
ePubWU Institutional Repository

Erwin Filtz and Vadim Savenkov and Jürgen Umbrich

On finding the k shortest paths in RDF data

Article (Published)
(Refereed)

Original Citation:

Filtz, Erwin and Savenkov, Vadim and Umbrich, Jürgen

(2016)

On finding the k shortest paths in RDF data.

Proceedings of Intelligent Exploration of Semantic Data.

ISSN 1613-0073

This version is available at: https://epub.wu.ac.at/7476/
Available in ePubWU: February 2020

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the publisher-created published version.

http://epub.wu.ac.at/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/287660548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epub.wu.ac.at/7476/
http://epub.wu.ac.at/

On finding the k shortest paths in RDF data

Erwin Filtz, Vadim Savenkov, Jürgen Umbrich

Vienna University of Economics and Business
Institute for Information Business
{firstname.lastname}@wu.ac.at

Abstract. Finding relationships between entities in RDF data is in the
heart of many exploration tasks. General path enumeration algorithms
are typically used for computing such relationships, finding top k short-
est paths being of special interest. The k shortest paths problem has
been thoroughly studied for the weighted graph case, the two most pop-
ular generic algorithms are due to Eppstein and to Yen. Along with the
Dijkstra’s shortest path algorithm upon which they build, these two al-
gorithms are available in most libraries and graph databases. In the RDF
context, however, the graph is unlabeled but can have multi-edges, and
the found paths can contain cycles, so applying the mentioned algorithms
is either impossible (Yen’s) or suboptimal. It is a folklore knowledge that
the traditional breadth first search (BFS) can be easily adapted to com-
pute the k shortest paths. However, for dense graphs and large k, both
time and memory consumption become critical. We discuss two BFS
adaptations which are easy to implement and substantially boost perfor-
mance when solving the k shortest paths problem.

1 Introduction

The size of online linked datasets can be very large [3], and even when the
source domain of a dataset is known in advance and a general meta-data such as
provenance and recency is available, a detailed exploration and accurate char-
acterization of a dataset with respect to a given task in a limited time remains
a complex and challenging task. As long as graph-oriented data such as RDF is
concerned, enumerating complex relationships between entities is a cornerstone
exploration routine (e.g., [15]). This routine can be cast as the k shortest paths
or k shortest paths routing problem.

The importance of routing in graphs certainly goes far beyond data explo-
ration, it is perhaps one of the most ubiquitous problems in computer science
with applications ranging from networking to artificial intelligence. In many
cases, routes in weighted graphs need to be found, where weights might refer to
bandwidth, travel time or a rank. In the simplest setting, unit edge weights are
assumed. The algorithm by Dijkstra [10] and its extension A* [14] are used most
frequently for finding optimal paths, and the best known extensions for produc-
ing the top k paths are the algorithms by Eppstein [11] and Yen [20]. Many
popular graph libraries, e.g. JGraph [1] and graph databases (e.g. Neo4J [2], in-
cluding custom extensions [15]) only support these general algorithms capable of

routing in weighted graphs for solving routing problems. Notably, in the recent
ESWC 2016 challenge, none of the finalists has used the basic BFS algorithm
for the k shortest paths task. The greater flexibility comes at a certain price
however, which can be negligible for smaller datasets but becomes significant
for larger ones. In this paper we experiment with k shortest paths algorithms
specifically tailored for unweighted labeled graphs, which are useful for exploring
and querying RDF datasets.

The k shortest path problem has not received much attention in the litera-
ture in this more specific setting. Probably, one reason for that was a folklore
knowledge that one can adapt the breadth first search (BFS) for computing both
the shortest path and the top k shortest paths alike, and that such an algorithm
is fairly easy to implement. However, when graphs are large and dense, one has
to be careful about the BFS based procedures, as the number of intermediate
results that need to kept in memory becomes large. We take a closer look on the
BFS for k shortest paths and explore several optimizations significantly improv-
ing a näıve approach, allowing it to outperform the general Eppstein’s algorithm
even on unlabeled graphs with unit edge weights. There are two main compo-
nents of our solution. The first component is the use of a disk based graph index
for coping with large graphs. Our main use case being linked data processing,
we opted for the HDT library [12] which is a natural choice for the RDF data.
HDT also compresses the data, by replacing verbose RDF strings with integers
in a principled way, the graph is then loaded in memory incrementally. The sec-
ond component is the adaptation of BFS tailored specifically towards supporting
the k shortest paths computation. One improvement here is the tree based data
structure for maintaining candidate paths efficiently, another improvement is
bidirectional search. Altogether this results in a very simple algorithm which
outperforms the state of the art solutions presented at the ESWC 2016 compe-
tition.

