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ABSTRACT

Ideal gas dynamics can develop shock-like singularities with discontinuous density. Viscosity typically regularizes such singularities and leads
to a shock structure. On the other hand, in one dimension, singularities in the Hopf equation can be non-dissipatively smoothed via Korteweg—
de Vries (KdV) dispersion. In this paper, we develop a minimal conservative regularization of 3D ideal adiabatic flow of a gas with polytropic
exponent . It is achieved by augmenting the Hamiltonian by a capillarity energy B(p)(Vp)>. The simplest capillarity coefficient leading to local
conservation laws for mass, momentum, energy, and entropy using the standard Poisson brackets is 3(p) = f8+/p for constant .. This leads
to a Korteweg-like stress and nonlinear terms in the momentum equation with third derivatives of p, which are related to the Bohm potential
and Gross quantum pressure. Just like KdV, our equations admit sound waves with a leading cubic dispersion relation, solitary waves, and
periodic traveling waves. As with KdV, there are no steady continuous shock-like solutions satisfying the Rankine-Hugoniot conditions.
Nevertheless, in one-dimension, for y = 2, numerical solutions show that the gradient catastrophe is averted through the formation of pairs of
solitary waves, which can display approximate phase-shift scattering. Numerics also indicate recurrent behavior in periodic domains. These
observations are related to an equivalence between our regularized equations (in the special case of constant specific entropy potential flow in
any dimension) and the defocusing nonlinear Schrodinger equation (cubically nonlinear for y = 2), with 8. playing the role of A*. Thus, our
regularization of gas dynamics may be viewed as a generalization of both the single field KdV and nonlinear Schrodinger equations to include
the adiabatic dynamics of density, velocity, pressure, and entropy in any dimension.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5133720

I. INTRODUCTION

Gas dynamics has been an active area of research with appli-
cations to high-speed flows, aerodynamics, and astrophysics. The
equations of ideal compressible flow are known to encounter shock-
like singularities with discontinuities in density, pressure, or veloc-
ity." These singularities are often resolved by the inclusion of
viscosity. However, as the Korteweg-de Vries (KdV) equation (u;
+ Ully = €Uy ) illustrates, such singularities in the one-dimensional
(1D) Hopf (or kinematic wave) equation u + uu, = 0 can also be reg-
ularized conservatively via dispersion,” as in dispersive shock wave
theory (see Refs. 1 and 3-5 and references therein) with applications
to undular bores in shallow water and blast waves in Bose-Einstein

condensates. In this paper, we develop a minimal conservative regu-
larization of ideal gas dynamics, which we refer to as R-gas dynam-
ics. Somewhat analogous conservative “rheological” regularizations
of vortical singularities in ideal Eulerian hydrodynamics, magne-
tohydrodynamics, and two-fluid plasmas have been developed in
Refs. 6-8. The current work may be regarded as a way of extend-
ing the single-field KdV equation to include the dynamics of density,
velocity, and pressure and also to dimensions higher than one. There
is, of course, a well-known generalization of KdV to two dimen-
sions, the Kadomtsev-Petviashvili (KP) equation.g However, unlike
KP, our regularized equations are rotation-invariant and valid in
any dimension. Now, recall'’ that the dispersive regularization term
in the KdV equation u; — 6uty + uszx = 0 arises from the gradient
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energy term in the Hamiltonian H = /(1 + (1/2)u2) dx upon use
of the Poisson brackets (PB) {u(x), u(y)} = 0x6(x — ). In fact, KAV
does not conserve mechanical and capillarity energies separately.''”
By analogy with this, we obtain our regularized model by augment-
ing the Hamiltonian of ideal adiabatic flow of a gas with polytropic
exponent y by a density gradient energy B(p)(Vp)®. Such a term
arose in the work of van der Waals and Korteweg' ' '* in the con-
text of capillarity, but can be important even away from interfaces
in any region of rapid density variation, especially when dissipa-
tive effects are small, such as in weak shocks, cold atomic gases,
superfluids, and collisionless plasmas. It has also been used to model
liquid-vapor phase transitions and in the thermomechanics of inter-
stitial working."” We argue that the simplest choice of capillar-
ity coefficient that leads (using the standard Poisson brackets) to
local conservation laws for mass, momentum, energy, and entropy
(with the standard mass, momentum, and entropy densities) is
B(p) = Bx/p, where S, is a constant. By contrast, the apparently
simpler option of taking B(p) constant leads, in one dimension, to
a KdV-like linear dispersive term p,. in the velocity equation, but
results in a momentum equation that, unlike KdV,"" is #not in con-
servation form for the standard momentum density pu. A conse-
quence of the constitutive law 3 = 8. /p is that the ideal momentum
flux pu® + p is augmented by a stress —B« (pxx — p2/p) correspond-
ing to a Korteweg-type grade 3 elastic material.'® This leads to
new nonlinear terms in the momentum equation with third deriva-
tives of p, somewhat reminiscent of KdV. One of the effects of
these nonlinear dispersive terms is to allow for “upstream influ-
ence,”'” which is forbidden by the hyperbolic equations of inviscid
gas dynamics under supersonic conditions. Interestingly, our reg-
ularization term is also related to the quantum mechanical Bohm
potential'® and Gross quantum pressure (p. 476 of Ref. 19) encoun-
tered in superfluids. Moreover, unlike KdV, our equations extend
in a natural way to any dimension. Remarkably, for potential flow
(v = V¢) in the isentropic case (globally constant entropy and p
o< p?), the R-gas dynamic equations may be transformed into the
nonlinear Schrédinger equation (NLSE) via the Madelung transfor-

mation”’ Y = \/ﬁexp<i¢/2\//3_*) with S+ playing the role of K.
This equivalence, which may be regarded as a conservative analog
of the Cole-Hopf transformation for Burgers, applies in any dimen-
sion and results in a defocusing NLSE with |¢|*” ="y nonlinearity
so that one obtains the celebrated cubic NLSE for y = 2. The lat-
ter is known to admit an infinite number of conservation laws and
display recurrence. It is noteworthy that the quantum version of
the 1D cubic NLSE (Lieb-Liniger model) has recently been given a
hydrodynamical description (generalized hydrodynamics”**) with
infinitely many local conservation laws and has been used to model
1D gases of ultracold rubidium atoms that retain memory of their
initial state.”’

