2003), or a combination
of the two (e.g., Azar and Brock 2008; Dubois and Reeb 2000; Zhou, Ma, and
Turban 2001). While the various ranking approaches are typically fairly consistent
in ranking the top tier journals in the investigated (sub-) discipline, they tend to
diverge substantially as one proceeds further down the ratings. Besides the kind of
data used to rank journals, the individual rankings for lower tier journals are also
affected by the type of institution (e.g., academic rigor vs. practitioner orientation,
type of methodological research orientation, etc.) and the geographical perspective
of different groups of academics (Pieters, Baumgartner, Vermunt, and Bijmolt 1999;
Tellis, Chandy, and Ackerman 1999; Theoharakis and Hirst 2002; Polonsky and
Whitelaw 2005). In a comparative study of eleven rankings Mingers and Harzing
(2007) found pairwise rank correlations between .32 and .79, which clearly suggests
that some degree of consensus exists, but by no means complete agreement.

Despite an ongoing controversial discussion on their specific merits and draw-
backs (see Polonsky 2008, for a summary), journal rankings have undoubtedly gained
momentum in the evaluation of individual scholars’ or academic units’ research qual-
ity. For instance, the UK’s higher education funding councils have adopted journal
rankings as their central metrics for evaluating the research quality of universi-
ties in their regularly undertaken Research Assessment Ezercise (RAE)(succeeded
by the Research Fxcellence Framework in 2014). The widespread acceptance of
the journal ranking published by the German Academic Association for Business
Research (VHB-JOURQUAL) for assessing the research performance of business
scholars in German-speaking countries is just one further example (Schrader and
Hennig-Thurau 2009).

As a natural consequence of the still increasing number of available journal rank-
ings and their growing importance to the academic community, some authors have
attempted to merge compilations of single rankings into meta-rankings for various
sub-disciplines such as international management (Dubois and Reeb 2000), manage-
ment information systems (Rainer and Miller 2005), and innovation management

and entrepreneurship (Franke and Schreier 2008). The approaches to aggregation
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range from simple rank averaging (e.g., in Dubois and Reeb 2000) to more sophis-
ticated statistical approaches such as the maximum likelihood procedure proposed
by Bancroft, Gopinath, Kovacs, and Rejto (1999). The potential benefits of such
meta-rankings are obvious: Firstly, they tend to balance out any biases in the single
journal rankings due to raters’ strategic answering behavior (often encountered with
survey-based rankings) or unsystematic errors such as volatilities in the impact fac-
tors (in the case of citation-based approaches). Secondly, they provide a better guide
to academics in globalized publication and job markets because they reflect an aggre-
gate perspective of the academic community on the quality of publications (Rainer
and Miller 2005; Franke and Schreier 2008).

However, two major challenges are inherent in aggregating journal ranking data
sets. At the time of this writing neither of which has been adequately resolved by the
existing approaches: (1) the different measurement scales used by the rankings and
(2) incomplete information (Franke and Schreier 2008; Mingers and Harzing 2007;
Schrader and Hennig-Thurau 2009). The first issue refers to the fact that individual
rankings make use of quite different scales, including binary (yes/no), ordinal (e.g.,
grades A+, A, B, etc.), and numeric scores (e.g., impact factors) to construct their
rankings. This issue makes the aggregation of rankings using conventional statistical
methods cumbersome. The second issue, which is related to the typically large
number of “missing observations” in ranking data sets, appears to be even more
problematic. Such missing information accrues because the various rankings cover
only subsets of journals, which usually coincide only partially. Thus, the sparsity of
data sets generally increases when including a broader set of rankings.

In the paper, we present a method for deriving meta-rankings of journals by
solving consensus optimization problems. The proposed methodology obtains con-
sensus rankings from paired comparisons among a set of individual rankings, can
accommodate mixed types of measurement scales and is relatively robust even when
used for sparse data. The next section addresses the challenges involved in suitably
aggregating rankings to derive a consensus ranking, outlines the cornerstones of the
proposed consensus ranking methodology, and provides pointers for the computa-
tional implemention of the related procedures. The paper proceeds by introducing
the journal ranking data that the study uses. The following section shows the re-
sults of applying the method, using a subset of marketing-related journals, which
the Harzing Journal Ranking Repository provided. The presentation and discussion
of our results show that even though the investigated rankings of marketing-related
journals are far from being identical, the proposed method can produce a consen-
sus ranking which shows a considerably high level of agreement with the individual
rankings. We also explore the sensitivity of the consensus ranking methodology to

variations in the number of rankings and/or journals, by studying stability and de-
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generation issues. In addition, we include a comparison of the consensus ranking
methodology to a naive ranking, derived through a simple averaging of ranks, which
demonstrates the benefits of the consensus ranking method. Finally, we conclude
with a discussion on the value of consensus rankings and by outlining some points

for future research.

3.2 Methodology

As a starting point of the problem of finding adequate meta-rankings of various
journal rankings, consider a total of B journal rankings R = {Ry,...,Rg} and n
journals J = {Ji,...,J,}. Table 3.1 shows an example ranking data set for B = 4
and n = 3 extracted from the Harzing Journal Ranking Repository for illustration

purposes.

Ry Ry R3 Ry
Ji A+ D 4 33.50
Jo A B 3
J3 A B 3 23.30

Table 3.1: Example ranking data set.

Three of the four rankings use an ordinal scale, with levels A4+, A, B, C, D
(rankings R; and Rs), and scores of four to one, respectively (ranking Rs; ordered
from highest to lowest as defined in the ranking description). Ranking R4 uses a
metric scale of 0 to 100, where a higher value indicates better journal quality.

In the days of the French revolution, Borda (1781) (who computed the sum
of individual rankings) and Condorcet (1785) (who used the majorities of paired
comparisons) proposed the first heuristic aggregation rules for constructing meta-
rankings; see for example Cook (2006) for a survey of consensus models of ordinal
preference rankings.

Leaving ranking R4 aside so as to avoid dealing with the missing observation
for J,, and applying the Borda aggregation rule, gives an aggregate evaluation that
all three journals are of the same quality, since the sum of ranks is 5 in all cases
(1+3+1for J; and 2+ 1+ 2 for Jy and J3).

As ordinal rankings are typically not Likert-type (interval) scaled and may have
different granularities, treating grades like A+, A as rank scores (i.e., 1, 2, etc.) is
quite problematic, and the above aggregation rule may lead to results which do not
necessarily reflect the quality assessments behind the “majority” of rankings. In the
example above, at least two rankings put J; above J; and J3 and only one ranks .J;
below the other two journals. However, the consensus shows indifference between

all three journals.
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An approach based on pairwise comparisons of journals appears to be more ade-
quate. Comparing journals within each applicable ranking by investigating whether
a ranking evaluates a journal J; as explicitly superior to another journal J; implies
the relationship J; > J;. The results of these paired comparisons for a particu-
lar journal ranking R, can be represented by an incidence matrix I, = [x;;(Rs)],
where the entries are the incidences x;;(Ry) = 1 if J; < J; or zero otherwise. This
encoding warrants that the existence of ties (i.e., equivalent preferences) is taken
into account. Using such an approach we do not necessarily need to interpret all
available data as metric (such as e.g., Mingers and Harzing 2007). Thus, the direct
processing of ordinal data that journal ranking publishing institutions commonly
provide becomes feasible. Furthermore, if journal J; is not included in ranking Ry,
then necessarily x;;(Rp) = x;i(Ry) = 0 for all j # 7. This way of encoding only
manifest “preference” allows us to deal with missing paired comparison data. The
incidence matrices corresponding with the rankings from Table 3.1 are shown in
Table 3.2.

I I I3 14
Jv S Sz Jo Jzs |1 Jo J3 |1 Jo T3
Ji |1 0 0 1 1 1 1 0 0 1 0 0
Jo | 1 1 1 0 1 1 1 1 1 0 0 0
J3z | 1 1 1 0 1 1 1 1 1 1 0 1

Table 3.2: Incidence matrices for rankings Ry, Rs, R3, and R4. A non-zero entry
denotes a < relationship between two journals.

The incidence matrix I; for ranking R; encodes the results of the following paired
comparison: J; < Jy, Ji > Jo, Ji > J3; neither J, nor J3 is ranked higher than
the other, that is Jy ~ J3 (where ~ denotes indifference between two journals).
In contrast, the incidences for Ry imply that J; > J; and J3 > J;. For Rj3 the
incidences are identical to the ones derived from R;. Is shows that J; > Js but no
other comparisons exist.

By encoding the paired comparisons in this way, we can employ the following
geometric idea: if one can measure the distance between rankings, then the “center”
of the given collection of rankings, which minimizes the total distance to all rankings,
is a natural and intuitively appealing choice for consensus (see Régnier 1965). One
can derive the distance between two rankings by counting the number of discordant
entries in the corresponding incidence matrices (i.e., the number of discordant paired

comparison results). Formally, the distance d(Ry, R;) between Ry and Ry is equal to
> I (Re) — i (Ri).
i,J

For example, the distance between R; and R, is 4. Following this conceptual
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understanding, the complete ranking R, which minimizes Y, d(Ry, R), is the con-
sensus ranking. In the above example, out of all possible R, the consensus ranking
is J; > Jy ~ J3. This ranking is equivalent to the encoded incidence matrices Iy
and I3. Here no better solution exists; the aggregate distance between R and all of
the other rankings involved is minimal.

Mathematically, complete rankings are “preference relations”, or weak orders,
defined as binary relations on a set of objects which are complete, reflexive and
transitive (see Fishburn 1972, for a complete reference). Note that such weak orders
permit ties (i.e., they do not enforce strict preference, or asymmetry). For larger
problems explicitely going through all possible incidence matrices in order to find the
one minimizing the aggregate distance may require rather too much effort. Following
Hornik and Meyer (2007), one can obtain the consensus incidence matrix by solving

the following binary program
Z Cz‘inj(R) = Imax
i#]

where ¢;; = Y7, (2w, x;j(Ry) —1) and the x;;(R) must be constrained such that R € C,
the set of consensus candidates. In the case of complete rankings, the constraints

defining C are:

riy € {0,1} i#j (binarity)
ryg = 1 (reflexivity)
rij i o= 1 i#£j (completeness)
rijt g —rie <1 i#j#k  (transitivity)

(note that the constraints in Hornik and Meyer 2007, are not for rankings). Any
state-of-the-art mixed integer programming solver can solve this combinatorial op-
timization problem known to be computationally complex (N P-complete, see Wak-
abayashi 1998). Mathematically speaking, the above binary program determines the
consensus of the (possibly incomplete) rankings Ry, ..., Rp as the complete ranking
R, which minimizes the total dissimilarity between itself and the original rankings:
B
> d(R, Ry) = min,
= ReC
For complete rankings, the above illustrated dissimilarity measure d is the “sym-
metric difference” distance, which Kemeny and Snell (1962) shows to be the “natu-
ral” distance between complete rankings, in the sense of uniquely satisfying a set of
basic axiomatic conditions. Note that, for a given collection of rankings, a unique

solution to the above binary optimization problem does not necessarily exist. How-
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Hasse Diagram of Ranking R

J1

J2 J3

Figure 3.1: Consensus journal ranking for the journals Ji, Jo, and Js.

ever, using branch and cut approaches, one can identify all consensus solutions and
use the commonalities in these solutions to obtain a robust understanding of the
underlying preference structure.

For the applications in the paper, we make use of the R system (version 3.6.2)
for statistical computing (R Core Team 2019a) to carry out all computations, and
generate the problem definition, based on the supplied data set, using functions and
methods available in the relations package (Hornik and Meyer 2010). Furthermore,
we use the R package Replex (Theufil and Bravo 2016), which provides an inter-
face to the commercial optimizer CPLEX (ILOG 2019), to solve all optimization
problems.

From the resulting consensus ranking R, we can compute a numerical rank for
each object, so-called preference scores or “generalized ranks”. Preference scores are
a linear transformation of the difference between lost and won paired comparisons
into the range from 1 to the number of objects n (see Regenwetter and Rykhlevskaia
2004, for details). For the application at hand, the unique solution to the corre-
sponding optimization problem is J; = 3 > J; ~ J3 = 2. Thus, I; and I3 indeed
represent the incidence matrix of R. Consensus rankings typically include many ties
between journals (i.e., groups of journals with equal scores) and thus so-called Hasse
diagrams can represent them nicely. Such diagrams denote a class of data repre-
sentation techniques, which are capable to visualize weak-ordered relations among
objects among objects (available as a plot method in the R package relations; cf.,
e.g., Freese 2004). Figure 3.1 shows such a Hasse diagram for the above consensus

ranking.
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3.3 Data set characteristics

To illustrate the performance of the consensus ranking approach, we apply the
above described methodology to a set of 12 renowned rankings of journals, re-
lated to the marketing discipline. They are all available from published sources
on the Web and included in the 34" edition of the Harzing Journal Quality List
(https://www.harzing.com). Table 3.3 provides a complete list of the journal
rankings used, showing publishing institution and the corresponding abbreviation.

