
MINI REVIEW
published: 26 November 2019

doi: 10.3389/fendo.2019.00773

Frontiers in Endocrinology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 773

Edited by:

Michaela Luconi,

University of Florence, Italy

Reviewed by:

Enzo Lalli,

UMR7275 Institut de Pharmacologie

Moléculaire et Cellulaire

(IPMC), France

Andrea Morandi,

University of Florence, Italy

*Correspondence:

Anthony Scimè

ascime@yorku.ca

Specialty section:

This article was submitted to

Cancer Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 01 August 2019

Accepted: 23 October 2019

Published: 26 November 2019

Citation:

Bhattacharya D and Scimè A (2019)

Metabolic Regulation of Epithelial to

Mesenchymal Transition: Implications

for Endocrine Cancer.

Front. Endocrinol. 10:773.

doi: 10.3389/fendo.2019.00773

Metabolic Regulation of Epithelial to
Mesenchymal Transition:
Implications for Endocrine Cancer
Debasmita Bhattacharya and Anthony Scimè*

Molecular, Cellular and Integrative Physiology Group, Faculty of Health, York University, Toronto, ON, Canada

The last few decades have witnessed an outstanding advancement in our understanding

of the hallmarks of endocrine cancers. This includes the epithelial to mesenchymal

transition (EMT), a process that alters the morphology and functional characteristics of

carcinoma cells. The mesenchymal stem cell like phenotype produced by EMT allows

the dislocation of cancer cells from the primary tumor site with inheritance of motility,

metastatic and invasive properties. A fundamental driver thought to initiate and propagate

EMT is metabolic reprogramming that occur during these transitions. Though there

remains a paucity of data regarding the alterations that occur during EMT in endocrine

cancers, the contribution of deregulated metabolism is a prominent feature. This mini

review focuses on metabolic reprogramming events that occur in cancer cells and in

particular those of endocrine origin. It highlights the main metabolic reprogramming

outcomes of EMT, encompassing glycolysis, mitochondria oxidative phosphorylation

and function, glutamine and lipid metabolism. Comprehending the metabolic changes

that occur during EMT will help formulate potential bioenergetic targets as therapies for

endocrine cancer metastasis.
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The preceding few decades have witnessed an outstanding advancement in our understanding
of the hallmarks of cancer including the rare endocrine tumors. These include the signals that
sustain their proliferative capacity, prevent apoptosis, enable replicative immortality, and induce
angiogenesis (1). Another important consideration that has drawn significant attention is the
epithelial to mesenchymal transition (EMT) of cancer cells that is thought to be required for
their metastasis (2). The metastatic cascade of cancer cells involves loss of adhesion between cells,
which results in their dissociation from the primary tumor and subsequently inheritance of a
mesenchymal stem cell like phenotype. This is characterized by motility changes in cell to matrix
interactions and plasticity to grow in different tissues (3). EMT results in tumor initiating cells
(TICs) having properties similar to cancer stem cells (CSCs), which are associated with initiation,
dissemination and recurrence of cancer (4). A fundamental driver thought to initiate and propagate
EMT are metabolic alterations that occur during these transitions (5, 6). Though there is little
information on the role of metabolism in EMT of endocrine cancers, an understanding in other
cancers will provide some potential insight. This review will focus on howmetabolic reorganization
is an important regulator of EMT with particular regard to endocrine type cancers.
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EMT INDUCES TICs

EMT occurs when tumorigenic epithelial cells acquire a
mesenchymal stem cell like phenotype by undergoing
transcriptional, epigenetic, and metabolic changes. This
causes loss of cell to cell adherence, imparting motility to the
cells which are free to migrate and invade tissues, a process
known as metastasis. Normally EMT is a physiological process
necessary for organogenesis during embryonic development and
for wound healing (7). However, it is thought that epithelial
cancer cells also undergo EMT, becoming TICs, escaping from
the primary tumor to enter in the blood circulation as potentially
invasive cancer cells. EMT renders stem cell like properties to
cancer cells, evidenced by increased self-renewal and survival,
anchorage independent growth, and loss of differentiated
characteristics (2).

