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Abstract: In this paper, a real-time robust closed-loop control scheme for controlling the velocity
of a Direct Current (DC) motor in a compound connection is proposed. This scheme is based on
the state-feedback linearization technique combined with a second-order sliding mode algorithm,
named super-twisting, for stabilizing the system and achieving control goals. The control law is
designed to track a periodic square reference signal, being one of the most severe tests applied to
closed-loop systems. The DC motor drives a squirrel-cage induction generator which represents
the load; this generator must work above the synchronous velocity to deliver the generated power
towards the grid. A classical proportional-integral (PI) controller is designed for comparison purposes
of the time-domain responses with the proposed second-order sliding mode (SOSM) super-twisting
controller. This robust controller uses only a velocity sensor, as is the case of the PI controller, as the
time derivative of the velocity tracking variable is estimated via a robust differentiator. Therefore,
the measurements of field current and stator current, the signal from a load torque observer, and
machine parameters are not necessary for the controller design. The validation and robustness test of
the proposed controller is carried out experimentally in a laboratory, where the closed-loop system
is subject to an external disturbance and a time-varying tracking signal. This test is performed in
real time using a workbench consisting of a DC motor—Alternating Current (AC) generator group,
a DC/AC electronic drive, and a dSPACE 1103 controller board.

Keywords: compound DC motor velocity controller; feedback linearization; second-order
sliding modes

1. Introduction

To emulate a wind system in a lab application, a motor–generator couplet for reproducing
the turbine operation can be used. The motors able to perform this task are the squirrel-cage induction
motor, the permanent magnet synchronous motor, and the DC motor. It is important to point out
that the DC motor can be set at a wide range of velocities operating in a maximum torque condition,
which makes it the first option for the wind system emulator. A squirrel-cage induction generator
is mechanically coupled to the DC motor working above synchonous velocity for delivering power
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to the grid. The power generated by the induction generator is fed directly into the grid without
using any controller for it [1]. Controlling the DC motor speed in a sharp way can produce the
effect of having a wind system connected in the lab, and the turbine power profile can be effectively
obtained. In this regard, a robust, fast, reliable and cheap controller is needed for the DC motor.
A closed-loop hysteresis regulator for emulating a wind turbine is illustrated in [2], where the armature
current is controlled to regulate the DC motor electromagnetic torque. Here, if the error between
the reference and the output exceeds the hysteresis upper limit, a negative voltage is applied to
the DC motor armature. However, if the current error reaches the lower limit, a positive voltage is
applied. A discontinuous control using sliding modes techniques with a non-linear sliding surface
for robust disturbance rejection is exemplified in [3]. Linearization techniques by discrete-time
block control combined with sliding modes and high-order neural networks are applied to track
a velocity trajectory of a DC motor in [4]. The employment of an intelligent control method by
fuzzy logic strategy is used to demonstrate how much the DC motor relies on the armature circuit
or on the field circuit to produce the require velocity and is validated in [5]. An artificial controller
based on a neural network model in order to keep the DC motor in the constant torque region is
presented in [6]. Different applications using a super-twisting algorithm as a second-order sliding mode
(SOSM) technique are reported in the literature. For example, an emulator of a scaled wind system,
where a sliding surface is defined applying the block control linearization technique, combined with
a super-twisting algorithm for controlling both the DC motor and a doubly-fed induction generator is
exemplified in [7]. In [8], the super-twisting algorithm is employed to control a doubly-fed induction
generator-based wind turbine, where the control objective is the maximization of power extraction,
according to a bounded signal given by maximum power point tracking. Additionally, the upper
bound of admissible unknown disturbances and the lower bound of the convergence time of the
super-twisting algorithm are shown in [8]. Also, an adaptive super-twisting control algorithm for
a two-degrees-of-freedom helicopter is presented in [9], where a nonlinear extended state observer is
proposed for estimating the required non-measurable states, as well as parametric uncertainties and
external disturbances. Another control strategy using the super-twisting algorithm is shown in [10,11].
In [11], the Lyapunov approach is applied to control a variable-speed wind system connected to the
utility grid.