Confronted with all 851 journals available in this data set, we asked domain experts

Abbreviation Institution

ABDCO08 Australian Business Deans Council

ABS09 Association of Business Schools

Ast08 Aston Business School

Bjm04 Business and Management 2001 RAE/UK

Cnrs08 Comite National de la Recherche Scientifique
Cra09 Cranfield University School of Management
EJLO6 Erasmus Research Institute of Management
Hkb05 Hong Kong Baptist University School of Business
Theo05 ALBA Journal Ranking

UQo7 University of Queensland

Vhb08 Verband der Hochschullehrer fuer Betriebswirtschaft
Wie01 WU Vienna University of Economics and Business

Table 3.3: Journal rankings and corresponding abbreviations.

to select those journals which they considered to be potential publication outlets
for marketing academics’ research. Following a similar procedure to that of Dubois
and Reeb (2000), the experts then had to assign each of the selected journals to
one of the following two categories: (1) A core list of marketing journals with an
inherent focus on general or specific topics in marketing. (2) An extended list in-
cluding journals from adjacent disciplines, but which also have marketing academics
as their target audience. The latter list includes journals focusing on disciplines
such as General Business Research, Information Science, Applied Psychology, and
Operations Research.

To obtain robust interpretable consensus solutions from the integer optimization
problem presented in the last section, we removed those journals which a significant
majority (three quarters) of the rankings does not rank. This selection procedure
resulted in a final sample of 33 journals in the core list and 62 journals in the
extended list (which includes the core list). Table 3.4 lists all of these journals and
their abbreviations; those in the core list are marked with a C.

Notice that the Journal of Business Research is in the core list because a sub-

stantial portion of that journal’s published articles are related to the marketing
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Figure 3.2: Consensus journal ranking for the core journal list.

discipline. The ranking data set of the journals in Table 3.4, including descriptions
and the rankings employed, is available in an online appendix, which we prepared

for the paper, at https://statmath.wu.ac.at/projects/jcr/.

3.4 Consensus ranking results

In this section we present, visualize, and discuss the results of the proposed method.
To illustrate the effect on the consensus ranking of adding journals from adjacent
disciplines to the core list of marketing journals, we perform separate analyses for
the core and the extended journal lists. Furthermore, we investigate the sensitivity
of the consensus solution to variations in the number of journals and rankings used,
study potential degeneration effects, and compare the similarity/dissimilarities of

the consensus to a naive meta-ranking as well as to individual rankings.

3.4.1 Core versus extended list

Figure 3.2 portrays the Hasse diagram of the consensus ranking for the core journal

list. The diagram clearly illustrates that, in the consensus across the 12 rankings,
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the marketing journals are arranged in several tiers. Fach tier indicates the same
degree of preference for the journals in that tier. For example, and indeed not very
surprisingly, the top-tier marketing journals are the Journal of Consumer Research
(JCR), the Journal of Marketing (JM), the Journal of Marketing Research (JMR),
and Marketing Science (MkS). The second tier of the consensus preference structure
also contains high-quality journals, such as the International Journal of Research in
Marketing (LJRM), the Journal of the Academy of Marketing Science (JAMS), the
Journal of Product Innovation Management (JPIM), and the Journal of Retailing
(JR). In this respect our findings of this research are consistent with the conclusions
of many other authors that a high degree of agreement among academics as to which
are the top journals in their discipline seems to exist (Polonsky and Whitelaw 2005;
Theoharakis and Hirst 2002).

Interestingly, this consensus preference structure suggests that the Journal of
Service Research (JSR) separates the abovementioned top-level marketing journals
from lower-level publication outlets. As one proceeds further down the ladder, more
specialized, niche marketing journals “join the crowd”. Quite obviously, the derived
consensus preference structure tends to distinguish between two broad types of mar-
keting journals: The first, in the top levels, with a relatively broad scope, covering
a wide range of topics, and the second, with more focused positioning, in the lower
levels of the ranking list.

Adding in journals from adjacent disciplines by using the extended journal list,
we observe a unique structure of consensus rankings for the top journals (see the
Hasse diagram shown in Figure 3.3). Compared to the core list of journals, the
Journal of Applied Psychology (JAP), Management Science (MS), MIS Quarterly
(MISQ), Operations Research (OR), and the Strategic Management Journal (SMJ)
join the top tier of marketing-related journals. The inclusion of JAP in this group
might be slightly surprising, but this journal is extremely highly ranked in the
journal quality rankings published by UK and Australian institutions. The same
marketing journals from the core list remain in the second tier. Now, however, some
journals with a relatively broad disciplinary scope but with a focus on quantitative
research methodologies (EJOR, DS) and information science (DSS, EJIS) join the
group. Also, the rankings deem the most prestigious practitioner-oriented transfer
journals in the management discipline (HBR, SMR, CMR) to be highly-esteemed
publication outlets for marketing academics.

The move of ML (which the UK- and continental-European-based journal rank-
ings involved in our study evaluate comparatively high) from a lower tier to the
second tier, and the inversion of JCP and JSR in the consensus ranking for the
extended list are two of the most noticeable differences in the preference structure

which emerges from extending the journal list in the paper’s proposed optimization
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Figure 3.3: Consensus journal ranking for the extended journal list.

approach. In fact, the consensus preference ranks for these three journals are in
roughly the same range, and are at a greater distance from the higher-ranked group
of journals (top tier) and those in lower levels. Again, as already noted for the
consensus ranking using the core journal list, the journals ML, JCP, and JSR are
responsible for dividing the complete group of marketing-related journals into these

two broader subsets.

3.4.2 Stability of consensus solutions and degeneration ef-

fects

The above discussion of the properties of the two consensus solutions depicted in
Figures 3.2 and 3.3 shows that the number of ties apparently increases substantially
when we add more journals to the core list of marketing journals. In the following,
we provide the results of a systematic sensitivity analysis of consensus ranking solu-
tions, involving the use of different (subsets of) journals and rankings. Of particular
interest are two questions: (1) Is the consensus solution robust to the inclusion of
different journals and rankings? (2) Does the consensus solution show a tendency
towards indifference (i.e., does the solution rank many journals equally) when one
adds further journals and/or rankings? While the first question addresses the sta-
bility of consensus solutions, the second investigates potential degeneration effects
in the derived solutions.

In order to investigate these two properties of consensus solutions, we conduct
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a bootstrap experiment. Our bootstrapping approach is defined as follows: we
randomly draw a given number ¢ journals from 7 and m rankings from R, where
qg € {10,20,...,60} and m € {2,3,...,12}, and compute the consensus ranking
for the corresponding collection. We then repeat this procedure 1,000 times for
each possible combination of ¢ and m. To measure the stability of the consensus
solutions we compute the Kendall rank correlation coefficient (Kendall’s 7) for the
result of each bootstrap sample against a suitably matched subset from the consensus

ranking, derived for all of the rankings and journals included in the extended list.
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Figure 3.4: Development of average rank correlations between the overall and
bootstrap sample consensus rankings.

Figure 3.4 plots the development of the average rank correlations between the

overall consensus ranking and those derived for the bootstrap samples, for increasing
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numbers of involved journals ¢ and rankings m, respectively. The plots clearly show
a much more marked dependence of the rank correlations on the number of involved
rankings than on the number of journals. While, for a given number of rankings, the
inclusion of additional journals does not affect the stability of the derived solution
much, the lower part of Figure 3.4 shows that, when the number of rankings m
increases, the rank correlation coefficient (almost linearly) converges to almost 1.
This result is not very surprising, because one would expect to have much more
difficulty finding an agreement between raters when considering an extra rater’s
opinion about a given set of journals, than in the case where a given set of raters
has to rank a new journal. Regressing the average rank correlations on the two
treatment factors ¢ and m of our bootstrap experiment, as well as their interactions
(the saturated model), confirms the visual diagnostic statistically. Using backward
selection, one can reduce the complexity of the model, so that m remains as the only
significant parameter, given a significance level of 0.05. The parameter estimate for
the number of rankings m is 0.02 and explains more than 92% of the variance of the
average rank correlation (r? = 0.92; with a p-value for the model of p < 0.01).

To investigate potential degeneration effects for the derived consensus rankings,
depending on variations across the number of available journals ¢ and rankings m, we
compute the average number of ties per involved journal, in the consensus ranking,
across all bootstrap replications. In contrast to the findings regarding the stability
of consensus rankings for subsets of available journals and rankings, this test shows
the opposite effect.

Figure 3.5 depicts results which show that employing more journals to construct
the consensus ranking increases the number of ties, regardless of the number of
rankings one uses. This outcome seems quite reasonable, because the more journal
quality rating opinions from different raters one must aggregate, the higher the
tendency towards indifference one would expect. One can also observe this property
of consensus solutions when comparing Figure 3.2 against Figure 3.3. Using the same
backward selection procedure as above, we find that only the number of journals
q is statistically significant in explaining the suggested degeneration measure. The
parameter estimate for ¢ is 0.13 and explains more than 87% of the variance of the

degeneration measure (r? = 0.88; p < 0.01).

3.4.3 Comparison of the consensus with naive and individ-

ual rankings

In view of the insights gained so far, an obvious question that arises is how dissimilar
the individual rankings are from the derived consensus rankings. Furthermore, how

the proposed consensus ranking methodology performs against simpler methods of
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Figure 3.5: Development of the average number of ties per journal over all boot-
strap replications.

aggregating individual rankings is of interest. In an attempt to investigate this
issue in more detail, we employ an averaging procedure similar to that used by
Dubois and Reeb (2000). To derive such a naive meta-ranking, we compute re-
scaled preference scores, for each individual ranking for each journal, and sum them.
Then, we transform the resulting meta-score into a rank order to represent the meta-
ranking.

To compare the relative performance of the ranking methods, we use the absolute
sum of Kemeny-Snell distances d derived for each of the available rankings (including
the consensus and the naive meta-ranking) vis-a-vis all other rankings, as well as the
corresponding average rank correlation coefficient (Kendall’s 7), as critera for the

representation quality of the meta-rankings. Table 3.5 shows them, together with
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the identifiers of the respective rankings, in descending order of d. The smallest

d Kendall’s 7
Consensus 12140 0.61
Naive 12904 0.59
ABDC08 13930 0.58
ABS09 14276 0.58

Ast08 14814 0.55
UuQo7 15324 0.55
Vhb08 15930 0.49
Cra09 17110 0.51
EJLO06 18410 0.45
Cnrs08 18992 0.45
Bjm04 19380 0.38
Wie01 20228 0.37
Hkb05 20444 0.38
Theo05 21442 0.42

Table 3.5: Absolute Kemeny-Snell distances and average rank correlations for each
ranking in comparison to all others.

distance is between the consensus ranking and all other rankings. Of course, this
finding is not surprising, because the consensus ranking by definition represents the
global minimum for the given optimization criterion (which is based on the Kemeny-
Snell distance). However, this ranking also has the highest average rank correlation,
which reflects its ability to serve as a superior meta-ranking. According to these
measures, the naive ranking is the second-closest to all other rankings. At first sight,
the ranking appears quite similar to the consensus ranking in terms of ordering (at
least for the top-ranked journals). For example, the seven most preferred journals
according to the consensus ranking are also the top seven journals according to the
naive meta-ranking.

However, a more detailed examination of the actual positions the journals occupy
in the aggregated rankings suggests that the consensus ranking method is a more
adequate meta-ranking representation than the naive method. For an illustration,
consider the top 30 journals according to the naive meta-ranking; Table 3.6 lists these
journals, along with their respective preference scores and corresponding positions
in the consensus solution. While the JM appears in the group of the highest ranked
journals in the consensus ranking, the JM is seventh according to the naive meta-
ranking, even though the journals’s naive meta-scores are relatively close to those
of SMJ and MISQ. The problem with this naive kind of aggregation becomes even
more apparent if one compares the performance of JM in the individual rankings
to that of journals ranked higher according to the naive meta-ranking. In such a
comparison, JM wins more pairwise comparisons against SMJ and MISQ than the

other way round. More substantial differences occur if one proceeds further down
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NR: scores CR: ranks
MKkS -18.96 1
JCR -17.50 1
JMR -16.63 1
SMJ -15.96 1
MISQ -15.72 1
JM -15.59 1
JAP -14.80 1
JAMS -12.48 2
RP -10.70 2
DS -10.41 2
JR -10.27 2
JPIM -9.41 2
IJRM -8.64 2
JBV -7.12 2
DSS -6.58 2
HBR -6.30 2
ML -6.13 2
EJIS -5.47 2
CMR -4.91 2
EJOR -4.35 2
SMR -4.19 2
JCP -2.71 3
SBE -0.92 5
JBR -0.89 5
JSR -0.64 4
JWB -0.27 5
1JEC -0.22 5
JORS -0.18 5
JOF -0.00 5
JIM 0.13 5

Table 3.6: Preference scores for the top 30 journals from the naive meta-ranking
(NR) compared to the consensus ranking (CR).

the ranking (for a more detailed inspection, see the online appendix of the paper at
https://statmath.wu.ac.at/projects/jcr/).

From a theoretical point of view the discussion about the performance of the
naive aggregation method goes back to the dispute between Borda (1781) and Con-
dorcet (1785) and has produced a variety of arguments indicating that this method
is often unsuccessful in representing the “true” majority decision. From a more
practical perspective, another argument exists which makes the properties of a con-
sensus ranking appealing: the permission of ties in the consensus ranking provides
an evident and intuitively comprehensible basis for deciding on the appropriate cut-
off points that discriminate between journals of several quality tiers (e.g., deciding
on a boundary between A- and B-journals). In the case of naive aggregation, this

task becomes cumbersome and is much more dependent on discretionary human
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Figure 3.6: Symmetric difference distance-based representation of the individual
rankings and the consensus ranking.

judgments.