A brief summary of this paper and its organization fol-
lows. We begin in Sec. II by giving the Lagrangian (in terms
of Clebsch variables) and Hamiltonian formulations and equa-
tions of motion (EOM) of adiabatic R-gas dynamics in three
dimensions. The mass, momentum, energy, and entropy equa-
tions are all expressed in conservation form. In Sec. III, we spe-
cialize to one dimension and discuss the special case of con-
stant entropy (isentropic/barotropic) flow in which case the veloc-
ity equation also acquires a conservation form. Sound waves are

ARTICLE scitation.org/journall/adv

discussed in Sec. IV A and shown to be governed at long wave-
lengths by a cubic dispersion relation similar to that of the
linearized KdV equation. In Sec. IV B, the local conservation laws
are used to reduce the determination of steady and traveling wave
solutions in one dimension to a single quadrature of a general-
ization of the Ermakov-Pinney equation. A mechanical analogy
and phase plane analysis is used to show that the only such non-
constant bounded solutions are cavitons (in density) and periodic
waves. While these results hold for any value of y, for y = 2,
closed-form sech? and cnoidal wave solutions are obtained, physi-
cally interpreted and compared with the corresponding KdV solu-
tions. We also propose a simple physical procedure to produce a
caviton. Aside from overall scales, steady solutions are parameter-
ized by a pair of dimensionless shape parameters: a Mach num-
ber and a curvature. A parabolic embedding and a virial theorem
for steady flows are given in Appendix C. In Sec. V A, the weak
form of the R-gas dynamic equations is given, and in Sec. V B,
an attempt is made to find a steady normal shock-like profile in
three dimensions by patching half a 1D caviton with a constant
solution. However, it is shown that there are no such continu-
ous profiles that satisfy all the Rankine-Hugoniot (RH) conditions,
though it may be possible to satisfy the mass flux condition alone.
To study more general time-dependent solutions of R-gas dynamics
and the evolution of initial conditions (ICs) that could lead to shock-
like discontinuities, we set up in Sec. VI, a semi-implicit spectral
numerical scheme for the isentropic R-gas dynamic equations with
periodic boundary conditions (BCs) in one dimension. For y = 2,
our numerical solutions indicate that our regularization evades the
gradient catastrophe through the formation of a pair of solitary
waves at the top and bottom of a velocity profile with a steep neg-
ative gradient. Although we do not observe a KdV-like solitary wave
train, these solitary waves can suffer collisions and approximately re-
emerge with a phase shift. We also observe a rapid decay of energy
with mode number and recurrent behavior with the Rayleigh quo-
tient fluctuating between bounded limits, indicating an effectively
finite number of active Fourier modes. In Sec. VII, we use a canonical
transformation to reformulate 3D adiabatic R-gas dynamics in terms
of a complex scalar field coupled to an entropy field and three Cleb-
sch potentials. For isentropic potential flows, this formulation shows
that R-gas dynamics for any y reduces to a defocusing 3D NLSE. In
Sec. VII A, the regularized Bernoulli equation is used to show that
steady R-gas dynamic solutions map to solutions of NLSE with har-
monic time dependence, with the y = 2 caviton in one dimension
corresponding to the dark soliton of the cubic NLSE. In Sec. VII
B, we relate the conserved quantities and bounded Rayleigh quo-
tient of NLSE to their R-gas dynamic analogs. This connection lends
credence to our numerical observations, since the cubic NLSE with
periodic BCs in one dimension is known to possess an infinity of
conserved quantities in involution.”* We conclude with a discussion
in Sec. VIIIL.

Il. HAMILTONIAN AND LAGRANGIAN FORMULATIONS
OF 3D R-GAS DYNAMICS

It is well-known' that adiabatic dynamics of an ideal gas with
constant specific heat ratio y = ¢y/c, is governed by the continuity,
momentum, and internal energy equations
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(pvi)t + 0;(pdis + pvivj) = 0,

)4 pv ) _
(y_l)t+pv~v+v~(y_l)—0 (1)

with the temperature in energy units given by T = mp/p for a molec-
ular mass m. In adiabatic flow, specific entropy (per unit mass) is
advected (Dss = Ors + v- Vs = 0), while the entropy per unit vol-
ume is locally conserved, O:(ps) + V - (psv) = 0. Although the terms
“reversibly adiabatic” and “isentropic” are often used interchange-
ably, in this paper, we use adiabatic for D;s = 0 and isentropic for
the special case where s is a global constant. For adiabatic flow, p and
p may be taken as independent variables with s being a function of
them. For a polytropic gas, s = ¢, log((p/p)/(p/p)"), where p,p are
reference values. These equations follow from the Hamiltonian

1
Higeal = f[zpv2+ —ylj 1]dr )

and Hamilton’s equations f = {f, H} using the (non-zero) non-
canonical Poisson brackets (PB)*’

{(v(x),p(y)} = V,0(x-y), {v(x),s(y)} = %S(X* )

pt+ V- (pv) =0,

and

and
Eijk Wk

(vi(x),vi(y)} = ;

where w = V x v is the vorticity. Our conservative regularization
involves adding a density gradient term to the Hamiltonian while
retaining the same PBs,

_ _ ([, 2, p B (VP)
H—féadr: fl:ipv +F+77]dl‘. (4)

3(x~y), (3)

The density gradient energy, which could arise from capillarity,'*

has been chosen o<(Vp)?® to ensure positivity and parity conserva-
tion and to prevent discontinuities in density, so as to conservatively
regularize shock-like discontinuities. It involves the capillarity coef-
ficient B(p) = B+/p, where f« is a constant with dimensions L*T~2. B,
can be taken as A*c?, where A is a short-distance cutoff and ¢ is a typ-
ical speed. This is the simplest form for 3(p) that ensures the mass,
momentum, and energy equations are all in conservation form for
the ideal mass and momentum densities. It also leads to other excel-
lent properties such as a transformation to the NLSE for isentropic
potential flow.

The continuity and entropy equations following from (4) and
(3) are as in the ideal model. The momentum and consequently the
velocity equation, however, differ due to the presence of a capillary

force term . F,
2
50 (52)

\Y 4
. £ o F=8.V|=
Vi+V-VV+ P B B V[z s

p
o[ Ve 1(ve)’] . v'\/P
_ﬁ*v[ > T2 ] 2ﬁ*v( 7 ) (5)

Remarkably, S+F = . V® is a gradient so that for barotropic flow
(Vplp = Vh), it augments the specific enthalpy h — h + 3+ ®. Thus,
the vorticity evolves exactly as in ideal gas dynamics (in other words,

scitation.org/journal/adv

we only regularize the “potential” part of the velocity and do not deal
with vortical singularities as in Refs. 6 and 7). Thus, Kelvin’s theorem
would apply in R-gas dynamics, unchanged. The momentum and
velocity equations may be expressed in terms of a regularized stress
tensor,

A (pvi) + Oi(pviv + 0i) = 0
and

1
8t1/,‘ + vjajv,- = —*8]‘0',‘]‘,
P

where

(&Pl& . a,»ajp). ©)

oij = p 5,‘]‘ + /3*(
The scalar part of ¢ defines a regularized pressure p. that includes
the Gross “quantum pressure,”"’

1 Be((VP) s )

p*:ftr(f:p+—(7—Vp, where d = 3. (7)
d d p

The energy equation for the energy density & defined in (4) is

given by

2
Ay
&1+ vV (2V+y_1PV)

vp vp PV(VP)Z]
VoLV (pv) —pvy [ ) -2 =0, (8
+p [p (pv) = pv (P) 2 (8)

The fact that (8) is in local conservation form follows from the PB

formulation. Indeed, {H, H} = 0 implies that & = {&, H} must be a
divergence. The internal energy per unit volume is therefore

B+ (Vp)? p T
£ = PE+ — , where ¢= = .09
PP, ply-1) (y-1)m

These regularization terms in the pressure, enthalpy, and internal
energy depend upon density gradients and are therefore not strictly
thermodynamic properties of the gas, any more than the regu-
larized stress tensor. They are conservative analogs of the viscous
stress tensor that depends on velocity gradients in dissipative gas
dynamics.

