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Abstract. Understanding modeling in biology requires understanding how biology is 
organized as a discipline and how this organization influences the research practices of 
biologists. Biology includes a wide range of sub-disciplines, such as cell biology, popula-
tion biology, evolutionary biology, molecular biology, and systems biology among others. 
Biologists in sub-disciplines such as cell, molecular, and systems biology believe that the 
use of a few experimental models allows them to discover biological universals, whereas 
biologists in sub-disciplines such as ecology and evolutionary biology believe that the use 
of many different experimental and mathematical models is necessary in order to do this. 
Many practitioners of both approaches misunderstand best practices of modeling, especially 
those related to model testing. We stress the need for biologists to better engage with best 
practices and for philosophers of biology providing normative guidance for biologists to 
better engage with current developments in biology. This is especially important as biology 
transitions from a “data-poor” to a “data-rich” discipline. If 21st century biology is going 
to capitalize on the unprecedented availability of ecological, evolutionary, and molecular 
data, of computational resources, and of mathematical and statistical tools, biologists will 
need a better understanding of what modeling is and can be. 

Keywords: biology, model building, model testing, philosophy of biology, subdisciplines 
of biology.

“Biology” is the study of nature. It dates as far back as our ancestors paid 
attention to the benefits and hazards of their surroundings. A possible vestige 
of this study may be the common but not universal fear of snakes and spi-
ders, which could be due to long-ago observations that some are dangerous 
(Rakison 2018).
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More formal biology is less ancient but still has a long history. Aristotle 
was a biologist among other things and his contributions to the discipline are 
profound (Egerton 1975, 2001; Balme 1987; Gotthelf 1999, 2012; Leroi 2014). 
His study of nature was not just passive observation; for example, he may 
have sequestered fish in order to study their foraging behavior (Tipton 2008).

Today, biology is organized into a wide range of sub-disciplines such 
as cell biology, ecology, evolutionary biology, molecular biology, systems 
biology, and population biology. These have divisions as well, such as experi-
mental population biology and theoretical population biology. There are also 
sub-disciplines that focus on particular kinds of organisms, such as botany, 
entomology, mammalogy, microbiology, ornithology, virology, and zoology. 
Use of these descriptors depends on context. A biologist might say to another 
biologist “My colleague is a microbiologist but I am an ecologist”, whereas in 
conversation with the public (s)he might say “My colleague and I are biologists”.

1. Sub-disciplinary differences in the way biologists create, 
understand, and use models

We now discuss sub-disciplinary differences in modeling practices and in 
the institutional context in which modeling occurs. In doing so, we use this 

“folk” definition enunciated by Barbour (1974, p. 6): “[a model is] a symbolic 
representation of selected aspects of behavior of a complex system for par-
ticular purposes…”. We believe that this captures the loose definition of model 
used by many biologists (see also Lewontin 1968); Frigg and Hartmann (2012) 
review more nuanced philosophical considerations of what models are and 
how they are used in science.

Models in biology can be computational, experimental, mathematical, or 
verbal. Even within these categories, there is variety. For example, an experi-
mental model can be an actual organism (e.g., Tickoo and Russell 2002) or 
a physical representation of an organism (e.g., Colbert 1962). Mathematical 
models can be deterministic or stochastic (e.g., Bartlett 1956). 

Most biochemists, cell biologists, molecular biologists, neurologists, phar-
macologists, and systems biologists use experimental models involving one 
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or a few types of organisms. A few of the almost innumerable examples of 
such “microcosms” as models are the use of cells in culture to investigate 
a cellular process (e.g., Szostak, Orr-Weaver, Rothstein, & Stahl, 1983) and 
in-vitro analysis of an enzyme and substrate to investigate the enzyme’s in-vivo 
activity (e.g., Tcherkez et al., 2013; Torres, Mateo, Melendez-Hevia, & Kacser, 
1986). Mathematical models are rare in these sub-disciplines although some 
are very influential (e.g., Hodgkin and Huxley 1952; Kacser and Burns 1973; 
Byrne 2010).