To illustrate the consensus ranking’s goodness of representation quality for the
underlying individual rankings, Figure 3.6 portrays the pairwise distances between
the involved journal rankings, d, in a two-dimensional display. The configuration
results from using the multidimensional scaling (MDS) technique SMACOF (de
Leeuw and Mair 2009; Mair, de Leeuw, and Groenen 2019), which minimizes a
stress measure by means of majorization (the nonmetric stress for the solution is
0.121).

The consensus ranking CR clearly appears in the center of the two-dimensional
plot. In general, the further a rankings’s position is from the consensus, the lower
the level of agreement. Quite obviously, the individual rankings concentrated around
the consensus ranking share some potential to adequately reflect the aggregate per-
spective of the academic community in evaluating the quality of marketing journals,
while those rankings that are further away fail to do so. In this respect, distance
from the consensus ranking could also serve as an indication of the capability of an

individual ranking to fulfill the properties of an appropriate global meta-ranking.
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3.5 Conclusions

Journal rankings have become an important tool to assess the research quality of
publications. Academics show widespread consent that focusing on a single journal
ranking is risky and inadequate at reflecting the aggregate perspective of the aca-
demic community as to the quality of research publication outlets. Prior attempts
to merge compilations of single rankings into suitable meta-rankings struggle with
the different measurement scales used by the various rankings and the issue of in-
complete information. The paper presents an optimization-based approach, demon-
strating how one may derive consensus rankings from several individual ones. The
approach is capable of accounting for different scale levels (numeric, ordinal) and
partial intersections of the journal sets included in the aggregation.

We apply the proposed consensus ranking method to various subsets of marketing-
related journals included in the Harzing Journal Quality List. Even though the single
rankings are rather divergent for lower-ranked journals, the results show that one
can derive a consensus ranking with a considerably high level of agreements with the
original set of single rankings. Notwithstanding these results, one must be careful in
drawing conclusions from such an analysis, because the results depend on the jour-
nal rankings one uses. The sensitivity analysis clearly shows that the the number
of individual rankings affects the stability of the derived consensus meta-ranking,
whereas the solution tends to degenerate as the size of the journal list explodes.

However, the application to marketing-related journals also demonstrates the
superiority of the consensus ranking over a simpler approach involving rank averag-
ing. Compared to previous rather complicated and extensive efforts to adequately
aggregate single rankings into meta-rankings, our approach is easily implementable
by using ready-to-use computational resources and applicable to a wide range of
similar ranking aggregation tasks. Instead of requiring sometimes incomprehensible
interventions by the analyst, the proposed procedure relies on a formal solution of
the underlying optimization problem and thus produces an optimum level of agree-
ment over the derived meta-ranking, among the set of single rankings. Thus, our
findings should encourage researchers and, in particular, research assessment insti-
tutions to adopt a route that allows them to objectify their ranking efforts. This
approach could contribute towards avoiding much of the sometimes very emotional

and controversial discussion among academics about single domain-specific rankings.
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Chapter 4

A tm Plug-In for Distributed Text
Mining in R

The paper was published in the November 2012 issue of the Journal of Statistical
Software:

Theufll S, Feinerer I, Hornik K (2012). “A tm Plug-In for Distributed Text Mining
in R” Journal of Statistical Software, 51(5), 1-31. doi:10.18637/jss.v051.105.
URL http://www. jstatsoft.org/v51/i05.
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4.1 Introduction

In the information age statisticians are confronted with an ever increasing amount of
data stored electronically (Gantz, Chute, Manfrediz, Minton, Reinsel, Schlichting,
and Toncheva 2008). This is in particular true for the most natural form of storing
information, namely text. Many interesting research questions can be answered via
statistical analysis or modeling of huge text corpora. For example news agencies
like Reuters provide access to databases of news text documents annotated with
rich semantic metadata. These can be employed, e.g., to check daily sentiment in
newspaper articles in order to measure interactions between the media and the stock
market (Tetlock 2007). E-print repositories such as the arXiv (http://arXiv.org/)
or the CiteSeerX project (http://citeseerx.ist.psu.edu/) allow for harvesting
metadata and open access to the corresponding content (i.e., download of full text
articles). This information can be used for bibliometric and scientometric analyses,
e.g., to find patterns like the formation or development of author or topic (Blei
and Lafferty 2007; Griffiths and Steyvers 2004) networks. Furthermore, access to
documents written in several centuries, such as the books made available in project
Gutenberg (http://www.gutenberg.org/), allows one to study how linguistic pat-
terns develop over time. In a publication in Science, Michel et al. (2011) use 15%
of the digitized Google books content (4% of all books ever printed) to study the
diffusion of regular English verbs and to probe the impact of censorship on a per-
son’s cultural influence over time. This led to the advent of a research field called
Culturomics, the application of high-throughput data collection and analysis to the
study of human culture.

R (R Core Team 2019a) has gained explicit text mining support via the tm pack-
age (Feinerer 2018) originally presented in Feinerer et al. (2008). This infrastructure
package provides sophisticated methods for document handling, transformations,
filters, and data export (such as constructing document-term matrices). With a fo-
cus on extensibility based on generic functions and object-oriented inheritance, tm
makes it possible to apply a multitude of existing methods in the R world to text
data structures as well.

However, the endeavor to analyze huge text corpora using tm is the source of two
challenges: (1) the amount of data to be processed in a single machine is usually
limited by the available main memory (i.e., RAM), and (2) an increase of the
amount of data to be analyzed leads to higher demand for efficient procedures for
calculating valuable results. Thus, it is highly imperative to find a solution which
overcomes the memory limitation (e.g., by splitting the data into several pieces)
and to markedly reduce the runtime by distributing the workload across available

computing resources (such as CPU cores or virtual machine instances). Typically,
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we consider distributed memory platforms like clusters of workstations for such
applications since they are scalable in terms of CPUs and memory (disk space and
RAM) employed. Furthermore, many different programming models and libraries
like the message passing interface (MPI) facilitate working with this kind of high
performance computing systems. Many of those libraries can directly be employed
in R (see Schmidberger et al. 2009, for further references). Still, one open question
remains: is there an efficient way to handle large corpora using R?

In the paper we show that by using the MapReduce distributed programming
model (Dean and Ghemawat 2008), and a corresponding implementation called
Hadoop (The Apache Software Foundation 2019), we are able to transparently dis-
tribute the documents on one or several storage entities, apply functions on the
subsetted corpus possibly in parallel, and gather results on a cluster of workstations
or other (distributed) computing platforms. Typical tasks in text mining like prepro-
cessing can easily be run as parallel distributed tasks without knowing details about
the underlying infrastructure. The corresponding extensions to make tm recognize
such a distributed programming model are encapsulated in a separate plug-in pack-
age called tm.plugin.dc (Theufl and Feinerer 2015) offering a seamless integration
building on functionality provided by interfaces to MapReduce environments.

The remainder of the paper is organized as follows. In Section 4.2 we review
the typical workflow using the tm package and indicate challenges which need to be
tackled when working with large data sets. Section 4.3 summarizes the key concepts
of the MapReduce programming model and how it is usually applied in a distributed
computing context. The design and implementation of the tm.plugin.dc package is
discussed in Section 4.4. The package provides tm with supplemental classes and
methods in order to benefit from the MapReduce distributed programming model.
Additionally, we show how distributed storage can be utilized to facilitate parallel
processing of corpora. In Section 4.5 we present the results of a benchmarking ex-
periment of typical tasks in text mining showing the actual impact on performance
in terms of execution time. Section 4.6 gives an application in culturomics, employ-
ing a corpus of several gigabytes of articles from a prominent newspaper to analyze
how word usage has changed over 20 years. Section 4.7 provides computational
details. Finally we conclude the paper in Section 4.8, pointing out directions for

future research.

4.2 The tm package

The text mining infrastructure package tm has now become the de facto standard
for running text mining applications in R since it provides a transparent way to

prepare textual data for statistical analysis and offers easy extensibility via well
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documented interfaces. In this section we summarize the design (data structures),
main features, and important interfaces for extending tm. Furthermore, we identify

challenges to the standard workflow.

4.2.1 Data structures and process flow

In tm the main data structure is a corpus, an entity similar to a database holding
text documents in a generic way. It can be seen as a container to store a collection of
text documents where additional metadata is provided on both the corpus (e.g., date
of creation, creator, etc.) and document level (e.g., annotations, authors, language,
etc.). So-called sources are used to abstract document acquisitions, e.g., files from a
hard disk, over the Internet, or by other connection mechanisms. A separate reader
function specifies how to actually parse each item delivered by the source (like XML
or HTML documents). The latter eases the usage of heterogeneous text formats.
For example assume we have a collection of text documents stored in a directory on
a local hard disk. We can simply use a predefined source like DirSource() which
delivers its content. For some news stories from Reuters (see Section 4.5.1 for a
detailed description) in XML format stored in the directory Data/reuters we can

construct the corpus in R via

R> library( "tm" )
R> corpus <- Corpus( DirSource("Data/reuters"),
+ list(reader = readReut21578XML) )

The function readReut21578XML () extracts the actual text content and meta
information from the XML document.

Alongside the data infrastructure for acquiring text documents the framework
provides tools and algorithms to efficiently work with the documents. Several meth-
ods have been implemented to abstract the process of document manipulation. For
illustration purposes the tm package includes a sample data set containing 50 doc-
uments of the Reuters corpus on the topic “Acquisitions” (acq). We will use it for
demonstration (in particular the sixth document) as it provides easy reproducibility.

It can be loaded via

R> data( "acq" )
R> inspect( acql[ 6 11 )

<<PlainTextDocument>>
Metadata: 15
Content: chars: 381
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A group of affiliated New York
investment firms said they lowered their stake in Cyclops Corp
to 260,500 shares, or 6.4 pct of the total outstanding common
stock, from 370,500 shares, or 9.2 pct.

In a filing with the Securities and Exchange Commission,
the group, led by Mutual Shares Corp, said it sold 110,000
Cyclops common shares on Feb 17 and 19 for 10.0 mln dlrs.

Reuter

Typical preprocessing tasks (i.e., data preparation and cleaning) like whitespace
removal, stemming or stop word deletion can be applied to individual documents
contained in the corpus without difficulty.

Stemming denotes the process of deleting word suffixes to retrieve their radicals,
i.e., a word stem (also known as root in linguistics). It typically reduces the com-
plexity without any severe loss of information. One of the best known stemming
algorithm goes back to Porter (1980) describing an algorithm that removes com-
mon morphological and inflectional endings from English words. The tm function

stemDocument () provides an interface to the Porter stemming algorithm.

R> stemmed <- stemDocument( acql[[6]] )

R> inspect( stemmed )

<<PlainTextDocument>>
Metadata: 15
Content: chars: 350

A group of affili New York
invest firm said they lower their stake in Cyclop Corp
to 260,500 shares, or 6.4 pct of the total outstand common
stock, from 370,500 shares, or 9.2 pct.

In a file with the Secur and Exchang Commission,
the group, led by Mutual Share Corp, said it sold 110,000
Cyclop common share on Feb 17 and 19 for 10.0 mln dlrs.

Reuter

Stop words are words that are so common in a language that their information
value is almost zero, i.e., they do not carry significant information (van Rijsbergen
1979). Therefore it is a common procedure to remove such stop words. Similarly
to stemming, this functionality is already provided by tm via the removeWords ()
function. Removal of whitespace (blanks, tabulators, etc.) and removal of punc-
tuation marks (dot, comma, etc.) can be done via the stripWhitespace() and

removePunctuation() functions.
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We denote functions modifying the content of individual text documents in a
corpus as transformations. Another important concept is filtering which basically
involves applying predicate functions on collections to extract patterns of interest.
See Feinerer et al. (2008) for more information about transformations and filtering.

Transformations like whitespace removal, stemming or stop word deletion can
easily be applied to all documents contained in a corpus using the tm_map () function.
The following single call suffices to remove all English stop words from the text

corpus acgq.

R> removed <- tm_map( acq, removeWords, stopwords("english") )

R> inspect( removed[[ 6 ]] )

<<PlainTextDocument>>
Metadata: 15
Content: chars: 327

A group affiliated New York
investment firms said lowered stake Cyclops Corp
260,500 shares, 6.4 pct total outstanding common
stock, 370,500 shares, 9.2 pct.
In filing Securities Exchange Commission,
group, led Mutual Shares Corp, said sold 110,000
Cyclops common shares Feb 17 19 10.0 mln dlrs.

Reuter

A very common approach in text mining is to break texts into smaller pieces
called tokens, and use a suitably normalized subset of these as the terms representing
the text for subsequent computations (see e.g., Section 2.2 in Manning, Raghavan,
and Schiitze 2008). Such terms are not necessarily words in the sense of Miller
(1995), which are strings made from letters in an alphabet.

