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Pericytes are mural vascular cells found predominantly on the abluminal wall of
capillaries, where they contribute to the maintenance of capillary structural integrity
and vascular permeability. Generally quiescent cells in the adult, pericyte activation
and proliferation occur during both physiological and pathological vascular and tissue
remodeling. A considerable body of research indicates that pericytes possess attributes
of a multipotent adult stem cell, as they are capable of self-renewal as well as
commitment and differentiation into multiple lineages. However, pericytes also display
phenotypic heterogeneity and recent studies indicate that lineage potential differs
between pericyte subpopulations. While numerous microenvironmental cues and cell
signaling pathways are known to regulate pericyte functions, the roles that metabolic
pathways play in pericyte quiescence, self-renewal or differentiation have been given
limited consideration to date. This review will summarize existing data regarding pericyte
metabolism and will discuss the coupling of signal pathways to shifts in metabolic
pathway preferences that ultimately regulate pericyte quiescence, self-renewal and
trans-differentiation. The association between dysregulated metabolic processes and
development of pericyte pathologies will be highlighted. Despite ongoing debate
regarding pericyte classification and their functional capacity for trans-differentiation
in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue
healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on
the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we
will identify knowledge gaps that need to be addressed to more effectively harness the
opportunity for therapeutic manipulation of pericytes to control pathological outcomes
in tissue remodeling.

Keywords: adult stem cell, metabolism, trans-differentiation, proliferation, quiescence, fibrosis, regenerative
medicine

INTRODUCTION: WHAT IS A PERICYTE?

Pericytes are a heterogeneous population of mural vascular cells that typically reside within
the basement membrane on the abluminal surface of most capillaries and some larger blood
vessels. The pericyte basement membrane is contiguous with that of the endothelial cells and
is composed of extracellular matrix proteins (predominantly collagen IV and the glycoprotein
laminin) secreted by both cell types. Morphologically, pericytes are characterized by numerous
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cytoplasmic processes that emanate from a prominent cell body,
tracking along several endothelial cells and occasionally spanning
adjacent capillaries (Figure 1). Pericyte protrusions (pegs)
insert into endothelial cell invaginations (sockets) at occasional
interruptions in the basement membrane, providing structural
support as well as direct heterotypic cell–cell communications
(Armulik et al., 2005). The current review focuses on the
traditionally defined pericytes, but it should be noted that
specialized pericytes that deviate from these conventional
characteristics reside within various tissues (i.e., stellate cells in
liver, mesangial cells in kidneys, reticular cells in bone marrow)
(Díaz-Flores et al., 2009).

During development, pericytes are first attracted to newly
formed capillaries via the endothelial-secreted chemoattractant
platelet-derived growth factor (PDGF)-BB, which binds to
PDGF receptor β (PDGFRβ) on pericytes (Lindahl et al.,
1997; Benjamin et al., 1998). Integrin-mediated adhesion of
pericytes to laminin helps to maintain expression of PDGFRβ

(Durbeej, 2010; Reynolds et al., 2017). Interference with PDGF-
BB/PDGFRβ signaling is sufficient to disrupt endothelial-pericyte
interactions (Lindahl et al., 1997), indicating that perpetual
signaling through PDGFRβ is critical to maintain pericyte
localization to capillary endothelial cells. Several other proteins,
such as Notch receptors, support the continued close interaction
of pericytes with the underlying endothelial cells and play
important roles in maintaining pericyte identity (Armulik et al.,
2005; Geevarghese and Herman, 2014; Kofler et al., 2015;
Ando et al., 2019) (Figure 2). This tight interaction between
endothelial cells and pericytes is critical to the stability and
maintenance of the integrity of mature capillary networks.
Pericytes restrict capillary expansion and promote endothelial
cell viability and quiescence through their physical connections
and via secretion of paracrine factors (i.e., Ang-1, TIMP-3)

FIGURE 1 | Pericyte morphology. NG2+ pericytes are localized to the
abluminal surface of adipose tissue capillaries (arrowhead) in mice that
express red fluorescent protein (DsRed) under the control of the promoter of
chondroitin sulfate proteoglycan 4 (encoding NG2). Pericyte cell bodies
(asterisks) are prominently visible due to nuclear localization of DsRed. Thin
cytoplasmic processes extend along one or more capillaries (arrows).
Capillaries were visualized using Isolectin B4 (cyan).

FIGURE 2 | Pericyte-endothelial interactions. Pericytes are embedded into a
basement membrane that is shared with endothelial cells and composed
primarily by collagen IV and laminins. Adherence to the basement membrane
occurs via integrins. Pericyte adherence to endothelial cells at ‘peg and
socket’ connections is mediated by N-cadherins and other junctional proteins.
Pericyte-endothelial cell cross-talk occurs through multiple molecular
pathways, including PDGF-BB/PDGFRβ, Notch receptors and ligands,
Angiopoietin-Tie2 and TIMPs. Alteration of these interactions directly impacts
pericyte-endothelial interactions and ultimately vessel stability. Ang-1,
angiopoietin-1; Ang-2, angiopoietin-2; EC, endothelial cells; Jag1, Jagged1;
PC, pericytes; PDGF-BB, platelet derived growth factor; PDGFRβ, PDGF
receptor β; TIMP-3, tissue inhibitor of matrix metalloproteinases-3.

(Papapetropoulos et al., 2000; Saunders et al., 2006). Conversely,
loss of pericyte contact (following pericyte detachment or
apoptosis) reduces endothelial cell survival and promotes
capillary regression. Pericytes play additional functions in
the vascular compartment, including preservation of capillary
barrier function, blood flow regulation, and immunomodulation
(Bergers and Song, 2005; Armulik et al., 2011; Geevarghese
and Herman, 2014; Navarro et al., 2016). Of note, pericytes
also contribute to different cellular processes involved in tissue
homeostasis through the potential of differentiating in other cell
types (discussed in detail below).