Related work. Finding paths in graphs is one of the most well studied topics
in computer science. Many algorithms have been developed solve the single-
source-shortest path problem (e.g. [10, 11, 20]) as well as the all-pair-shortest
path problem (e.g. [6, 13,18]).

As far as the k shortest paths problem (or k shortest path routing) is con-
cerned, one of the most famous algorithms is by Yen [20] that builds upon Dik-
stra’s algorithm to find next best acyclic paths, and a more general algorithm by
Eppstein [11] that also supports cyclic paths. Numerous modifications to these
algorithms have been proposed. For instance, the Lawler’s variant of Yen’s al-
gorithm [19] avoids duplicate path calculation [7]. and Dijkstra’s algorithm [10]
with improvements [4], or using heuristics [5, 9]. All mentioned algorithms are
general enough to solve the k shortest path routing problem in directed weighted
graphs, where “length” of the path refers to the sum of the edge weights in it.

RDF graphs have certain peculiarities relevant for the choice of routing al-
gorithms. In particular, they are labeled multigraphs, i.e. multiple edges with
different labels, corresponding to the RDF predicate names and can connect
the same pair of nodes. Such labels are typically important for the graph ex-

Algorithm 1 Baseline BFS for k shortest paths

1: procedure BaselineBFS(G, start, target, k)
2: solutions← ∅
3: q ← [start]
4: while q not empty do
5: p← q.poll() . The first element p of the queue q is removed from q
6: n← p.lastNode() . The the last node in the path p is n
7: for edges e(n, n′) ∈ G do
8: p′ ← p.append(e(n, n′))
9: if n′ == target then

10: solutions← solutions.append(p′)
11: if solutions.size ≥ k then
12: return solutions
13: end if
14: end if
15: q ← q.append(p′)
16: end for
17: end while
18: return solutions
19: end procedure

ploration, paths consisting of different sequences of properties capture different
relationships between concepts and thus need to be distinguished (see, e.g. the
case of relationship visualization1). At the same time, weights of predicates are
rarely defined: in this case, path length is determined by a number of edges.
This generally makes algorithms for weighted graphs suboptimal for the RDF
domain. Yet, Eppstein’s algorithm is quite often used for RDF graph exploration
deriving the shortest path from the shortest paths tree containing only the nec-
essary parts of the graph calculated by Eppstein’s algorithm [17]. An algorithm
to find the top-k shortest paths in directed labeled multi-edge graphs is proposed
at the ESWC top-k shortest paths in large typed RDF graph challenge2 with
immediate validity check for path query restrictions and no triple is allowed to
be repeated [16].

Contribution and outline Our contribution is the assessment of the BFS
based approaches for the exploration of RDF graphs under the HDT compres-
sion. We experiment with the DBpedia RDF graphs stemming from the ESWC
2016 challenge.

The remainder of this paper is structured as follows: after setting out the
prelimirary definitions in Section 2, in Section 3 we present our algorithms and
then report on the evaluation results in Section 4. Section 5 offers concluding
remarks.

1 http://www.visualdataweb.org/relfinder.php
2 http://2016.eswc-conferences.org/top-k-shortest-path-large-typed-rdf-graphs-challenge

http://www.visualdataweb.org/relfinder.php
http://2016.eswc-conferences.org/top-k-shortest-path-large-typed-rdf-graphs-challenge