This paper proposes a robust SOSM super-twisting velocity controller applied to a compound
DC motor. The main contributions are as follows. Firstly, the design of the sliding surface does not
depend on the machine parameters, only depending on velocity measurement due to the application
of a SOSM super-twisting differentiator for estimating the time derivative of the velocity error variable.
Therefore, the SOSM super-twisting controller proposed in this work does not depend on the plant
parameters as a classical proportional-integral (PI) controller does. Secondly, regarding a stability
procedure obtained from the literature, the convergence ranges of controller gains in order to guarantee
the robustness of the complete closed-loop system are obtained. Thirdly, real-time experiments are
performed in a laboratory to validate the SOSM super-twisting velocity controller proposed using
a machine group composed of a DC motor coupled to a squirrel-cage induction generator. Two-step
severe simultaneous external disturbances are set up: a pulse train signal above synchronous velocity
as reference signal and a pulse train of variations on the load torque, developed by the induction
generator. Finally, the standard parameters (overshoot, rise time, falling time and settling time) of the
time-domain responses to the PI controller and the SOSM super-twisting controller, with and without
differentiators, are quantified and compared for assessment of the proposed controller.

This paper is organized in the following form: Section 2 introduces the compound DC motor
mathematical model; the state-feedback linearization technique is described in Section 3; the design
of the classical PI controller is explained in Section 4; the second-order sliding modes super-twisting
algorithm is presented in Section 5; a robust differentiator to estimate de derivative of velocity tracking
error is designed in Section 6; experimental results are provided in Section 7; and finally, conclusions
are given in Section 8.
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2. Direct Current Motor Mathematical Model

The DC motor is an energy conversion device from electrical input to mechanical output with
many years of evolution in its manufacturing history. This machine is very versatile, and it is
possible to perform several connection configurations of the field windings and then establish different
operating characteristics. Using the DC motor as the prime motor, a wide range of velocities can be set.
By modulating the voltage applied to armature winding, the DC motor works from rest to nominal
velocity, and by weakening the machine’s field, winding velocities over those rated could be achieved.
The DC motor with compound connection is composed of an armature winding which is mounted in
slots of iron core laminations on the shaft, a shunt (principal), a series of (auxiliary) field windings
mounted in the slots’ stators, a set of brushes for external electrical connection, and an enclosure to
protect and align the machine with the mechanical system to impell and direct the mechanical stress
towards the base. The main parts of the DC motor are shown in Figure 1a.

The mathematical model for the compound DC motor is established from the rotatory movement
equation involving the shaft masses and its support points, and applying the voltage equilibrium
equation to the armature circuit, considering the two magnetomotive forces of the shunt and series
field windings. It is a common practice to consider linearity between the effective field current ie f f and
its magnetizing flux produced φm due to the airgap. Then, the compound DC motor model can be
expressed in the following form:

dωm

dt
= − 1

τm
ωm +

Km

Jm
ie f f ia −

1
Jm

TL ,

dia

dt
= −

K f

LT
ie f f ωm −

1
τT

ia +
1

LT
ua ,

(1)

with
ie f f = i f ±

Ns

N f
ia, (2)

and
τm =

Jm

Bm
; τT =

LT
RT

=
Ls + La

Rs + Ra
,

where ωm and ia are the angular velocity and armature current as the state variables, respectively. ie f f
is an input to the system (1) which varies slightly according to the increase of armature current ia. It is
defined by the total effect of the magnetomotive forces established by the field current i f in the shunt
winding (main field), and the armature current flowing in the series winding (auxiliary field) that can
connect in an accumulative (plus sign) or differential (negative sign) form. Ns

N f
is the turn ratio between

the series and shunt windings; and Rs and Ls are the resistance and inductance of the series winding,
respectively. Ra and La are the resistance and inductance of the armature winding, respectively. τT and
τm are the electrical and mechanical time constants, respectively. Km and K f are the DC motor constants
with the same value and different units, and both are established considering a linear ratio between
the effective field current ie f f and the resulting magnetic flux (Km defines the electromagnetic torque,
while K f defines the induced voltage in the armature winding). Bm represents the viscous friction
coefficient at the support points, and Jm denotes the moment of inertia to the masses involved at the
shaft train. Model (1) is a second-order linear system with two electrical inputs: armature voltage ua

and effective current ie f f , which is modeled as an external disturbance; and there is one mechanical
input TL named the load torque which is also considered as an external disturbance. It is important
to remark that the load torque is not measured by a sensor but estimated by an asymptotic observer,
which is modeled as follows:

dω̂m

dt
= − 1

τm
ω̂m +

Km

Jm
ie f f ia −

1
Jm

T̂L + l1 (ωm − ω̂m) ,

dT̂L
dt

= l2 (ωm − ω̂m) ,
(3)
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where l1 and l2 are constants defined to stabilize the observation error.
On the other hand, the DC motor velocity is controlled above the synchronous velocity in order

to connect the induction generator directly to the grid. In this case, the induction generator represents
the mechanical load for the DC motor. The developed power of the generator increases with the
slip velocity which is the difference between the synchronous velocity and rotor velocity; therefore,
when the speed goes up, the power delivered to the grid grows in a similar way. The block scheme
for the DC motor velocity controller is shown in Figure 1b. The measured variables are the field and
armature currents i f and ia, and angular velocity ωm. Meanwhile, the effective current is calculated as
indicated in (1) and the load torque is estimated by an asymptotic observer. The control signal ua is
conditioned to feeding the armature circuit through the pulse width modulation (PWM) technique to
activate the gates of the insulated gate bipolar transistors (IGBTs) which are arranged in “H" bridge
converter. To quantify the delivered power by AC generator toward the grid, the currents in each
phase and two line-to-line voltages at the bus are measured.