TICs derived from EMT share similar characteristics with
CSCs such as metastatic potential, chemo resistivity, anti-
apoptotic function, gene expression signature, and metabolic
profile (4). To sustain differences in morphology and function,
the metabolic needs of EMT cells are different from the epithelial
tumor cells from which they were derived, but similar to CSCs.
Association between EMT and the acquisition of stem cell like
properties have been observed in few endocrine cancers such as
pancreatic, prostate, thyroid, and pituitary cancers (8, 9). Shaul
et al., identified 44 common metabolic genes in CSCs which are
also upregulated during EMT (10). Some of the important genes
that are common between CSCs and cells that have undergone
EMT are the glycan synthesis genes that modulate cell to cell
interactions and gene expression (11, 12), lipid synthesis genes
(13) and other genes associated with cancer aggressiveness, cell
migration, andmetastasis (14, 15). Some of these metabolic genes
are also closely associated with EMT of the endocrine cancers.

How the metabolic network is reprogrammed to influence
EMT remains unclear. The shift from epithelial to the
mesenchymal morphology and loss of cell-cell adhesion is
orchestrated by various transcription factor families (EMT-
TFs) such as Snail, Twist and Zeb (16). EMT-TFs are
known to regulate the transcription of various metabolic
genes of different bioenergetic pathways (17). Glycolysis,
mitochondrial oxidative phosphorylation (Oxphos), glutamine
and lipid metabolism are the main energy producing pathways
that maintain cellular harmony, but their metabolic deregulation
and reprogramming influence initiation and progression of EMT
and metastasis (Figure 1).

GLYCOLYTIC REGULATION OF EMT

Unlike normal cells, cancer cells rely more on aerobic glycolysis,
also known as the Warburg effect, to meet their elevated
demand for energy during proliferation (18). In this regard,
ATP is generated by a high rate of glycolysis followed by lactate
production from pyruvate in the cytosol instead of pyruvate
oxidation in the mitochondria, despite the presence of sufficient
oxygen. The induction of genes associated with enhanced
glycolytic flux also causes procurement of stem cell like properties
in EMT (19–22). Indeed, the importance of aerobic glycolysis

to EMT is characterized by the preponderance of deregulated
glycolytic enzymes associated with cancer metastasis (23).

It is not clear how aerobic glycolysis favors EMT. One
hypothesis is it provides a survival benefit against anoikis, which
is a type of cell death that occurs when insufficient matrix
attachment generates high levels of reactive oxygen species (ROS)
to kill the cell (24). Normally anoikis would be a barrier to
metastasis, but it is bypassed by EMT by critically decreasing
oxidative metabolism via the Warburg effect to minimize
production of ROS (25).

Despite the prominence of deregulated glycolysis in endocrine
cancers there are few data available regarding its role in
EMT. Proteomic analysis of endocrine pancreatic cells showed
predominance of the Warburg effect and enhanced expression
of factors involved in glucose metabolism (26). The potential
implication for EMT is highlighted by metabolic profiling
conducted on the exocrine pancreatic ductal adenocarcinoma
(PDAC) that identified a subpopulation having a distinct
glycolytic character. This subpopulation was strongly correlated
with a stem cell like phenotype, indicative of EMT (27). Exposure
of PDAC cell lines to known EMT inducers such as tumor
necrosis factor-α and transforming growth factor-β resulted
in conspicuous EMT accompanied by enhanced glycolysis and
lactate secretion.

Dysregulation of glycolytic enzymes are evident in some
endocrine cancers, but their role in EMT is unknown. For
example, in pancreatic cancer cells, there is upregulation of the
key enzymes of glycolytic metabolism and glucose transporters
(28). Moreover, in different subsets of thyroid carcinoma,
upregulation of hexokinase 2 (HK2), that phosphorylates glucose
to form glucose 6-phosphate was observed (29). Intriguingly, in
non-endocrine PDAC, HK2 is correlated with EMT and poor
prognosis of the disease (30, 31). It has also been reported
that breast cancer cells have augmented HK2 and its dose
dependent inhibition by 2-deoxyglucose impede their EMT
(32). Another glycolytic enzyme that is upregulated in many
cancers is phosphoglucoisomerase (PGI). It mediates conversion
of glucose 6-phosphate to fructose 6-phosphate and is associated
with motility, migration, metastasis, and EMT in breast and
lung cancers (33, 34). This is reflected by PGI mediated
induction of EMT-TFs and increased metastatic potential in
breast cancer cells (35). Although the role of PGI in EMT has
been studied for many cancers, it is yet to be elucidated if
it has a role in the endocrine tumor setting. Other glycolytic
enzymes linked to metastasis and progression of endocrine type
cancers are aldolase, glyceraldehyde-3-phosphate dehydrogenase
and pyruvate kinase (36–38).