2 Preliminaries

We consider a graph G to consist of a set of nodes (vertices) V , edge labels L
and directed edges labeled by values from L: G = (V,L,E), where every edge in
E is a triple (x, `, y) with x called source node, y called target node (x, y ∈ V)
and ` ∈ L is an edge label. We define a path in G = (V,L,E) to be a sequence
(e1, . . . , en) of unique edges from E — i.e., ek 6= em for all integer k,m ≤ n, in
which edges ei and ei+1 are adjacent if and only if the target node of ei equals
the source node of ei+1. The source node of p is the source node of the first
edge in it, and the target node of p is the target node of the last edge in p, in
which case p is called a path from s to t. If the source and the target node of a
path coincide, it is called a cycle. According to our definition, paths can contain
cycles as subsequences, as long as no edge is visited twice. Using the standard
graph terminology, our graph G is a multigraph, and every cycle in a path needs
to be a trail, that is a cycle without repeated edges. The length of the path p is a
number of edges in it. By P (s, t), s, t ∈ V we denote the set of all paths from s
to t in G, and by Pasc(s, t) we denote a sequence of all elements of P (s, t) in the
order of ascending lengths. For a graph G defined as above, the k shortest paths
problem takes the nodes s, t from V as input and outputs the first k elements
of a sequence Pasc(s, t). Note that the solution is non-deterministic in general,
since several paths from s to t of any given length can exist.

Our use case will be RDF graphs G = (V,L,E) in which V is a subset of the
set VRDF of resources and L is contained in the set LRDF of predicate names
represented by international resource identifiers (IRIs). The set E is called a set
of RDF triples in the RDF terminology. Note that we do not treat data values
or blank nodes in any special way here: set VRDF can be defined to contain these
types of values as well.

3 Algorithms

A baseline algorithm for the k shortest paths problem using a breadth first search
approach (BFS) is given in Fig. 1. The queue q stores all paths starting at node
start ordered by length. Every path p, extracted from the top of q, gives rise to
a set of paths, each extending p by a single edge. Every such extended path p′ is
again queued in q. Whenever the added edge leads to the node target, p′ is also
appended to the list solutions. The procedure terminates as soon as k solutions
have been found or all nodes in the graph have been explored.

Our first observation here is that copying the prefix p into each new path
p′ should be avoided: instead of paths, q could store tuples with references of
the form (n, e, pr). Here, n is a graph node, e an incoming edge of n, and pr
is a reference to the tuple (n′, e′, pr′) representing the graph node n′ which is
the starting node of the incoming edge e. The link pr points to the tuple that
represents a preceding node in the path, and several tuples can link to the same
predecessor tuple, avoiding the duplication of path prefixes. Thus, references pr
organize the tuples into a tree with the root (start, null, null). The tree can be

Algorithm 2 BFS for k shortest paths

1: procedure KShortestBFS(G, start, target, k)
2: solutions← ∅
3: q ← (start,null,null)
4: while q not empty do
5: (n, e, pr)← q.poll()
6: p← trace((n, e, pr)) . Walk down the pr links, collect edges & nodes
7: for edges e′(n, n′) ∈ G do
8: p′ ← p.append(e′(n, n′))
9: if n′ == target then

10: solutions← solutions.append(p′)
11: if solutions.size ≥ k then
12: return solutions
13: end if
14: end if
15: pr′ ← referenceTo((n, e, pr))
16: q ← q.append((n′, e′, pr′))
17: end for
18: end while
19: return solutions
20: end procedure

traversed from leaves to the root, each traversal corresponding to a candidate
path in the graph. These leaf nodes (and not complete paths like in the baseline
Algorithm 1) are now stored in the queue q, see Algorithm 2.

Our second improvement over the baseline algorithm is the bidirectional
search, listed as Algorithm 3. The paths are now explored not node at a time,
but rather hop at a time: at iteration i, all paths of length i with the start node
start are found and placed in a list called frontier. Two frontiers, forward and
backward, are maintained by the algorithm. At each iteration of the algorithm,
every path in a frontier is replaced by all paths extending it by a single edge.
This operation is called frontier advancement. Paths in the forward frontier can
be traced back to the start node, and the paths in the backward frontier can
be traced to the target node, following the pr links. By joining the two fron-
tiers on graph nodes after each frontier advancement, the BidirectionalBFS
procedure discovers all paths from start to target in the natural order.

Last but not least (although not directly related to the search algorithm),
we use the RDF compression approach HDT [12] to reduce the required size of
the datasets. HDT internally represents graph nodes and edge labels as integers
rather than strings in a way that assigns shorter values to frequently used values.
It also allows for incremental loading of the graph into memory, thus facilitating
the exploration of large graphs.