Figure 1. (a) DC motor scheme, and (b) DC motor velocity controller scheme.

3. State Feedback Linearization

The state-feedback linearization technique can be applied both linear and non-linear systems.
It consists of applying a similitude transformation to a dynamic system for obtaining an equivalent
linear system with new state variables. A control law is then designed to relocate the eigenvalues in
the new linear system. This new system representation is named control canonical form as to each
state variable has a connection directly with the control input through the feedback branch.

Consider a single-input single-output (SISO) linear system in a control canonical form defined
by [12]:

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = −b0x1 − b1x2 − · · · − bn−2xn−1 − bn−1xn + g(x, t) + u

y = a0x1 + a1x2 + · · ·+ an−2xn−1 + an−1xn

(4)

where u and y represent the input and output of the system, respectively; xn denotes the n-th plant state
variables; n is the state dimension; the coefficients ak and bk, k = 1, 2, . . . , n− 1 represent parameters of
the plant; and g(x, t) is a smooth and bounded function and it models the external disturbances and
parameter variation.
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Let us start the feedback linearization technique to represent the DC motor model (1) into
the control canonical form (4), by defining a new variable error ε1 as:

ε1 = ωre f −ωm, (5)

where ωre f represents the reference signal to be tracked and ωm is the DC motor velocity. Upon
differentiating Equation (5), and based on system (1), the velocity error dynamics takes the form:

ε̇1 = ω̇re f +
1

τm
ωm −

Kmie f f

Jm
ia +

1
Jm

TL. (6)

Define a new state variable error ε2 as the first time derivative of ε1:

ε2 = ε̇1 . (7)

Taking its first derivative, involving system (1), results in:

ε̇2 =
d2ωre f

dt2 +
1

τm

dωm

dt
−

Kmie f f

Jm

dia

dt
+

1
Jm

dTL
dt

, (8)

and solving for the armature current ia from (6) and involving (5), results in:

ia =
Bm

Kmie f f

(
ωre f − ε1

)
− Jm

Kmie f f
ε2 +

Jm

Kmie f f
ω̇re f +

1
Kmie f f

TL. (9)

Using (1), (5) and (9) into (8), replacing Km with K f for simplicity of operation as they have the
same values, the control canonical form of the DC motor model results are as follows:

ε̇1 =ε2

ε̇2 =−
(

K2
f i2e f f

JmLT
+

1
τTτm

)
ε1 −

(
1

τT
+

1
τm

)
ε2

+ ω̈re f +

(
1

τT
+

1
τm

)
ω̇re f +

(
K2

f i2e f f

JmLT
+

1
τTτm

)
ωre f

+
1
Jm

ṪL +
1

JmτT
TL −

K f ie f f

JmLT
ua .

(10)

System (10) has the following characteristics: (a) it is equivalent to a compound DC motor
model (1) with the same modes of operation (eigenvalues); (b) the ratio between the effective
field current ie f f (2) and the produced magnetizing flux φm is nonlinear in real-time applications;
(c) the effective current ie f f , being a system input, has small variations around the constant shunt
field current (main field) due to the armature current variations that flow in the series winding
(auxiliary field); (d) the DC motor is subject to parameter variations, for example: changes of armature
resistance by temperature variations; (e) the procedure of machine parameter identification is uncertain;
(f) the reference signal, as an external disturbance, is a periodic square signal (pulse train) above
synchronous velocity, being one of the most severe disturbances applied to closed-loop systems;
and (g) the load torque, as an external disturbance, varies in a pulse train form according to the slip
velocity of the induction generator that delivers power to the utility grid. Taking into account the
aforementioned characteristics, we can consider the DC motor as a complex system. From the control
canonical form (10), the control law ua rejects the external perturbations (TL and ṪL), and cancels the
reference velocity ωre f and its first and second time derivatives; furthermore, the control law stabilizes
the system with faster eigenvalues and steers the two error variables ε1 and ε2 asymptotically to zero
in finite time; therefore, the system (10) becomes:[