Models in these sub-disciplines are usually conceived of as providing in-
sight into “the” biology of the cell, enzyme, or pathway studied. This typologi-
cal conception is based upon beliefs that the model is “about” large classes of 
organisms and not specifically about the species used, that differences among 
species are “noise”, and that related species would provide only redundant 
information. These beliefs sustain careers dedicated to specific experimen-
tal models. Almost all research in molecular biology involves less than ten 
species, with the mouse Mus musculus and the zebrafish Danio rerio being 
the “universal” vertebrates (Dooley and Zon 2000; Sharpless and DePinho 
2006), the cress Arabidopsis thaliana being the “universal” plant (Woodward 
and Bartel 2018), the bacterium Escherichia coli and the yeast Saccharomyces 
cerevisiae being the “universal” microorganisms (Orr-Weaver et al. 1981; Lee 
and Lee 2003), and the worm Caenorhabditis elegans and the fly Drosophila 
melanogaster being the “universal” invertebrates (Rankin et al. 1990; Tickoo 
and Russell 2002). In contrast, there are thousands of species currently studied 
by ecologists and evolutionary biologists. There is no universal model. The 
variety of species involved ranges from viruses (e.g., Bull, 2006) to whales 
(e.g., Alexander et al., 2016). 

Microcosms are also used as models in, say, ecology and evolutionary 
biology. These are often experimental investigation of a trait in the laboratory 
or in the field; there are many thousands of examples, some dating back to the 
beginnings of these disciplines (e.g., Beal 1885; Lutz 1915; Sturtevant 1915). 
Increasingly, some of the same microcosms used are those used in biochemis-
try, cell biology, and molecular biology (Jarosz and Dudley 2017; Kawecki et al. 
2018). However, an evolutionary biologist studying cells would investigate the 
influence of, say, natural selection on the rate of cell division, whereas the cell 
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biologist would study the mechanics of cell division. This distinction is often 
viewed by biologists as being a distinction between a focus on “why?” and 
a focus on “how?”; see Mayr (1961), Tinbergen (1963), Ariew (2003), Laland 
et al. (2011), Bateson and Laland (2013), and Nesse (2013).

The beliefs accompanying models in ecology and evolutionary biology 
are usually that differences among species are “signal” not “noise” and that 
different species provide unique information. One reason for the focus on 
differences is that they are causally central in evolutionary processes such as 
natural selection (cf., Murray 1991). These beliefs sustain careers dedicated 
to different kinds of organisms (e.g., herpetologists, mammalogists, and orni-
thologists, many of whom study one or a few species, which are often chosen 
because they are not studied by others). 

Ecologists and evolutionary biologists also traffic in more mathematical 
models, especially those that are viewed as having broad relevance, than do 
cell, molecular, and systems biologists. Many ecologists and evolutionary biolo-
gists view results derived from mathematical models as providing conceptual 
insights that are central to their work, even if it is experimental. Examples in 
ecology of such mathematically-derived model insights are (Levins 1968a; 
MacArthur 1970); examples in evolutionary biology include Fisher (1930), 
Wright (1931), and Haldane and Jayakar (1963). 

What underlies these sub-disciplinary differences in regard to the in-
fluence of mathematical models? It is not as though cellular and molecular 
processes are inherently un-amenable to mathematical analysis. The focus 
on the experimental microcosms in cell, molecular, and systems biology is 
largely a result of the influence of Thomas Hunt Morgan and of Jacques Loeb. 
Each did early widely-influential 20th century work in embryology, genetics, 
and physiology and advocated for a biology in which the use of experimental 
models is paramount (Allen 1978; Pauly 1987; Brush 2002). They trained or 
mentored many biologists who gained substantial influence and who in turn 
trained many more biologists (so much so that many thousands of current 
biologists are their scientific “descendants”; the first author is one of them). 

A focus on experimental microcosms licenses career and institutional 
investment in work to master the techniques needed to yield interpretable 
results. These influences act to diminish the use of mathematical models. The 
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notion that broad insights are to be gained via the investigation of “universal” 
experimental models is paramount.

Sub-disciplinary differences in modeling are increasingly influenced by 
institutional structure. Some important institutions for biological research and 
training in the United States have few if any faculty members doing research in 
ecology and evolutionary biology; these include Brandeis University, Califor-
nia Institute of Technology, Johns Hopkins University, Massachusetts Institute 
of Technology, Northwestern University, Rockefeller University, and the Salk 
Institute for Biological Sciences. At several, a “Department of Biology” be-
came solely focused on cell and molecular biology by the elimination of other 
sub-disciplines. We know of no examples in which a “Department of Biology” 
became solely focused on ecology and evolution by the elimination of other 
sub-disciplines. At other institutions, sub-disciplines have not been eliminated 
but the “Department of Biology” has fissioned into the “Department of Cell 
and Molecular Biology” and the “Department of Ecology and Evolutionary 
biology” (or name variants thereof). Both kinds of transformation sustain if 
not strengthen sub-disciplinary differences in modeling.