To date, there is no molecular marker known to be unique to
pericytes. Thus, a combination of general criteria are commonly
used to define pericyte populations, such as perivascular
localization, morphology and the expression of one or more
recognized molecular markers such as Neural/glial antigen 2
(NG2), PDGFRβ or cluster of differentiation 146 (CD146)
(Armulik et al., 2011; Holm et al., 2018). However, these pericyte
markers lack specificity. They are expressed to some extent in
other cell types (i.e., smooth muscle cells and interstitial cells
such as fibro-adipocyte progenitors) and they display variable
expression patterns on pericytes across tissues, location within
the vascular tree, developmental state and pathological setting
(van Dijk et al., 2015; Sacchetti et al., 2016; Kumar et al., 2017).
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ACTIVATION, MULTIPOTENCY AND FATE
SPECIFICITY OF PERICYTES

Pericytes that reside within an established microvessel network
are dominantly quiescent. However, physiological expansion of
the capillary network and a variety of pathological conditions
trigger their activation and proliferation, which may result in
self-renewal or in differentiation. During sprouting angiogenesis,
pericytes initially detach from the vessel wall and assist in
remodeling the basement membrane to enable endothelial cell
sprout formation (Carmeliet and Jain, 2011). Proliferation and
migration of pericytes during capillary sprouting ensures pericyte
coverage of nascent capillaries. Following sprout formation,
pericytes either re-establish pericyte-endothelial cell contacts and
return to a quiescent state or they undergo differentiation into
smooth muscle cells, resulting in arteriolarization of capillaries
(Skalak et al., 1998; Peirce and Skalak, 2003; Volz et al., 2015).
Despite the substantial amount of angiogenesis research in past
decades, moderately little is known about the molecular pathways
that dictate the transition of pericytes between quiescence,
proliferation or differentiation.

The differentiation of pericytes into multiple lineages
(osteoblasts, chondrocytes and adipocytes) is observed when
these cells are cultured (Crisan et al., 2008; Geevarghese
and Herman, 2014). This multipotency is analogous to cells
belonging to the heterogeneous multipotent stromal population
previously referred to as “mesenchymal stem cells” but more
commonly described now as “mesenchymal progenitors.” In fact,
cultured pericytes display broader multipotency compared to
mesenchymal progenitors, including differentiation into vascular
smooth muscle cells, myofibroblasts as well as parenchymal cells
such as skeletal and cardiac myocytes and neuronal cells (Barron
et al., 2016; Ji et al., 2016; Birbrair et al., 2017; Siedlecki et al.,
2018; Alarcon-Martinez et al., 2019). The broad multipotency
reported for pericytes is the basis on which some researchers
postulate that pericytes are the predominant source of tissue
resident mesenchymal progenitors (Crisan et al., 2008; da Silva
Meirelles et al., 2008). These multipotent characteristics also has
led to their growing use for cell therapies to promote tissue
healing and regeneration.

Multipotency is not a universal property of all pericytes.
For instance, pericytes expressing T-Box transcription factor 18
(Tbx18) failed to display trans-differentiation capacity in vivo
in multiple tissues assessed, including skeletal, cardiac and
adipose tissues (Guimarães-Camboa et al., 2017). Notably, not
all pericytes express Tbx18 and thus it has been proposed
that multipotent pericytes are marked by the absence of Tbx18
(Birbrair et al., 2017; Wörsdörfer and Ergün, 2018). As well, there
is evidence that pericyte subsets within and across tissues exhibit
distinct transcriptomes and differentiation potentials that may
correspond with pre-programed commitment to specific lineages
(Birbrair et al., 2013; Sacchetti et al., 2016; Yianni and Sharpe,
2018). This idea is supported by recent single cell profiling of
brain and lung derived pericytes1 (He et al., 2018; Vanlandewijck
et al., 2018) that revealed a non-overlapping expression profile of

1http://betsholtzlab.org/VascularSingleCells/database.html

lineage specific regulators including Runx2 (osteogenesis), Ppar
γ (adipogenesis) and Sox-9 (chondrogenesis). Further, single
cell sequencing identified sub-populations of adult brain-derived
pericytes that exhibited distinct competencies for induced
reprograming to a neuronal lineage (Karow et al., 2018).

Effective strategies to modulate pericyte function and
trans-differentiation are currently lacking. One significant
challenge is that pericyte differentiation potential varies uniquely
dependent on their tissue/organ of origin (Chen et al., 2015;
Pierantozzi et al., 2016; Yianni and Sharpe, 2018). For example,
PDGFRβ+ZFP423+ pericytes within murine adipose tissue
readily undergo adipogenesis, thus contributing to adipocyte
hyperplasia (Vishvanath et al., 2016). Type-1 and Type-2
pericytes within skeletal muscle, which are classified based
on their expression of PDGFRα or Nestin, exhibit exclusive
adipogenic or myogenic potential, respectively (Birbrair et al.,
2013, 2014). In the brain, pericytes are a potential source of
precursors that regenerate neuronal cells (Nakata et al., 2017;
Farahani et al., 2019). A recent study revealed a role for epigenetic
regulation of pericyte stemness and differentiation potential
by demonstrating tissue-specific histone modification patterns
within genes that regulate pericyte phenotype, metabolism and
fate specificity (Yianni and Sharpe, 2018). Thus, available data
support the concept that subsets of pericytes exhibit a degree
of pre-programed commitment to specific lineages. Although
pericyte differentiation into distinct lineages is achievable in vitro,
it is still under debate whether pericytes in vivo receive
the necessary microenvironmental cues, under physiological
or pathological conditions, to promote these differentiation
events (Wörsdörfer and Ergün, 2018). Overall, mechanisms that
regulate the multipotency and tissue-specific pre-programing
that contribute to pericyte diversity require further elucidation.

METABOLIC SUPPORT OF PERICYTE
STATUS

Recent studies have revealed the relevance of metabolic pathways
in controlling the acquisition of different phenotypes of vascular
and stem cells, indicating promise of novel metabolism-
based therapeutic strategies to manipulate the activation status,
functions and the fate decisions of native pericytes and those
used for regenerative therapies. The contribution of specific
metabolic programs to the regulation of cell-state decisions has
been investigated extensively in endothelial cells (De Bock et al.,
2013; Schoors et al., 2015; Kim et al., 2017; Diebold et al., 2019),
whereas the metabolism of pericytes has undergone very limited
analysis to date. Below, we will discuss the current knowledge
of pericyte metabolism when these cells are instructed to switch
from a quiescent to a proliferative state (also illustrated in
Figure 3) and in differentiation. Where known, we identify the
species and tissue source of pericytes used in each study.