Interestingly, the potential ® in (5) is also the Bohm poten-
tial U'® that arises as a correction to the classical potential V in the

quantum-corrected Hamilton-Jacobi equation for the Schrodinger
is/h

wavefunction y = | /pe

vS vS)?
pt+V'(p;):0 and St+(2m) +V+U=0,
where

p2 p

2 2 2 2
S o)

Our regularized stress o also resembles the Korteweg stress 0~ of
Refs. 14 and 16. Indeed, if B = B+ /p,
0" = pdi — p[Ok(B(p) 9up) 10 + B(p) ipyp

0ip O;
= pdy —ﬁ*[(vzp— %(Vp)z)&y - "PJP] (11)
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Although GKO' has the term (B./p)(9ip)(9jp) in common with gj; (6),
they are not quite equal. Although the qualitative physical features
of our equations may be similar to those of the Korteweg equations,
our equations additionally possess some remarkable mathematical
properties facilitating the analysis in this paper.

Finally, if the flow domain is all of R, then B+ can be scaled out
by defining R =r/\/B+ and T =t/ \/[3_* , just as we may eliminate the
dispersion coefficient in KdV on the whole real line. By contrast, in
the presence of a characteristic length scale [, B+ cannot be scaled out
and I/A serves as a conservative analog of the Reynolds number.

A. Lagrangian formulation via Clebsch variables

To obtain a Lagrangian for R-gas dynamics, we use the Cleb-
sch representationz{”“" v=V¢+ (AVy + aVs)/p. The PBs in (3) are
recovered by postulating canonical PBs among Clebsch variables,

{p(1),¢(x")} = {a(x),s(x")} = {A(0),u(x)} = 8(xr=1").  (12)

The Hamiltonian density in terms of Clebsch variables is

= g(V¢+M) +pe (p,s)+ﬁyr (VP)Z, (13)

where &(p, s) is the ideal specific internal energy (9). The EOM
(5) follow as the Euler-Lagrange (EL) equations for the Bateman-
Thellung’*”’ Lagrangian density linear in velocities”’ augmented by
the density gradient energy,

A = pip+hp+as— A (14)

The EL equations for « and A imply the advection of s and y, while
that for ¢ is the continuity equation and that for s and y are the evo-
lution equations a; + V - (av) = pT and A; + V - (Av) = 0. The regular-
ization only affects the EL equation for p. Upon using p = p>d¢/dp, it
becomes the time-dependent Bernoulli equation for adiabatic R-gas
dynamics,

p 1(vp)?

R ):o. (15)

b T v prep o L. T2

Using these, one obtains (5) for v. There are, of course, related
Lagrangians for the same EOM, e.g,,

L = —pdy — A — asy —

and

v’ x
92”3=p(?7£) B (V;)) +¢(pr + V- (pv)) - A57 %i (16)

Thus, we may interpret ¢, A, and & as Lagrange multipliers enforcing
the EOM for p, y, and s.

I1l. FORMULATION OF ONE-DIMENSIONAL
REGULARIZED GAS DYNAMICS

A. Hamiltonian and equations of motion

In what follows, we will primarily be interested in 1D adia-
batic R-gas dynamics where p, s, and p are independent of two of

scitation.org/journal/adv

the Cartesian coordinates and v = (u(x, t), 0, 0). The non-zero PBs
(3) simplify as w = 0: {u, u} = 0 and

(), 5()) = §6<x—y> and {p(x),u(y)} = d(x—y). (17)

The total mass (/pdx), entropy (/psdx), and more generally [pX(s)dx
for any X(s) are Casimirs of this algebra. As before, the dynamics is
generated by a Hamiltonian that involves a capillary energy,

H= f[ pu’ + —— ﬁ(P)Px]dx’ (18)

where (p) will be chosen by requiring that the momentum equation
be in conservation form. The continuity and entropy equations are
as in the ideal model,

pr+ (pu)x =0, s+ usx =0 with s—cvlog(ﬁp ) (19)
pY

Thus, even with our regularization, we continue to have D;p = cf Dip,
where ¢Z = (p/dp)s = yp/p. The regularized momentum and
velocity equatlons are

(pu)e+ (i + ) = p| (Bp) = 5873 |
and

ut+uux:—&+
p

1
[(6e), - 3892 - (20)
X
The simplest way for the former to be in conservation form is for
the momentum density to equal pu and for the regularization term

to be a divergence. = . /p is the simplest capillarity coefficient that
ensures this, giving

(pu)e + [pu2 +p—ﬁ*(pxx - ‘;")] =0

and

px P2x szc _ (\//_))xx
= =Bf =P« [ , —ZPZLZB*[ Y ]X. (21)

We note that the apparently simpler choice of constant 8 leads
to a KdV-like px term in the velocity equation, but prevents the
momentum equation from being in conservation form. Our regular-
ization amounts to modifying the pressure p — p, in the momentum
and velocity equations

Dt

Py

and  us + Uy, = — R

(pu)i+ (pt* +px)x =0
where

e =p - Be(pex — pi/p). (22)

It is instructive to compare our velocity equation with Korteweg’s.
For capillarity coefficient 8 = . /p, the 1D Korteweg velocity equa-

tion following from (11) is
B+ ( 2p§)
—lp——]) . (23)
P/

Px Kor
U+ Uty + — = Puf 0 =
P P
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Unlike our force per unit mass f+f which is a gradient, .. f<°" is not.
Thus, in the barotropic case of Sec. 111 B where p./p = hy, our velocity
equation (21) (but not Korteweg’s) comes into conservation form as
in ideal gas dynamics. Finally, our energy equation is also in local
conservation form

2
lpu2+ P Bepi + lpuzu+ Y pu
2 y-1 2 p), \2 y-1 /.

Py ol P _lupi)zo -
+ﬁ*(P(Pu)x Pu(p)x 2 ) . (24)

It takes a compact form in terms of a regularized specific internal
energy ¢. and enthalpy h.,

(lpu2 +ps*) + (p(luz + h*)u+ﬁ*uxpx) =0,
2 ¢ 2 x
where

pes = % + %%‘ and ph. = pes + p+. (25)
The internal energy equation may be interpreted as the 1st law of
thermodynamics for adiabatic flow,

D +p*Dz(l) + ﬁ—*(uxpx)x =TDis = 0. (26)
p p

Evidently, the gas does work against the pressure p. as well as a
new type of reversible, non-dissipative work due to the regulariza-
tion while ensuring that the specific entropy s is constant along the
flow.

