
Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

Gaussian and Cauchy Functions in the
Filled Function Method – Why and What Next:
On the Example of Optimizing Road Tolls

José Guadalupe Flores Muñiz1, Vyacheslav V. Kalashnikov2,3,
Vladik Kreinovich4, and Nataliya Kalashnykova1,5

1Department of Physics and Mathematics
Universidad Autónoma de Nuevo León
Av. Universidad S/N, Ciudad Universitaria
San Nicolás de los Garza, México 66455
jose.floresmnz@uanl.edu.mx, nataliya.kalashnykova@uanl.edu.mx
2Department of Systems and Industrial Engineering
Instituto Tecnológico y de Estudios Superiores de Monterrey
Av. Eugenio Garza Sada 2501
Monterrey, Nuevo León, México 64849
kalash@itesm.mx
3Department of Experimental Economics
Central Economics and Mathematics Institute (CEMI)
47 Nakhimovsky prospect, 117418, Moscow, Russia
4Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, Texas 79968, USA, vladik@utep.edu
5Department of Computer Science, Sumy State University,
Ryms’koho-Korsakova Str., 2, 40007, Sumy, Ukraine

Abstract: In many practical problems, we need to find the values of the parameters that
optimize the desired objective function. For example, for the toll roads, it is important to set
the toll values that lead to the fastest return on investment.

There exist many optimization algorithms, the problem is that these algorithms often end up in
a local optimum. One of the promising methods to avoid the local optima is the filled function
method, in which we, in effect, first optimize a smoothed version of the objective function,
and then use the resulting optimum to look for the optimum of the original function. It turns
out that empirically, the best smoothing functions to use in this method are the Gaussian
and the Cauchy functions. In this paper, we show that from the viewpoint of computational
complexity, these two smoothing functions are indeed the simplest.

The Gaussian and Cauchy functions are not a panacea: in some cases, they still leave us with
a local optimum. In this paper, we use the computational complexity analysis to describe the
next-simplest smoothing functions which are worth trying in such situations.

Keywords: optimization; toll roads; filled function method; Gaussian and Cauchy smoothing

– 237 –

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Academico Digital UANL

https://core.ac.uk/display/287660136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

functions

1 Optimizing Road Tolls: A Brief Introduction to the
Case Study

1.1 Optimizing road tolls: a general description of the problem

In many practical problems, we need to optimize an appropriate objective function.
In this paper, as a case study, we consider the problem of optimizing road tolls;
see [7] for details.

The need for road tolls comes from the fact that in many geographic locations, traffic
is congested, there is a need to build new roads that would decrease this congestion.
Often, however, the corresponding governments do not have the funds to build the
new roads.

A solution is to build the toll roads, i.e., to request that the drivers pay for driving
on these roads – and thus, to get back the money that was spent on building these
roads. Sometimes, the governments borrow the money to build the roads, and use
the collected tolls to pay back the loan. In other cases, a private company is selected
to build the road: the company invests the money, and get its investment back from
the collected tolls.

In both arrangements, for a system of toll roads, it is important to select the toll
values that will lead to the fastest possible return on investment. This is a complex
problem:

• if the tolls are too small, it will take forever to get back the investments;

• on the other hand, if the tolls are too large, then most drivers will prefer to use
the existing toll-free roads, and again, it will take a long time to get back the
investment.

It is therefore important to find the optimal toll values that minimize the amount of
time needed to return the investment.

Let us describe this optimization problem in detail.

1.2 Describing the road network

The transportation network is usually modeled as a graph, in which nodes are spatial
locations (points), and arcs (edges) are road segments.

The set of all the nodes (“points”) of this graph is denoted by P, and the set of all
arcs (“edges”) connecting the nodes is denoted by E.

Some of the road-segments are one-way. For each node p:

• the set of all road segments that have p as origin is denoted by p+, and

– 238 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

• the set of all road segments that have p as the arrival node is denoted by p−.

Some of the arcs are toll road segments. The set of all such segments is denoted by
E1. The remaining toll-free arcs is denoted by E2

def
= E−E1.

For each arc e, there is an upper bound `e on its capacity.

1.3 Describing travel costs

For each arc e ∈ E, we know the cost de of moving a unit of cargo along this arc.
This cost comes from the fuel spent on this trip, driver’s salary, wear and tear of the
vehicle, etc.

For the toll roads, the drivers also have to pay the appropriate toll ce per unit, so the
cost per unit weight is now de + ce.