Algorithm 3 Bidirectional BFS

1: procedure BidirectionalBFS(G, start, target, k)
2: solutions← ∅
3: ff ← (start, null, null)
4: fb ← (target, null, null)
5: fact ← ff ; fpass ← fb . Aliases marking one frontier as active
6: while any of ff , fb not empty and solutions.size ≥ k do
7: advance(fact) . Advance all paths in the active frontier
8: solutions← solutions.appendAll(join(ff , fb))
9: swap(fact, fpass)

10: end while
11: return solutions
12: end procedure

13: function join(ff , fb)
14: result← ∅
15: for (n, e1, pr1) ∈ ff , (n, e2, pr2) ∈ fb do
16: . Concatenate traces obtained by traversing the respective links pri:
17: result← result.appendAll(trace((n, e1, pr1))·trace((n, e2, pr2)))
18: end for
19: return result
20: end function

4 Evaluation

We evaluate the KShortestBFS and BidirectionalBFS algorithms from
Section 3 in two experiments. The first experiment focuses on studying the al-
gorithms in term of runtime and memory usage for different top-k shortest path
tasks and varying size datasets. The second experiment compares our approach
to state-of-the-art algorithms and reported runtimes. In both experiments we are
using the tasks and datasets provided by the ESWC 2016 top-k shortest path
challenge.3

4.1 Datasets and Evaluation Setup

Table 1 shows our two evaluation datasets which are available online.4 The
datasets are provided in nt-format, differ in size (2 GB vs 19 GB raw size)
and in the average degree of the nodes. Note that the diameter (d) of the large
data set grows slower than the number of the nodes and edges, and the density
(D) of the large graph is actually lower than in the small graph.

Tasks: The tasks for our evaluation are also taken from the ESWC 2016 challenge
homepage and are divided into two groups. In task 1, k paths between two given
nodes need to be found in an ascending order of their length. Task 2 adds an

3 http://2016.eswc-conferences.org/top-k-shortest-path-large-typed-rdf-graphs-challenge
4 https://bitbucket.org/ipapadakis/eswc2016-challenge

http://2016.eswc-conferences.org/top-k-shortest-path-large-typed-rdf-graphs-challenge
https://bitbucket.org/ipapadakis/eswc2016-challenge

Table 1. DBpedia dataset properties

Data set #Triples Raw size HDT size |V | Avg. deg. D d

Small 9,996,907 2 GB 532 MB 186679 6.12 1.64 ×10−5 138
Large 110,621,287 19 GB 1.9 GB 1187306 10.40 4.38 ×10−6 201

edge restriction to path, which means that the first or the last edge in a path
must meet a given criteria, hence a specific edge label.

Experiments: We run two experiments: in the first one, we study the impact
of the optimisations outlined in Section 3. All 17 queries — that is, triples
(source, target, k) defining the instances of the k shortest paths problem —
belong to the first task of the ESWC 2016 challenge, asking for paths with no
constraints besides suppressing repeated edges, with the values of k ranging from
2 to 175,560. Filtering out solutions with repeated edges (which we do not count
as paths according to the definitions in Section 2) is not shown in the listings
of Algorithms 1–3 for the sake of simplicity. Besides better alignment with the
requirements of the ESWC 2016 challenge, disallowing repeated edges allows
for obtaining self contained results in the following sense: acyclic paths (that is,
paths without repeated nodes) can be obtained by further filtering the solutions,
and paths with repeated edges can be computed by iterating the cycles in the
solutions. In both cases, the graph does not need to be searched again.

In the second experiment, we compare to the Eppstein’s algorithm imple-
mented by Brandon Smock 5 run on a version of the graph without edge labels,
and also to the results of the ESWC 2016 challenge finalists whose results we
could find in the respective competition reports. For the latter comparison, we
also use the constrained version of the k shortest paths problem (Task 2 of the
ESWC 2016 challenge) in which paths are required to start or end with an edge
having specific label. For all queries there are four different start / target node
combinations with three to six different increasing k queries.

Evaluation metrics & implementation We measure for each tasks the time elapsed
to compute the k shortest path and the maximum memory usage. To measure
the memory, we run a background thread which measures every 5 ms the current
memory allocation and returns the maximum allocation. All our algorithms are
implemented in Java 1.7. For each run, we always start a new JVM instance
to avoid hotspot compiler optimisations in JAVA and also perform aggressive
garbage collection.