Also, some cancer cells can facilitate a metabolic shift
toward aerobic glycolysis by upregulating glucose metabolism
by impeding gluconeogenesis. For example, in several cancers
including endocrine pancreatic cancer cells, loss of fructose-1,6-
bisphosphatase (FBP1) that catalyzes the hydrolysis of fructose
1,6-bisphosphate to fructose 6-phosphate, is associated with
increased cancer stem cell like phenotype and metastasis (39–
42). FBP1 has been shown to be a direct target of Snail
and Zeb1 transcriptional repression that promotes an increase
for invasiveness of cancers cells (39, 43, 44). Restoring FBP1
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FIGURE 1 | Enzymes within their pathways that are implicated in metabolic reprogramming during EMT. Schematic diagram of enzymes (highlighted in red) within the

metabolic pathways of glycolysis, gluconeogenesis, mitochondrial, glutamine, and lipid metabolism alluded in the text that are altered during metabolic reprogramming

that occurs in EMT. The main glycolytic enzymes that are upregulated in EMT are HK2 (hexokinase 2); PGI (phosphoglucoisomerase); aldolase, G3PDH

(glyceraldehyde-3-phosphate dehydrogenase), and LDHa (lactate dehydrogenase a). FBP1 (fructose-1,6-bisphosphatase), the rate limiting enzyme of

gluconeogenesis, is downregulated during EMT. Mutations in the tri-carboxylic acid (TCA) cycle enzymes linked to EMT are IDH (isocitrate dehydrogenase); SDH

(succinate dehydrogenase); FH (fumarate hydratase); and CS (citrate synthase). The key enzyme involved in glutaminolysis is GLS (Glutaminase). De novo lipogenesis

key enzymes involved in lipid metabolism are ACSS (acyl CoA synthetase); FASN (fatty acid synthase); and SCD (stearoyl CoA desaturase). Cells undergoing EMT also

have high TAG (Triacylglycerols) levels.

expression, reduced glucose uptake, glycolysis and lactate
generation concomitant with increased mitochondrial Oxphos
that suppressed EMT (45).

In addition to the glycolytic enzymes, EMT induction
occurs through enhanced activity and expression of glucose
transporters, Glut1 and Glut3. They are important proteins that
regulate glucose uptake, enabling rapidly dividing cells to sustain
aerobic glycolysis (22). High levels of Glut1 are characteristic
of endocrine cancers including thyroid carcinomas, pancreatic
and high grade serous ovarian cancers where inhibition of Glut1
impeded glycolysis mediated cancer progression (26, 38, 46).
Similarly, Glut3 expression in non-small cell lung cancer is
associated with increased glucose uptake, activation of EMT-TFs
and tumor cell invasiveness (47).

Another important factor that is positively regulated with
cancer invasiveness and EMT is lactate dehydrogensase a
(LDHa), a rate limiting enzyme converting pyruvate to lactate
during aerobic glycolysis. Invasive pituitary adenomas exhibit
high levels of LDHa both in-vivo and in-vitro (48). In intestinal-
type gastric cancer cell lines, silencing LDHa downregulates Zeb2

and the synergistic decrease of LDHa and Zeb2 decreased cancer
invasion, metastasis and poor prognosis (49). Also, in bladder cell
lines, high levels of LDHa stimulated EMT leading to migration
and invasion of the tumor cells (21) and silencing Ldha inhibited
tumorogenecity in pancreatic cells in vivo (50). Similar to most
aggressive cancers, LDHa was overexpressed in endocrine type
cancers such as follicular thyroid carcinoma and papillary thyroid
carcinomas compared to non-cancerous tissues (51).