Usually, for each road segment, there is some pre-negotiated limit cmax
e on how

much toll we can connect. So, possible toll values ce must satisfy the inequality

0≤ ce ≤ cmax
e .

1.4 Describing the travel demand

Theoretically, we could have the need for transporting goods between all possible
pairs of points. In reality, the number of such pairs is limited. Let C denote the set
of all origin-destination pairs.

For each pair k ∈C:

• its origin (home point) is denoted by h(k),

• its destination (aim) is denoted by a(k), and

• the overall amount of goods to be transported is denoted by qk.

It is convenient to use the following auxiliary notation nk
p, where p ∈ P:

• nk
p =−qk if p = h(k) is the origin node;

• nk
p = qk if p = a(k) is the destination node, and

• nk
p = 0 for all other nodes p.

1.5 For each origin-destination pair, how the optimal routes are
selected

For each origin-destination pair k ∈C, we need to select the traffic xk
e ≥ 0 along each

road segment is such a way that:

• the overall traffic leaving the starting node h(k) is equal to qk,

– 239 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

• the overall traffic arriving at the destination node a(k) is equal to qk, and

• in all other nodes, the amount of incoming traffic is equal to the amount of
outgoing traffic.

Because of the above notation nk
p, these three conditions can be described in a simi-

lar way for all the nodes p:

∑
e∈p+

xk
e− ∑

e∈p−
xk

e = nk
p.

Among all the arrangements xk
e ≥ 0 that satisfy all these equalities, we need to select

the one that minimizes the overall cost

∑
e∈E1

(de + ce) · xk
e + ∑

e∈E2

de · xk
e.

1.6 Final formulation of the problem: how should we select the
toll amounts?

We need to select the tolls ce ∈ [0,cmax
e] in such a way that when all the customers

k ∈ C optimize their routes, the overall traffic on each road segment e does not
exceed the capacity of this segment:

∑
k∈C

xk
e ≤ `e.

Among all the toll arrangements ce that satisfy this condition, we must select the
one that maximizes the overall return on our investment, i.e., that maximizes the
sum

∑
k∈C

∑
e∈E1

ce · xk
e.

2 Optimization in General: How to Avoid Local Op-
tima?

2.1 Local optima: a problem

There exist many optimization algorithms, including both traditional techniques and
meta-heuristic algorithms such as simulated annealing, genetic algorithms, differen-
tial evolution, ant colony optimization, bee algorithm, particle swarm optimization,
tabu search, harmony search, firefly algorithm, cuckoo search, etc.; see, e.g., [4].

However, often, they lead to a local optimum; see, e.g., [2, 4, 5, 6]. To be more
precise, the need to avoid a local optimum – or at least get to a different local
optimum which is closer to the global one – is one of the main reasons why meta-
heuristic optimization techniques were invented in the first place. Each of the meta-
heuristic methods has indeed been successful in improving the local optima in many

– 240 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

practical situations. However, the very fact that there exist many different meta-
heuristic techniques – and that new meta-heuristics are appearing all the time –
is a good indication that none of these methods is a panacea. In many practical
situations, even after applying the latest meta-heuristic methods, we are still in a
local optimum. There is, therefore, a need for developing new techniques that would
help us avoid the local optima.

How to avoid local optima: the filled function method. One of the promising
methods to avoid the local optima is the filled function method, in which we, in
effect,

• first optimize a smoothed version of the objective function, and

• then use the resulting optimum to look for the optimum of the original func-
tion.

This method was originally proposed in [9]; see also [1, 7, 10, 11]. In particular,
in these papers, it was shown that in some practical situations, this method indeed
enables us to improve the solution in comparison with a local optimum x∗ produced
by either one of the traditional optimization techniques, or by one of the meta-
heuristic optimization methods.

In the filled function method, once we reach a local optimum x∗, then we optimize
an auxiliary expression

K
(

x− x∗

σ

)
·F(f (x), f (x∗),x)+G(f (x), f (x∗),x),

for appropriate functions K(x), F(f , f ∗,x), and G(f , f ∗,x), and for an appropriate
value σ . Once we find the optimum of this auxiliary expression – by using tradi-
tional optimization or by using one of the known meta-heuristic optimization meth-
ods – we use the optimum of the auxiliary expression as a new first approximation
to find the optimum of the original objective function f (x).