2. Sub-disciplinary similarities in the way biologists  
view the process of model building

Despite differences in types of model typically used, sub-disciplines of 
biology are similar in two ways. The first is that most practitioners have an 
aversion to discussion of the nature and practice of modeling. This is especially 
true of normative guidelines for modeling. Such an activity is often deemed to 
be “unscientific” and a “waste of time”, an underlying trope being that “facts 
and experiments mean something, philosophizing does not”. This attitude 
may in part be due to a lack of exposure to such material during training in 
biology, which often has little or no exposure to mathematics and statistics 
(cf., Bialek and Botstein 2004; Marshall and Durán 2018). By contrast, even 
undergraduate training in physics includes topics such as relativity and quan-
tum mechanics that necessitate some exposure to “philosophizing” about 
modeling and about what observations mean.
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The second way in which the sub-disciplines are similar is that few re-
searchers have called for increased attention to what modeling is and should be. 

In cell, molecular, and systems biology, such calls include Gunawardena 
(2014), Torres and Santos (2015), Bartocci and Lió (2016), Sztul (2017), and 
Medina (2018). Most appeal for more use of computational and mathemati-
cal models. These calls appear to be motivated by the massive increase in the 
availability of data concerning the genomic, metabolomic, proteomic, and 
transcriptomic “levels” of the organism. For example, just one study (Telenti 
et al. 2016) reports on 2.8 x 1013 nucleotides sequenced from 10,545 humans 
and documents 150 million sequence variants. Another motivation is the belief 
that the new data make it possible to understand biological “complexity”. These 
calls are not just for the use of computers to help collect and store data. They 
are calls that the increased use of computational and mathematical models is 
required to provide new kinds of answers (e.g., Berro 2018; Wallmeier 2018). 
Whether or not this is true, it is too early to tell whether these calls will be 
widely-heeded and to what extent this increased use provides answers that 
would be much more difficult or impossible to attain via the use of experi-
mental models.

In ecology and evolutionary biology, calls for increased attention to what 
modeling is and should be have a longer history. Prominent among these 
are Holling (1964) and Levins (1966), who claimed that generality (termed 

“breadth” by Holling), precision, and realism are three desired attributes of 
a model in population biology (and of models in general). Both authors dis-
cussed the tradeoff among these attributes, with Holling claiming that modi-
fying a model so as to increase any two, say, generality and realism, need not 
decrease precision, and Levins claiming that such a decrease is unavoidable. 
A necessary tradeoff implies that there are three types of models, which dif-
fer in which attribute is sacrificed in order to increase the other two. Levins 
viewed models with more generality and realism and less precision as most 
desirable. He did not define how generality, realism, and precision of a model 
can be assessed or demonstrate that they exhibit a necessary tradeoff. Levins 
further claimed that (p. 422) “Our truth is the intersection of independent 
lies”, i.e., we can regard the common prediction arising from multiple “inde-
pendent” models as “truth”.
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More than fifty years have passed since the publication of Levins’ article 
and it has received over 1900 Google Scholar citations as of early 2019; there 
are far fewer citations of Holling’s article, which was not cited by Levins. What 
can we conclude from this large number of citations of Levins’ article? Does it 
mean that his claims have improved modeling in biology and that they should 
continue to provide guidance? 

The answer to this question is unclear. Levins’ article has often been cited 
in ways that suggest misunderstanding of or disagreement with his claims (see 
Orzack and Sober 1993, who reviewed all citations of his article up to 1993, 
and Orzack 2005). For example, Armstrong (1988) claimed that his model of 
an ecological community is general, realistic, and precise. Most often claims 
about model attributes are ambiguous because they are not anchored in ex-
plicit comparisons of models (as in “model x is more realistic than model 
y”). Many citing authors describe their model as being the type preferred by 
Levins, which at least naively can be taken to imply belief in the existence of 
his trichotomy of models, but what features of their model make it this type 
are not specified. The character of most citations of Levins’ paper suggests (but 
does not prove) that they are mainly an effort to provide “quasi-philosophical” 
support for a model apart a demonstration that it provides biological insights. 