All algorithms and evaluation data are available online for reproducibility.6

5 https://github.com/bsmock/k-shortest-paths
6 https://bitbucket.org/vadim_savenkov/k-shortest-paths

https://github.com/bsmock/k-shortest-paths
https://bitbucket.org/vadim_savenkov/k-shortest-paths

4.2 Evaluation results

The results for the first experiments are depict in Figure 1 (runtime) and Fig-
ure 2 (memory usage) and show the average over 10 runs for the two datasets
(small and large) and the two algorithms KShortestBFS (bfs) and Bidirec-
tionalBFS (bibfs). The x-axis shows the tasks, ordered by their start and end
node and parameter k. The y-axis shows in logscale the required time and mem-
ory usage, respectively. The labelling is aligned with the task name of the ESWC
2016 challenge, e.g. q1 8 indicates query1 of task 1 which asks for the top-8 path.
Please note, that the reported runtimes do not include the time needed to output
the solution paths, that is, converting the internal HDT ids to IRIs.

The second important aspect for an algorithm is the memory consumption.
Even though memory is not as expensive as some years ago, we still strive for a
low memory usage and not to store more information as required. Regarding the
computation time (cf. Figure 1), the results show that the BidirectionalBFS
algorithm outperforms the KShortestBFS algorithm for both datasets in all
tasks by up to 3 orders of magnitudes. While in general the runtime increases
with the parameter k, we can observe some interesting results for q2 for which
the runtime stays more or less constant (cf. q2 79 and q2 154). One reason for
this observation might be the graph structure and that the shortest path are
sharing many sub path. A similar behaviour can be observed for the task q1 344
and q1 1068 with the BidirectionalBFS algorithm.

Regarding the maximum memory consumption (cf. Figure 2), our experiment
again shows that the bidrectional search algorithms outperforms the one direc-
tional search by up to 1 order of magnitude. We measured a maximum memory
allocation of ∼10Gb for large k. An interesting observation is that the mem-
ory consumption for the q2 tasks seems to be fairly constant independent of k,
while the task q1 requires more memory with increasing k. This again indicates
a strong influence of the graph structure and the performance, while we also
see that the BidirectionalBFS algorithm is less affected by the underlying
structure.

Overall, our results clearly show that for the tasks and datasets of the ESWC
challenge a bidirectional top-k shortest path search algorithms outperforms the
straight forward breadth-first search algorithm in terms of computation time and
memory consumption. As expected, the structure of the graph which is traversed
from the start or target node directly influence the evaluation measures. A bi-
directional search seems to be less influenced by the structure.

Next, we compare our winning BidirectionalBFS algorithm with the re-
ported results of the participants of the ESWC challenge and compare also to
an implementation of the Eppstin algorithm. The ESWC 2016 challenge pub-
lished for the larger dataset two queries each for the two tasks: all four resulting
queries have the same start and target node. The unconstrained (Task 1 of the
challenge) queries have k set to 337 (T1Q1) and 53008 (T1Q2), the queries with
edge restriction (Task 2 of the challenge) have k 374 (T2Q2) and 52664 (T2Q2).
The edge restriction of the “T2”-queries limits the first or the last predicate in
the property path be http://dbpedia.org/property/after. The Eppstein al-

q1-8

q1-344

q1-1068

q1-20152
q2-3

q2-4
q2-79

q2-154
q3-36

q3-336

q3-4866
q4-2

q4-16
q4-250

q4-1906

q4-20224

q4-175560

tasks

10-1

100

101

102

103

104

105

106

e
la

p
se

d
 t

im
e
 i
n
 m

se
c

(l
o
g
sc

a
le

) bfs (small) bibfs (small) bfs (large) bibfs (large)

Fig. 1. Avg. elapsed time over 10 runs

gorithm has been run on a version of the graph in which IRIs are replaced by
integers and with no multiedges (i.e., replaced by a single edge with weight 1).
This results in a smaller, less complex dataset for the case of the Eppstein’s
algorithm (whereas the BidirectionalBFS runs on the original multigraph).
The two queries with edge restrictions are not evaluated for the Eppstein algo-
rithm, as the version we used for comparison does not support multiedges. Please
note, that for a better comparison, we also included in the reported runtimes
the output of the results, on contrast to the first experiment.