The action corresponding to (14) possesses three obvious sym-
metries: (a) constant shift in ¢, (b) space translation, and (c) time
translation, leading to the local conservation laws for mass (p),
momentum (pu), and energy (%pu2 + pey) densities [Eqs. (19),
(21), and (24)]. In addition, under an infinitesimal Galilean boost
(t > t, x > x — ct), the fields transform as

8¢ = c(tdx — x),

Su=c(tuy—1), and &Y =ctYy

for
Y=p,a,5A and p, 27)
leading to a change in the Lagrangian (16) by a spatial derivative

025 = ct(p — Pxpxx),- The corresponding Noether charge and flux
densities are

it 022 _
= 3X5xad1 Z

X

6)( —ct(p—Pepxx).  (28)

Here, we sum over y = p, ¢, &, s, A, and p. The resulting conserva-
tion law 9;j' + 0xj" = 0 or (p(x — tu)); + (xpu — tF?), = 0 involves
an explicitly time-dependent Galilean charge and flux, where FP
= pu”+p—Bsp(logp) . is the regularized momentum flux (21). Thus,
G = J(x — tu)pdx is conserved even though {G, H} = P, where

= Jpudx is the total momentum. P, G, and H satisfy a 1D
Galilei algebra with the total mass M furnishing a central extension:
{G,Pt=M
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B. Isentropic R-gas dynamics of a polytropic gas

Sans entropy sources/sinks and boundaries, one is mainly inter-
ested in cases where s = § is initially constant and by (19), indepen-
dent of time. Thus, we consider isentropic flow where p and p satisfy
the barotropic relation

sfe, =
Py (29)
y-1p

p=(y-1)Kp’, where K=
is a constant that encodes the constant value of entropy and labels
isentopes. A feature of isentropic flow is that in addition to the con-
tinuity, momentum, and energy equations, the velocity equation is
also in conservation form,

pe+Fl =0, (pu)+Fi=0,
30
[ pu +ps+ﬁ ’:‘] +F;=0 and w +F; =0. (0
t

Here, ¢ = Kp’ ™' and h = yKp’ ™" are specific internal energy and
enthalpy, respectively. The corresponding fluxes are

2
F™ = pu, FP:P”2+P—ﬁ*(Pxx—px)’
p
Fe—(uz+h)pu+ B (p—x(pu) —pu(px) _upfc)
2 * p X p . 2p >

2
F“=;u2+h—/3*(”""—l”"). (31)

and

p o 2p

In ideal gas dynamics, F* = F°/F™, but no such algebraic relation
holds when S.#0. The emergence of a 4th conservation law in the
isentropic case is tied to the global constancy of entropy. These equa-
tions follow from the degenerate Landau PBs {p, p} = {u, u} = 0 and
{p(x), u(y)} = 0,0(x — y) whose Casimirs include M = /pdx and fudx.
These PBs become canonical [{p(x), ¢(y)} = 6(x — )] upon introduc-
ing a velocity potential u(y) = ¢,. The corresponding EOM follow the
Lagrangian .4 = pi¢ — S where = 1p¢3 + pe(p) + 1 B«p3/p. As
described above, the local conservation laws for mass, momentum,
energy, and Galilei charge follow from Noether’s theorem. However,
the conservation law u; + Fy = 0 (30) does not arise from a symmetry
via Noether’s theorem. This is because C = fudx is a Casimir, and it
acts trivially on all observables: d¢ = {C, ¢} = 0.

IV. DISPERSIVE SOUND, STEADY AND TRAVELING
WAVES

A. Dispersive sound waves

To discuss sound waves, it is convenient to nondimensionalize
the variables in (19) and (22),

ﬁl\N

x=1 Lop=pp p=pb c:%,

(32)

Here, I is a macroscopic length. The nondimensional (hatted) vari-
ables satisfy
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P+ (pi)y =0, & +i8; =0,

and

(33)

Here, B, = &A%, where A is a regularization length and & = A/l is its
nondimensional version.

A homogeneous, stationary fluid (p = 1, p = 1, 4 = 0, and
§=0) is a solution of (33). To study sound, we consider linear per-
turbations p = 1+ 8p, p = 1+ 8p, § = &5, and @ = 84 around this
solution where § « 1. The entropy equation upon linearization gives
5 = 0. If we initially choose 3(x,0) = 0, then 5(x,¢) = 0 and the
entropy $(x, t) = log(p/p”) = 0. Linearizing this, we get p = yp. The
linearized continuity and velocity equations are

(34)

Thus, we arrive at an equation for dispersive sound py; = pss — £2pas.
The 4th derivative is reminiscent of elasticity, so our regularization
force is like a tension. Figure 1 shows the splitting of a pulse in den-
sity into two smaller pulses including the effects of dispersion and
weak nonlinearity. Equations (34) have several conserved quantities
including

M:/pdfc, P:fitdfc, leéf[z}2+p2+ezpﬁ]d5c,

and

~ ~ ~ ~ 2~
pi+i; =0 and @t = —Pi + € Pisa

1 .
H, = 3 / [/’)? + p,% + ezpﬁx]dx. (35)

Putting p o< ¢ F=eh) e get a dispersion relation akin to that of
linearized KAV (u; + iy = euizx), wiay = k + €k°,

w2=k2(1+szk2) orw=i(k+%ezk3+--~). (36)

The phase velocity is vy = w/k = £(1+*%k*)'/? » £(1+ 1£k?), while
the group velocity is

dw 1+26%K2

Vo= — =d——
ok T Orer)

= i(l + 2ezk2 + )
2

woa(142822) (1 - %ezkz )

(37)

Note that the regularization increases the phase speed while |v,|
always exceeds |vp|.

Density pB(X) at t =
1.08
1.06
1.04
1.

1.00
0.98
0.96F 096

0.01,
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B. Steady and traveling waves in one-dimension

Traveling waves are those where p, u, p, and s are functions
only of (x — ct), where ¢ is the velocity of the wave. The entropy
equation s; + usy = 0 becomes (u — ¢) s’ = 0. Thus, either s = §
is a constant in space and time or u = c. In the former case, we
have isentropic flow. In the latter, s can be an arbitrary function of
(x — ct), but the fluid is at rest (“aerostatic”) in a frame moving at
velocity c. We will focus on the first possibility and look at steady
solutions, subsequently “boosting” them to get traveling waves.