Cells increase the uptake and catabolism of nutrients,
particularly glucose, to undergo proliferation. While it was
initially believed that the uptake of glucose in pericytes was
mediated entirely by the GLUT1 glucose transporter (Mandarino
et al., 1994), more recent data demonstrate that transcripts
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FIGURE 3 | Metabolism of pericytes during proliferation and quiescence. Top: Under growth factor stimulation, pericytes increase glucose metabolism (black
arrows) to support proliferation. Pericytes increase glucose uptake via GLUT1 and GLUT4 transporters and glucose is metabolized to produce ATP predominantly
through glycolysis. This metabolic pathway also provides precursors to protein glycosylation that are essential to the production of capillary basement membrane
proteoglycans. Although nucleotide synthesis may be supported by glycolysis via the pentose phosphate pathway (dashed arrow), current data indicate that fatty
acid-derived carbons are incorporated into dNTP synthesis in pericytes. Fatty acid oxidation (red arrows) also contributes to the bioenergetic demand during
proliferation, generating up to 15% of the total ATP content. Bottom: Quiescence is associated with a low metabolic state and downregulation of all metabolic
programs. However, the relative contributions of glycolysis, glucose oxidation and fatty acid oxidation (illustrated with dashed arrows) within quiescent pericytes have
not been established. α-KG, alpha-Ketoglutarate; ATP, Adenosine triphosphate; FA, fatty acid; FAO, fatty acid oxidation; Glc, glucose; HBP, hexosamine biosynthesis
pathway; PPP, pentose phosphate pathway; R5P, Ribose 5-phosphate; TCA, Tricarboxylic acid; UDP-GlcNac, Uridine 5′-diphospho-N-acetylglucosamine.

for both GLUT1 and GLUT4 are detectable in human and
murine brain pericytes (Castro et al., 2018; He et al., 2018;
Vanlandewijck et al., 2018), indicating that glucose uptake can
occur via both insulin-dependent and independent pathways.
This may explain the greater maximum glucose transport
capacity observed in bovine retinal pericytes as compared to
endothelial cells (which uptake glucose exclusively through
GLUT1) (Mandarino et al., 1994).

Pericyte metabolism has been assessed to the greatest extent
in primary cultures of human placental and bovine retinal
pericytes (Schoors et al., 2015; Cantelmo et al., 2016). In the

proliferative state that exists in cell culture, placental pericytes
rely heavily on glycolysis to meet energy demands, with ∼85%
of their ATP generation coming from this metabolic pathway
(Cantelmo et al., 2016). In fact, only a small decrease in
oxygen consumption was observed when proliferating retinal
pericytes were treated with oligomycin, an inhibitor of H+-
ATP-synthase, further illustrating their reliance on glycolytic
rather than mitochondrial ATP production (Trudeau et al., 2011).
Notably, the inhibition of 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 3 (PFKFB3), which impairs glycolysis, was
shown to restrain both proliferation and migration of pericytes
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and to enforce pericyte quiescence in vivo and in vitro (Cantelmo
et al., 2016). This indicates that glycolysis is vital to orchestrate
the exit from quiescence in these cells.

Besides providing ATP and reducing cofactors to support
anabolic reactions, the catabolism of glucose generates precursors
to sustain lipid production, the biogenesis of nucleotides and
non-essential amino acids and the synthesis of glycolipids,
proteoglycans and substrates for protein glycosylation. Since
pericytes have greater maximal rate of glucose transport
than endothelial cells, it has been suggested that pericytes
channel a greater proportion of glycolytic intermediates into
the hexosamine biosynthesis pathway (HBP), which generates
N-acetylglucosamine for O- and N-glycosylation of proteins
and supports the production of capillary basement membrane
proteoglycans (Mandarino et al., 1994). The HBP also directly
increases cellular biomass (Wellen et al., 2010) and, therefore,
diverting glucose into this side branch of glycolysis may play key
roles in pericyte self-renewal by sustaining proliferation and also
re-establishing the quiescent state of these cells.

Fatty acid oxidation is estimated to contribute to ∼15% of
human placental pericyte ATP production (Cantelmo et al.,
2016). Pericytes express CD36 and several fatty acid transporter
proteins (FATPs) (Winkler et al., 2014), but the relative
contribution of these transporters or others in fatty acid uptake
remain to be defined. The cultured placental pericytes use fatty
acid-derived carbons for the synthesis of deoxyribonucleotides,
which implies that fatty acid oxidation supports the proliferation
of pericytes (Schoors et al., 2015). While fatty acid oxidation is
the predominant metabolic pathway in quiescent endothelial cells
(Kalucka et al., 2018), its contribution to the metabolic activity
of quiescent pericytes remains to be established. Moreover,
the relevance of glutamine metabolism in supporting the
proliferative or quiescent states of pericytes is also unknown,
although this generally constitutes a major nutrient that is
consumed by proliferating cells.

It is well-recognized that the differentiation of multipotent
cells is accompanied by shifts in cellular metabolism. Glycolysis
is associated with stem cell pluripotency (Folmes et al., 2013;
Gu et al., 2016) as it fuels cytosolic acetyl-CoA synthesis,
which is essential to maintain histone acetylation required
for a multipotent epigenetic state (Moussaieff et al., 2015).
Furthermore, glycolysis limits cellular reliance on oxygen and
the generation of reactive oxygen species (ROS) (Chen et al.,
2008; Suda et al., 2011), which in turn play a critical role in
the differentiation of stem cell into various cell populations
(adipocytes, osteocytes, chondrocytes, myocytes) (Boopathy
et al., 2013; Higuchi et al., 2013; Mateos et al., 2013).
Accordingly, stem cell differentiation is usually associated with
upregulation of mitochondrial capacity and a substantially higher
use of OXPHOS (Funes et al., 2007; Zhang J. et al., 2012;
Coller, 2019), which leads to increased levels of ROS. Thus,
modulating the glycolytic metabolism of pericytes may not only
influence the switch from a quiescent to proliferative state but
may also be centrally involved in maintaining the stemness
of pericytes. However, no study to date has elucidated the
metabolic alterations that accompany the cell-type-specific fate
decisions in pericytes.