Much of this history reflects the attitudes of biologists a generation or 
more ago. It is still conceivable that Levins’ claims are relevant to modeling 
in the 21st century. Do biologists believe this to be true? One way to judge this 
is to assess the recent biological literature as recorded in the Google Scholar 
database. For example, it lists approximately 20,800 articles published in 2017 
that contain “biology” and “modeling” in their abstract or title. Of these, 
78 cite Levins’ article. These citations occur almost always in the context of 
population and evolutionary biology, even though his claims apply to any 
natural science and his article was published in a general science journal. For 
example, as of March 2018, Google Scholar lists 366 post-2013 articles that 
have “biology” and “modeling” in the abstract and which cite Levins’ article. 
The majority of these articles present original biological research; just two do 
not concern population or evolutionary biology (Shirsat et al. 2015; Ho et al. 
2018). (Other citations are by philosophers discussing Levins’ ideas or are by 
other kinds of scientists).
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We do not know whether non-citation is mostly the result of scientists 
being unaware of Levins’ article or that they deem it irrelevant or wrong. (It is 
even possible that non-citation occurs because it is regarded as self-evidently 
correct.) What is clear is that few biologists (much less other scientists) cite 
Levins’ article and that almost all biologists that do cite it study population 
or evolutionary biology. Perhaps their non-citing colleagues are ignorant; 
perhaps they are enlightened. 

The apparently very small constituency of Levins’ article among biolo-
gists raises questions about its constituency among philosophers of biology 
and biologists concerned with the philosophical implications of modeling in 
biology. Critical assessment of his article began with Orzack and Sober (1993). 
Some commentators believe that Levins’ article provides important insights 
and normative claims about modeling (Wimsatt 1987, 1981; Godfrey-Smith 
2006; Plutynski 2006; Weisberg 2006a, b, 2007, 2013; Weisberg and Reisman 
2008; Matthewson and Weisberg 2009; Goldsby 2013). Others are skeptical 
(Orzack and Sober 1993; Orzack 2005; Orzack 2012; Odenbaugh and Alex-
androva 2011; Justus 2012). A main point of debate is Levins’ claim about 
tradeoffs. Orzack and Sober (1993) showed that one can increase the generality 
and realism of a model without a decrease of its precision (see responses by 
Levins 1993  and Matthewson and Weisberg 2009).

This debate appears to have done little to help biologists develop better 
models, perhaps in part because the debate mainly involves philosophers of 
biology and journals typically not read by biologists (e.g., Biology & Philoso-
phy). Almost all citations by biologists are at most acknowledgements that 
there is a debate (e.g., Martínez del Rio 2008) although some biologists engage 
with its substance (e.g., Slobodkin 1994). Perhaps some have been spurred to 
create models with increased generality, realism, and precision as compared to 
previous models after reading Orzack and Sober’s demonstration that tradeoffs 
are not inevitable. If so, they have done this without citing Levins (1966) or 
Orzack and Sober (1993).

Many of the philosophers engaged in the debate over Levins’ claims appear 
to have limited knowledge about the practice of modeling in biology. Instead, 
they appear to derive their knowledge about modeling from Levins’ article. 
They also appear to be unaware of the very small constituency that Levins’ 
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claims have among biologists and of how much biology has changed since 
the 1960s (see above), which reduces the practical relevance of Holling’s and 
Levins’ claims. Better knowledge of current biology would likely improve the 
philosophical and normative content of the debate.

We expect that the lack of connection between practitioners of biology 
and those who could provide useful conceptual and normative guidance 
will remain if not increase, given the ongoing avalanche of ecological and 
molecular data, which underlies claims that the 21st century is the century of 
biology (Venter and Cohen 2004; National Research Council 2009) and that 
there will be breakthroughs in, for example, the treatment of diseases and 
the remediation of environmental degradation. This possibility might cause 
biologists to be more open to normative guidelines derived from more formal 
consideration of what modeling is and should be. However, this appears not 
to be true as of yet. 

The future usefulness to biologists of Holling’s and Levins’ claims is unclear. 
Perhaps they will provide normative guidance, even if this only amounts to 
better awareness of how model attributes such as generality, realism, and 
precision relate to one another. That said, their claims are rooted in the doing 
of the data-poor biology of fifty years ago. Their claims might be justified as 
an attempt to understand complex systems in the relative absence of data. 
Whatever relevance their insights still have, current biologists have abundant 
data and resources needed to analyze them such as computers, databases, 
and statistical and mathematical tools. Biologists and philosophers of biol-
ogy hoping to provide much-needed normative guidance to biologists using 
models must pay attention to the realized character of current data and tools, 
not those of the 1960s.