1. Isentropic steady solutions

For steady flow (¢ = 0), the mass, momentum, and velocity
fluxes (31) are constant. Moreover, the steady continuity equation
upx + uxp = 0 implies that the constant energy flux of Eq. (31)
is not independent: F© = F"F". Eliminating u = F"/p, we get two
expressions for p.x,

Fm 2 )26
Bsprx = —F° + % +(y - DKp’ +ﬁ>«%
and
(BT v, Bepi
Bipsx = -F'p+ 2% +yKp? + 2y (38)

Taking a linear combination allows us to eliminate the p” term and
arrive at the second order equation

Bupxx = —V’(p) + MP_;Z:’

2 p
where
m 2
Vi(p) =Fy-F'(y-1)p- %. (39)

In Appendix C, a different linear combination that eliminates the
p2/p term is considered, leading to additional results. The current
choice makes it easier to treat all values of y in a uniform man-
ner. Interpreting x and p as time and position, this describes a
Newtonian particle of mass 8+ moving in a (linear + harmonic
+ logarithmic) potential V' on the positive half-line subject also
to a “velocity-dependent” force oc p2/p. This ensures that the
motion is “time-reversal’ (x - —x) invariant. The qualitative nature
of trajectories is elucidated via a p-p. phase plane analysis in

1.03 and 1.97
1.08+
1.06 F
1.04F

R

L 0.96}

L L L

-3 -2 - 0 1 2 3 -3 -2 4 0 1 2 3 -3 -2 4 0 1 2 3

FIG. 1. R-gas dynamic evolution of a pulse [p(X,0) = 1 + 0.1e~% and #1(x,0) = 0] showing d’Alembert-like splitting of the pulse. Dispersion and nonlinearity modify the
shape and produce “forerunners” and “backrunners.” The evolution is for y = 2 and ¢ = 0.1 with periodic BCs using the scheme of Sec. V| with nmax = 20 Fourier modes, a
time step A = 0.01, and “nonlinearity strength” § = 0.1.
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Appendix A. There are only two types of non-constant bounded
solutions for p(x): solitary waves of depression (cavitons) and peri-
odic waves. The latter correspond to closed trajectories around an
elliptic fixed point (O-point) in the phase portrait, while cavitons
correspond to the homoclinic separatrix orbit that encircles an O-
point and begins and ends at a hyperbolic X-point to its right. The
location of these fixed points is determined (for any y) by the roots of
the quadratic V'(p) = 0 whose discriminant A = y*(FP)? - 2(y* - 1)
F*(F™)* must therefore be positive. In the generic non-aerostatic
situation (i.e., u # 0 or equivalently F™ # 0), the only cases when
we get non-constant bounded solutions for p are (a) F¥, F* > 0:
both periodic solutions and cavitons and (b) F* < 0: only periodic
solutions.

Remark. Equation (39) is a generalization of the Ermakov-
Pinney equation,”"”” which corresponds to V(p) = p*/2, y = 2, and
B+ = 1. This leads to an alternate approach to understanding (39),
since the transformation z* = 1/ p converts it into a Newton equation
with sextic potential and no velocity dependent force for any y,

iz};ml))z 2. (40)

1
Zux = E(y— )F'z - yF* 2 +

Reduction to quadrature: Subtracting the two equations in (38), we
get a first order ordinary differential equation (ODE) for p,

m 2
% = -—(Fz) +Fp— Fup2 + pr“ = py“(K -U),
where
1 B« \ 2
K= E(p)“'l )Px +U
and
1 o 2 u
U(p) = p [% ~Fp+F pz]. (41)

The “potential energy” U is related to the potential V via p”*' U’ (p)
= V'(p). This allows us to reduce the determination of the steady
density profile p(x) to quadrature,
dp
V@[ )pr (K- U(p))
- dp
V@[B)(Kprit = Fop? + Fop — ((F™)?/2))

For integer y > 1, (42) is a hyperelliptic integral though it reduces
to an elliptic integral when y = 2 (see Sec. IV B 3). For other values

(42)
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of y, steady solutions may be found via the parabolic embedding of
Appendix C.

2. Nondimensionalizing the steady equation

To integrate (41), it is convenient to replace the four constants
(F™, F?, F", K) with two dimensionless shape parameters (ko, Mo)
and two dimensional ones (po, ¢o) that set scales. These parameters
are adapted to the solutions one seeks to find: po is the density at
a point x, where pyx = 0. For a caviton, p, can be the asymptotic or
trough density, while for a periodic wave, it can be the trough or crest
density (or the trough density of an unbounded solution with the
same K). This choice will simplify the expressions for the constant
fluxes (31) and K when evaluated at x,. For example, K = U(p.) gives

L[ (E)
= PZH 2

—y 2 1=y
u _ Popo’  Copo

—FPpo+ Fp% | = = ,
P P y-1 y(y-1

(43)

where p, and ¢, are the pressure and sound speed at x,. We may
use 2 to trade B for a regularization length A, = \//3_* /co, which
is used to define the nondimensional position & = x/A.. Next, let
M2 =42 / 2 be the square of the Mach number at x,. Positive M,
corresponds to rightward flow at x, and vice versa. We will take M,
> 0 with the remaining steady solutions obtained by taking M, —
—M,. Using these definitions, we rewrite (41) as a 1st order ODE for
the nondimensional density p(£) = p(1o€)/po,

1(dp 2_ o M , P
E(d_f) —<7(P)=m—7(/’—1) Ty-1
—Ko[)(l—/'))+§. (44)

Here, ko = A2p"(x0)/po = p"' (&) measures the curvature of the
density profile at xo = Ao&,. A virtue of this nondimensionalization is
that unlike the four parameters in (41), only two parameters . and
M, appear in (44). Equation (44) describes zero energy trajectories
p(&) of a unit mass particle in the potential —7(p). Evidently, the
allowed values of p must lie between adjacent positive zeros of .7
with &> 0 in between (Fig. 2). To obtain (44), we used the following
expressions for the constant fluxes and entropy:

1
(Fm)2 = pf,cf,Mﬁ, PP = POC%’(Mg + - - KO),
Y

(45)
2 2 1-y
Fu:cf,(%+;—xo), and K = CoPo .
2 y-1 y(y-1)

Conversely, we may invert (45) by first determining p, by solving the
algebraic equation following from (41):

FIG. 2. (i) Density of the caviton lies between simple and
double root of F(p) (44). (i) Periodic wave density lies
between simple roots where .7 > 0. Here, y = 2 and in

Lo}

0.05¢ ~
7 (P)
0.04} 0101
0.03}
0.02f 0.05
Bounded
0.01F - eriodic wav
it; P : :
05 10 15 05 1. 1.
-0.01¢F
o0zt (1) -0.05F (ii)

(i) ko = 0, Mo = 0.5, while i (ii) ko = —0.25 and M, = 0.5.
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—(1+y) (F™)? P u 2
K=U(po) = po T—Fpo+Fpo . (46)

The remaining new parameters follow from (45) and (31),

~ (Fm)Z
e

o _K@y-1)

(F™)? - poF? 1
— ) Tpr
4 Po

© 2.2
PsCo

2
» Mo

(47)

3. Exact cavitons and cnoidal waves fory =2
For y =2, 7(p) (44) becomes cubic with roots p = 1 and

[)i:%(1+M§—2Koi\/(l+M§—2Ko)2—4M§). (48)
The density of periodic and solitary waves must lie between adja-
cent positive roots with .7 > 0 in between. Interestingly, it
can be shown that if for y = 2, all three roots of .7 are posi-
tive, then the same holds for any 1 < y < 2. So some qualita-
tive features of solutions for y = 2 are valid more generally. For
y = 2, the nature of solutions on the xo—M, plane [Fig. 3(a)] changes
when the two relevant roots coalesce, i.e., when the discriminant of
the cubic .7 vanishes,