The package tm supports the construction of a so-called document-term ma-
triz (DTM) holding frequencies of distinct terms, i.e., the term frequency (TF) for
each document. When using tm DTMs are stored using a simple sparse repre-
sentation implemented in package slam (Hornik et al. 2019). DTM construction
typically involves preprocessing and counting TFs for each document. An appropri-
ate method to the generic function DocumentTermMatrix () is used to export such
a matrix from a given corpus (the first argument) applying certain preprocessing
steps specified via a list of control options (the second argument) that should be

executed before counting TFs in each document.
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R> dtm <- DocumentTermMatrix( acq, list(removePunctuation = TRUE,
+ stemming = TRUE) )
R> dtm

<<DocumentTermMatrix (documents: 50, terms: 1395)>>
Non-/sparse entries: 3544/66206

Sparsity : 95%

Maximal term length: 16

Weighting : term frequency (tf)

Note that the order of transformations to be applied on the corpus can play an
important role in terms of run time and actual results. Here we first remove punc-
tuation marks and stem the document before counting individual terms.

The obtained DTMs can be manipulated using the functionality provided by
package slam, in particular using functions such as col_sums(), row_means(), or
rollup() for efficient aggregation. For example we can find the terms which occur

most often in the corpus as follows.

R> library( "slam" )
R> head( sort(col_sums(dtm), decreasing = TRUE) )

the said and dlrs for share
414 186 173 100 91 86

4.2.2 Interfaces

Conceptually we want a corpus to support a set of intuitive operations, like access-
ing each document in a direct way, displaying and pretty printing the corpus and
each individual document, obtaining information about basic properties (such as
the number of documents in the corpus), or applying some operation on a range of
documents. These requirements are formalized via a set of interfaces which must be

implemented by a concrete corpus class:

Subset The [[ operator must be implemented so that individual documents can

be extracted from a corpus.

Display The print and summary methods must convert documents to a format
so that R can display them. Additional meta information can be shown via

summary.

Length The length method must return the numbers of documents in the corpus.
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Iteration The tm_map() function which can be conceptually seen as an lapply ()
has to implement functionality to iterate over a range of documents and ap-

plying a given function.

Export For subsequent text analysis it is crucial to define export mechanisms like
document-term matrix construction. This allows for using tools other than

those provided with tm.

The implementation in R via the tm package was mainly driven by these concep-
tual requirements and interface definitions, and is characterized by a virtual corpus
class which defines the above set of pre-defined interfaces. Derived corpus classes
must implement these in order to support the full range of desired properties. The
main advantage of using a virtual class with well-defined interfaces is that instan-
tiated subclasses work with any function aware of the abstract interface definitions
but the underlying implementation and representation of internal data structures is

completely abstracted.

4.2.3 Challenges

We identified two challenges when using the tm framework. Firstly, big data sets,
i.e., data sets which do not fit into main memory like corpora with several millions of
documents, cannot easily be constructed and thus processed with the basic facilities
provided by tm. Secondly, iterations over several millions of documents are rather
time consuming. For example performing typical preprocessing steps like stemming
or stop word removal on raw text documents can become quite expensive in terms
of computing time when the corpus is very large.

Fortunately, operations such as applying transformations and filters are highly
amenable to parallelization by construction, as they can separately be applied to each
document without side effects. Furthermore, as described in Section 4.2.1 sources
are used to abstract document acquisitions. Although we use different sophisticated
mechanisms for corpus construction like using database back ends it is conceptually
appealing and possible to allocate the storage in a distributed manner since com-
munication is usually not limited by a single bottleneck. Ideally, even subsets of the
original data set (the corpus) are stored physically distributed on several machines
(e.g., in a cluster of workstations). This will not only allow us to increase storage
space for data (scaling with the number of participating machines) but also reduce
communication costs for parallel computation since only those documents stored
locally on a given machine are to be processed on the respective system. Thus, we
can use these two approaches (parallel processing, distributing data) to tackle the

challenges indicated above.
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Both requirements are often fulfilled by well-established distributed programming
models such as MapReduce (Dean and Ghemawat 2008). Typically, MapReduce is
used in combination with another important building block: the distributed file
system (DFS, Ghemawat et al. 2003). This approach readily enables and takes
care of data distribution and suitable parallel processing of parts of the data in a
functional programming style (Ladmmel 2007). Given that the MapReduce model fits
to the workflow presented above and corresponding open source software libraries
are available, it seems an excellent choice when we need to process large corpora in

text mining scenarios.

4.3 Distributed computing using MapReduce

In this section we describe the programming model and the corresponding imple-
mentation (i.e., the underlying software framework) we employed to achieve parallel
text mining in a distributed context. MapReduce is a software framework/library
originally proposed by Google for large scale processing of data sets. It consists of
two important primitives related to concepts from functional programming, namely
a map function and a reduce function. Basically, the map function processes a given
set of input data (e.g., collections of text files, log files, web sites, etc.) to generate
a set of intermediate data which may/is to be aggregated by the reduce function.
Note however, that as pointed out in Lammel (2007) map and reduce operations
in the MapReduce programming model do not necessarily follow the definition from
functional programming. It rather aims to support computation (i.e., map and
reduction operations) on large data sets on clusters of workstations in a distributed
manner. Provided each mapping operation is independent of the others, all maps
can be performed in parallel. Indeed, we can express many tasks in text mining in

this model, e.g., preprocessing tasks like stemming.

4.3.1 Programming model

Usually, in this model we consider a set of workstations (nodes) connected by a
communication network. Given a set of input data we want to employ these nodes
for parallel processing of suitable subsets of the input. Data locality is exploited by
distributing the data in such a way that parts of the data can efficiently be pro-
cessed locally on the nodes by individual map and aggregated by reduce operations.

Figure 4.1 shows this conceptual flow of map/reduce operations on a given data set.

The map function usually transforms its input data into a list of key/value pairs.

The MapReduce library takes care of reading the corresponding subset of the data
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Figure 4.1: Conceptual flow of data processing when using map and reduce op-
erations. Each node represents a workstation where operations (white boxes) are
applied to local parts of data (grey boxes).

located on each node (local data) from disk and handling the results retrieved from
the map operation (intermediate data). Basically we have three choices to handle
intermediate data. First, we can write the processed data to disk. Second, we can
apply another map function to the intermediate data and/or third, we can apply the
reduce function which takes the resulting list of key/value pairs and typically aggre-
gates this list based on the keys. This aggregation results in a single key/value pair
for each key. All of these operations can be parallelized over the nodes. Typically,
every node applies the same map function (the mapper) on its local set of data and
some of these nodes aggregate different partial result sets (intermediate data) based
on the same reduce function (the reducer). However, whereas a mapper typically
operates on a single data subset, a reducer may aggregate several partial result sets.
All of these operations can be chained.

The major advantage of this so-called data parallelism is that if implemented
well this approach theoretically scales over any number of nodes. Furthermore,
assigning more than one map task to each node advances load balancing since the
workload generated by all MapReduce operations is not only distributed across
multiple computers or a computer cluster but also as data subsets (which typically
correspond to the total number of map operations) which can be easily relocated to
other nodes by the MapReduce library to avoid overload.

To apply the MapReduce programming model in a distributed text mining con-

text we rely on the open source implementation Hadoop.
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4.3.2 Distributed file system

Implementations of MapReduce like the open source software library Hadoop (The
Apache Software Foundation 2019) are typically coupled to a distributed file system
(DFS) which assists in data distribution and enables fault tolerance. E.g., Google
offers the Google File System (GFS) to store data as well as intermediate and
final results in a distributed manner. Such a file system assists in exploiting data
locality which makes parallel execution of tasks faster as additional communication
overhead is avoided. Only pieces of data local to each node are considered for
processing which improves overall I/O bandwidth. Furthermore, data is replicated
on multiple nodes so that failures like crashed nodes or network routing problems
will not affect computation. This enables automatic recovery of data in case of
system failures. Such a fault tolerant environment is well suited for large clusters
of commodity machines—the prime platform for many scientific institutions and
companies because of its cost-effectiveness (Barroso, Dean, and Holzle 2003).
Similar to GFS the Hadoop Distributed File System (HDFS, Borthakur 2010)
provides such a scalable and fault tolerant architecture. Copying data to the HDF'S
implies that the given input data is split into parts (physical blocks or separate
files). These parts—often called chunks—are distributed over the system and repli-
cated over a predefined number of machines. Files are organized hierarchically in

directories and identified by path names.

4.3.3 Software packages

In addition to the MapReduce implementation for distributed manipulation of large
data sets and the HDFS, the Hadoop framework also includes a utility called
Hadoop Streaming implementing a simple interface to Hadoop allowing for the
usage of MapReduce with any executable or script as the mapper and the reducer.
It transforms input data stored on the HDF'S and aggregates the results based on
the provided scripts.

Several R packages offer functionality based on the MapReduce programming
model and/or interface Hadoop (Streaming). Package HadoopStreaming (Rosen-
berg 2010) assists in writing proper MapReduce scripts in order to operate on data
in a streaming fashion. Similar functionality is offered by the package mapRe-
duce (Brown 2011) closely following the framework and nomenclature proposed by
Dean and Ghemawat (2008). However, neither package provides facilities for di-
rectly interacting with MapReduce libraries. Package hive (Theufll and Feinerer
2019) allows the creation of executable R scripts (Rscript, R Core Team 2019a)
from provided R functions and automatically run them on a Hadoop cluster via

Hadoop Streaming. This approach offers high level access from within R to the
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Hadoop MapReduce and file system functionality. See Appendix D for installing
and configuring Hadoop and examples on how to use hive.

The RHadoop project offers packages rmr2 (Revolution Analytics 2015) and
rhdfs (Revolution Analytics 2013) among others. These packages provide a Hadoop
Streaming connector for running MapReduce tasks in R and functions to access
the HDFS. However, they have not been made available in one of the standard R

repositories thus far.

4.4 Design and implementation

The bridge between MapReduce libraries and the tm infrastructure is characterized
by two main design concepts: distributed storage and parallel computation. The one
side of the bridge is designed in such a way that it provides a corpus implementation
of the abstract interfaces as outlined in Section 4.2.2. Its classes and methods
can transparently be used in combination with the existing tm infrastructure. Via
the other side of the bridge we can access and modify data stored on the Hadoop
Distributed File System (HDFS). Data is processed efficiently in parallel using the
Hadoop Streaming utility.

In this section we discuss the design of the package tm.plugin.dc (Theufil and
Feinerer 2015) building on functionality provided by interfaces to tm and to MapRe-
duce environments. We show that by selecting appropriate building blocks we are not
only able to employ the tools provided by Hadoop but also any abstract registered
(distributed) storage and parallel computing environment. Thus, the implementa-
tion realized in tm.plugin.dc is driven by Distributed Storage and Lists as provided
with package DSL (TheuBl and Feinerer 2020) since it implements both concepts
and meets the interface requirements. We use this approach and introduce a new
distributed corpus class along with corresponding methods which allow us to analyze
large corpora seamlessly without knowing how to use the underlying components of

MapReduce or other libraries.

4.4.1 Distributed storage

Typically, a corpus in tm is built by constructing an appropriate data structure
holding a sequence of single text documents enriched with metadata which further
describes textual content and thus offers valuable insights into the document struc-
ture. The content for each text document is acquired via source access and copied
into main memory. When applied to large corpora computations may slow down
significantly due to high RAM usage as there is a practical limit on the maximum

corpus size (by the physical memory size minus overhead by the operating system
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and other applications).

As pointed out in Section 4.2.3 we can use MapReduce libraries like Hadoop to
tackle the challenges which come upon us when dealing with large data sets. Thus, in
order to use Hadoop Streaming from the Hadoop runtime environment, we need the
corresponding data to be written to the HDFS. We do this in form of key/value pairs
generated for each element in the corpus (i.e., for the individual text documents)
as required by the MapReduce paradigm. More generally, a corpus using such a
(distributed) storage backend can easily be described as a list of key/value pairs
written to files with the document ID as the key and the corresponding content
(a serialized R object) as the value, respectively. We refer to these collections of
key /value pairs contained in files as chunks. In R one must only store unique pointers
identifying the individual chunks containing the serialized documents.

Both concepts, distributed storage and lists, are implemented in package DSL.
The S3 class ‘DStorage’ defines a virtual storage where files are kept on a file
system which possibly spans over several workstations. Typically, data is distributed
automatically among these nodes when using such a file system. Objects of class
‘DStorage’ “know” how to use the corresponding file system by supplied accessor

and modifier methods. The following file system types are supported:

"LFS": the local file system. This type uses functions and methods from the pack-
ages base and utils delivered with the R base distribution to handle files.

"HDFS": the Hadoop Distributed File System. Functions and methods from the
hive package are used to interact with the HDFS.

This abstract storage class is mainly used for storing key /value pairs as described
above. For efficiency reasons several key/value pairs are put line by line into files
of a certain maximum size. Indeed, frameworks like Hadoop benefit from such a
setup (see Section Data Organization in Borthakur 2010). Moreover, package DSL
allows one to store a set of so-called revisions for each operation on objects stored in
‘DStorage’ This enables extremely fast switching between various snapshots of the
same objects (like a history with rollback feature known from database systems).
Using the term “revision” is mainly motivated by the Subversion (SVN, Pilato,
Collins-Sussman, and Fitzpatrick 2009) revision concept.

In order to construct a distributed storage object in R the DStorage () function

from package DSL is used. This constructor takes the following arguments:

type: the file system type,

base_dir: the directory under which chunks containing key/value pairs are to be

stored,
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chunksize: the maximal size of a single chunk,

keep: specifying whether to keep data of all stages in a processing chain as revisions.

In the following example we instantiate a distributed storage of type "HDFS"
using the system-wide or a user-defined temporary directory as the base directory
(base_dir) and a chunk size of 10MB.