MITOCHONDRIAL REGULATION OF EMT

Although there is a considerable amount of evidence linking
mitochondrial dysfunction and cancer, the role of mitochondria
in EMT has only recently been expounded (Figure 2). Decreased
mitochondrial Oxphos capacity is usually associated with EMT of
many cancer types and thus associated with promoting aerobic
glycolysis. A combined RNAseq and metabolomics profiling of
20 different solid cancers has shown that downregulation of
mitochondrial proteins, especially those involved in Oxphos, are
associated with metastasis and EMT (52).

Frontiers in Endocrinology | www.frontiersin.org 3 November 2019 | Volume 10 | Article 773

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Bhattacharya and Scimè Metabolic Reprogramming During EMT

FIGURE 2 | Mitochondrial dysfunction in endocrine cancers. Schematic representation of mitochondrial disruptions associated with EMT in endocrine cancers. NADH

and FADH2 produced in the TCA cycle is utilized by electron transport chain (ETC) to produce ATP for Oxphos. As mitochondrial encoded genes are limiting for

Oxphos, mutation in mitochondrial DNA (mtDNA) also causes low mitochondrial ATP and increased ROS (reactive oxygen species) production. The increase

production of ROS and/or mutation in the TCA cycle enzymes succinate dehydrogenase (SCD) and fumarate hydratase (FH) result in accumulation of succinate and

fumarate. These might be involved in retrograde signaling to activate nuclear EMT transcription factors, particularly in neuroendocrine cancers pheochromocytoma

and paraganglioma.

The reduction of Oxphos to enhance EMT and metastatic
progression is also associated with mutant and/or reduced levels
of mitochondrial DNA (mtDNA) (53). Importantly, four out
of five electron transport chain (ETC) complexes are made
up of functional subunits encoded from mtDNA that are
indispensable for ATP production from Oxphos. For example,
mutation of mtDNA encoding Complex I subunits of the ETC
increases the propensity of oncocytic thyroid cancers (54). The
importance of mtDNA mutations to metastasis is highlighted
by experiments using cybrid technology, to distinguish the
contribution of mitochondrial genome to cancer metastasis (55).
Cybrids carryingmtDNAmutations resulted in higher metastasis

compared to controls with no mtDNA mutation (55). Reduced
mtDNA content might cause mitochondria to nuclear retrograde
signaling, whereby the mitochondrial dysfunction triggers nuclei
to express genes that activate EMT and metastasis (56, 57). ROS,
a mitochondrial byproduct of the ETC, which can damage and
mutate mtDNA, was also shown to induce metastasis of tumor
cells (58). Intriguingly, decreased ETC complex I and III activity
were associated with ROS production in the endocrine thyroid
oncocytic carcinomas (38).

The EMT-TF Snail has been shown to reduce ETC
complex formation by targeting cytochrome c oxidase (Cox), a
Complex IV enzyme responsible for transferring electrons for
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mitochondrial respiration. Snail binds to the mtDNA promoter
and downregulates the expression of three Cox subunits, COX6c,
COX7a and COX7c, reducing the formation of Complex IV,
thereby suppressing oxygen consumption and mitochondrial
respiration (59).

A master regulator of mitochondrial biogenesis and enhancer
of Oxphos, peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (Pgc-1α), has been shown to either suppress
or activate EMT and metastasis depending on cancer types
and metabolic cues of the tumor microenvironment (60).
In endocrine thyroid cancers, Pgc-1α has been found to
be downregulated concomitant with increased glycolytic flux
(61). However, pancreatic CSCs have high levels of Pgc-1α
compared to differentiated pancreatic tumor cells, suggesting
that the association between Pgc-1α and EMT is dependent
on stages and metabolic plasticity of cancer (62). Indeed,
prostate cancers that are highly heterogeneous, provide different
landscapes for Pgc-1α functioning. In some prostate cancers,
Pgc-1α via an ERRα dependent mechanism increases the
overall oxidative metabolism and blocks EMT and metastasis
(63). On the contrary, androgen mediated AMPK activation
causes prostate cancer cell growth through Pgc-1α mediated
increase in mitochondrial biogenesis, glucose oxidation and fatty
acid oxidation (64). Similarly, in non-endocrine breast cancer
cells Pgc-1α mediated mitochondrial Oxphos and biogenesis
facilitates metastasis (65). Silencing Pgc-1α impaired the invasion
and metastasis without affecting the proliferation of the
primary tumor.