One consequence of the availability of data is that the goal of biological 
modeling is increasingly the identification of a model that makes a non-robust 
prediction. In particular, biologists often seek a model is tailored to fit the 
specific biology under investigation and is not necessarily useful outside of this 
domain. Predictions are not derived from an ensemble of models (cf. Levins 
1966,  p. 423). There appears to be a diminishing potential constituency for 
Levins’ claim that the identification of such robust model predictions is a good 
way to discover biological truth. This search for models that are non-robust has 
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been aided by the development of the Akaike Information Criterion, which 
can be used as a basis for choosing which model from a set of plausible models 
has the greatest support from the data (Akaike 1974; Burnham and Anderson 
2002; Johnson and Omland 2004). 

The search for a model with a non-robust prediction occurs in many 
sub-disciplines of biology. It has become especially common in ecology and 
evolutionary biology. For example, the determination of a phylogeny or evo-
lutionary “tree” for a group of species given data on the trait expressed by each 
species now routinely involves finding the instantiated evolutionary model 
that makes the data most likely (e.g., Felsenstein 2004; Lemey et al. 2009). 
The investigator often does not even choose the uninstantiated model of the 
trait’s evolution and so it is unclear in what sense (s)he is aware of potential 
tradeoffs among models.

As cell, molecular, and systems biology encompass more and more data, 
there has also been more explicit formulation of computational and math-
ematical models that make non-robust predictions. For example, Altan-Bonnet 
and Germain’s (2005) mathematical model of signaling in the immune system 
(see their Figures 2B and S6) is based upon a “complete” representation of the 
signaling pathway underlying the T-cell antibody response. This representa-
tion, which includes hundreds of reaction steps, is based upon experimental 
work to elucidate the pathway. As such, the predictions of this model are 
non-robust in as much as it is intended to exactly represent the biology under 
investigation. There is no search for a prediction that is common to several 
models. As in the case of experimental models in these sub-disciplines of bi-
ology, the expectation is that the predictions are relevant to many organisms, 
not just those from which the experimental data were derived. 

3. Causal models, data models, and algorithmic models

The search for non-robust predictions is part of a broader move by scien-
tists to focus on algorithms and data as hypothesis “generators”. This tendency 
has been addressed by Breiman (2001) who distinguished between the “data 
modeling culture” and the “algorithmic modeling culture”. In the former, the 



Modeling in Biology: looking backward and looking forward 83

scientist chooses an underlying statistical model that (s)he believes gener-
ated the data and then uses it to make inferences about the observed data 
(e.g., whether the arithmetic average of an observed sample of data has a low 
or high probability of occurrence given random sampling of data generated 
by the chosen statistical model). In the latter, the scientist generates “black 
box” predictions from the data, without recourse to an initial choice of an 
underlying statistical model. 

Breiman’s distinction is couched in terms of statistics and so it does not 
describe what one could call the “causal modeling culture” in biology, in which 
idealized features of a biochemical pathway, or an organism, or a population, or 
a ecosystem, etc., are used to create the model. For example, when an ecologist 
creates a model of population dynamics, (s)he chooses whether or not there 
is a single population, whether or not a population is finite, whether or not 
two sexes are present, whether or not individuals mate randomly, whether or 
not the number of offspring produced is finite, whether or not there is envi-
ronmental variation, and so forth (see example below). Statistical analysis of 
data does not inform the choice of model alternatives offered (although the 
choice of a particular alternative on offer is sometimes informed by statistical 
analysis). Hypothesis testing need not be the goal of the model. When done, 
it requires assumptions extrinsic to the assumptions used to create the model. 
In contrast, hypothesis testing of “statistical” and “algorithmic” models is 
intrinsic to the model (either because an assumption is made about the error 
distribution or the data are used to generate the distribution).

This distinction is underscored by the fact that some “causal” model as-
sumptions could never be supported by data. For example, it is never true that, 
say, a population has infinite size, that individuals have an infinite number of 
offspring, that the environment is constant, etc. Nonetheless, one or more of 
these assumptions have long been used in the creation of “causal” models in 
ecology, many of which have yielded important insights.  

In sub-disciplines dominated by experimental models, the “causal mod-
eling culture” has led to some of the great discoveries of 20th century biology. 
For example, Meselson and Stahl (1958) created two distinct causal models in 
order to identify the correct mechanism for the replication of the DNA helix. 
However, data models play an increasing role in these sub-disciplines. For 
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example, mutations in a DNA sequence are often identified as being potentially 
disease-causing solely by the strength of their statistical association with the 
disease and not by their consequences for the function of the associated protein 
or of the associated biochemical pathway (Balding 2006; Edwards et al. 2013).