MOLECULAR PATHWAYS
COORDINATING PERICYTE STATE AND
METABOLISM

The metabolic programing that supports pericyte status is
under the control of signal transduction pathways that in
turn are governed by local levels of stabilizing and mitogenic
factors. Below, we will discuss molecular mechanisms that
enforce quiescence, favor proliferation or induce commitment
and differentiation of pericytes by driving changes in cellular
metabolism. These pathways are summarized in Figure 4.

Quiescence
The quiescent state of pericytes is preserved by cell-intrinsic
programs but also by cell-cell interactions. This is achieved
in large part by the cell adhesion protein N-cadherin, which
mediates heterotypic cell contacts between endothelial cells and
pericytes (Gerhardt et al., 2000). Human placental pericyte
glycolytic activity is inversely associated with the expression level
of N-cadherin (Cantelmo et al., 2016). It has been shown that
N-cadherin sequesters β-catenin to the plasma membrane, which
may lower β-catenin-dependent promotion of proliferation as
was shown to occur in tumor cells (Nadanaka et al., 2018).
This effect may be mediated through the regulation of metabolic
pathways since c-Myc, a major target gene of the β-catenin/TCF
transcription factor complex, is a well-established effector of
glycolysis (Li and Wang, 2008). Metabolic state of the cell
also influences N-cadherin expression in tumor vessel pericytes,
as glycolytic inhibition using the PFKFB3 inhibitor increased
N-cadherin protein level and enhanced pericyte adhesion to
endothelial cells (Cantelmo et al., 2016).

Besides the regulation imposed by cell adhesion molecules,
pericyte quiescence is promoted by Notch signaling. Notch3 on
pericytes interacts directly with Jagged-1 on endothelial cells to
promote pericyte-endothelial cell adhesion while also inhibiting
pericyte proliferation and migration (Liu et al., 2009, 2010; Schulz
et al., 2015; Ji et al., 2016). Notch signaling is implicated in the
regulation of quiescence and metabolism in many cell types (Iso
et al., 2003; Liu et al., 2010; Koch et al., 2013), through diverse
actions that include downregulated expression of glycolytic
enzymes such as PFKFB3 (De Bock et al., 2013; Bayin et al.,
2017). Thus, pericyte quiescence enforced by interactions with
endothelial cells via Notch may involve metabolic reprograming
driven by this signal pathway.

A similar enforcement of quiescence may be promoted by the
Forkhead box O (FOXO) transcription factors. This family of
transcriptional regulators maintains cellular quiescence in adult
stem cells through repression of metabolic pathway genes and
cell cycle activators (Liang and Ghaffari, 2018). FOXO3A was
shown to be the predominant FOXO family member produced
by pericytes (Teichert et al., 2017). In muscle satellite cells,
FOXO3A promotes quiescence, in part through enhancing the
expression of Notch1 and 3 (Gopinath et al., 2014; Yue et al.,
2017), suggesting a similar function may occur in pericytes.
However, elevated levels of nuclear FOXO3A in pericytes (due
to Ang2-dependent decrease in Tie-2 activation) was associated
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FIGURE 4 | Putative molecular pathways coordinating pericyte state and metabolism. Activation, multipotency and fate specificity of pericytes are governed by
different molecular pathways that may involve coordinated metabolic shifts. N-cadherin, Notch3 and FoxO3A signaling are associated with the maintenance of a
quiescent state in pericytes by limiting cellular metabolism (mainly glycolysis), whereas pericyte proliferation is stimulated by growth factors and supported by a
concomitant increase in glycolytic activity. Self-renewal is achieved by cycles of proliferation followed by the return to a quiescent state, which may be promoted by
cell adhesion to laminin. Commitment and trans-differentiation may be triggered by an increase in oxidative stress, while unique lineage specifications are determined
by a combination of distinct lineage drivers and metabolic reprograming. Conversely, FoxO3A signaling, antioxidant agents, laminin and hypoxia can repress
commitment and trans-differentiation events. See text for details on the relevant studies. ATP, Adenosine triphosphate; FGF-2, Fibroblast growth factor; FoxO3A,
Forkhead BoxO3A; OxPhos, oxidative phosphorylation; PDGF-BB, platelet derived growth factor; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
3; ROS, reactive oxygen species.

with a phenotype shift in pericytes that promoted migration and
overall, increased capillary growth (Teichert et al., 2017). Thus,
although the function of FOXO proteins in governing quiescence
via suppression of metabolic activity has been well-established in
many other cell types including endothelial cells, these functions
require further investigation in pericytes.

Proliferation
Growth factors that stimulate pericyte proliferation increase
the uptake and utilization of available nutrients. For example,
insulin promotes glucose uptake and induces glucose-mediated
proliferation of bovine retinal pericytes (King et al., 1983).
PDGF-BB is another major growth factor for pericytes. Excessive
PDGFR activation is responsible for driving the proliferation
of pericytes in kidney disease (Chen et al., 2011). Since this
growth factor is a strong driver of glycolysis in cancer cells and
smooth muscle cells (including increased expression of glucose
transporters) (Wang et al., 1999; Ran et al., 2013; Xiao et al.,
2017) it is very likely that PDGFRβ signaling enhances glycolysis
to meet the energy and biomass demands of proliferating
pericytes. Fibroblast growth factor (FGF)-2 also exerts mitogenic
influences on pulmonary artery-associated pericytes and can

provoke excessive pericyte proliferation in pathological contexts
(Ricard et al., 2014). These effects may be mediated by metabolic
reprograming, as it has been shown that FGF-2 can coordinate
endothelial cell proliferation and migration by increasing the
glycolytic capacity of these cells (Yu et al., 2017).