R> library("DSL")

R> ds <- DStorage( type = "HDFS", base_dir = tempdir(),
+ chunksize = 10 * 102472 )

R> ds

DStorage.

- Type: HDFS

- Base directory on storage: /tmp/RtmpzU8pK1l
- Current chunk size [bytes]: 10485760

Distributed lists are defined by the S3 class ‘DList’. Objects of this class be-
have similar to standard R lists but use a distributed storage of class ‘DStorage’ to
store their elements. Distributed lists can easily be constructed using the function
DList () or be obtained via coercion using the generic function as.DList (). Avail-
able methods support coercion of R lists and character vectors representing paths

to data repositories as well as coercion of ‘DList’ objects to lists.

R> dl1 <- DList( letters = letters, numbers = 0:9 )
R> dil

A DList with 2 elements

R> 1 <- as.list( letters )

R> names (1) <- LETTERS

R> dl1 <- as.DList(1)

R> identical( as.list(dl), 1 )

[1] TRUE

The above example uses the default storage type, namely "LFS" for storing list
elements. In order to set a user defined storage the DStorage argument to the

DList () constructor is used.

R> dl <- DList( letters = letters, numbers = 0:9, DStorage = ds )
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Furthermore, we can replace the storage assigned to a distributed list. The data is

automatically copied to the new storage.

R> dl <- DList( letters = letters, numbers = 0:9 )
R> DL_storage(dl)

DStorage.

- Type: LFS

- Base directory on storage: /tmp/RtmpzU8pK1l
- Current chunk size [bytes]: 10485760

R> DL_storage(dl) <- ds
R> DL_storage(dl)

DStorage.

- Type: HDFS

- Base directory on storage: /tmp/RtmpzU8pK1l
- Current chunk size [bytes]: 10485760

4.4.2 Parallel computation

Once we have documents stored on the distributed storage as distributed lists, we
want to perform computations on the data pieces local to each processing node. Such
computations are highly parallel and scale with the number of available workstations.
A recurrent function when computing on lists in R is 1apply () and variants thereof.
Conceptually, this is similar to a map function from functional programming where
a given (R) function is applied to each element of a vector (or in this case a list).
Other typical operations on distributed data are collective operations. Functions of
this type commonly gather or aggregate data based on a given set of instructions.
In functional programming the latter is called reduce but possible variations also
exists in other areas (e.g., in the MPI standard, see Message Passing Interface Forum
1994, 2003).

Package DSL offers the following high-level collective and apply-style functions:

DGather (): this collective operation is inspired by MPI_GATHER defined in Mes-
sage Passing Interface Forum (2003). However, instead of collecting results
from processes running in parallel, DGather () collects the contents of chunks
holding the elements of a ‘DList’ By default a named list of length the num-
ber of chunks is to be returned. Its elements are character vectors of values
from key /value pairs stored in chunks read line by line from the corresponding

chunk. Alternatively, DGather () can be used to retrieve the keys only.
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DLapply(): is an (1)apply-type function which is used to iteratively apply a function
to a set of input values. In case of DLapply() input values are elements of
‘DList’ objects (i.e., the value of a key/value pair). A distributed list of the

same length is to be returned.

DMap(): is the more general variant of DLapply () above where both the key and
the value from a key/value pair are taken as input. Thus, keys can also be
modified. Moreover, DMap () may return an object whose length differs to the
original as opposed to DLapply ().

DReduce(): this collective operation takes a set of (intermediate) key/value pairs
and combines values with the same associated key using a given directive (the

reduce function). By default values are concatenated using the c() operator.

Parallel execution of the above operations on a ‘DList’ object is ensured by the
parallel environment which is associated with the assigned distributed storage. In
order to take advantage of the MapReduce parallel computing paradigm for opera-
tions on ‘DList’ the HDF'S storage type must be used which has Hadoop Streaming
associated. Package DSL depends on hive for rewriting map functions on-the-fly to
Hadoop map functions by creating executable R scripts which are sent to the Hadoop
environment via the Hadoop Streaming utility. In detail, every node is assigned a
particular chunk located in the HDFS. As indicated in Section 4.3.2 this approach
allows for low communication overhead as each node typically accesses and com-
putes only on the data physically located at its position. Each list element located
in the corresponding chunk gets unserialized and the map function is applied. The
(again serialized) results are stored on the HDF'S and the pointers in the ‘DList’
are updated to match the corresponding chunks. This approach allows us to use not
only single (multi-core) systems but also highly scalable clusters of workstations.

For LFS-based storage types the associated parallel environment is multicore as
provided by the parallel package (R Core Team 2019a) available as part of R since
version 2.14.0 (see the package vignette for details). This simpler technology can
be used without extra configuration on most systems to store and process corpora
not fitting into main memory. However, it does not scale beyond the boundaries of

a single (possibly multi-core) system.

4.4.3 The distributed corpus class

Since tm corpora are basically lists of objects of class ‘TextDocument’ enriched with
metadata it seems only natural to encapsulate this storage abstraction in distributed

lists as provided with package DSL. Appropriate methods for ‘DList’ objects ensure
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that the local files delivered by a source instance are transparently loaded into the
distributed storage as a list of key/value pairs.

We call a corpus based on objects of class ‘DList’ a distributed corpus. This new
type of corpus implemented in package tm.plugin.dc reduces the main memory con-
sumption drastically since even for millions of documents we keep only the pointers
to the (serialized) documents in memory, which occupy just a few megabytes. Tech-
nically, we implemented the class ‘DCorpus’ which inherits from a standard corpus
on the one hand and from class ‘DList’ on the other hand. Building the bridge in this
way allows us to utilize such a corpus instance in all use cases of a standard corpus
by directly employing corresponding high-level collective and apply-style functions
like DGather (), DMap () and DReduce (). Since the tm infrastructure is designed in a
very modular and generic way as described in Section 4.2.2, we only needed to write
methods for a few generic functions in order to abstract the underlying distributed
storage.

Transformations triggered via tm_map() are applied to elements of ‘DCorpus’
objects simply by using DLapply () from DSL instead of lapply() defined in the
default method in tm. The construction of document-term matrices (DTMs) is a

combination of map and reduce steps.
R> intermed <- DReduce(DMap(x, map), reduce)

In the map step preprocessing as described above is applied to the given corpus x
and the remaining terms are counted and stored so that a term represents the key
and the value is a list of document ID and term frequency. The reduce step then
aggregates (concatenates), for each term, ID and the corresponding term frequency.
The result delivered with DReduce () is stored as intermediate data (intermed). All
of these steps may run in parallel. Eventually, based on intermed the DTM is
constructed from the individual term vectors read from the distributed storage via
DGather () and combined on the master node.

This implementation allows us to seamlessly use ‘DCorpus’ objects in all scenarios
supported by the tm package and beyond that to hold large amount of textual data

as distributed corpora in R.

4.4.4 Using package tm.plugin.dc

The package tm.plugin.dc has to be attached in order to make use of the class

‘DCorpus’.
R> library( "tm.plugin.dc" )

In order to take advantage of the MapReduce parallel computing paradigm for
operations on ‘DCorpus’ we need to specify to use the HDF'S storage type which has
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Hadoop Streaming associated. This requires a working Hadoop installation (e.g., on
a cluster of workstations) and package hive installed which is loaded automatically
in the background. hive offers an interface to file system accessors and high-level
access to Hadoop Streaming. The function DStorage () is used to prepare the cor-

responding storage to be used for text mining tasks.
R> storage <- DStorage( type = "HDFS", base_dir = "/tmp/dc" )

Similar to the standard process flow presented in Section 4.2.1 the data has to

be retrieved from the specified source via

R> dc <- DCorpus( DirSource("Data/reuters"),
+ list(reader = readReut21578XML), storage )

or we can coerce class ‘Corpus’ to ‘DCorpus’ by using the generic as.DCorpus().

R> data( "acq" )
R> dc <- as.DCorpus( acq, storage )
R> dc

<<DCorpus>>
Metadata: corpus specific: 0, document level (indexed): O

Content: documents: 50

Both functions take a pre-defined storage object as argument specifying that data
(either delivered by the source or contained in the corpus) is to be stored as chunks on
the given (distributed) storage (see Section 4.4.1). After that, appropriate methods
ensure that ‘DCorpus’ can be handled as defined for ‘Corpus’ This allows for a
seamless integration of the HDF'S or any other storage type defined in tm.plugin.dc
into tm without changing the user interface. For example calling tm_map() has the
same effects as shown in Section 4.2.1 but uses the Hadoop framework for applying

the provided map functions instead.

R> dc <- tm_map( dc, stemDocument )

R> stemmed <- tm_map( acq, stemDocument )

R> all( sapply(seq_along(acq), function(x)

+ identical(dc[[ x 1], stemmed[[ x J1)) )

[1] TRUE

The processed documents are still stored on the HDF'S since by concept the return
value of tm_map () must be of the same class as the input value. They can easily be

retrieved with corresponding accessor methods.
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Furthermore, since ‘DStorage’ offers to store revisions of contained objects, we
are able to switch between various snapshots of the same corpus. This enables
methods to work on different levels in a preprocessing chain, e.g., before and after
stemming. In addition revisions allow for backtracking to earlier processing states, a
concept similar to rollbacks in database management systems. Revisions are enabled
by default and can be retrieved or set using the functions getRevisions() and

setRevision(), respectively.

R> revs <- getRevisions( dc )

R> revs
[1] "DSL-20191123-102316-eibpbnfmgf" "DSL-20191123-102316-nvgwrfdtvj"

R> dc <- setRevision( dc, revs[ length(revs) ] )
R> all( sapply(seq_along(acq),
+ function(x) identical(dc[[ x ]1, acqll x 11)) )

[1] TRUE

The first element in the revision vector always represents the most recent revision
(such as the resulting corpus after applying transformations) and the last element

represents the revision of the original corpus. Revisions can be turned off using
R> keepRevisions( dc ) <- FALSE

Another method for ‘DCorpus’ ensures that the DTM is constructed in parallel.
Based on the storage (here HDF'S) the Hadoop Streaming utility is used to con-
struct both, the term vectors per document (the map step) and triplets of the form
(term, ID, tf) (the reduce step). Finally, after all map and reduce steps succeeded
in their respective task the resulting matrix is constructed from the aggregated data
stored in the HDF'S on the master node. Note that the Hadoop runtime environ-
ment allows us to set the number of parallel working reducers. This can be done
via the function hive: :hive _set _nreducer (). Otherwise only one reducer will be

used.

R> DocumentTermMatrix( dc, list(stemming = TRUE,

+ removePunctuation = TRUE) )

<<DocumentTermMatrix (documents: 50, terms: 1521)>>
Non-/sparse entries: 3633/72417

Sparsity : 95%

Maximal term length: 16

Weighting : term frequency (tf)
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4.5 Performance

In this section we illustrate the performance of the distributed corpus implementa-
tion in two experiments. In the first experiment we study the runtime behavior of
typical text mining tasks when using the plug-in package introduced in Section 4.4.3.
We compare the results to the parallel computing approach implemented in the tm
package. The latter uses the Message Passing Interface (MPI, Message Passing
Interface Forum 1994, 2003) and corresponding R interface packages for parallel
processing.

In the second experiment we investigate the performance of our ‘DCorpus’ im-
plementation when using corpora showing different characteristics. In particular we
are interested in the runtime and throughput behavior when varying corpus size or

document size.

4.5.1 Data

For our performance experiments we consider four corpora: the Reuters-21578 cor-
pus, a collection of Research Awards Abstracts from the National Science Foundation
(NSF), the Reuters Corpus Volume 1 (RCV1) and the New York Times (NYT) An-
notated Corpus. Table 4.1 gives an overview on the different corpora by showing
the following figures: the number of documents included in the corpus (the length
of the corpus), the mean number of characters per document (the mean document
length), and the disk space needed to store the corpus (the corpus size).

Pre-built data packages for the freely redistributable Reuters-21578 and NSF
corpora (tm.corpus.Reuters21578 and tm.corpus.NSF, respectively) can be down-
loaded from the data repository of the Institute for Statistics and Mathematics of the
WU Wirtschaftsuniversitat Wien (https://datacube.wu.ac.at). We only provide
corpus packages for Reuters-21578 and NSF due to license restrictions. Packages
for the RCV1 and NYT corpora can be obtained from the author if the right to use

the data can be verified.

Reuters-21578 The Reuters-21578 data set (Lewis 1997) contains stories col-
lected by the Reuters news agency. The data set is publicly available and has
been widely used in text mining research within the last decade. It contains 21,578
short to medium length documents in XML format (obtainable e.g., from http://
ronaldo.cs.tcd.ie/ess11li07/data/) covering a broad range of topics, like merg-

ers and acquisitions, finance, or politics. To download the corpus use:

R> install.packages( "tm.corpus.Reuters21578",

+ repos = "https://datacube.wu.ac.at", type = "source" )
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No. of docs | Mean no. of char. / doc!' | Corpus size [MB]?
Reuters-21578 21,578 736.39/834.42 87
NSF 51,760 2,895.66 236
RCV1 806,791 1,426.01 3,804
NYT 1,855,658 3,303.68/3,347.97 16,160

Table 4.1: Number of included documents, average number of characters per doc-
ument, and uncompressed size on the file system for each corpus.