In sub-disciplines in which mathematical models are widely used, the use 
of “causal” models is common. For example, in evolutionary biology, there is 
a well-known model that is intended to explain the female-biased sex ratios 
found in some insect populations (Hamilton 1967). The model predicts that 
a female-biased sex ratio is the most evolutionarily-beneficial or “optimal” 
when a finite number of fathers and mothers comprise a “local” mating group. 
(Other assumptions are also required.) This prediction is based upon idealized 
biology that can never be true, e.g., that a mother produces an infinite number 
of offspring. (The prediction changes when offspring number is assumed to 
be finite, see Nagelkerke 1996). Hamilton’s model is not a “data” model or an 

“algorithmic” model; the prediction of the model is not derived from statistical 
analysis of the relationship between the sex ratio and the number of fathers 
and mothers in a mating group. 

Other important causal models in evolutionary biology have led the rec-
onciliation of the genetic mechanisms underlying traits that vary discretely 
and those that vary continuously (Fisher 1918) and to the development of 
population-genetic models that include deterministic and stochastic evolution-
ary forces (e.g., Wright 1931). In turn, both of these led to the development 
of a highly influential but still controversial “synthetic” causal model that 
connects short-term and long-term evolution (e.g., see Laland et al. 2014; 
Wray et al. 2014).

The “causal modeling culture” and “data modeling cultures” are very differ-
ent. Bringing them together is not just a matter of “adding” standard assump-
tions about sampling error to causal models (see below). Unfortunately, the 
important distinctions between the two cultures are often misunderstood. For 
example, Gunawardena (2014) confounds the two in his overview of modeling 
in biology when he writes (p. 6) that “Judging from some of the literature, we 
seem to forget that a model does not predict the data to which it is fitted: the 
model is chosen to fit them.” Similarly, Nijhout et al. (2015) write (p. 2) that 

“… the ‘model’ is not a fixed object, but continually evolves through testing it 
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against data and revising it accordingly.” In fact, causal models as defined here 
are very rarely formed and re-formed by data in the direct sense these authors 
describe (although observed data may inspire the creation of a causal model). 
Their descriptions concern the “data modeling culture” although the models 
they discuss are products of the “causal modeling culture”.

Although the “causal modeling culture” and the “data modeling  culture” 
have long histories in biology, they are problematic in important ways. An 
important problem for causal models can be illustrated in the context of the 
optimality model in evolutionary biology mentioned above. Consider a de-
viation between the optimal sex ratio predicted by Hamilton’s model and an 
observed sex ratio. How large can such a deviation be and still allow us to 
conclude that the model provides a causal explanation of the data? The devia-
tion cannot automatically be assumed to be due just to sampling error because 
it has causal implications. All other things being equal, the deviant observed 
sex ratio has a lower evolutionary fitness than does the optimal sex ratio and 
thereby should not be observed in the population. Is the observed sex ratio 
optimal but not correctly specified by an incorrectly-formulated model? Or 
is the model correctly formulated but the optimal sex ratio cannot evolve in 
the population studied? Neither can be assumed to be true a priori. 

These central issues concerning how to understand the relationship be-
tween causal model predictions and data are almost never explored. The 
consequence has been inferential ambiguity because there are no agreed-upon 
standards by which success and failure are judged. The criteria used are often 
private and apparently arbitrary. For example, the same test of the predictions 
of an optimality model has engendered these opposite assessments: “there is 
a striking correspondence between theory and data” and “there is a great deal 
of scatter around the quantitative prediction” (see Orzack 2014 for details). 
These statements were based solely on visual inspection of the predictions and 
data, which is known to be strongly influenced by the graphical presentation 
(Cleveland and McGill 1987). Each of these assessments licensed opposite 
conclusions as to whether the observed data indicate that the species possesses 
an optimal trait. Sometimes a “qualitative” test of model predictions is used in 
which a predicted trend (e.g., downward) is compared with the observed trend 
of the data. This is not inherently problematic, although it leaves unresolved 
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what causal conclusions one should draw from concordance or discordance 
between the predicted and observed trends. These ambiguities in regard to 
the means by which the correspondence between data and causal model pre-
dictions is interpreted have received almost no attention by biologists; they 
are addressed in the context of testing optimality models by Orzack (1990), 
Orzack et al. (1991), and Orzack and Sober (1994).