Commitment and Differentiation
Generally, “stemness’ of pericytes is retained through cycles
of proliferation. Maintenance of the stemness and multipotent
state of pericytes is highly dependent on interactions with the
basement membrane protein laminin. In the absence of this
protein, brain pericytes develop the properties of a contractile
cell (Yao et al., 2014). Stemness of pericytes is also tuned by
other microenvironmental cues and transcription factors that
are established regulators of genes encoding metabolic pathway
components. Thus, changes in metabolism are expected to
accompany and to facilitate differentiation of pericytes.

For example, it has been reported that hypoxia represses the
differentiation of CD146+ human umbilical cord perivascular
cells (presumptive pericytes), allowing them to proliferate and
maintain their multipotency (Tsang et al., 2013). Since hypoxia
upregulates glycolytic activity, these observations imply that a
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metabolic switch to oxidative metabolism could provoke lineage
commitment of pericytes. Accordingly, signaling pathways
involved in the regulation of antioxidant defenses, as well as
antioxidant compounds, may directly impact the differentiation
of pericytes. For example, besides regulating metabolic pathways,
FOXO proteins protect cells against oxidative stress via
transcriptional upregulation of antioxidant defense proteins
(superoxide dismutase, catalase) (Carter and Brunet, 2007).
Depletion of FOXO3A results in limited self-renewal and
greater commitment of neural stem cells, hematopoietic stem
cells, satellite cells (Miyamoto et al., 2007; Tothova et al.,
2007; Paik et al., 2009; Gopinath et al., 2014). Antioxidant
treatment was shown to improve self-renewal in FoxO3−/−

hematopoietic stem cells and in neural precursors, highlighting
a critical role for the regulation of oxidant stress in determining
commitment (Tothova et al., 2007; Paik et al., 2009). However,
the implementation of metabolic switching is lineage-specific
(Cliff et al., 2017) and cannot be generalized across all stem
cell populations. Importantly, fate decisions also rely on the
concomitant upregulation of specific lineage drivers that guide
cell-type specific transcriptional programs. Some knowledge
of these signal pathways has been established for pericyte
differentiation, which we summarize below for three of the most-
studied pericyte fates.

Myofibroblast/Smooth Muscle Cell
Differentiation
The transcriptional regulator myocardin is a major lineage
driver for smooth muscle cell differentiation (Li et al., 2003;
Long et al., 2008; Alexander and Owens, 2012). In turn, TGF-
β -Smad/Notch signaling augment pericyte differentiation into
smooth muscle cells (Meyrick et al., 1981; Chambers et al.,
2003; Alexander and Owens, 2012; Volz et al., 2015). Similarly,
the TGFβ, Notch and Wnt signaling pathways contribute to
pericyte conversion to myofibroblasts (Kirton et al., 2006; Cheng
et al., 2008; Andersson-Sjöland et al., 2016; Aimaiti et al.,
2019). Wnt signaling is robustly activated in lung and kidney
pericytes following tissue injury and correlates temporally with
the onset of fibrosis (Kirton et al., 2007; Andersson-Sjöland
et al., 2016). Given that TGF-β-dependent differentiation of
fibroblasts to myofibroblasts was associated with increased
glucose uptake and glutaminolysis (Bernard et al., 2015, 2018;
Andrianifahanana et al., 2016), it is tempting to speculate that
this also applies to the conversion of pericytes to myofibroblasts,
although this remains to be demonstrated experimentally. In
addition, epigenetic modulation of histone marks may ‘lock in’
myofibroblast differentiation, as seen in pericytes that exhibited
both repressive marks on PPARγ and activating marks on
fibrotic genes (Mann et al., 2010; Perugorria et al., 2012;
Zeybel et al., 2017).

Osteo/Chondrogenic Differentiation
Expression of the transcription factor Runx2 (Osf2/Cbf1a) is
a hallmark of pericytes that are poised to undergo osteogenic
or chondrogenic differentiation (Doherty and Canfield, 1999;
Farrington-Rock et al., 2004). Osteo-inductive factors such as

bone morphogenetic proteins (BMP) increase Runx2, which
then interacts with osteoblast-specific cis-acting elements to
promote the expression of osteogenic genes (Ducy et al., 1997;
Zebboudj et al., 2003; Gao et al., 2013). During chondrogenesis,
Runx2 is downregulated while Sox-9, the master regulator
of chondrogenesis, is upregulated (Bi et al., 1999; Akiyama
et al., 2002). Interplay between Sox-9 and β-catenin drives
chondrogenesis while suppressing other lineages, such as
adipogenesis (Akiyama et al., 2004; Kirton et al., 2007).

Metabolic state may contribute to determining pericyte
fate decision toward osteogenesis. Runx2 expression itself is
glucose-dependent (Wei et al., 2015) and its gene regulatory
influences favor glycolysis over oxidative respiration (Choe
et al., 2015). However, osteogenesis in mesenchymal cells
involves a progressive switch toward oxidative metabolism,
which is necessary for complete differentiation (Chen et al.,
2019). In line with this, pericyte osteogenic differentiation
was markedly reduced under hypoxic conditions, suggesting
a reliance on oxidative phosphorylation and/or oxidant stress
to elicit complete osteogenic differentiation (Byon et al., 2008;
Tsang et al., 2013). FOXO1, which represses glycolysis, plays a
significant role in restraining osteoblast differentiation. It does
this through lowering oxidant stress as well as by interfering with
Wnt-dependent transcriptional programs (Dowell et al., 2003;
Rached et al., 2010; Chen et al., 2019). The influence of FOXO
transcriptional regulators in pericyte lineage differentiation
remains to be established.