A(ko, Mo) = [(p+ = p-)(p- = 1)(1 = p:) ]

= 4ra[ Mg - 2Ma (1 +2K0) + (1 - 2k0)*] = 0. (49)
A vanishes only along the vertical axis ko, = 0, the two parabolic
curves Mo, = 1 + \/2ko, and their reflections in the x,-axis. In what
follows, we restrict to rightward flow by taking Mo > 0. There are
three regions in the upper half xo—M, plane [see Fig. 3(a)] admitting
periodic solutions: (a) the blue second quadrant x, < 0, (b) the red
north-east region above Mo = 1 + \/2ks, and (c) the yellow trian-
gular region below the curve Mo = 1 — \/2o. In the green wedge
(d) lying within the parabola but above the horizontal axis, non-
constant solutions are unbounded since p; are either negative (when
Mo, < =1 ++/2%.) or not real (when Mo > —1 + +/2%o).

Solitary waves (cavitons) occur only on the dashed boundaries
(i) between (a) and (c) (0 < M, < 1, ko = 0) and (ii) between (b) and
(d) (Mo = 1++/2ko). When ko = Mo = 0, 7= p(p — 1)*/2 so that we
have an aerostatic (1 = 0) caviton with 0 < p < 1. Constant solutions
occur when p = any zero of 7. Zhas a double zero (p = 1) along the
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vertical axis, the double zero p, = p_ along the curve Mo = 1—+/2xo,
and the triple zero p = 1 at (ko = 0, M, = 1). At all other points,
7 has either one or three positive simple zeros.

Interestingly, when we reinstate dimensions, the periodic solu-
tions from regions (a), (b), and (c) of the xo—-M, plane [Fig. 3(a)]
are physically identical. They differ by the choice of nondimen-
sionalizing density p, that could be any one of the roots of the
cubic in (46). Thus, the parameters (ko, Mo, co, po) generically fur-
nish a 3-fold cover (redundancy) of the original space of constants
((F™)* F", F?,K). For solitary waves, it degenerates into a double
cover: the two families of cavitons [(i) and (ii)] in Fig. 3(a) differ
via the choice of po as trough or asymptotic density. Moreover, Mo
is the Mach number at the trough in (i), while it is the asymptotic
Mach number in (ii). In a caviton, the flow goes from asymptotically
subsonic to supersonic at x = 0. A caviton is like a pair of normal
shocks joined at the trough. Finally, the map between the two sets
of parameters becomes a 1-fold cover for the aerostatic cavitons at
ko = Mo = 0, since their trough densities vanish and p, can only be
chosen as the asymptotic density.

In light of the above remarks, we now restrict our attention to
the yellow triangular region (c) where x, >0and 0 < Mo < 1- V2ko.
Here, the roots of Jare 0 < p— < p; < 1, and (44) is reduced to
quadrature,

. . p dp’
56) - 6-) -
R A = S e

pe—p-

1-p-

-2 F(arcsin —~P — p~— ) (50)
1-p- P+ — p-

Here, F(¢|m) = jﬁ (1-msin®0)7"/2d6 is the incomplete elliptic
integral of the first kind with m being the square of the elliptic mod-
ulus k (see 17.4.62 of Ref. 33). Inverting, we write p(£) in terms of
the Jacobi cn(u, m) function,

). (51)

Here, &_ = £(p-). The periodic wave extends from a trough at p_ to
a crest at p, with amplitude and wavelength,

p-
p-

VI g, B

(&) = pe = (pr = p-) an( 5

p-=1<p
Po =P,
Constant-
(ii) Cavitons
Periodic 1<p<p=p u(x)
0<p<p<1<p.
Constant
(i) Cavitons
0<p-<p<p.=1
Po=Ps "1 L <1
Periodic e P
- < 0,0 ’
0=p<p<i<p /OO0 1o tno Ko p(x)
Caviton0<p <1 0=p-<p<p.<1 2 4 6

(b)

FIG. 3. (a) Nature of steady bounded solutions (44) for y = 2 in the x,-M, parameter space. [(b) and (c)] Density, velocity, and pressure for K = 1/2 for (b) traveling cavitons
(po=Co=1,Ms=0.5x=0,and ¢ = 0.1) and (c) traveling periodic cnoidal waves p, = ¢, =1, Mo = 0.5, ¥ = 0.1, and ¢ = 0.2 (lower triangular region in the |Mo—c|-«o
plane). Cavitons are solutions where the temperature drops isentropically in a small region of size Ao.
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s =/ (1 + M2 = 2K0 )2 — 4M>

and

b 2dp 4 pi—po

e [P 24 (rm)

v i )
Here, K(m) = F(5|m) is the complete elliptic integral of the 1st
kind. When we approach the left boundary x, — 0" with 0 < M,
< 1, the wavelength diverges (K(1/2xo) ~ /Ko log ko for small xo)
and the periodic waves turn into cavitons that extend from a trough
density p = p— = M2 < 1 to an asymptotic density p = p, = 1,

p(f):l—(l—Mﬁ)sechz( 1‘TM‘%£) for 0<Mo<1. (53)

On the other hand, when we approach the upper boundary M,
=1-+/2%0, &/ — 0 and we get constant solutions. By contrast, on the
lower boundary (Mo = 0,0 < %o < %), we continue to have periodic
solutions except that p vanishes at the trough (p_ = 0) while the crest
density py = 1 — 2%,

() = (1 —2Ko)sn2(§,1— 2Ko)

and

2 1
A=2i —K -2K(2xo) |- 54

[ Ko (ZKO ) ( )] (54)
When %o = Mo = 0in (53) or (54), we get an aerostatic caviton that
reaches vacuum conditions at £ = 0,

p(&) = tanh’(§/2) with wu=0. (55)

The dimensional p, u, and p are got by reinstating the constants Ao,
po> and co. Writing x = A&, we have

. coMo
p(x) = pop(£). u(x) = =5
for isentropic flow. Reversing the sign of M, reverses the flow
direction leaving p and p unaltered. Moreover, since p > 0 and
u = F™/p, the flow is unidirectional with positive velocity solitary
waves being waves of elevation in # and vice versa. A caviton is
superficially a bifurcation of the constant solution p(x) = p(+o0).
Although the caviton and constant solutions have the same constant
specific entropy, they have different values of mass and energy (per
unit length). For instance, the energy density (18) of an aerostatic
caviton is less than that of the constant state,

2
and p(x) = %p(f)y (56)

gaerostat cav :POOI:I - Z_P(l - L):I < éaconst =Poo- (57)
Poo Poo

As a consequence, the uniform state cannot, by any isentropic time-
dependent motion with fixed BCs at +o0, in the absence of sources
and sinks, evolve via R-gas dynamics to the caviton, or vice versa,
since the two states have different invariants. However, one could
imagine creating, say, an aerostatic caviton, by starting with a uni-
form state and introducing a point sink at the origin, to suck fluid
out. A symmetrical pair of expansion waves would travel to infinity
on both sides without affecting the conditions at infinity. When the

scitation.org/journal/adv

density reaches 0 at the origin, we stop the sink. The pressure gradi-
ent will then be balanced by the regularizing density gradient force,
and the solution should tend to the aerostatic caviton as t — oo.
Since temperature T = Km(y — 1)p? ™%, the caviton corresponds to a
region of width A where the temperature drops. Loosely, the regular-
izing force is like Pauli’s exchange repulsion, capable of maintaining
a depression in density with variable but isentropic temperature and
pressure distributions.