2.2 Filled function method: results

How well we can avoid the local optimum depends on the choice of the smoothing
function K(x). In [10], it was shown that for several optimization problem, the best
choice is to use the Cauchy smoothing function

K(x) =
1

1+‖x‖2 .

For toll optimization and for several similar problems, it turned out that the Gaussian
smoothing function K(x) = exp(−‖x‖2) leads to the best results; see, e.g., [7].

In some cases, none of the known smoothing functions worked well.

– 241 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

2.3 Filled function method: details

Specifically, the paper [7] maximizes the following auxiliary expression:

exp(−‖x− x∗‖2) ·g
(

f (x)
f (x∗)

)
+ρ · s(f (x), f (x∗)),

where ρ > 0 is an appropriate parameter, the function g(v) is defined as follows:

• g(v) = 0 if v≤ 2
5

,

• g(v) = 5−30 · v+ 225
4
· v2− 125

4
· v3 if

2
5
≤ v≤ 4

5
, and

• g(v) = 1 if v≥ 4
5
,

and the function s(v,b) is defined as follows:

• s(v,b) = v− 2
5

if v≤ 2
5
·b;

• s(v,b) = 5− 8
5
·b+

(
8− 30

b

)
·v− 25

2b
·
(

1− 9
2b

)
·v2 +

25
4b2 ·

(
1− 5

b

)
·v3 if

2
5
·b≤ v≤ 4

5
·b;

• s(v,b) = 1 if
4
5
·b≤ v≤ 8

5
·b;

• s(v,b) = 1217−2160 · v
b
+1275 ·

(v
b

)2
−250 ·

(v
b

)3
if

8
5
·b≤ v≤ 9

5
·b; and

• s(v,b) = 2 if v≥ 9
5
·b.

2.4 Filled function method: open problems

Due to the above general empirical evidence, we arrive at the following natural
problems:

• why are the Gaussian and Cauchy smoothing functions empirically the best?

• which smoothing function should we choose if neither Gaussian nor Cauchy
smoothing functions work well?

2.5 What we do in this paper

In this paper, we provide answers to both questions.

– 242 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

3 Computational Complexity as a Natural Criterion
for Selecting a Smoothing Function

3.1 Why computational complexity

What criterion should we use to select a smoothing function? We can always avoid
a local optimum if we repeatedly start the same optimization process at several
randomly selected points: if we start at many such points, one of them will be close
to the global optimum. However, this will drastically increase the computation time.

The main advantage of the filled function method is that it allows us to decrease
the computation time. From this viewpoint, the less time we need to compute the
smoothing function, the better.

Each computation consists of several elementary computational steps, and the com-
putation time is thus proportional to the number of such steps – maybe taken with
weights. This (weighted) number of steps is known as computational complexity;
see, e.g., [3, 8]. From this viewpoint, we want a smoothing function which has the
smallest possible computational complexity.

3.2 How can we measure computational complexity

Most programming languages use the following elementary computational opera-
tions:

• arithmetic operations: unary minus (−x), addition, subtraction, multiplica-
tion, and division, and

• elementary functions: exp(x), ln(x), sin(x), cos(x), tan(x), arcsin(x),
arccos(x), and arctan(x).

Thus, first, we need to minimize the overall number of such computational steps.

Not all these steps require the same computation time:

• unary minus (−x) is the fastest operation, it requires that we only change one
bit: the bit describing the sign;

• addition and subtraction are next in complexity;

• multiplication takes somewhat longer, since multiplication, in effect, means
several additions;

• finally, computation of elementary functions requires even longer time, since
each such computation requires several multiplications and additions.

We will take this difference into account when deciding which smoothing function
is the fastest to compute.

– 243 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

4 Analysis of the Problem and the Main Result

4.1 Natural requirements on a smoothing function

The smoothing function should be symmetric, since we have no reason to prefer
different orientation of coordinates. Thus, it should depend only on v def

= ‖x‖2:
K(x) = g(v) for some function g(v).

This function g(v) should be finite and non-negative for all v≥ 0, and it should tend
to 0 when v→+∞.

It is easy to see that both Gaussian and Cauchy smoothing functions satisfy these

requirements, correspondingly with g(v) = exp(−v) and g(v) =
1

1+ v
.

4.2 Computational complexity of the Gaussian and Cauchy
smoothing functions

The function g(v) = exp(−v) (corresponding to Gaussian smoothing) requires two
operations to compute:

• a unary minus, to compute −v, and

• the exponential function, to transform −v into exp(−v).