The challenge submission by Hertling et.al. [16] uses a modified version of
Eppstein’s algorithm to solve challenge queries (labelled as ”Eppstein modi-
fied”). The modifications made are such that every computed path is immedi-
ately checked for its validity (no recurring node - edge - node triple in the path)
and only valid paths are added to the result list. Furthermore, paths with multi-
ple sidetracks are pruned. The second challenger uses triple pattern fragments to
solve the challenge queries with a streaming algorithm [8], labelled “TPF”. We
added the reported runtimes from the challenge submission as reference values
to our figure.

The evaluation results are depict in Figure 3 and show that the Bidirec-
tionalBFS algorithm outperforms the algorithms proposed by the other chal-
lengers and the standard Eppstein algorithm by 3 orders of magnitude. The
implementation of the standard Eppstein algorithms shows in general the slow-
est performance. We assume that the slow retrieval times of the TPF is due to
establishing http connections and the transfer of the result path over the network
which adds some overhead. We also see that the optimisations of the modified
Eppstein algorithms slightly outperforms the original algorithm. In contrast, our
approach seems to benefit from the compression and the fast lookups in HDT
and that the approach only loads the relevant parts of the graph into memory.

q1-8

q1-344

q1-1068

q1-20152
q2-3

q2-4
q2-79

q2-154
q3-36

q3-336

q3-4866
q4-2

q4-16
q4-250

q4-1906

q4-20224

q4-175560

tasks

10-1

100

101

102

103

104

105

m
e
m

o
ry

 u
se

 i
n
 M

b
 (

lo
g
sc

a
le

) bfs (small) bibfs (small) bfs (large) bibfs (large)

Fig. 2. Avg. max memory usage over 10 runs

100

101

102

103

104

105

106

T1Q1 T1Q2 T2Q1 T2Q2
Tasks

E
la

ps
ed

 ti
m

e
in

 m
se

c
(lo

gs
ca

le
)

BiBFS Eppstein Eppstein modified TPF

Fig. 3. Experiment 2: Performance of BidirectionalBFS against other algorithms

5 Discussion and Conclusion

The task of finding paths in a graph has been of interest since decades. The
constantly growing size of datasets cannot be fully absorbed by the increase in
computational power over the last years, which motivates the research of time
and memory efficient algorithms for processing large amounts of data.

In this paper we designed and experimented with a bidrectional breadth-
first search algorithm to find the k shortest paths in a graph and applied it to
the DBpedia dataset stemming from the ESWC 2016 challenge. The training
dataset of the challenge (a small dataset of Table 1) for which complete results
have been published by the challenge organizers, allowed us, in particular, to
validate the correctness of our implementation and to put it in the context of
other approaches. Our experiments reported in Section 4 demonstrate that a
memory intensive BFS approach can be adopted for solving the k shortest paths
problem in a time and memory efficient way, outperforming implementations

using other top-k algorithms. In addition, our results again confirmed that the
underlying graph structure influences the runtime and memory usage.

Our future work can be grouped into two directions. The first direction is
to further optimise our algorithm. We will study in more detail the correlation
between graph structure and performance of the algorithm and research optimi-
sations for particular graph characteristics. Another challenge we plan to address
is to detect/approximate if and how many paths exists between two nodes and
as such avoiding to load the whole graph into memory in the worst case.

The second direction in future work is to applied and study the bidirectional
BFS-based search algorithm to graphs of different domains. We plan to apply
it for exploring transaction networks of virtual currencies like Bitcoin to find
relations between addresses. Several different paths between the same addresses
might be an indicator for criminal activities where users try to obfuscate the
flow of Bitcoins. Supporting path constraints based on regular expressions will
be an important next step as well, making the algorithm usable in the graph
database domain (e.g., as a Neo4J plugin or in SPARQL processors for the path
query evaluation).

6 Acknowledgement

This work was funded by the Austrian research funding association (FFG) under
the scope of the ICT of the Future program (contract # 849906).