4. Traveling waves of isentropic R-gas dynamics

Here, we generalize the above steady solutions to waves travel-
ing at speed c: (p, u, p)(x, t) = (p, u, p)(x — ct). The continuity, veloc-
ity, and momentum equations (30) are readily integrated, giving the
constant fluxes,

2 " 2
F"=p(u-c), F'= u? —cu —ﬁ*[% - 57] +yKp' ™!
and
7
F* =pu(u—-c)+(y-1)Kp" - B« (p" - P—) (58)
p

Eliminating 4 = ¢ + F"/p and taking a linear combination leads us to
a 2nd order nonlinear ODE for p,

>

pup = -V (p)+ LD

where

2 2p
(59)

Vi) = (et 1) - () Sy - # § o O

Proceeding as in Secs. IV B 1 and IV B 2, this may be reduced to the
nonlinear first order equation

DY gy Ly
1(ap) _ = 2 (p-1) (- Mo
HEY - )= 2 - 217w
~2 ~
P P - .
S LB p(i-p)
y-1 7y P P
where
ﬁ*:/‘icg’ i):ﬁ’ E=£> MO:E’
pe e e (60)
ko =p" (&), and £= "% with F(&)=0.

o

Comparing with (44), we see that the passage from steady to trav-
eling waves involves only a shift in the square of the Mach number
M? — (Mo —£)%. Here, ¢ is the speed of the traveling wave in units of
the sound speed ¢, at the point where p’(x — ct) = 0. Thus, for each
value of B+, we have a 5-parameter (ko, Mo, po, Co, €) space of trav-
eling cavitons and periodic waves. The dimensionful p, u, and p for
any value of (M, — ¢) are given by

i (Mot
o) = pob(E)r u(xt) = o(—ﬁ(f) + )
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and

X — CCot
Ao

Traveling cavitons for y = 2: In these nondimensional variables,
traveling cavitons have the profile

2
plxt) = %p(f)y, where £ = (61)

1- (8- Mo)?

ﬁ(f)—l—(l—(E—Mo)z)sechz( "

§ ) (62)

for (¢ — Mo)* < 1. These cavitons are reminiscent of the soli-
tary waves of depression/elevation of the KdV equation u; ¥ 6uuy
+ Uxxe = 0 that move rightward with speed ¢ > 0: u(x,t)
= F(c/2) sech® ((\/c/2)(x — ct)). Just as in KAV, narrower cavitons
(width oc 1/\/|¢ — Mo| — 1) are taller (height o< |¢ — M| — 1) and
have a higher speed relative to the speed at the reference location
where the density has an extremum (¢ — Mo o ¢ — u, is the speed
of the traveling wave in the rest frame of the fluid at the reference
location).

Traveling cnoidal waves for y = 2: The nondimensional density
profile of traveling cnoidal waves is

VIZP e s),”}_’/f‘)

(&) = pr = (pr - p-) an( 5
for
0< ko< % and |[Mo - <1-v2ko. (63)

Here, p are got by replacing M2 — (Mo — £)? in (48). Their wave-
length is given by the same formula (52). Our cnoidal waves are very
similar to those of KAV (u; — 6utty + tixxx = 0),

u=f(%) =ﬁ[1— an[ h ;ﬁ(g—fa),f_ﬁ]] +fs. (64)

Here, & = x — ct and f(¢3) = f3 and f123 are the roots of f* + 1cf°
+ Af + B with A and B being constants of integration.

V. WEAK FORM AND SHOCK-LIKE PROFILES
A. Weak form of R-gas dynamic equations

The R-gas dynamic equations [(19) and (21)] involve ux, px, px,
Pxx> and pxxx. Thus, classical solutions need to be C!in u and p and
C? in p. However, by multiplying the conservation equations by C*
test functions ¢, y, and { and integrating by parts, we arrive at a weak
form of the equations

[ o9~ (puygJax =0,

2
f [(P”)t‘/f - (P +pu’ + Px %x)t//x + ﬁ*pl//m]dx =0,

and

2 2
f[w+P+M] tax
2 y-1 2p ],

3 2
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Thus, for weak solutions, it suffices that p be C' and u and p be
merely continuous.

B. Steady shock-like profile from half a caviton

Here, we try to use the steady solutions of Sec. IV B to model
the structure of a normal shock propagating to the right in the lab
frame. As in Fig. 4, in the shock frame, the shock is assumed to
be located around x = 0. The undisturbed pre-shock medium is to
the right (x > 0), while the “disturbed” post-shock medium is to the
left (x < 0)." As x — +oo, the variables approach the asymptotic val-
UES Pioo, Ut oo, ANd Piroo With proo < p_oo. The Rankine-Hugoniot
(RH) conditions are obtained by equating the conserved fluxes F™
(19), F? (20), and F® (24) at x = +o00,

(Pt)-co = (Ptt)oos  (pt* +P)-co = (pU’ +P) oo,

(;puzu N Fylpu)

In our y = 2 cavitons (53), the flow is subsonic at x = o0 and super-
sonic at x = 0. We exploit this in trying to find a shock-like steady
solution by patching half a caviton with a constant solution. Thus,
we seek a steady solution where p(x) = poo in the pre-shock medium
and is the left half of a caviton for x < 0. The half-caviton profile
is got from (53) by taking the reference location x, = —oco so that
Po =pP—oo and ko =0,

2 2 1-M>, «x
p(x) =poo[1 - (1-M?,,)sech [\/4/100]]

x<0 with 0<M: ., <1 (67)

and

Y
. 66
Y- pu)oo ( )

Lo
= -puu
2P 1

—oo

for

Here, 2o = B+/c2oo. On the other hand, psco must correspond
to a constant solution with fluxes Fog ¥ €. It can take one of the two

density values corresponding to the X/O point (A2),

X0 _ P2 (2F2, + /Aw)

X — with A = 4(F%, ) — 6F Fn.  (68)

We now attempt to patch these two solutions, requiring p and px
to be continuous at x = 0. Since p has a local minimum at the
trough of a caviton, p«(07) = 0 = p+(0") of the undisturbed medium.
However, a difficulty arises in trying to ensure that p is continuous

AP(X)

Poo Pre-shock
Caviton Fo, RS, RS
Post-shock Constant
FL. B8 ES Poo

0 X

FIG. 4. Steady shock-like profiles from patching half a caviton with a constant state
violate one or more Rankine-Hugoniot conditions.
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at x = 0. Indeed, suppose we impose the RH conditions Fa, = FZ,
FP = F%, and F¥,, = F5,, then both the pre- and post-shock
regions correspond to a common phase portrait. We observe [see
also Fig. 9(a)] that the caviton trough density p(07) = p_coM?,
is strictly less than both p);’,o. Thus, the post-shock semi-caviton
solution cannot be continuously extended into the pre-shock region.