ε̇1

ε̇2

]
=

[
0 1
−K1 −K2

] [
ε1

ε2

]
, (11)
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and choosing constants K1 > 0 and K2 > 0, the closed loop system (11) is asymptotically stable.
Once system (11) is achieved through the control law ua, the new eigenvalues are calculated by

the following determinant:

det

(
s

[
1 0
0 1

]
−
[

0 1
−K1 −K2

])
= s2 + K2s + K1 = 0 , (12)

and these eigenvalues are related with the stable dynamics K1 and K2 through quantifying the roots
of (12) with the following equations:

p1 =
K1

p2
,

p2 =
K2

2
+

√(
K2

2

)2
− K1,

(13)

where p1 and p2 meet Re [pi] > 0 and denote the specified eigenvalues of the closed-loop system (11)
being faster than the eigenvalues of open-loop system (1); so the dynamic system’s response (11) is
faster than the response of system (1).

4. Classical PI Controller

This section introduces the classical proportional-integral (PI) controller. The PI algorithm as
a standard control law is obtained directly from the velocity tracking error variable. It consists of
proportional and integral terms, and is represented as follows:

ua = Kpε1 + Ki

∫
ε1dt, (14)

where Kp is a constant gain at the proportional term to the velocity error variable ε1, and Ki is a constant
gain at the integral term of the error variable ε1. The proportional term, Kpε1 acts with enough energy
to stabilize the velocity error ε1 and steers it to zero in finite time even in the presence of external
disturbances or changes in the reference signal. The system with only proportional control usually
presents a steady-state offset which gets smaller as the gain is increased. To overcome this difficulty,
the integral term Ki

∫
ε1dt makes sure the steady state offset is eliminated, and consequently

the velocity error variable ε1 remains closed to zero. The feedback system (10) with disturbances
involving the PI controller takes the following form: ε̇0

ε̇1

ε̇2

 =


0 1 0
0 0 1

−K f ie f f
Jm LT

Ki −
(

K2
f i2e f f

Jm LT
+ 1

τTτm
+

K f ie f f
Jm LT

Kp

)
−
(

1
τT

+ 1
τm

)

 ε0

ε1

ε2



+

 0 0 0
0 0 0

1
(

1
τT

+ 1
τm

)
1
Jm


 ω̈re f

ω̇re f
ṪL

+


0 0
0 0(

K2
f i2e f f

Jm LT
+ 1

τTτm

)
1

JmτT


[

ωre f
TL

]
(15)

where its characteristic polynomial by applying Equation (12) into (15) results in:

λ3 +

(
1

τT
+

1
τm

)
λ2 −

(
K2

f i2e f f

JmLT
+

1
τTτm

+
K f ie f f

JmLT
Kp

)
λ +

K f ie f f

JmLT
Ki = 0. (16)

Using Routh’s stability criterion [12], the control gains Ki and Kp must meet the
following constraints:

Ki > 0, (17)
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and,

Kp >
τmτT

τm + τT
Ki −

BmRT
K f ie f f

− K f ie f f . (18)

Once inequalities (17) and (18) meet, the closed system (15) is asymptotically stable.

5. Second-Order Sliding Mode Super-Twisting Controller

The sliding mode is a robust control technique based on variable structure systems for controlling
non-linear closed-loop systems operating under uncertain conditions. The sliding mode technique has
the property of reducing the order system through the sliding surface design involving the system
variables; this surface is the argument of a discontinuous control law. This control input commutes at
high frequency, ensuring a motion of the state variables towards the sliding surface. This motion is
called the sliding mode [13]. These characteristics are related with the first-order sliding mode (FOSM).

The high frequency commutation of FOSM produces a chattering effect which is characterized by
dangerous high-frequency vibrations of the controlled system. In order to reduce the chattering effect,
second-order sliding modes (SOSMs) are an alternative technique, which use the basic FOSM idea but
act in both the sliding surface and its first derivative.

A very effective SOSM technique applied in closed-loop systems is the super-twisting algorithm
which is applicable to a system where control appears in the first derivative of the sliding
variable [14,15]. The super-twisting algorithm has the following advantages: (1) it compensates
uncertainties that are Lipschitz; (2) it requires only information of the sliding variable; (3) it provides
finite-time convergence to the origin for the sliding variable and its time derivative simultaneously;
and (4) it generates continuous control signals and reduces the chattering [15].