One of the important metabolic pathways in mitochondria
is the tri-carboxylic acid cycle (TCA) that provides reducing
agents for Oxphos and metabolites for various biosynthetic
pathways. Evident in endocrine cancers are mutations of
TCA cycle operational enzymes, which are linked to EMT
(66). The neuroendocrine tumors, pheochromocytoma and
paragangliomas are associated with mutation of succinate
dehydrogenase (SDH) that converts succinate to fumarate (66).
In particular, a mutation of SDHb a subunit of SDH, is thought
to alter glucose and glutamine utilization and cause epigenetic
modifications that results in EMT (67–69). Moreover, SDH
mutation is hypothesized to cause consumption of extracellular
pyruvate to maintain the Warburg effect conducive for cell
growth and thus EMT potential (70). This is through pyruvate
carboxylation for aspartate biosynthesis, which utilizes glucose
derived carbons produced in glycolysis. SDHb related changes
in pheochromocytomas and paragangliomas are coupled to
bioenergetic reprogramming where decrease in complex II of the
ETC caused compensatory increase in Complexes I, III and IV
with concomitant decrease in ATP levels (71). SDHb mutations
cause upregulation ofmetastatic genes and epigenetic silencing of
cell adhesion protein, keratin 19, leading to EMT and rendering
the tumor cells more aggressive and invasive (67, 72).

Mutation of another important enzyme of the TCA cycle,
fumarate hydratase (FH), which converts fumarate to malate,
is also implicated in metastasis of pheochromocytoma and
paraganglioma. This is due to accumulation of high levels
of fumarate and succinate that act as oncometabolites by
enhancing epigenetic modification of DNA hypermethylation,

ROS production and changes in the mitochondrial structure (66,
73–76). In particular, fumarate accumulation has been shown to
inhibit α-ketoglutarate-dependent dioxygenases that are involved
in DNA and histone demethylation. Recently, fumarate buildup
in renal cancers has been shown to cause EMT by inhibiting Tet
dioxygenase mediated demethyation of antimetastatic miR-200
which is a known activator of metastasis and EMT (77).

In the TCA cycle, isocitrate dehydrogenase that converts
isocitrate to α-ketoglutarate by decarboxylation, is also associated
with many cancers (78). An oncometabolite formed due to
mutation of isocitrate dehydrogenase, 2D hydroxyglutarate,
induced metastasis and EMT in colorectal cancers by increasing
Zeb1 expression (79). Finally, EMT is also correlated with citrate
synthase (CS) activity, which converts oxaloacetate to citrate.
CS induces morphological and metabolic alterations resembling
EMT in human cervical carcinoma cells. It might also play a
role in endocrine pancreatic cancers that are characterized by
increased CS activity (80, 81).

Apart from glucose, many cancer cells also rely on glutamine
as a nutrient source (82, 83). Glutamine metabolism replenishes
the pool of TCA cycle intermediates (anapleuresis) that
might be exported out of the mitochondria (cataploresis) for
biosynthesis of building blocks. Thus, the use of glutamine for
anapleuresis is very important for cancer cell proliferation and
sustainability. Many carcinomas have an upregulation of the
enzyme glutaminase 1 (GLS1), that catalyzes the first reaction
of glutaminolysis, glutamine to glutarate for anapleuresis (84–
86). In prostate cancer, loss of GLS1 activity was associated with
decreased rate of glucose utilization and cancer progression (87).
The potential importance of GLS to EMT in endocrine cancers,
is highlighted by its inhibition that blocked EMT progression
and metastasis by repressing Snail in non-endocrine colon and
breast cancers (86). Recently drugs targeting glutaminase activity
has been successfully used in preclinical trials to impede the
invasiveness of tumor cells, thus counteracting EMT (85, 88, 89).
Contrary to the role of GLS1, some studies have shown that
over expression of GLS2, the mitochondrial isoform of GLS1,
reduces tumor progression, invasion and poor prognosis as in
human hepatocellular carcinoma tissues (90). It has been shown
to cause repression of EMT through downregulation of Snail
both in vitro and in vivo (91). NMR based metabolic profiling
revealed that compared to sporadic tumors, pheochromocytoma
and paraganglioma had higher levels of glutamine indicating
the influence of glutamine metabolism in pathogenesis of these
endocrine cancers (66, 92).