Similarly, the function g(v) =
1

1+ v
(corresponding to Cauchy smoothing) consists

of two operations:

• addition, to compute 1+ v, and

• division, to transform 1+ v into g(v).

4.3 Our first result

Our first result is a classification of all smoothing functions that can be computed in
two or fewer computational steps.

Definition 1. By a smoothing function, we mean a non-zero non-negative function
g(v) which is defined for all v≥ 0 and which tends to 0 as v→+∞.

Definition 2.

• We say that a function g(v) is computable in 0 steps if it is either an identity
g(v) = v or a constant g(v) = const.

• By an elementary operation, we mean either an arithmetic operation (unary
minus, addition, subtraction, multiplication, or division), or an elemen-
tary function (exp(x), ln(x), sin(x), cos(x), tan(x), arcsin(x), arccos(x), or
arctan(x)).

– 244 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

• If F(x) is an elementary operation, and h(v) is computable in k steps, then we
say that the function g(v) = F(h(v)) is computable in k+1 steps.

• If F(x,y) is an elementary operation, and the functions h(v) and h′(v) are
computable, correspondingly, in k and k′ steps, then we say that the function
g(v) = F(h(v),h′(v)) is computable in k+ k′+1 steps.

Proposition 1. A smoothing function is computable in 2 steps if and only if it has
one of the following forms:

• g(v) =
c′

c+ v
, for some constants c and c′,

• g(v) = const · exp(−c · v),

• g(v) =
π

2
− arctan(v),

• g(v) = arctan
(

1
v

)
, or

• g(v) = cos(arctan(v)).

Comment. For convenience, the proof of this Proposition is given in the next section.

4.4 Among these five, which are the fastest to compute?

Which of the above five functions is the fastest to compute?

1. The function g(v) =
1

1+ v
requires one addition and one multiplication.

2. The function g(v) = exp(−v) requires one unary minus and one application
of an elementary function.

3. The function g(v) =
π

2
− arctan(v) requires one subtraction and one applica-

tion of an elementary function.

4. The function g(v) = arctan
(

1
v

)
requires one division and one application of

an elementary function.

5. Finally, the function g(v) = cos(arctan(v)) requires two applications of ele-
mentary functions.

We can now make the following comparisons:

• Since multiplication/division is faster than an application of an elementary
function, and addition is faster than multiplication/division and than elemen-
tary functions, the function 1 is faster to compute than functions 3, 4, and 5.

• Similarly, since the unary minus is faster than any other operation, function 2
is faster to compute than functions 3, 4, and 5.

– 245 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

• Since subtraction is faster than division, function 3 is faster than function 4.

• Finally, since multiplication/division is faster than an application of an ele-
mentary function, function 4 is faster than function 5.

Thus, we arrive at the following conclusion.

4.5 Conclusion

Among all smoothing functions that can be computed in two computational steps:

• the functions g(v) =
1

1+ v
and g(v) = exp(−v) corresponding to Cauchy and

Gaussian smoothing are the fastest to compute;

• next fastest is the function g(v) =
π

2
− arctan(v);

• next fastest is the function g(v) = arctan
(

1
v

)
; and

• finally, the slowest to compute is the function g(v) = cos(arctan(v)).

This explains why the Gaussian and Cauchy functions are indeed empirically the
best, and this also show what to do when these smoothing functions do not work
well: try smoothing functions K(x) = g(‖x‖2) corresponding to

g(v) =
π

2
− arctan(v), g(v) = arctan

(
1
v

)
, and g(v) = cos(arctan(v)).

5 Proof of the Main Result

1◦. Clearly, functions g(v) = v and g(v) = const which are computable in 0 steps
are not smoothing functions, since they do not tend to 0 when v→+∞.

Let us show that similarly, no smoothing function can be computed in 1 step. Indeed,
we can easily list all functions computable in 1 step:

g(v) = v+ c, g(v) = v− c, g(v) = c− v, g(v) = c · v, g(v) =
c
v
,

g(v) =
v
c
, g(v) = exp(v), g(v) = ln(v), g(v) = sin(v), g(v) = cos(v),

g(v) = tan(v), g(v) = arcsin(v), g(v) = arccos(v), g(v) = arctan(v),

where c is a constant.

From the above functions, the function g(v) =
c
v

is not a smoothing function since
it is not defined for v = 0, and all other functions are not smoothing functions since
they do not satisfy the condition that lim

v→+∞
g(v) = 0.

Thus, a smoothing function must have at least two computational steps.