In this proposal, the state feedback linearization technique is combined with the SOSM
super-twisting algorithm to achieve robustness in the velocity tracking controller design. By applying
the linearization technique, a sliding variable s is designed which is the argument of the super-twisting
algorithm as the control law. The control canonical form (10) has a relative degree of two; then, in
order to reduce the relative degree of system (10) and to set a robust closed-loop system, the following
transformation is proposed:

s = C1ε1 + ε2, (19)

where its first-order dynamics, involving system (10), result in:

ṡ = ρ− Kvua , (20)

where:

ρ =−
(

K2
f i2e f f

JmLT
+

1
τTτm

)
ε1 −

(
1

τT
+

1
τm
− C1

)
ε2

+ ω̈re f +

(
1

τT
+

1
τm

)
ω̇re f +

(
K2

f i2e f f

JmLT
+

1
τTτm

)
ωre f

+
1
Jm

ṪL +
1

JmτT
TL,

and

Kv =
K f ie f f

JmLT
.

To stabilize system (20) and steer the sliding variable s to the origin, the super-twisting control
algorithm is applied [14]:

ua = λ|s|1/2sign s +
∫ t

0
α sign s (τ) dτ . (21)
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By applying the control law ua (21) in new system (20), the sliding variable s steers toward zero
in finite time with an asymptotically stable movement of ε̇1 = −C1ε1, where C1 is a new eigenvalue,
and its value can be greater than the two eigenvalues in the open-loop operation of the compound DC
motor. C1 is restricted by the amount of energy of the actuator and the rated voltage of the DC motor.
To define the range of the control gains, λ and α for which the closed-loop system (20) is stable,
we have reviewed reference [16,17], where a Lyapunov function is proposed to study more deeply
the convergence of the super-twisting algorithm when strong disturbances are present. System (20)
with control law (21) can be represented as follows:

ṡ = −Kvλ|s|1/2sign(s) + s1 + ρ ,

ṡ1 = −Kv α sign(s) ,
(22)

By simplifying (22), this closed-loop system can be presented as:

ṡ = −k1|s|1/2sign(s) + s1 + ρ ,

ṡ1 = −k2 sign(s),
(23)

where:

k1 = Kvλ ,

k2 = Kvα .
(24)

Applying the following transformation proposed by [16–18]:

ς =
[
|s|1/2sign(s) s1

]>
, (25)

and its time derivative:
ς̇ =

1
|ς1|

[
1
2 (−k1ς1 + ς2 + ρ) −k2ς1

]>
, (26)

where:
|ς1| = |s|1/2.

System (23) can be represented in linear form as follows:

ς̇ =
1
|ς1|

(Aς + ρ) (27)

where:

A =

 −1
2

k1
1
2

−k2 0

 and ρ =

 1
2

ρ

0

 ,

and the external disturbance ρ is bounded by:

|ρ| = δ|s|1/2 , δ > 0. (28)

To analyse stability condition for system (27), we apply the following candidate Lyapunov
function [16–18]:

V (ς) = ς>Pς , (29)

where:

P =
1
2

[
4k2 + k2

1 −k1

−k1 2

]
.

Taking the derivative of the candidate Lyapunov function results in:

V̇ (ς) =
1
|ς1|

ς>
(

A>P + PA
)

ς +
2
|ς1|

ς>Pρ. (30)
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Assume that the external disturbance ρ satisfies the following bound:

ρ = δ|s0|1/2 sign (s0) = δς1. (31)

Substituting (31) into the second term of (30) and grouping terms yields:

V̇ (ς) = − 1
|ς1|

ς̇>Qς (32)

where:

Q =
k1

2

 k2
1 + 2k2 − δ

(
k1 + 4

k2

k1

)
−k1

− (k1 − δ) 1

 .

For matrix Q to be a definite positive, the values of k1 and k2 should fulfill the following relations:

k1 < δ , (33)

k2 >
1
4

k2
1 (δ− k1)

k1 − 2δ
. (34)

Consequently, the range of the gains controller λ and α, involving (22), are defined as:

λ <
1

Kv
δ , (35)

α >
1
4

Kvλ2 (δ− Kvλ)

Kvλ− 2δ
. (36)

Therefore, the time derivative (32) is negative definite and the asymptotic stability is ensured.
As a result, the control bounds λ and α provide finite time attractively of the sliding mode on the set
s = 0 and ṡ = 0 and asymptotic movement of the velocity tracking error ε1 is achieved. On the other
hand, in order to avoid quantifying ε2 in (7) using (6) it is necessary to have access to the data reported
by the field current sensor, armature current sensor, and the load torque observer as well as some
machine parameters; in this work, a robust differentiator to estimate the variable ε2 is designed and
presented in next section.