R> library( "tm.corpus.Reuters21578" )
R> data( "Reuters21578" )

NSF Research Awards Abstracts This data set consists of 129,000 plain text
abstracts describing NSF awards for basic research submitted between 1990 and
2003. The data set can be obtained from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/). The corpus is divided into three parts. We

used the largest part (Part 1) in our experiments.

Reuters Corpus Volume 1 Lewis et al. (2004) introduced the RCV1 consisting
of about 800,000 (XML format) documents as a test collection for text categoriza-
tion research. The documents contained in this corpus were sent over the Reuters
Newswire (https://www.reutersagency.com/en/products/newswires/) during a
1-year period between 1996-08-20 and 1997-08-19. RCV1 covers a wide range of in-
ternational topics, including business & finance, lifestyle, politics, sports, etc. The

stories were manually categorized in three category sets: topic, industry and region.

NYT Annotated Corpus The largest data set in our experiment contains over
1.8 million articles published by the New York Times between 1987-01-01 and 2007-
06-19 (Sandhaus 2008). Documents and corresponding metadata are provided in an
XML like format: News Industry Text Format (NITF).

4.5.2 Procedure

The first experiment consists of running several preprocessing steps and construct-
ing DTMs which usually constitute the major computation effort. With the help
of the new class ‘DCorpus’ delivered with the tm.plugin.dc package we can trans-
parently use Hadoop, or more specifically, the HDF'S, as “extended” memory to
store corpora. Parallelization of transformations (via tm_map()) and DTM con-

struction (via DocumentTermMatrix()) is then supported by appropriate methods

Lwith /without considering empty documents
2calculated with the Unix tool du
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using the Hadoop Streaming utility (see Section 4.4.3). In this experiment we mea-
sure the runtime behavior of individual tasks using a selected number of CPUs in
order to demonstrate the performance gain in terms of speedup. Moreover, since tm
supports parallelization of transformations, filter operations, and DTM construc-
tion via a parLapply backend we can use the results obtained in this approach to
benchmark our ‘DCorpus’ implementation.

The parLapply() approach as implemented in the tm infrastructure is mainly
motivated by the fact that most operations on the documents are independent from
the results of other operations. As a consequence there is plenty of room for par-
allelization, i.e., parallel execution of code fragments on multiple processors with
relatively small overhead. This is especially of interest since hardware performance
gains during the last years mainly stem from multi-core or multi-processor systems
instead of faster (e.g., higher clock frequency) single core processors. Support can
easily be activated via tm_parLapply_engine() and providing to this function the
initialized ‘cluster’ object, e.g., created with functionality from the parallel pack-
age. An earlier version of tm internally used the snow (Tierney, Rossini, Li, and
Sevcikova 2018) package to manage an MPI cluster which in turn delegated the
parallel execution triggered via the parLapply () function to the Rmpi package (Yu
2002, 2018).

The code stays relatively simple since by design the parallel execution of lapply ()
operations is ensured (e.g., via parLapply()). This enables the usage on multi-core
systems (via multiple instances on individual cores running on a single physical
workstation) and on multiprocessor systems (via accessing multiple physically dis-
tributed machines). In any case, parLapply() splits up the input corpus into a
set of suitable chunks of documents and distributes them on the cluster. Then the
chunks get processed by the individual participating nodes and results are collected.

However, on the master node, i.e., the node running the controlling R instance of
a cluster, the whole data set stays in the main memory while parts of the data are
being processed in parallel on the worker nodes (running R processes for executing
operations defined via parLapply()). Thus, in contrast to the MapReduce approach
the tm/parLapply () implementation is limited by the main memory of the calling
machine in terms of data set size. Even if we are able to run several steps in parallel,
the whole corpus has to be loaded into RAM initially. As a consequence we are
limited to using the Reuters-21578 and the NSF Research Awards Abstracts (Part
1) corpora.

In the second experiment we export DTMs from all four corpora in order to
investigate how runtime and throughput (measured as the number of processed
characters or bytes per second) is affected with respect to the different characteristics

of the corpora employed. Timings also consider the full preprocessing chain applied
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before constructing the DTM.

All individual tasks were repeatedly (three times) run for a selected number of

CPUs.

4.5.3 Results

Figure 4.2 shows the runtime improvements achieved in the first experiment where
tm uses parallelization via MPI (solid line) and Hadoop (dashed line). As test set
we used the complete Reuters-21578 data set (upper row) and part 1 of the NSF
data set (lower row), and performed stemming (left) and stopword removal (middle)
for each document in the corpus. We set the number of processor cores available
to a range from one to 32. The figure depicts the averaged runtime (three runs per
setting) necessary to complete all operations, showing a clear indication how tm
profits from multi-core or distributed parallelization of typical preprocessing steps
on a realistic data set. Both approaches scale almost linearly with the amount of
processing cores. Interestingly, MPI scales superlinearly in a few cases, e.g., for
stopword removal on the Reuters-21578 data set. One possible explanation is that
gsub (), which is internally used to replace stopwords with an empty string, takes
significantly more time on longer strings (i.e., its asymptotic runtime behavior is
bigger than O(n) where n denotes the input string length).

Preprocessing is an embarrasingly parallel computing task, thus we expect a
speedup S(p) = p when employing p processing cores. However, Amdahl’s law

(Amdahl 1967) states that if only a fraction f of a given task can be made parallel,

1
(I=H)+f/p°
Hadoop are not linear but for MPI almost are we infer that the fraction (1 — f) must

the speedup can be calculated as S(p) = Since in Figure 2 speedups for
be higher for Hadoop than for MPI. Thus, costs for starting the Hadoop framework
(= overhead) must be higher. This is especially relevant for smaller data sets and for
computationally cheap operations. In such cases MPI easily outperforms Hadoop.
For large corpora and computationally expensive operations the Hadoop overhead is
negligible which makes Hadoop the natural choice for large data sets. On clusters of
workstations Hadoop additionally addresses typical problems like network transfers
(limited bandwidth, low latency) and data handling (automatic data split, global
access, redundancy) by using a distributed file system. This makes the MapReduce
approach the preferred choice for large corpora compared to the MPI approach
where many of these problems must be solved manually.

Results for constructing DTMs are shown in Figure 4.2 on the right for Reuters-
21578 and NSF, respectively. Interestingly, MPI outperforms Hadoop in this case
since communication costs are lower when term vectors are transferred. Neverthe-

less, the MPI approach seems to be quite unstable since speedups do not always
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increase when adding a core. Furthermore, we did not manage to get results when
using 32 cores probably due to configuration or network setup issues. But most
importantly in contrast to Hadoop where data is almost always kept on disk, MPI

holds data in memory and thus scalability is limited.
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Figure 4.2: Runtime in seconds for stemming, stopword removal, and DTM con-
struction on the full Reuters-21578 data set (upper row) and on part 1 of the NSF
data set (lower row) utilizing either Hadoop (dashed line) or MPT (solid line) with
up to 32 processing cores.

The second experiment only employing the Hadoop framework reveals that
throughput increases significantly for large data sets as seen in Table 4.2. Here,
throughput is measured as the number of 1,000 characters per second ([k char/s])
on the one hand and megabytes per second ([MB/s]) on the other hand. From
this table we see some interesting behavior compared to the characteristics of the
individual corpora shown in Table 4.1. Corpora containing documents with more
content (in terms of the mean document length) are processed faster and the mean
document length seems to affect the throughput more than the raw corpus size. One
possible explanation for the former behavior is that fewer I/O operations have to
be performed compared to the total corpus size since we iterate over the documents
in the corpus and not over equal sized text chunks. Furthermore, this might also
influence the latter behavior as only for the largest data set we observed a signifi-

cant gain in throughput where load balancing of Hadoop is leveraged and becomes
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runtime [s] throughput [k char/s| throughput [MB/s]

Reuters-21578 93 193.6 0.94
NSF 291 515.0 0.81

RCV1 5805 198.2 0.66

NYT 8330 745.8 1.94

Table 4.2: Corpus processing statistics. Constructing DTMs with 32 Hadoop
nodes on a cluster of workstations.

effective for the given number of nodes.
To sum up, Hadoop is the technology of choice for (1) corpora containing doc-
uments with lots of text and/or (2) corpora which are large in terms of disk space

required.

4.6 Application

It was well established in corpus linguistics (e.g., Francis and Kucera 1982) that
(word-type) term frequency distributions obtained from large text collections are
typically heavily skewed, with relatively few terms covering most of the texts. Are
texts maybe getting increasingly “simple” over time, in the sense of increasing cov-
erage by the basic vocabulary? This is a typical question in the spirit of the new
exciting field of culturomics (Michel et al. 2011), which deals with the development
of human behavior and culture reflected in language and word usage.

In this section we add to this field by investigating how the text coverage in
newspaper articles has developed over time. Specifically, we analyze the multitude of
text documents published by the New York Times between 1987-01-01 and 2007-06-
19. The corresponding corpus consists of 1,855,658 short- to medium-length articles
from various genres with a mean of 552 terms per document. As such, this corpus
is too large for being handled with the standard text mining tool chain available in
R. However, we can use the distributed framework presented in the paper in order
to process the corpus quite efficiently. This makes it possible to not only investigate
the culturomics question at hand, but also to subject the corpus to a variety of other
statistical analyses.

First, we compare the text coverage given a fixed vocabulary size for the NYT
corpus with the results of Francis and Kucera (1982) (see also http://en.wikipedia.
org/wiki/Vocabulary). Let T be a set of different terms, then text coverage is de-

fined as follows.

number of terms in a given text exactly matching a term in 7

coverage =
& number of all terms in the text
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In sum we find 1,023,484,418 terms in the whole corpus from which we can
derive our vocabulary of 547,400 unique terms. This was conveniently achieved by
reading all text documents given in the New York Times corpus into a ‘DCorpus’

and subsequently deriving the DTM.

size coverage coverage NY'T

1000 0.72 0.75
2000 0.80 0.84
3000 0.84 0.88
4000 0.87 0.91
5000 0.89 0.92
6000 0.90 0.93
15851 0.98 0.97

Table 4.3: Vocabulary coverage in the NYT Corpus compared to standard English
text coverage as identified by Francis and Kucera (1982).

Table 4.3 shows that by knowing the 2,000 English words with the highest fre-
quency, one would know on average 80% of the terms in English texts or 84% of
the terms in NYT articles. However, text coverage using a given vocabulary is not
necessarily stable over time since language use may change (see e.g., Hogg and Deni-
son 2008). To investigate how the active vocabulary has changed over time, we can
use the date of publication metadata contained in the corpus to easily derive a time
series of text coverages for a given vocabulary by suitably aggregating the DTM. We
know that language texts could simultaneously get “more complicated” in the sense
that far tails of the term frequency distribution get heavier, i.e., that increasingly
more terms are needed to cover the remaining words. However, we do not pursue the
latter issue here as it requires much more extensive Natural Language Processing
(NLP) such as named entity recognition and morphological standardization.

Figure 4.3 shows that text coverage is decreasing almost linearly by roughly 1%
over 20 years considering the 1,000 and 4,000 most often used terms in the whole
corpus, respectively. Considering this scenario we might conclude that texts are not
getting simpler over time.

However, if we consider only stop words, i.e., words that appear in general (in this
case English) texts frequently but do not carry significant information, the picture
changes. Over the whole NYT corpus we found 117 matching stop words given the
list of predefined stop words available in tm. The average text coverage using only
stop words is 0.41. Figure 4.4 reveals that text coverage driven by tm’s stop words
dictionary increases by more than 1% in the first decade until 1997 and remains
stable over the second (we do not have a satisfactory explanation for this structural
break). This suggests that while texts were getting “more specialized”, the amount

of non-significant content also increased.
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4.7 Computational details

For this dissertation we updated all the packages presented in the original paper
(i.e., DSL, hive, tm.plugin.dc) to work with the latest version of R (3.6.2), the
latest Hadoop implementation (3.2.1), and current state-of-the-art computing envi-
ronments (Intel Core i7 dual core CPU, 7" generation, 3.5 GHz; 512 GB of fast
NVMe SSD storage; 16 GB of main memory). However, all the runtime experiments
and applications presented in the paper, in particular the performance experiments
presented in Section 4.5 and construction of the DTM for the application in Sec-
tion 4.6, were not updated and the original results were used. Those experiments
were performed on cluster@WU, the high performance computing cluster environ-
ment of the WU Wirtschaftsuniversitat Wien. At the time of the writing of the
paper each node of the cluster consisted of an Intel Core 2 Duo CPU 2.4 GHz,
110 GB of local (SATA) hard disk storage reserved for the HDFS, and 4 GB of
main memory. All nodes were connected by standard Gigabit Ethernet network in a
flat network topology. Parallel jobs had been submitted with the Sun Grid Engine
version 6.2 update 3. On cluster@WU the parallel environments Hadoop (MapRe-
duce) and OpenMPI (MPI) were available in versions 0.20.2 and 1.3.3, respectively.
All R code has been executed via version 2.14.0 of R and by using version 0.5-7.1 of

the tm package.