Adipogenesis
The peroxisome proliferator activated receptor gamma (PPARγ)
transcription factor is recognized as a master regulator of pre-
adipocyte differentiation and metabolism and its expression is
strongly stimulated by exposing cultured pericytes to adipogenic
factors (Farrington-Rock et al., 2004; Lefterova et al., 2014).
C/EBPβ is proposed to play a key transcriptional priming role
through binding to closed chromatin ‘hotspots’ with which
PPARγ subsequently interacts (Lefterova et al., 2014). The
majority of pericytes in lung and brain express C/EBPβ, while
only a small percentage of these cells express PPARγ (He et al.,
2018; Vanlandewijck et al., 2018), which appears consistent
with the concept that a portion of quiescent pericytes are
poised to respond to adipogenic cues. In mouse skeletal muscle,
Type-1 (PDGFRα+) pericytes exhibit adipogenic potential and
were shown to contribute to the generation of adipocytes
when transplanted into glycerol-injured muscles (Birbrair et al.,
2013). Further, pericytes in human and murine skeletal muscle
were reported to express leptin mRNA, the levels of which
increased under obesogenic conditions (Nwadozi et al., 2019).
PPARγ also may be expressed in activated but non-adipogenic
pericytes (i.e., proliferating pericytes in vitro) and several
studies point to additional roles of PPARγ beyond driving
adipogenesis. In hematopoietic stem cells, PPARγ suppresses
self-renewal while promoting cell differentiation, in large part
through strong suppression of glycolysis (Guo et al., 2018).
However, hepatic stellate cells (specialized pericytes within
the liver) rely on PPARγ signaling to promote fatty acid
oxidation, which serves to both maintain their quiescence
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FIGURE 5 | Effects of chronic nutrient excess on pericyte metabolism and trans-differentiation. (A) Chronic exposure to high glucose levels of pericytes disrupts
glucose metabolism and increases diversion of glycolytic intermediates into the polyol and hexosamine biosynthesis pathways, elevates NAD(P)H oxidase activity
and increases cellular oxidative stress; This gives rise to augmented ROS levels with the exhaustion of antioxidant defenses, the formation of harmful AGEs,
enhanced glycosylation of proteins and fragmentation of mitochondria. Increased fatty acid levels also exacerbate cellular oxidative stress, with concomitant
disruptions to metabolic pathways including mitochondrial function. (B) These disruptions in the metabolism of pericytes increase their detachment from the vessel
wall, lower their proliferation and increase apoptosis, ultimately leading to capillary regression. These pathological metabolic shifts also impact pericyte multipotency
by promoting their trans-differentiation to myofibroblasts, adipocytes and chondrocytes, which contribute to interstitial fibrosis, fat accumulation and vessel
calcification, respectively. AR, aldose reductase; AGEs, advanced glycation end products; DHAP, dihydroxyacetone phosphate; F6P, fructose-6-phosphate; FA, fatty
acids; G3P, glyceraldehyde-3-phosphate; G6P, glucose-6-phosphate; GFAT, glutamine fructose-6-phosphate amidotransferase; Glc, glucose; GSSG, glutathione
disulfide; GSH, glutathione; HBP, hexosamine biosynthesis pathway; NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species, TCA,
Tricarboxylic acid; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine.

and prevent myofibroblast differentiation (She et al., 2005;
Zhu et al., 2010).

EFFECTS OF NUTRIENT EXCESS ON
PERICYTE METABOLISM AND
DIFFERENTIATION

Survival and Activation
Nutrient availability can impact pericyte state in several
ways. Hyperglycemia acutely increases glucose metabolism

(Giacco and Brownlee, 2010). In the short term, increased levels
of glucose enhance glycolysis and glucose oxidation, thus
supporting the activation of cellular processes associated with
proliferation and migration in cultured rat retinal pericytes
(Shah et al., 2013). However, glucose oxidation increases ROS
production. In turn, ROS-mediated inhibition of glycolytic
enzymes (i.e., GAPDH, PFK) causes the glycolytic intermediates
to stall and divert through side-branches of glycolysis (PPP,
hexosamine, polyol), thus increasing synthesis of advanced
glycation end-products (AGE) (Giacco and Brownlee, 2010; Tang
et al., 2012; Mullarky and Cantley, 2015). Increased flux through
the polyol pathway consumes NADPH in the process of aldose
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reductase generation of sorbitol. The continual depletion of
NADPH may impair the regeneration of reduced glutathione
(GSH), which lowers overall cellular oxidant buffering capacity.
High glucose-induced oxidative stress also is sustained by
elevated cytosolic NAD(P)H oxidase activity (Giacco and
Brownlee, 2010; Tang et al., 2012). These disruptions are
illustrated in Figure 5. In pericytes, the associated increase in
cellular ROS that accompanies these metabolic disturbances leads
to decreased proliferation, fragmentation of mitochondria (with
an associated decline in oxygen consumption) and increased
apoptosis (Manea et al., 2004, 2005; Mustapha et al., 2010;
Trudeau et al., 2011). In rodent retinal and cerebral cortex
pericytes, increased aldose reductase-dependent production of
sorbitol (Kennedy et al., 1983; Berrone et al., 2006) enhances
cellular osmotic stress and endoplasmic reticulum- stress.
This may contribute to increased pericyte apoptosis, as was
documented in porcine retina and rat lens explants (Takamura
et al., 2008; Zhang P. et al., 2012). In fact, NADPH oxidase
production of ROS, rather than mitochondria-derived ROS, was
found to be instrumental in driving glucose-induced apoptosis of
retinal pericytes (Mustapha et al., 2010).

Hyperglycemia also elevates flux through the hexosamine
pathway in pericytes by increasing production of the rate-limiting
enzyme glutamine:fructose-6-phosphate aminotransferase
(GFAT) (Semba et al., 2014). The resultant increase in O-GlcNac-
modification of proteins, including insulin receptor and
PDGFRβ, interferes with mouse retinal pericyte migration
(Gurel et al., 2013). FOXO1 may exert a pro-apoptotic function
in pericytes in diabetic retinopathy based on the observation
that cultured bovine retinal pericytes stimulated with TNFα

or AGE products exhibited FoxO1-dependent apoptosis
and that FOXO1 RNA interference lowered retinal pericyte
apoptosis in diabetic rats (Behl et al., 2009; Alikhani et al.,
2010). This suggests that increased conversion of glycolytic
intermediary glyceraldehyde 3 phosphate to AGEs can influence
a transcription factor that itself is a cornerstone in the regulation
of cell survival, metabolism and proliferation/differentiation.
Within the retina, prolonged hyperglycemia ultimately is
associated with pericyte migration away from the capillary
or pericyte ‘dropout,’ which decreases pericyte coverage of
the capillary structure, compromising capillary integrity and
provoking capillary regression (Pfister et al., 2008; Corliss et al.,
2019; Hayes, 2019).