6. Robust Differentiator

A first-order robust differentiator is used to calculate the change rate with respect to time
(the derivative) of any smooth function f (t) defined in the interval [0, ∞). This function can have
a bounded Lebesgue-measurable noise with an unknown base function f0(t) with the first time
derivative having a known Lipschitz constant L > 0 [19]. The designed differentiator consists in
finding real-time robust estimations of f0(t) and ḟ0(t), with the function derivative being exact in the
absence of noise and robust in the presence of noise. The robust differentiator includes the auxiliary
system:

ż = v, (37)

where v is the input control. The control argument is defined as x = ε1 − z and the control action
forces x = 0 into 2-sliding mode. Once ẋ = x = 0, the variable z = ε1 and ε̇1 = v and ε̈1 < L.

Let us now employ the first-order differentiator (37) to calculate the derivative of the tracking
velocity error ε1, and using the super-twisting algorithm, the following system is obtained:

ε̇1 = ε2 = λ1
∣∣ ε1 − z

∣∣1/2 sign (ε1 − z) + w

ẇ = λ2 sign (ε1 − z)
, (38)
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ε2 = λ1|ε1 − z|1/2sign (ε1 − z) +
∫ t

0
λ2 sign (ε1(τ)− z(τ)) dτ ,

where both ε2 and v can be taken as the differentiator outputs.
For any λ2 > L, with λ1 sufficiently large, ε2 converges in finite time to ḟ0(t).

Additionally, sufficient convergence conditions are given by [19]:

λ2 > L,
2 (λ2 + L)2

λ2
1 (λ2 − L)

< 1, (39)

nevertheless, the differentiator parameters λ1 and λ2 can be obtained via a process of trial and error.

7. Experimental Results

The hardware for the DC motor velocity controller is illustrated in Figure 2, and described
as follows:

1. A D1154 Baldor compound DC motor mechanically coupled to an 8231-02 Lab-Volt squirrel-cage
induction generator.

2. A BEI HS35 incremental optical encoder with 2048 pulses mounted on the shaft train.
3. A measurement interface with HX 05-NP current sensors to measure the field and

armature currents.
4. A dSPACE DS1103 data acquisition board which is linked with the real-time interface (RTI) as the

display device.
5. A SEMITEACH IGBT module converter by Semikron.

Figure 2. DC motor–AC induction generator group test prototype.

The nameplate data and model parameters for the DC motor are presented in Table 1.
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Table 1. DC motor nameplate data and model parameters.

DC Motor
Nameplate Data

DC Motor
Model Parameters

Power 746 W Armature resistance Ra 2.18 Ω
Field Voltage Vf 115 V Armature inductance La 13.5 mH
Armature current Ia 8.0 A Series resistance Rs 0.28 Ω
Field current I f 0.5 A Series inductance Ls 2.7 mH
Rotor velocity ωm 1750 r.p.m. Shunt field resistance R f 240 Ω

Shunt field inductance, L f 0.642 H
Constant motor K f , Km 1.227
Inertia moment Jm 0.0026 N·m·s2

Friction coefficient Bm 0.0016 N·m·s
Generator inertia moment Jg 0.0022 N·m·s2

Generator friction coefficient Bg 0.0012 N·m·s
Turn-ratio Ns/N f 0.0163

This paper presents results of two experiments, with a PI velocity controller and an SOSM
super-twisting velocity controller, both subject to the same disturbances in the system. The first
disturbance consists of applying a pulse train of the reference velocity from 1820 rpm. to 1900 rpm.
with a period t = 4 s, see Figure 3a. The second disturbance is referred to the load torque applied to
the DC motor when it drives a squirrel-cage induction generator above the synchronous velocity. The
induction generator is characterized by delivering the generated power directly to the utility grid when
it operates above the synchronous velocity and its generated power is in function of the machine slip.
The tuning parameters of each controller were set experimentally to get the best dynamical velocity
tracking with the square wave reference. A robust differentiator is proposed for estimating the time
derivative of the velocity tracking variable; therefore, a unique speed sensor is used for both controllers.
However, in order to validate the SOSM super-twisting velocity controller using the differentiator,
the time derivative of the velocity tracking variable ε2 is calculated using measurements of the armature
current and field current, and estimation of the load torque obtained via an asymptotic torque observer.
The parameters of the asymptotic observer l1 = 1120 and l2 = −1285 are defined to stabilize the
observation error. For comparison purposes, the reported results of the SOSM super-twisting velocity
controller using ε2 calculated are only the time-domain specifications and are included in the fourth
column of Table 2.