4.8 Conclusion

The paper has introduced an approach applying the MapReduce distributed pro-
gramming paradigm to advance feasibility and performance of suitable text mining
tasks in R. We showed that distributed memory systems can be effectively employed
within this model to preprocess large data sets by adding layers to existing text
mining infrastructure packages. We also indicated that data parallelism can very
easily be achieved using such an integrated framework without altering the handling
of current text mining software available in R (i.e., the tm package). This is done
via the class ‘DCorpus’ implemented in package tm.plugin.dc. Appropriate methods
make use of a distributed storage (such as the Hadoop distributed file system) and
a corresponding distributed computing framework (MapReduce). A benchmark ex-
periment showed that applying MapReduce in combination with R on text mining
tasks is a very promising approach. The results presented in the paper show a signif-
icant performance gain over the sequential code as well as very good scalability when
employing the distributed memory model. Such an approach enables us to process
large data sets like the NYT corpus and to use R’s rich statistical functionalty for

large scale text mining applications. We showed this in a culturomics application
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scenario.

With the release of package tm.plugin.dc we now have two options for handling
text corpora in R: using functionality provided with tm where data is kept in main
memory or using derived corpus classes where data stays on disk and is only accessed
when needed. Unfortunately, no general rule exists that defines the most efficient
option for a certain text mining application. Of course, depending on corpus size
and available RAM on the main workstation, i.e., when corpora get too big, one
has to use the distributed corpus implementation presented in the paper. In other
scenarios, i.e., for corpus sizes which are manageable with standard tools, it needs
to be investigated which approach is the most promising to be employed. Ideally,
tm would implement suitable heuristics for choosing the best option given a set
of criteria (corpus size, network topology, number of computing nodes, overhead

induced by the parallel environment, available RAM, etc.) automatically.
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Chapter 5
Conclusion and Outlook

In this dissertation we elaborated the design of conceptual and computational frame-
works for the R language for statistical computing and graphics for two typical data
science use cases: optimization problem solving and large scale text analysis.

Both, the design of a general optimization infrastructure as well as the tm plug-
in for distributed text mining represent an improvement for R as we address existing
problems in data science, constructing and solving optimization problems of different
types as well as efficiently processing of very large text corpora, and providing the
design of new solutions for them.

Whereas the former design provides us with a consistent framework for construct-
ing and solving optimization problems of different types providing a unified interface
to available solvers as well as a modeling mechanism based on R language features,
the latter allows to transparently distribute the documents of large (text) corpora
on one or several storage entities, apply functions on the subsetted corpus possibly
in parallel, and gather results on a cluster of workstations or other (distributed)
computing platforms. The implemented artifacts, packages ROI and tm.plugin.dc,
have been evaluated with respect to the validity of the design as well as in real world
applications: journal consensus ranking and culturomics.

Still, after more than a decade of research in this field there are further opportu-
nities for future research. ROI makes it attractive to add new solvers to the R solver
landscape, e.g., to take advantage of recent advances in conic optimization (increase
availability), to add additional optimization solvers, read/write functions and ad-
ditional resources (increase capability), and enables package developers to plug-in
new solvers quite effortlessly to make use of their highly efficient code (eliminate
efficiency detriments). This three enablers (availability, capability, and efficiency)
may be good guidelines for future research. Moreover, empirical research questions
which make use of methods from the field of optimization can be more conveniently
answered with the help of R as we have done e.g., with demonstrating the superior-

ity of the consensus ranking over a simpler approach involving rank averaging when
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finding adequate aggregations of a set of single rankings.

Driven mainly by the hype in the field of machine learning, other, rather pop-
ular, frameworks have emerged such as TensorFlow (Abadi, Barham, Chen, Chen,
Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore,
Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, and Zheng 2016, , https:
//www.tensorflow.org/) and Apache Spark (Zaharia, Xin, Wendell, Das, Arm-
brust, Dave, Meng, Rosen, Venkataraman, Franklin et al. 2016, https://spark.
apache.org/) that meet both design requirements of our second data science use
case (large scale text analysis), possibly in a more efficient manner: parallel process-
ing and distributing data. Contemporary text books in data science for R, however,
include either sections on text mining with tm (such as, e.g., Baumer, Kaplan, and
Horton 2017) or sections how to do large scale text analysis with R in general with-
out a dedicated infrastructure for text mining similar to tm (such as, e.g., Luraschi,
Kuo, and Ruiz 2019), but not including both. Nevertheless, the abstractions dis-
tributed corpus and distributed lists as well as appropriate methods would enable
data scientist, statisticians and others conducting their research using R and tm to
make use of any implemented storage (distributed file system) and any correspond-
ing distributed computing framework, given the bridge to the respective framework
is built.

Finally, both artifacts being published on CRAN for several years now, we are
also able to make a statement regarding the utility of the developed R packages
outside the individual data science use cases, i.e., the development environment, by
looking at other community contributions when they directly or indirectly reuse code
of the respective package (Theufll et al. 2011). A higher number of references to the
package would indicate a higher utility for other use cases. Whereas, at the time of
this writing, package ROI is used by seven other packages on CRAN (this includes all
reverse depends, reverse imports, and reverse suggests excluding the ROI.plugin.*
packages), there are no references to package tm.plugin.dc. Clearly, the ambition
of providing a general optimization infrastructure for R will have a higher impact
than providing a package more focused on a specific use case. Here to note are
the packages ompr (Schumacher 2018), which builds on top of ROI to provide a
modeling language inspired by the Jump project in Julia (Lubin and Dunning 2015)
to model and solve mixed integer linear programs and PortfolioAnalytics (Peterson
and Carl 2018), which contains a vignette showcasing various portfolio optimization
problems solved with ROI.
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Appendix A: Tables

Package Library Objective  Constraints Mixed Integer

1 alabama functional nonlinear No

2 BB functional no No

3 ccep conic conic No

4 clpAPI clp linear linear No

5 CLSOCP conic conic No

6 clue::sumt functional nonlinear No

7 DEoptim functional box No

8 dfoptim functional box No

9 ECOSolveR ECOS conic conic Yes
10 GenSA functional box No
11 glpkAPI, Rglpk GLPK linear linear Yes
12 kernlab:::ipop quadratic  linear No
13  lbfgsb3 functional box No
14 LowRankQP quadratic linear No
15 IpSolve, IpSolveAPI 1p solve  linear linear Yes
16 minqa functional box No
17  NlcOptim functional nonlinear No
18 nloptr NLopt functional nonlinear No
19 optimx functional box No
20 quadprog quadratic linear No
21 recdd cddlib linear linear No
22  Rcgmin functional box No
23 Resdp CSDP conic conic No
24 Rdsdp DSDP conic conic No
25 rgenoud functional box No
26 Rmalschains functional box No
27 Rsolnp functional nonlinear No
28 Rsymphony symphony linear linear Yes
29 Rvmmin functional box No
30 scs scs conic conic No
31 soma functional box No
32 stats functional box No
33 trustOptim functional no No
34  ucminf functional box No

Table A.1: Overview optimization packages in R.
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Method Package Type Constraint G H J

1 auglag alabama local  nonlinear Yes No Yes
2 dfsane BB local no No No No
3 sumt clue local  nonlinear Yes No No
4 DEoptim DEoptim global box No No No
5 hjkb dfoptim local  box No No No
6 nmk dfoptim local  box No No No
7 GenSA GenSA global box No No No
8 Ibfgsbh3 Ibfgsb3 local  box Yes No No
9 SANN stats global no No No No
10 Nelder-Mead stats / optimx local  no No No No
11  BFGS stats / optimx local  no Yes No No
12 L-BFGS-B stats / optimx local  box Yes No No
13 CG stats / optimx local  no Yes No No
14 nlminb stats / optimx local  box Yes Yes No
15 nlm stats / optimx local  no Yes Yes No
16  ucminf ucminf / optimx local  box Yes No No
17 uobyqa minga / optimx local  no No No No
18 newuoa minga / optimx local  no No No No
19 bobyqa minga / optimx local  box No No No
20 Rcgmin Rcgmin / optimx  local  box Yes No No
21 Rvmmin Rvmmin / optimx local  box Yes No No
22 spg BB / optimx local  box Yes No No
23 NlcOptim NlcOptim local  nomnlinear No No No
24  auglag nloptr local  nonlinear Yes No Yes
25 bobyqa nloptr local  box No No No
26 cobyla nloptr local  nonlinear No No No
27 DIRECT nloptr global box No No No
28  isres nloptr global mnonlinear No No No
29 Ibfgs nloptr local  box Yes No No
30 mlsl nloptr global box Yes No No
31 mma nloptr local  nonlinear Yes No Yes
32 nedlermead nloptr local  box No No No
33 newuoa nloptr local  no No No No
34 sbplx nloptr local  box No No No
35 slsqp nloptr local  nonlinear Yes No Yes
36 stogo nloptr global box Yes No No
37 tnewton nloptr local  box Yes No No
38 varmetric nloptr local  box Yes No No
39 genoud rgenoud global box Yes No No
40 solnp Rsolnp local nonlinear No No No
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41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

malschains
soma
trustOptim
DEoptim
JDEoptim
ga

mcga
mcga?2
psoptim
psoptim
cma_ es
cmaes
cmaes
GAopt
DEopt
LSopt
PSopt
TAopt

GrassmannOptim

Ibfgs

powell
ceimOpt
subplex
ipoptr
Rdonlp2
Rnlminb2
pureCMAES
snomadr
multimin
hydroPSO
neldermead
cmaOptimDP
trust
abc__optim
CEoptim
manifold.optim
ALO

DA

FFA

GA

GOA

Rmalschains
soma

trustOptim
RcppDE
DEoptimR

GA

mcga

mecga

pso

psoptim

cmaes

cmaesr

parma

NMOF

NMOF

NMOF

NMOF

NMOF
GrassmannOptim
Ibfgs

powell

RCEIM

subplex

ipoptr

Rdonlp2
Rnlminb2

adagio

crs

gsl

hydroPSO
neldermead
rCMA

trust

ABCoptim
CEoptim
ManifoldOptim
metaheuristicOpt
metaheuristicOpt
metaheuristicOpt
metaheuristicOpt

metaheuristicOpt
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global
local
global
global
global
global
global
global
global
global
global
global
global
global
global
global
global
local
local
local
local
local
local
local
local
global
local
local
global
local
local
local
global
global
local
global
global
global
global
global

box

box

no

box
nonlinear
box

box

box

box

box

box

no

box

no

box

no

box

no

no

no

no

box

no
nonlinear
nonlinear
nonlinear
box
nonlinear
no

box
nonlinear
nonlinear
no

box

no

no

box

box

box

box
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82 GWO metaheuristicOpt  global box No No No

83 HS metaheuristicOpt  global box No No No
84 MFO metaheuristicOpt  global box No No No
85 PSO metaheuristicOpt  global box No No No
86 SCA metaheuristicOpt  global box No No No
87 WOA metaheuristicOpt  global box No No No
88 SD mize local no Yes Yes No
89 BFGS mize local  no Yes Yes No
90 SR1 mize local  no Yes Yes No
91 L-BFGS mize local  no Yes Yes No
92 CG mize local  no Yes Yes No
93 TN mize local no Yes Yes No
94 NAG mize local  no Yes Yes No
95 DBD mize local  no Yes Yes No
96 Momentum mize local no Yes Yes No
97 nlgnl nlqgnl local  no Yes No No
98 qnbd nlgnl local  box Yes No No
99 tnbc Rtnmin local  box Yes No No
100  COBRA SACOBRA local  box No No No

Table A.2: GPS in R and their capability to handle type, constraint, gradient (G),
Hessian (H), Jacobian (J) information.
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Appendix B: Code

B.1 Best subset selection

R> subset_selection <- function(4, b, k, beta_lb = -1000, beta_ub =
1000, count_intercept = FALSE,
solver = "auto", ...) {

control <- list(...)