Prolonged exposure to increased levels of fatty acids causes
insulin resistance and lipid toxicity in many cell types (Yazıcı
and Sezer, 2017). To date, there has been limited investigation
of these effects in pericytes. One report indicated that exposure
of cultured bovine retinal pericytes to high doses of the fatty
acid palmitate increased NAD(P)H oxidase–mediated oxidative
stress, with concomitant disruptions to metabolic pathways
including mitochondrial function (Cacicedo et al., 2005).
Palmitate treatment of cultured retinal pericytes also appears
to exacerbate the anti-proliferative, pro-apoptotic effects of
AGEs on pericytes, indicating additive effects of these metabolic
perturbations (Yamagishi et al., 2002; Cacicedo et al., 2005;
Ding et al., 2014). These studies imply that high fatty acids will
contribute to oxidative stress-induced damage to pericytes.

Differentiation Potential
Exposure to excess glucose influence pericyte multipotency in
several ways. Neural pericytes cultured in high glucose have
increased production of AGEs and up-regulated expression
of pro-fibrotic TGF-β, favoring myofibroblast differentiation
(Shimizu et al., 2011). Notably, hyperglycemia also increases
core fucosylation of the TGF receptors-type I and II (TGFβRI
and TGFβRII), which enhances its activation of downstream
signals, resulting in hypersensitivity to TGFβ ligands (Sun et al.,
2017; Wang et al., 2017). This enhanced core fucosylation of
TGFβRI is a key determinant of mesangial pericyte myofibroblast
trans-differentiation and interstitial fibrosis in mouse models of
kidney disease (Lin et al., 2011; Shen et al., 2013; Wang et al.,
2017). Diabetes also increases the propensity of muscle- and
bone-marrow-derived pericytes to differentiate into adipocytes
in vitro, while limiting their capacity to promote myogenesis or
angiogenesis (Vono et al., 2016; Ferland-McCollough et al., 2018;
Mangialardi et al., 2019). These effects were proposed to be linked
to elevated ROS. Increased cellular ROS (via NADPH oxidase)
also contributes to myofibroblast and osteogenic differentiation
in smooth muscle cells and pericytes in diabetic vessels (Byon
et al., 2008; Barnes and Gorin, 2011; Raaz et al., 2015). Fatty acid
exposure may provoke a similar transition of mesangial pericytes
to myofibroblasts by increasing TGF-β secretion (Mishra and
Simonson, 2008). In sum, these studies indicate the potential
for nutrient imbalances that disturb intracellular metabolism
and elevate oxidative stress to trigger inappropriate lineage
commitment and trans-differentiation of pericytes.

CLINICAL RELEVANCE

Correcting the Functions of Native
Pericytes
Establishing the molecular and metabolic switches that
control pericyte behavior has the potential to direct the
development of new therapeutic opportunities for diseases
involving pericyte dysfunction. Targeting pathways that regulate
pericyte survival/apoptosis are under exploration as potential
therapies in diabetic retinopathy. As previously described, the
accumulation of ROS and AGEs induces pericyte apoptosis,
ultimately contributing to the capillary loss and fluid leakage that
occur in diabetic vasculopathies (Armulik et al., 2011; Ferland-
McCollough et al., 2017; Hayes, 2019). Thus, identification of
enzyme modifiers that effectively limit glucose uptake or divert
the flux of glucose away from “damage-inducing” metabolic
pathways (i.e., polyol; AGE-producing) may protect pericytes
from high glucose-induced damage and apoptosis by minimizing
ROS and AGE accumulation.

On the opposite spectrum, excessive pericyte proliferation
promotes disease progression in pulmonary artery hypertension
(PAH), hypoxia-induced retinopathies (characterized by
excessive neovascularization), and kidney and liver fibrosis
(Rabinovitch, 2012; Ferland-McCollough et al., 2017; Dubrac
et al., 2018). Studies using pericytes derived from PAH patients
indicate that aberrant pericyte proliferation and migration
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is fueled by glycolysis, as these cells had elevated glycolytic
capacity and lower mitochondrial activity (Rabinovitch, 2012;
Yuan et al., 2016). Thus, repression of pericyte glycolytic
activity could provide a useful therapeutic approach in this
disease. Recently, siRNA-mediated knock-down of PDK4 (which
suppresses mitochondrial activity in favor of glycolysis by
inhibition of pyruvate dehydrogenase) was shown to increase
PAH-derived pericyte mitochondrial function, lower their
proliferation and improve their interactions with endothelial cells
(Yuan et al., 2016), demonstrating promise of this conceptual
approach. Similar strategies may be useful in regulating pericyte
proliferation in chronic kidney disease or retinopathies, although
these approaches remain to be tested.

Excessive differentiation of pericytes into smooth muscle
cells also occurs in PAH and contributes to the pathogenesis
and severity of the disease (Rabinovitch, 2012; Ricard et al.,
2014). In general, the pathological differentiation of pericytes
into myofibroblasts is a hallmark of fibrotic kidney and liver
diseases (Humphreys, 2018; Parola and Pinzani, 2019). Notably,
lineage tracing also demonstrated that trans-differentiation of
PDGFRβ+ pericytes into fibroblasts occurs within a tumor
environment, which causes alterations to capillary structure
and interstitial matrix components that ultimately enhance
tumor invasion and metastatic potential (Hosaka et al., 2016).
In vivo pathological activation of osteogenesis/chondrogenesis
within pericytes can lead to ectopic ossification (Farrington-
Rock et al., 2004; Kirton et al., 2007). This also contributes
to large vessel calcification in atherosclerosis (Canfield et al.,
2000; Tintut et al., 2003). While efforts to date have focused
almost exclusively on disrupting the initiation of ligand-activated
receptor signaling (i.e., disproportionate TGF-β or PDGF-
BB signaling that provokes smooth muscle or myofibroblast
differentiation in these diseases) (Humphreys et al., 2010;
Duffield et al., 2013; Hung et al., 2013; Hosaka et al., 2016), it is
plausible that coordinated manipulation of metabolic pathways
has the potential to achieve more effective repression of these
pathological forms of pericyte differentiation. However, more
discrete definition of the metabolic switches associated with
specific lineage differentiation will be required to take advantage
of these opportunities.