7.1. Proportional Integral Velocity Controller

The classical PI controller was tuned with the following gains: the proportional gain Kp = 5
and integral gain Ki = 10. These gains accomplish the inequalities (17) and (18), where Kp > −0.34.
The velocity response ωm, is the controlled output variable, and achieves an acceptable velocity
tracking performance, as shown in Figure 3a. The time-domain specifications for the velocity
tracking, i.e., rise time, overshoot, and settling time, among others, are shown in the second column
of Table 2, where the settling time is quantified into a 2% tolerance band. The control input signal
ua is portrayed in Figure 3b, where it changes from 90.4 to 99.2 V, with positive peak values of
130 V. This control input corresponds to the voltage applied to armature winding and it represents
the electrical input to system (1). Figure 4a shows the load torque TL which constitutes a mechanical
input to a DC motor model (1) and it is modeled as external disturbance. The load torque is
developed by the induction generator and it is estimated via the asymptotic observer (3), and changes
from 0.12 to 0.81 N · m approximately, with an overshoot of 29%, with motor nominal torque of
1.0 N ·m. The load torque response has a similar shape of the armature current ia, and this current sets
the electromagnetic torque, which follows the load torque according to the first state equation of DC
motor model (1). The armature current ia is shown in Figure 4b, where it changes from 1.34 to 3 A,
with peak values of 3.68 A, and an overshoot of 41%. When both external disturbances (changes in
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the velocity reference ωre f and load torque TL) are presented simultaneously in step form, the control
input acts to steer the velocity error variable towards the origin and the armature current ia changes
suddenly to achieve the steady state, as can be analyzed in the second equation of the DC motor
model (1). Figure 4c displays the constant shunt field current i f and the effective field current ie f f ,
which is defined by the total effect of the magnetomotive forces of both shunt and series windings,
that are connected in accumulative form (2). ie f f varies from 0.30 to 0.33 A following armature
current ia changes, and the shunt field current i f holds a constant value of 0.28 A. The mechanical
power developed by the DC motor varies smoothly from 21.6 to 162 W. Simultaneously, the induction
generator, as the DC motor’s load, delivers electrical power to the utility grid from 8.4 to 116.6 W,
with peak values of 129.4 W when sudden changes of velocity are presented, as seen in Figure 5a.
Finally, Figure 5b shows the changes of generator’s current in phase-A, which varies from a 0.78 to
0.93 A RMS, and with sudden peak values up to 1.87 A.
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Figure 3. Proportional-integral (PI) controller. (a) Velocity tracking, and (b) control input ua.
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current i f and effective field current ie f f .
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Figure 5. PI controller. (a) Motor and generator output power, and (b) phase-A current.

7.2. SOSM Super-Twisting Velocity Controller

The modern SOSM super-twisting velocity controller has been tuned experimentally observing
the dynamic response of the tracking velocity. The used control gains are λ = 2 and α = 8.
In Equation (28) the disturbance modulus is defined, where the constant δ with δ > k1 (33) and
k1 = Kvλ = 11, 823 (24). By using δ = 1.1 k1 = 13, 005, Equations (35) and (36) are accomplished with
the assigned control gains of λ and α. The sliding surface, as an argument of the control law s = C1ε1 + ε2,
is defined with the eigenvalue C1 = 100 for the velocity tracking response with the eigenvalues of
the DC motor model (1) as a reference, that are: p1 = −30 and p2 = −90. It is important to remark
that the time derivative of the velocity tracking variable ε2 was estimated via a robust differentiator
applying the super-twisting algorithm, which was tuned experimentally with gains of λ1 = 100
and λ2 = 0.5. Differentiator parameters λ1 and λ2 accomplish each inequality in (39) with L = 0.3.
The DC motor velocity tracking performance is shown in Figure 6a, and its time-domain specifications
are shown in the third column of Table 2. From Figure 6a, it is seen that the chattering effect
of the DC motor velocity is reduced and becomes imperceptible. Figure 6b shows the sliding
surface s (19), where the time derivative ε2 (7) is estimated through the differentiator (39). In this Figure,
the sliding surface has peak values of 950 rad/s2 when the disturbance is presented. The control input
signal ua is the input of system (1) that feeds the armature winding. This input signal is illustrated in
Figure 6c and has average values from 90 to 98 V and peak values of 150 V. Figure 7a shows the field
current i f of the main field which is fed with constant voltage. This field current has steady values of
0.28 A, meanwhile the effective field current ie f f varies from 0.31 to 0.33 A, due to the addition of series
field magnetomotive force where the armature current flows (2). The armature current ia is displayed
in Figure 7b and has average values from 1.3 to 3 A, with peak values of 4.0 A, and an overshot of 59%.
When the step velocity reference changes (both in terms of rising and falling), the control input acts to
steer the velocity error toward zero and the armature current rises also to achieve the steady state, as
can be analyzed in the second state equation of system (1). Figure 7c depicts the load torque TL which
is estimated via the asymptotic observer (3); this load torque changes from 0.1 to 0.82 Nm with peak
values of 1.05 being the generator’s nominal torque of 1.0 Nm; this load torque has an overshoot of
32% on the rising edge. The load torque response has a similar shape of the armature current,
as this current sets the electromagnetic torque which follows the load torque according to the first
state equation of the DC motor model (1). Figure 8a shows the DCmechanical power developed by
the DC motor varies continuously from 22 to 163 W. Simultaneously, the induction generator delivers
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electrical power to utility grid from 5 to 114 W, with peak values of 124 W; the difference in power
consists of internal losses of the induction generator. Figure 8b displays the changes of the generator’s
current in phase-A, which varies from 0.76 to 0.88 A RMS, with sudden peak values up to 2.0 A.