Q <-2x*t(h) %%} A

L <- -2 * t(b) %%} A

x <- OP(objective = Q_objective(Q=Q, L=L),

bounds = V_bound(1i = seq_len(nrow(Q)),
1b = rep.int(-Inf, nrow(QR))))
<- ROI_reformulate(x, "socp")
<- length(objective(x))

OP(objective = c(terms(objective(y))$L, double(n)))

<- constraints(y)$L

BBX B
0

<- cbind(L, simple_triplet_zero_matrix(nrow(L), n))

if ( length(beta_1lb)
if ( length(beta_lb)

= 1L ) beta_lb <- rep.int(beta_lb, n)
= 1L ) beta_ub <- rep.int(beta_ub, n)

LB <- cbind(simple_triplet_diag matrix(-1, n),
simple_triplet_zero_matrix(n, 1),
simple_triplet_diag matrix(beta_lb, n))

UB <- cbind(simple_triplet_diag matrix(1, n),
simple_triplet_zero_matrix(n, 1),

simple_triplet_diag _matrix(-beta_ub, n))

if (count_intercept) {
SUM <- cbind(simple_triplet_zero_matrix(1l, n+1),
matrix(1, 1, n))
} else {
SUM <- cbind(simple_triplet_zero_matrix(1l, n+2),
matrix(1, 1, n-1))

+ + + + + + + + + + + + + + + 4+ + o+ o+ o+ O+ O+ O+ O+ O+ O+ O+ O+ O+ O+ o+
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+ + + + + + + + + + + + + + + 4+ + 0+

constraints(x) <- C_constraint(rbind(L, LB, UB, SUM),
c(constraints(y)$cones,
K lin(n), K_lin(n), K_1in(1L)),
c(constraints(y)$rhs, double(n),
double(n), k))

types(x) <- c(rep.int("C", length(objective(y))),
rep.int("B", n))
len <- length(objective(x))
bounds (x) <- V_bound(1li = seq_len(len),
1b = rep.int(-Inf, len))

maximum(x) <- maximum(y)

if ( isTRUE(control$dry_run) )
return(x)

z <- ROI_solve(x)

head(solution(z), n)

B.2 SON clustering

R> convex_clust <- function(4, gamma, solver = "auto",

+ control = list()) {

+ m <- nrow(A)

+ n <- ncol(4)

+ ncombn <- (m * (m-1) / 2 )

+ k <- ncombn * (n+1)

+ obj <- c(rep.int(0, n * m), 1/2, rep.int(gamma, ncombn))
+ b <- c(1, -1, 2*as.double(A), rep.int(0, k))

+ L <- simple_triplet_zero_matrix(nrow = 2 + n * m + Kk,

+ ncol = n * m + 1 + ncombn)
+ L[1, n*m+1] <- -1

+ L[2, n*m+1] <- -1

+ L[2+seq_len(n * m), seq_len(n * m)] <- diag(2, n * m)

+

+ ko <- combn(seq_len(m), 2)

+ M <- matrix(seq_len(n*m), m, n, byrow=FALSE)

+ irow <- n *m + 3

+ cones <- K_soc(n*m+2)
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for ( i in seq_len(ncol(ko)) ) {
Llirow, n *m + 1 + i] <- -1
cones <- c(cones, K_soc(n+1))
irow <- irow + 1
for (j in seq_len(n)) {
L[irow, M[ko[,i], jl] <- c(-1, 1)

irow <- irow + 1

op <- OP(objective=L_objective(obj),
constraints = C_constraint (L=L, cones=cones, rhs=b),
bounds = V_bound(ld = -Inf, nobj = nrow(L)))

if ( isTRUE(control$dry_run) )

return (op)

x <- ROI_solve(op, solver, control)

matrix(x$solution[seq_len(n*m)], m, n)

+ + + + + + + + + + + + + + + + 4+ o+ o+

B.3 Graphical lasso

R> index_to_vech <- function(i, j, n) {

+ ind_to_vech <- function(i, j, n) {

+ if (j > i) return(NA)

+ (j-1)*n+i-((-1)*j/2

+ }

+ unlist (mapply(ind_to_vech, i, j, MoreArgs = list(n = n),
+ SIMPLIFY = FALSE, USE.NAMES = FALSE),

+ recursive = FALSE, use.names = FALSE)

+ }

R> ROI_glasso <- function(s, rho, solver = "auto", ...) {

+ stopifnot (nrow(s) > 1)

+ control <- list(...)

+ stm <- simple_triplet_matrix

+ n <- nrow(s); nv <- (n + 1) * n / 2; nij <- choose(n, 2)
+ ndzx <- (2 *n + 1) * 2 ¥n / 2

+ seqn <- seq_len(n); seqnv <- seq_len(nv)
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+ + + + + + + + o+ o+ + o+ + + o+ + o+ o F oo+ O+ OF T F A A A AR OF Y OFYFOFYOFYFOFYFOFYFOCF

seqnij <- seq_len(nij)

obj <- c(as.vector(vech(s + s * lower.tri(s))), double(ndzx))
A <- simple_triplet_diag matrix(-1, nv + ndzx)

cones <- K_psd(c(nv, ndzx))

ij <- combn(seqn, 2)

k <- index_to_vech(n + ij[1,], ij[2,], 2 * n)

Z_UPPER <- stm(seqnij, nv + k, rep.int(1, nij), nrow = nij,
ncol = nv + ndzx)

cones <- c(cones, K_zero(nij))

k <- index_to_vech(ij[2,], ij[1,], 2 * n)
D_DIAG <- stm(seqnij, nv + k, rep.int(1, nij), nrow = nij,
ncol = nv + ndzx)

cones <- c(cones, K_zero(nij))

kd <- index_to_vech(seqn, seqn, 2 * n)

kz <- index_to_vech(n + seqn, seqn, 2 * n)

EQ_DIAG <- stm(c(seqn, seqn), nv + c(kd, kz),
c(rep.int (-1, n), rep.int(1, n)),
nrow = n, ncol = nv + ndzx)

cones <- c(cones, K_zero(n))

A <- rbind(A, rbind(Z_UPPER, D_DIAG, EQ_DIAG))

EQ_X <- stm(c(seqnv, seqnv), c(seqnv, ndzx + seqnv),
c(rep.int (-1, nv), rep.int(1, nv)),
nrow = nv, ncol = ncol(4))

cones <- c(cones, K_zero(nrow(EQ_X)))

A <- rbind(A, EQ_X)

rhs <- double(nrow(4))

obj <- c(obj, rep.int(-1, n))

j <- nv + kd

LOG <- stm(c(3 * seqn, 3 * seqn - 2), c(j, ncol(4) + seqn),
rep.int(-1, 2 * n), nrow = 3 * n,
ncol = ncol(4) + n)

A <- rbind(cbind (A, simple_triplet_zero_matrix(nrow(A), n)),
LOG)
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cones <- c(cones, K_expp(n))

rhs <- c(rhs, rep.int(c(0, 1, 0), n))

rho_matrix <- matrix(rho, n, n)
obj <- c(obj, vech(rho_matrix +

rho_matrix * lower.tri(rho_matrix)))
NORM <- stm(i

c(seq_len(2 * nv), seq_len(2 * nv)),

j = c(seqnv, seqnv, ncol(A) + seqnv,
ncol(A) + seqnv),
v = c(rep.int (1, nv), rep.int(-1, 3 * nv)),

nrow = 2 * nv, ncol = ncol(4) + nv)

A <- rbind(cbind (A, simple_triplet_zero_matrix(nrow(A), nv)),
NORM)

cones <- c(cones, K_1in(2 * nv))

rhs <- c(rhs, double(2 * nv))

model <- OP(objective = L_objective(obj),
constraints = C_constraint (4, cones = cones,
rhs = rhs),
bounds = V_bound(1d = -Inf, nobj = length(obj)))

if ( isTRUE(control$dry_run) )

return (model)

so <- ROI_solve(model, solver=solver, control)

Y <- matrix(0, n, n)

Y[lower.tri(Y, diag=TRUE)] <-
so$solution[seq len(n * (n+1) / 2)]

Y[upper.tri(Y)] <- t(Y) [upper.tri(Y)]

list (w=chol2inv(chol(Y)), wi=Y,

errflag=so$status$code, niter=so$message$info$iter)
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Appendix C: Abbreviations

Abbreviation Full Name

LP
NLP
MILP
MINLP
MIQP
MIQCP
QP
QCP
QCLP
QCQP
SDP
SOCP

Linear Programming

Nonlinear Programming

Mixed Integer Linear Programming

Mixed Integer Nonlinear Programming

Mixed Integer Quadratic Programming

Mixed Integer Quadraticly Constraint Programming
Quadratic Programming

Quadraticly Constraint Programming

Quadraticly Constraint Programming Linear Programming
Quadraticly Constraint Programming Quadratic Programming
Semidefinite Programming

Second Order Cone Programming
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Appendix D: Installing Hadoop

In this section we describe how to set up the Hadoop framework in (pseudo) dis-
tributed operation. This description is based on https://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html and
focuses on the Linux operating system as this platform is suggested on the web-
site for production use. For a more detailed installation instruction and for other

platforms than Linux we refer to the above website.

Basic Hadoop environment

Since Java and the command line utility ssh are needed for operation both pro-
grams have to be installed on all involved machines (on our test platform we used
Java version 1.8 update 231 and OpenSSH 7.9). In order to install Hadoop we first
downloaded the compressed archive of the framework following the instructions on
the release website (https://hadoop.apache.org/releases.html) and then un-
compressed the contents to a directory on a file system which is accessible by all
machines running Hadoop (subsequently referred to as HADOOP_HOME). For example
on a single workstation this directory is usually located somewhere on the corre-
sponding local disk. In case of a cluster of workstation, this directory is usually
located on a network file system (e.g., NFS). Several components of the Hadoop
framework need to know the path to the installation directory, thus it is specified
on each machine via the environment variable HADOOP_HOME (this variable has to be
added to the user’s environment on each machine if it is not done automatically).

Subsequently, few to several changes have to be made in configuration files lo-
cated in the $HADOOP_HOME/etc/hadoop directory depending on the desired oper-
ating mode. First, the path to a working Java environment has to be specified in
hadoop-env.sh. Second, since we want to operate the framework in pseudo dis-
tributed (i.e., use the HDFS facilities on a single workstation) or fully distributed
mode, one needs to set up the configuration files core-site.xml, hdfs-site.xml,
mapred-site.xml, yarn-site.xml, and workers. An example configuration of a
pseudo distributed system can be found at the end of Appendix D. Alternatively,
for various Linux distributions pre-configured packages can be obtained e.g., from
https://www.cloudera.com/.

To verify the installation one can execute bin/hadoop version on the command
line (we expect to be in the $HADOOP_HOME directory when issueing Hadoop-related

commands) which returns the version number of the installed software package.
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Hadoop distributed file system

The final step before running Hadoop jobs in a pseudo distributed environment
involves enabling passwordless ssh to localhost and formatting the HDFS (the
default system path in recent Hadoop versions is /tmp/hadoop-$user.name). The
command bin/hdfs namenode -format serves for this purpose.

The configured Hadoop cluster can be started via two alternative approaches. In
the first approach one can use the command bin/start-dfs.sh on the command
line or via daemon startup scripts in /etc/init.d (e.g., cloudera packages). This
is especially useful if an integration to cluster grid engines is desired in order to
automate the startup process. In the second approach the Hadoop cluster can be
started directly within R using the hive create() and hive_start() functions in
hive. The resulting ‘hive’ object, representing the information about the configured
cluster is stored for further use with the help of the function hive (). Usually, this
is done automatically when the package loads, given that the Hadoop framework
is referenced to via the HADOOP_HOME environment variable or if the executables
are in the PATH and configurations are put in /etc/hadoop (as is with the cloudera
packages). However, there is a known issue with IPv6 (see https://cwiki.apache.
org/confluence/display/HADOOP2/HadoopIPv6). Thus, if the Hadoop framework
does not start, correctly setting the configuration option net.ipv6.bindv6only to
0 in /etc/sysctl.d/bindv6only.conf will help.

R> require( "hive" )

R> hadoop_home <- Sys.getenv( "HADOOP_HOME" )
R> hive( hive_create (hadoop_home) )

R> hive()

HIVE: Hadoop Cluster
- Avail. datanodes: 1
'- Max. number Map tasks per datanode: 2

'- Configured Reducer tasks: 1
R> summary( hive() )

HIVE: Hadoop Cluster
- Avail. datanodes: 1
'- Max. number Map tasks per datanode: 2

'- Configured Reducer tasks: 1

- Hadoop version: 3.2.1
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- Hadoop home/conf directory: /usr/local/share/hadoop-3.2.1
- Namenode: NA
- Datanodes:

'- localhost
R> hive_is_available()
[1] FALSE

R> hive_start ()

R> hive_is_available()
(1] TRUE

When the Hadoop cluster is up and running one can retrieve Hadoop status and
job information by visiting specific websites provided by the built-in web front end,
two of them are of higher interest. Assuming that Hadoop is configured to run on
localhost the websites can be accessed via a standard web browser opening http:
//localhost:9870 (Hadoop Overview) and http://localhost:8088 (YARN), re-
spectively. On the former website one can inspect the configuration of the HDF'S
and browse through the file system. From the latter one can retrieve information
about running, completed or failed jobs. We found the log files showing the error
output for the distributed batch jobs very useful as they helped us debugging the R
scripts generated by the hive package for each mapper and reducer

The HDF'S can be accessed directly in R with DFS_* () functions. For a complete

reference to implemented DFS_* () functions see the hive help pages.
R> DFS_list( "/" )
[1] Iltmpll lluserll

R> DFS_dir_create( "/tmp/test" )

R> DFS_write_lines( c("Hello HDFS", "Bye Bye HDFS"),
+ file = "/tmp/test/hdfs.txt" )
R> DFS_list( "/tmp/test" )

[1] "hdfs.txt"
R> DFS_read_lines( file = "/tmp/test/hdfs.txt" )

[1] "Hello HDFS" "Bye Bye HDFS"
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Hadoop configuration

We recommend to set the following parameters in the corresponding configuration
files in order to set up pseudo distributed mode on a single machine with two pro-
cessors/cores. In case of a standard Hadoop installation as described above the file
workers has to be created in the etc/hadoop directory (containing localhost).

The files reflect a typical configuration for Hadoop version 3.2.1.

core-site.xml contains:

<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>

</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/home/${user.name}/tmp/hadoop-${user.name}</value>

</property>

</configuration>

hdfs-site.xml contains:

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>

</configuration>

mapred-site.xml contains:

<configuration>

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

<property>
<name>mapreduce.application.classpath</name>
<value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:
$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>

</property>
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<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED HOME=/usr/local/share/hadoop-3.2.1
</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED HOME=/usr/local/share/hadoop-3.2.1
</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED HOME=/usr/local/share/hadoop-3.2.1
</value>
</property>

</configuration>

yarn-site.xml contains:

<configuration>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,
HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,
HADOOP_YARN_HOME,HADOOP_HOME, PATH,LANG,TZ</value>

</property>

</configuration>

slaves contains the IP address of all data nodes (or localhost).
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