The “data modeling culture” is also problematic but in part for different 
reasons. As noted by Breiman (2001), the assumptions routinely made about 
the model underlying the data are often of unknown validity at best. In ad-
dition, the criteria by which associations are judged to be “significant” or not 
are arbitrary and may often lead to incorrect conclusions (Ioannidis 2005).

We note that the distinction we make between “causal models” and “data 
models” is not meant to imply that the former are the only way to gain causal 
understanding. Shipley (1999) and Spirtes et al. (2000) present a method for 
making causal inferences from “data models”. See also Pearl (2009). Their 
important motivation is that one often is confronted with the need to make 
causal inferences when controlled experiments are difficult or impossible. 
Their method is little-used in biology and wider implementation is required 
before we can assess how often it produces biologically-meaningful causal 
insights. If it often does so (despite important problems with their statistical 
approach, see Karlin et al. 1983; Freedman 1987, 1997), their method will be 
important, if only because it could partially reduce the need for experimental 
intervention to infer causation.

The “causal modeling” and “data modeling” cultures continue to play 
prominent and often useful roles in modeling in most if not all sub-disciplines 
of biology. That said, as Breiman (2001) noted, there is an increasing “algo-
rithmic modeling culture”. An important manifestation of this culture is the 
use of machine learning in the analysis of data. Here, automated procedures 
are used to make predictions from data. The perceived advantage of these 
methods is that they allow the investigator to forego much of the hard work 
needed to construct, analyze, and validate a causal model and or a statistical 
model. The use of machine learning is nicely illustrated by Olden et al. (2008) 
who used three different approaches (classification and regression trees, arti-
ficial neural networks, and evolutionary algorithms) to investigate the causes 
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of heterogeneity in the number of fish species found in over 8,000 freshwater 
lakes in Canada. The results of all approaches suggest that important deter-
minants of the number of species are the amount of precipitation, the length 
of the shoreline, and the area of the lake. Their analyses exemplify the power 
of the “algorithmic modeling culture”, especially that a huge amount of data 
have been encompassed in the analyses, the analyses are carried out with 
software that is readily available, a causal model has not been created “from 
scratch”, and testable predictions about causes have been specified. As Olden 
et al. (2008) note, these methods have their weaknesses (such as the potential 
of over-fitting; see their Table 1). That said, these methods allow biologists to 
tackle analyses that were previously un-addressable. The importance of this 
cannot be exaggerated. 

In this context, it is worth noting that Levins’ claims about model build-
ing were in part intended to counter the view that ecologists need to focus on 
data analysis and numerical simulation so as to understand “systems ecology” 
(Levins 1968b; Palladino 1991). Levins claimed that this approach could not 
lead to causal understanding because (p. 421) there are “too many parameters 
to measure”, the “equations are insoluble analytically”, and any predictions 
would “have no meaning for us”. However, none of these is necessarily true 
for ecological models, even those in systems ecology. Of course, there are 
models for which there are “too many parameters to measure”. But for some, 
there are sufficient data to allow all parameters to be estimated. Of course, 
there are models for which “equations are insoluble analytically”. But for some, 
the equations are soluble or can be solved via analytical approximation. Of 
course, there could be model predictions that “have no meaning for us”. But 
for some, predictions have meaning (or are eventually understood). Despite 
all of these possible difficulties, there is no basis for a claim that a particular 
approach to modeling could not result in causal understanding. It is Levins’ 
absolute claim that lacks substantiation. He correctly identified potential dif-
ficulties but that does not inform how often they occur. In addition, Levins 
failed to mention that these difficulties may arise in the approach to model 
building that he advocates.

It is also worth noting that our ability to solve some of these difficulties 
is not static. For example, machine learning analyses in many sub-disciplines 
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in biology demonstrate that prediction and causal understanding of many-
dimensional “complex” systems can be attained even when many but not all 
parameters can be measured and when likely-relevant equations are insoluble 
(e.g., see Shan et al. 2006; Tarca et al. 2007; Wernick et al. 2010; Kampichler et 
al. 2010; Touw et al. 2012; Sommer and Gerlich 2013; Schrider and Kern 2015, 
2016, 2018; Dumancas et al. 2017; Dietze et al. 2018; Flassig and Schenkendorf 
2018; Ghosal et al. 2018).