References

1. JGraphT, https://jgrapht.org/
2. Neo4j–The World’s Leading Graph Database, https://neo4j.com/
3. Rdf dumps, https://www.w3.org/wiki/DataSetRDFDumps
4. Ahuja, R.K., Mehlhorn, K., Orlin, J., Tarjan, R.E.: Faster algorithms for the short-

est path problem. Journal of the ACM (JACM) 37(2), 213–223 (1990)
5. Aljazzar, H., Leue, S.: K∗: A heuristic search algorithm for finding the k shortest

paths. Artif. Intell. 175(18), 2129–2154 (2011), http://dx.doi.org/10.1016/j.

artint.2011.07.003

6. Bellman, R.: On a routing problem. Tech. rep., DTIC Document (1956)
7. Brander, A.W., Sinclair, M.C.: A Comparative Study of k-Shortest Path Algo-

rithms, pp. 370–379. Springer London, London (1996), http://dx.doi.org/10.

1007/978-1-4471-1007-1_25

8. De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.: using Triple Pattern
Fragments to Enable Streaming of Top-k Shortest Paths via the Web. Tech. rep.,
Ghent University, iMinds - Data Science Lab (2016)

9. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Algorithmics of Large and
Complex Networks: Design, Analysis, and Simulation, chap. Engineering Route
Planning Algorithms, pp. 117–139. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-02094-0_7

10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959), http://dx.doi.org/10.1007/BF01386390

https://jgrapht.org/
https://neo4j.com/
https://www.w3.org/wiki/DataSetRDFDumps
http://dx.doi.org/10.1016/j.artint.2011.07.003
http://dx.doi.org/10.1016/j.artint.2011.07.003
http://dx.doi.org/10.1007/978-1-4471-1007-1_25
http://dx.doi.org/10.1007/978-1-4471-1007-1_25
http://dx.doi.org/10.1007/978-3-642-02094-0_7
http://dx.doi.org/10.1007/BF01386390

11. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (Feb
1999), http://dx.doi.org/10.1137/S0097539795290477

12. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary rdf representation for publication and exchange (hdt). Web Semantics:
Science, Services and Agents on the World Wide Web 19, 22–41 (2013), http:

//www.websemanticsjournal.org/index.php/ps/article/view/328

13. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345–345 (Jun
1962), http://doi.acm.org/10.1145/367766.368168

14. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4(2), 100–107 (July 1968)

15. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: Seman-
tic Multimedia: 4th International Conference on Semantic and Digital Me-
dia Technologies, SAMT 2009 Graz, Austria, December 2-4, 2009 Proceedings,
chap. RelFinder: Revealing Relationships in RDF Knowledge Bases, pp. 182–187.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009), http://dx.doi.org/10.

1007/978-3-642-10543-2_21

16. Hertling, S., Schröder, M., Jilek, C., Dengel, A.: Top-k Shortest Paths in Directed
Labeled Multigraphs. Tech. rep., Knowledge Management Group, German Re-
search Center for Artifical Intelligence (DFKI) GmbH (2016)

17. Jiménez, V.M., Marzal, A.: Experimental and Efficient Algorithms: Second In-
ternational Workshop, WEA 2003, Ascona, Switzerland, May 26–28, 2003 Pro-
ceedings, chap. A Lazy Version of Eppstein’s K Shortest Paths Algorithm, pp.
179–191. Springer Berlin Heidelberg, Berlin, Heidelberg (2003), http://dx.doi.
org/10.1007/3-540-44867-5_14

18. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM
24(1), 1–13 (Jan 1977), http://doi.acm.org/10.1145/321992.321993

19. Lawler, E.L.: A procedure for computing the k best solutions to discrete opti-
mization problems and its application to the shortest path problem. Management
Science 18(7), 401–405 (1972), http://dx.doi.org/10.1287/mnsc.18.7.401

20. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science
17(11), 712–716 (1971), http://dx.doi.org/10.1287/mnsc.17.11.712

http://dx.doi.org/10.1137/S0097539795290477
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://doi.acm.org/10.1145/367766.368168
http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://dx.doi.org/10.1007/3-540-44867-5_14
http://dx.doi.org/10.1007/3-540-44867-5_14
http://doi.acm.org/10.1145/321992.321993
http://dx.doi.org/10.1287/mnsc.18.7.401
http://dx.doi.org/10.1287/mnsc.17.11.712

	On finding the k shortest paths in RDF data