– 246 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

2◦. By definition, a function computable in 2 steps has the form F(h(v)), where h(v)
is computable in 1 step, or the form F(h(v),h′(v)), where h(v) is computable in one
step and h′(v) is computable in 0 steps (i.e., is either an identity or a constant).

We have already listed all possible functions h(v) which can be computed in one
step. Let us consider these functions one by one.

3◦. If h(v) = v+ c, then h(+∞) = +∞. So, for the composition to be a smoothing
function, we must have F(+∞) = 0.

As we showed in the 1-step case, the only operation that satisfies this condition is

g(w) =
c′

w
, so we get g(v) =

c′

v+ c
. This case corresponds to the Cauchy function.

4◦. The case h(v) = v−c is equivalent to h(v) = v+(−c), so it is the same case that
we have already considered.

5◦. If h(v) = c1 − v, then, h(+∞) = −∞, so the function F(w) must satisfy the
condition F(−∞) = 0.

Two operations satisfy this condition: F(w) =
c′

w
and F(w) = exp(w).

• If F(w) =
c′

w
, then, g(v) =

c′

c− v
. This is equal to g(v) =

(−c′)
v+(−c)

, i.e., to the

Cauchy case that we have already considered.

• If F(w) = exp(w), then, g(v) = exp(c−v), i.e., g(v) = const ·exp(−v), where
const = exp(c). This case corresponds to the Gaussian smoothing.

6◦. If h(v) = c · v, then, depending on the sign of c, we have different asymptotic
behaviors for h(v).

If c> 0, then we have h(+∞)=+∞. In this case, the only possibility to get g(h)→ 0

as h→+∞ is to have F(w) =
c′

w
, but in this case g(v) =

c′

c · v
is not defined for v= 0.

If c < 0, then h(+∞) = −∞. In this case, we similarly cannot have F(w) =
c′

w
, but

now we have a second option F(w) = exp(w), in which case g(v) = exp(c · v). This
case corresponds to the Gaussian function.

7◦. If h(v) =
c
v

, then, h(+∞) = 0, so the function F(w) must satisfy the condition

F(0) = 0. Six operations satisfy this condition:

• F(w) = c′ ·w,

• F(w) =
w
c

,

• F(w) = sin(w),

• F(w) = tan(w),

– 247 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

• F(w) = arcsin(w), and

• F(w) = arctan(w).

When c > 0, then h(0) = +∞, so, additionally, F(+∞) must be finite and non-
negative. This condition is satisfy only by F(w) = arctan(w), so we get

g(v) = arctan
(c

v

)
.

When c < 0, then h(0) = −∞, so, additionally, F(−∞) must be finite and non-
negative. This condition is not met by any of the above functions F(w).

8◦. The case h(v) =
v
c

is equivalent to the already analyzed case h(v) = v · const,

with const =
1
c

.

9◦. If h(v) = exp(v), then, h(+∞) = +∞, so we must have F(w) = c′w and

g(v) =
c′

exp(v)
.

This is equal to g(v) = const · exp(−v), i.e., corresponds to the Gaussian case.

10◦. If h(v) = ln(v), then, h(+∞) = +∞, so we must have F(w) =
c′

w
and, thus,

g(v) =
c′

ln(v)
.

This function is not defined (is infinite) when v = 1 and thus, is not a smoothing
function.

11◦. If h(v) = sin(v) or h(v) = cos(v), then h(v) oscillates between −1 and 1 and
has no limit when v→+∞. So, for g(v)→ 0, the function F(w) must be equal to 0
for all the values w ∈ [−1,1], but no elementary operation has this property.

Similarly, it is not possible to have h(v) = tan(v).

12◦. If h(v) = arcsin(v) or h(v) = arccos(v), then g(v) = F(h(v)) cannot be a
smoothing function since h(v) is not defined for v > 1.

13◦. If h(v) = arctan(v), then, h(+∞) = π/2, so the function F(w) must satisfy the

condition F
(

π

2

)
= 0. Three elementary functions satisfy this condition:

• F(w) = w− π

2
,

• F(w) =
π

2
−w, and

– 248 –

Acta Polytechnica Hungarica Vol. 14, No. 3, 2017

• F(w) = cos(w).

When F(w) = w− π

2
, then the function g(v) = arctan(v)− π

2
has negative values,

so it cannot be a smoothing function.

The other two cases correspond to the last two function in the formulation of the
Proposition.

The Proposition is thus proven.