Although Levins’ claim is false as description of what is necessarily true 
about models, it does serve as a reminder to not view any approach to data 
analysis and causal understanding as “automatic”. After all, different ma-
chine learning approaches can yield different results (e.g., Olden et al. 2008; 
Kampichler et al. 2010). Biological judgment will always be needed.

A development related to the “algorithmic modeling culture” is the com-
putational “reverse engineering” of biological systems. Here, data and “can-
didate” symbolic representations of the dynamics are iteratively combined so 
as to ultimately generate “the” equations underlying the dynamical system 
(Bongard and Lipson 2007; Schmidt and Lipson 2009; Brunton et al. 2016). 
This approach to model generation underscores how far biological modeling 
can go beyond apparent limitations, such as those identified by Levins. It has 
remarkable potential, even it is not “automatic” and must be applied with 
judgment. 

4. Whither Biology?

It is unclear as to whether there will be “movement” to close the gaps 
among sub-disciplines of biology in regard to the culture of modeling and also 
to close the gap between biologists and philosophers and others interested in 
biological modeling. In the former case, it is encouraging that sub-disciplines 
that have very different histories in regard to modeling at least have in common 
a search for models with non-robust predictions (although it is unlikely that 
the disparate groups of biologists understand that this is a common goal). In 
the latter case, if biologists and philosophers of biology are to provide norma-
tive guidance so as to improve the practice of biological modeling, they must 
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situate their guidance in the context of current practice of biology. The biol-
ogy of today is not the biology of twenty years ago, much less fifty years ago.

We have described some of the extraordinary changes that all sub-dis-
ciplines in biology have undergone because of unprecedented increases in 
data and computational resources. As daunting as it can seem to biologists 
to assimilate new data and techniques, it is likely that the most important 
task faced by biologists is being open to change in regard to what biological 

“complexity” is conceived to be.
Complexity is a badge of honor for many biologists. In many sub-dis-

ciplines, biologists use it to represent the notion that systems under inves-
tigation, whether they be biochemical pathways, organs, or ecosystems, are 
tangled inscrutable webs of interactions. The trope is that we can only barely 
understand the simplest aspects of such systems and that we will always fail 
in regard in our attempts to provide complete understanding. This attitude 
commonly coexists with the notion that the only way to achieve partial under-
standing is a reductionist approach that involves “disassembling” the system. 
This approach is regarded as necessary but never sufficient to understand 
complexity.

In fact, this combination of attitudes is not inherently problematic and 
will continue to be fruitful. That said, we emphasize the need to be open to 
new understanding of what biological complexity actually is. It is telling that 
natural systems that could be construed as similarly highly complex and 
inscrutable are understood in different ways by different kinds of scientists. 
Phenomena such as cellular metabolism and energy flow in ecosystems are 

“complex” to biologists. Phenomena such as climate dynamics are “complex” to 
physicists, meteorologists, and geophysicists. Yet, biologists view the complex-
ity as a manifestation of a unknowable multitude of interactions of roughly 
equivalent magnitude, whereas physical scientists view the complexity as 
a manifestation of a multitude of interactions but dominated by just a few 
(e.g., Ditlevsen and Johnsen 2010; Cimatoribus et al. 2012). In effect, physical 
scientists view the complexity as simple. This is sometimes justified by claims 
about separation of time scales, with some processes being “fast” enough that 
they only add noise to the “slow” low-dimensional drivers of the system (cf., 
Ditlevsen and Johnsen 2010, p. 2). Correct or not, the concordance perceived 
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by physical scientists between the dimensionality of the system and the dimen-
sionality of the analysis is desirable at least in terms of inferential consistency. 
The discordance in this regard on the part of biologists is problematic and they 
would do well to eliminate it. In some instances, this might mean embracing 
complexity in the full sense (and abandoning low-dimensional tools) and in 
others by viewing complexity as simple and taking simple models seriously 
as providers of casual explanation (e.g., Reynolds 1987). 

The contrast between biologists and physical scientists in attitudes to-
wards the nature of complexity suggests that biologists may make substantial 
conceptual progress by being open to the possibility that complexity can 
be tractable. It is promising in this context to note that biologists studying 

“complex” systems they view as dynamically complex and physical scientists 
studying “complex” systems they view as dynamically simple often use the 
same tools from deterministic dynamical systems theory (e.g., see Strogatz 
2018). The promise of this overlap is that it may help biologists change their 
understanding of how to model and understand biological complexity.
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