LIPID METABOLISM AND EMT

In addition to aerobic glycolysis, de novo lipogenesis is
augmented in many cancers, but little is known about the
involvement of lipid metabolism in EMT. Lipidemic analysis
on prostate cancer cells that had undergone EMT, showed
increased triacylglycerols and fatty acid synthase (FASN) (93).
FASN is an important enzyme in fatty acid synthesis catalyzing
the NADPH-dependent condensation of acetyl-coenzyme A
(CoA) andmalonyl-CoA to produce palmitate. FASN, prominent
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in various cancer types, can increase expression of epidermal
growth factor receptor (ErbB) that promotes EMT of breast
cancer cells and invasive ductal carcinomas (94). High FASN
expression levels in pancreatic cancer and papillary thyroid
carcinoma patients is associated with poor survival rate, but its
importance to EMT is unknown (95, 96).

Overexpression of acyl-CoA synthetases (ACSs), which
convert long chain fatty acids into acyl CoA and stearoyl
CoA desaturase-1 (SCD), induced EMT and increased
cellular migration and invasion in colorectal cancer (97).
Their dysregulation for EMT in endocrine cancers has not
been studied. However, metabolic stress such as hypoxia
or caloric restriction, enhances ACS expression which is
involved in the growth of pancreatic cancer cells (98). SCD,
the rate limiting enzyme converting saturated fatty acids into
monounsaurated fatty acids maintains cellular homeostasis
by regulating their ratio. Dysfunctional SCD results in high
levels of monounsaturated fatty acids that is observed in
several endocrine cancers. Also, it is considered as a predictive
marker for metastasis and possible EMT (99). Importantly,
inhibition of SCD in prostate cancer blocked tumor gowth and
survival (100).

The plasmamembrane (PM) integrity also has a crucial role in
mediating EMT. This is evident bymarked differences in the lipid
composition of PM between normal epithelial cells and the cells
that have undergone EMT (101). Cancer cells undergoing EMT
might be influenced by a number of signaling pathways that are
activated by extracellular ligands or receptors, which are attached
to the PM. Recent evidence has shed light on reorganization of
the PM that caused destabilization of lipid raft domains, which
imparts motility and metastatic properties to the cancer cells
undergoing EMT (102). Stabilization of the lipid rafts have been
made possible by pharmaceutical and nutritional interventions
that result in metastasis (103, 104). The importance of PM
composition affecting EMT is also reinforced by the influence
of cholesterol, whereby altering cholesterol content of plasma
membrane is associated with increased mesenchymal stem cell

like phenotype (102). Indeed, depletion of cholesterol content in

mesenchymal like tumor cells by statin reduced PM fluidity, cell
motility and metastatic potential (105).

CONCLUSION AND PERSPECTIVES

EMT causes dissociation of cancer cells from primary
carcinomas, which migrate and disseminate to distant sites.
In this review, we have summarized how cancer cell metabolic
reprogramming reflected by changes in glycolysis, mitochondrial
Oxphos, glutamine and lipid metabolism are involved in
EMT. For many cancer types it is not known if one or more
metabolic pathways are necessary for EMT and metastasis, nor
if they operate independently or together within a metabolic
framework. Moreover, it has not been resolved if the same
metabolic reprogramming in different cancer types have
opposite effects on EMT and metastasis. Although, endocrine
cancers are one of the most aggressive cancers types, there is a
gap in research connecting its metabolic deregulations and EMT.
Elucidation of the compromised metabolic targets will help in
identifying potential therapeutic targets.

Finally, recent advancement in the understanding of EMT, has
unveiled that metastatic cascade is multifaceted, where EMT is
required for tumor initiation and invasiveness, but mesenchymal
to epithelial transition (MET) is crucial for the later stages of
metastasis, particularly during metastatic colonization. Despite
considerable understanding in metabolic regulation of EMT,
there is not much known about metabolic control of MET.
As MET occurs at a distant site from primary tumors and
are functionally different than cells that have undergone EMT,
it is likely that these cancer cells have a completely different
metabolic reprogramming.
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