Improving the Use of Pericytes as a Tool
for Regenerative Medicine
The capacity to fine-tune pericyte metabolism may provide
mechanisms to optimize the function of pericytes used in
regenerative medicine, through enhancing the survival and
participation of these cells despite the unfavorable conditions
found within the host ischemic or injured tissues. Pericytes,
and related cell populations that have been referred to as
‘pericyte-like adventitial cells,’ ‘fibro-adipocyte progenitors’ and
‘mesenchymal stromal cells’ have been tested in various types
of cell-based therapies and as tools for tissue bioengineering
(Zamora et al., 2013; König et al., 2016; Avolio et al., 2017;
Murray et al., 2017). To date, pericyte injections have been
utilized in pre-clinical studies to promote muscle repair, recovery
from muscle or cardiac ischemia, bone/skin injury, diabetic

retinopathy (including the clinical trial RETICELL) (Dar et al.,
2012; Mendel et al., 2013; Siqueira et al., 2015; Thomas et al.,
2017; Alvino et al., 2018; Munroe et al., 2019). The expectation
is that pericyte delivery will improve outcomes by one or more
actions: secretion of factors that support functions of native
cells; replacement of existing ‘damaged’ or ‘dead’ pericytes;
differentiation into functional vascular or muscle cells (Caplan,
2009; Cathery et al., 2018).

The value of pericytes as a tool for cellular therapy is
highly dependent on their capacity to survive and function
within the environment to which they are delivered. The
relative reliance of proliferating pericytes on glycolytic vs.
oxidative metabolism may help to support pericyte survival
when they are injected into ischemic cardiac or skeletal muscle
(Cathery et al., 2018). However, conditions within the host
tissue microenvironment (i.e., oxidative stress, hyperglycemia,
excess TGF-β or PDGF-BB) may impede appropriate activation,
proliferation, differentiation and function of healthy donor
pericytes, as has been demonstrated within the ischemic limbs of
db/db mice (Hayes et al., 2018). Further, the pericyte secretome
will vary between pro and anti-inflammatory dependent on the
local environment/stimulus (Chen et al., 2013; Gaceb et al.,
2018). For example, inflammatory stimuli and AGE will enhance
secretion of pro-fibrotic TGF-β, and this could influence the
extent to which transplanted pericytes would evoke a fibrotic
response in the host tissue.

Moreover, the success of pericyte-based therapies may be
limited by the patient’s pre-existing disease. Although autologous
transplantation is preferable to use, these cells may be deficient
in number and/or function (Fadini et al., 2017, 2019; Teng
and Huang, 2019). For example, diabetic individuals have
fewer skeletal muscle and bone-marrow derived pericytes than
age-matched non-diabetics (Tilton et al., 1981; Mangialardi
et al., 2019). Additionally, the ‘stemness’ of these cells may be
compromised. Muscle-derived pericytes from diabetic patients
exhibited greater adipogenic potential and reduced capacity
to promote angiogenesis, which was related to enhanced
oxidative stress-dependent damage (Vono et al., 2016). Similarly,
bone marrow-derived pericytes from type 2 diabetic patients
displayed less Akt activation, which associated with lower
survival and proliferation (Mangialardi et al., 2019). Ideally,
manipulation of these cells in vitro could be used to correct these
deficiencies and to condition the cells for more effective functions
once transplanted.

CURRENT CHALLENGES AND FUTURE
DIRECTIONS

An ongoing challenge in the field of pericyte biology is the
inherent heterogeneity of this cell population. This has led to
substantial study to study inconsistencies in the classification of
pericytes, which in turn confounds the interpretation of research
on pericyte functions. Thus, a comprehensive characterization
of pericyte subtypes and validation of appropriate identifying
markers for these populations are crucial next steps for advancing
our knowledge of pericyte functions and differentiation potential.
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Single cell sequencing offers tremendous promise in establishing
global gene expression signatures and novel molecular identifiers
of pericytes, as well as enabling the discovery of subtype, tissue
and disease-specific patterns of pericyte gene expression. With
this knowledge, it will be possible to evaluate the extent to which
pericyte subpopulations are pre-programed with discrete and
tissue-specific lineage potentials and to identify which pericyte
subgroups have the most favorable characteristics for use in
regenerative cell therapies.

Emerging evidence indicates that the regulation of metabolic
pathways may offer the potential to manipulate the cell-state and
fate decisions of pericytes, which could enable the development of
novel strategies to control pericytes contributions to pathological
conditions and their use in regenerative medicine. However,
knowledge of pericyte metabolism is rudimentary to date and
the overall understanding of how pericytes integrate signal
transduction, metabolic programing and cell state/fate decisions
currently lags far behind the state of knowledge of these
relationships in other vascular and stem cells. Therefore, many
fundamental questions remain to be answered. Considering the
extent of pericyte heterogeneity in vivo, it will be important
to determine if there is variability in metabolic programing
that coincide with specific gene expression signatures. With the
evolving advancements in metabolomics technologies, there is
now unprecedented opportunity to map the metabolome of
pericytes even to the single cell level and to identify the metabolic
pathways that are integral to transitions in pericyte state and

lineage commitment. Lastly, it is crucial to consider the impact
of various pericyte isolation and culturing conditions on the
signaling and metabolic pathways that regulate activation and
differentiation potential, since this could greatly influence the
reproducibility and efficacy of cell-based therapeutic treatments.
Addressing these avenues of research not only will provide
valuable insight into the contribution of specific metabolic
pathways in shaping pericyte phenotype but it may also reveal
new tools for the optimization of pericyte characteristics in
pathological conditions and when used in cell therapies.
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