In Table 2 the results of the time-domain specifications of the closed-loop controllers presented in
this work are shown. The PI controller results are in the second column, and the SOSM super-twisting
controller results using differentiator are in the third column. Meanwhile, for comparison purposes
in fourth column the SOSM super-twisting controller results with ε2 are calculated and shown.
The results presented in this table show that both SOSM super-twisting velocity controllers have better
performance than the PI velocity controller. However, the SOSM super-twisting velocity controller
with a differentiator uses only a rotor velocity sensor. This characteristic represents a cheap and
attractive alternative for controlling the velocity of the compound DC motor achieving better tracking
performance and with the ability to reject external disturbances and parameter variations.

Table 2. Time-domain PI and second-order sliding mode (SOSM) responses.

Time-Domain
Specification

PI
Controller

SOSM
Controller

ε2 Estimated

SOSM
Controller

ε2 Calculated
Rise time tr (s) 0.11 0.085 0.094
Rise settling time ts (s) 0.49 0.26 0.214
Rise overshoot Mp (%) 10 6.2 3.7
Peak time tp (s) 0.22 0.17 0.17
Falling time t f (s) 0.17 0.12 0.14
Falling settling time ts f (s) 0.35 0.29 0.29
Falling overshoot Mp f (%) 6.3 0 0
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Figure 6. SOSM controller: (a) Velocity tracking, (b) sliding variable s, and (c) control input ua.
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Figure 7. SOSM controller monitoring signals: (a) field current i f and effective field current ie f f ,
(b) armature current ia, and (c) load torque TL.
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Figure 8. SOSM controller: (a) Motor and generator output powers, and (b) phase-A current.

Figure 9 shows the performance of the robust differentiation that estimates the time derivative of
the velocity tracking error. The tracking velocity error ε1 is displayed in Figure 9a with peak values
of 8.3 rad/s when the reference velocity changes. By taking as visual reference the velocity error ε1,
Figure 9b shows the differentiation assessment that estimates the time derivative of velocity error ε2.
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As can be seen, the variable ε2 estimated is around the zero value when the velocity error ε1 achieves
steady state; meanwhile ε2 calculated is near of zero due to its dependency on the parameters machine,
according to Equations (6) and (7).
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Figure 9. SOSM controller: (a) velocity tracking error ε1, and (b) time derivative of the velocity tracking
error ε2.

8. Conclusions

In this work, two closed-loop schemes for controlling the velocity of a compound DC motor
were developed, including practical laboratory results for their validation. The DC motor drove
a wound-rotor induction generator, operated as squirrel cage which freely delivered the generated
energy to the grid, when the DC motor velocity was controlled above the synchronous speed.
For comparison purposes, a classical PI controller was designed as the starting point for velocity
tracking of a periodic square reference signal (pulse train); then, the state-feedback linearization
technique combined with the nonlinear SOSM super-twisting algorithm was applied to achieve
better velocity tracking performance and to reject external disturbances. This strategy improves the
performance of the closed-loop system, where the sliding variable s, as the argument of control law,
was chosen using a linear combination of the velocity tracking error ε1 and its time derivative ε2.
The variable ε2 was estimated by a robust differentiator using the super-twisting algorithm; in this
way, the load torque estimation by an observer, the machine parameters, and the armature and field
current measurements are not needed for the sliding surface definition. The experimental validation of
the SOSM super-twisting velocity controller was performed through the velocity tracking of a periodic
square reference signal (pulse train) above synchronous velocity, where the load torque varies according
to the velocity slip of the induction generator. The time-domain specifications of the closed-loop
dynamic response (overshoot, rise time and settling time) of the SOSM super-twisting velocity
controller outperforms the classical PI controller. We have demonstrated that SOSM super-twisting
velocity controller can be applied to the compound DC motor for emulating the wind turbine operation
in a future work. Thus, the controller design process applied to wind systems can be focused on
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the electric generator and the converter connected to the utility grid only, even if no wind turbine
is available.
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