6 Conclusions

In many practical situations, we need to find the values of the quantities that max-
imize the desired objective function. As an example, in this paper, we consider a
difficult-to-solve problem of selecting the optimal toll values for the toll roads.

There exist many optimization techniques, from the more traditional optimization
algorithms to meta-heuristic algorithms such as simulated annealing, genetic algo-
rithms, etc. In many practical situations, the existing optimization algorithms work
well. However, in many other practical cases, the existing algorithms end up with
a local optimum which is far from the desired global one. To deal with such cases,
when the existing optimization techniques cannot get us out of a local optimum, it
is necessary to develop new optimization ideas. One of such ideas – that works well
in many practical situations, including the toll road problem – is the filled function
method.

According to this method, once we read a local optimum, we build an auxiliary
smoothed (and thus, easier to optimize) objective function, use the existing tech-
niques to optimize this auxiliary objective function, and then use the resulting op-
timum as a new starting point for optimizing the original objective function. In
this method, different functions have been used for smoothing. It turns out that
empirically, two classes of smoothing functions work best: Gaussian and Cauchy
smoothing functions.

In this paper, we provide a theoretical explanation for their efficiency. Specifically,
we show that these smoothing functions have the smallest computational complex-
ity. For cases when these two smoothing functions do not work perfectly well
and there is a need to try different smoothing functions, we explicit describe next-
simplest smoothing functions that can be used in such situations.

Acknowledgement
This work was supported by grant CB-2013-01-221676 from Mexico Consejo Na-
cional de Ciencia y Tecnologı́a (CONACYT). It was also partly supported by the
US National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721, and by an award “UTEP and Pru-
dential Actuarial Science Academy and Pipeline Initiative” from Prudential Foun-
dation.

– 249 –

J. G. Flores Muñiz et al. Gaussian and Cauchy Functions in the Filled Function Method

The authors are thankful to Ildar Batyrshin, Grigory Sidorov, Alexander Gelbukh,
and to all the organizers of MICAI’2016 for their support and encouragement, and
to the anonymous referees for valuable suggestions.

This work was performed when José Guadalupe Flores Muñiz visited the University
of Texas at El Paso.

References

[1] B. Addis, M. Locatelli, and F. Schoen: Local optima smoothing for global
optimization, Optimization Methods and Software, 2005, Vol. 20, No. 4–5,
pp. 417–437.

[2] P. Cisar, S. Maravic Cisar, D. Subošic, P. Dikanovic, and S. Dukanovic: Op-
timization Algorithms in Function of Binary Character Recognition, Acta
Polytechnica Hungarica, 2015, Vol. 12, No. 7, pp. 77–87.

[3] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein: Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[4] K.-L. Du and M. N. S. Swamy: Search and Optimization by Metaheuristics:
Techniques and Algorithms Inspired by Nature, Birkhäuser, Cham, Switzer-
land, 2016.

[5] K. Farkas: Placement Optimization of Reference Sensors for Indoor Track-
ing, Acta Polytechnica Hungarica, 2015, Vol. 12, No. 2, pp. 123–139.

[6] A. Horák, M. Prýmek, L. Prokop, and S. Mišék: Economic Aspects of Multi-
Source Demand-Side Consumption Optimization in the Smart Home Con-
cept, Acta Polytechnica Hungarica, 2015, Vol. 12, No. 7, pp. 89–108.

[7] V. V. Kalashnikov, R. C. Herrera Maldonado, and J.-F. Camacho-Vallejo:
A heuristic algorithm solving bilevel toll optimization problem, The Interna-
tional Journal of Logistics Management, 2016, Vol. 27, No. 1, pp. 31–51.

[8] C. Papadimitriou: Computational Complexity, Addison Welsey, Reading,
Massachusetts, 1994.

[9] G. E. Renpu: A filled function method for finding a global minimizer of
a function of several variables, Mathematical Programming, 1988, Vol. 46,
No. 1, pp. 57–67.

[10] Z. Y. Wu, F. S. Bai, Y. J. Yang, and M. Mammadov: A new auxiliary func-
tion method for general constrained global optimization, Optimization, 2013,
Vol. 62, No. 2, pp. 193–210.

[11] Z. Y. Wu, M. Mammadov, F. S. Bai, and Y. J. Yang: A filled function
method for nonlinear equations, Applied Mathematics and Computation,
2007, Vol. 189, No. 2, pp. 1196–1204.

– 250 –