Stated differently, in the above patched shock construction, if
P+oo is chosen to be equal to p(07) in order to make p continu-
ous, then the RH conditions are violated. Let us illustrate this with a
y = 2 aerostatic example. We take the pre-shock region to be vacuum
(p =u=p=0forx>0)and try to patch this at x = 0 with the left
half of the aerostatic caviton [p(x) = p- oo tanh?(x/21_ oo ) and u = 0]
of (55). This caviton corresponds to the values Fo, = FS o, = K-co
= M_o = 0 and has trough density p(0~) = 0 with trough density
gradient px(07) = 0 as well. Since the caviton is isentropic, its trough
pressure p(07) = Kp(07)* = 0. Thus, p and p are both C" at x = 0,
while u = 0 so that this is a weak solution in the sense of Sec. V A.
However, it violates the RH conditions: while F™ = 0 is continuous,
FP and F" are not. In fact, in the pre-shock vacuum region, F? = F"
= 0, while in the post-shock region, they are non-zero, as evaluating
them at x = —oco shows

PP =p(-0) =K.p’oo 0 and F's =2K_p-co 0. (69)

In the post-shock region, K- = F¥ /p®., # 0, whereas in the pre-
shock vacuum, K is arbitrary since p = p = 0 for x > 0. In conclusion,
there are no continuous steady shock-like solutions in the shock
frame that satisfy the RH conditions. To see how initial conditions
(ICs) that would lead to shocks in the ideal model are regularized,
we turn to a numerical approach.

VI. NUMERICAL SOLUTIONS TO THE INITIAL VALUE
PROBLEM

A. Spectral method with nonlinear terms isolated

In this section, we discuss the numerical solution of the isen-
tropic R-gas dynamic initial value problem (IVP). It is convenient to
work with the nondimensional variables p, 4, and Sof Sec. IV A. The
continuity equation is p; + (pit); = 0, while for isentropic flow, § is
a global constant, which may be taken to vanish by adding a con-
stant to entropy. Thus, we can eliminate p = p” in the velocity and
momentum equations, both of which are in conservation form (30),

A A2
i + 11:12+Lﬁ}/_1—82 Pﬁ—lp—" =0
2 y—1 po2pr)];

or

A2
(pir); + [pff + ipy - (,3,%,% - ‘;)] = 0. (70)

The energy equation is d;& + [£ = 0, where the energy density and
flux are

. 5 2 52
= lﬁa2+ P +ipTx
2 yy-1) 2 p
and
An2 Ay a2
B - [PZ u 1] [pj SN T
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These equations follow from the PB {p(%),&(y)} = 0;0(% - ) and
the Hamiltonian

. 1 pY & pi
H=/[[)ﬁ2+ P 8Py (72)

20 -1 29
We will consider ICs that are fluctuations around a uniform state.
For stability of the numerics, we separate the linear and nonlinear
terms in the equations and treat the former implicitly and the lat-

ter explicitly. Introducing the book-keeping parameter § (which will
also enter through the ICs and may eventually be set to 1), we write

p(at) =1+68p(%t) and (k1) =u(xt) +du(xt). (73)
We will consider flow in the domain —7 < % < 7 with periodic BCs
and thus expand p and i as

p=S pa(De™, a=> uu(B)e™ with (p,u)_, = (pu)s. (74)

Since [p dx is conserved, py can be taken time-independent. Fur-
thermore, we choose the constant p used to nondimensionalize p
as the (conserved) average density so that po = 0. We also suppose
that the “background’ flow velocity # is independent of position .
Since [ dk is conserved and [it dx = 27(it(?) + 8 uo (%)), we may
absorb 8 ug(#) into it(#) and thereby take uo = 0. Next, we write the
continuity equation with nonlinear terms isolated,

pi=—(ap+i)y—8.F", where F" = (pit);. (75)
The velocity equation (70) in conservation form is
S asN2
diy; + (L +0i) L 1+ 6/3)”_1)
2 y-1

_ 25 /35c5c~7§ P§~
1+0p 2(1+6p)?

X

) =0. (76)

Separating out the linear part, we get

~ ~ 1

it; = — (@it + p - €psi), - 0.7,

where

BN

& . N
+ (m (PP;c;c(l +0p) + ZP’A‘)); (77)

In (75) and (77), the linear terms are at ﬁ(@o), while the nonlin-
earities involve & to higher powers, depending on the value of y.
Interestingly, for y = 2, the pressure gradient does not contribute
to the nonlinear part of the acceleration,

ey = Z+L(~~,.(1+5~)+1~%) (78)
y=2 = B (1+6[~))2 PPss 14 sz k.

Expanding Z™ = ¥,.Z0e™ and .Z" = ¥, .Zte™, the EOM in
Fourier space become

pn = —in(ipn + un) — 6.7,

and
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FIG. 5. Evolution of velocity for IC p = 1 + 0.1 cos 2% and @i = 0, showing how the gradient catastrophe is averted through the formation of a pair of solitary waves in the

velocity profile.

ity = —in(iitn + (1 +n°)pn) - 070 (79)

When nonlinearities (#", .%#") are ignored and we assume
(pn(t), tn(t) oc e7™r"), one finds the dispersion relation (w,—nit)? =
n*(1 + €2n?) familiar from Sec. IV A. To deal with the fully nonlin-
ear evolution given by (79), we use a semi-implicit numerical scheme
outlined in Appendix D.

B. Numerical results: Avoidance of gradient
catastrophe, solitons, and recurrence

The above numerical scheme for y = 2 is implemented by trun-
cating the Fourier series after #1max = 16 modes. The evolution is done
for 750 time steps (0 < # < 15), each of size A = 0.02, starting with
the nondimensional ICs,

p(3,0) = 1+0p(5,0) and i(%,0) =0,

where

p(%,0) =sink¥ or cos2% and &=0.1. (80)

We find that at early times, where i has a negative slope, its gradient
increases and decreases where the slope is positive. Without the reg-
ularization (¢ = 0), the higher Fourier modes can then get activated
and the velocity and density profiles become highly oscillatory with
steep gradients. Moreover, amplitudes begin to grow and the code
eventually ceases to conserve energy and momentum.

By contrast, in the presence of the regularization (say, € = 0.2),
we find that the above gradient catastrophe is averted and energy is
conserved (to about 3 parts in 1000), while momentum is conserved
to machine precision. In fact, we find that the real and imaginary
parts Q- and Q; of the next conserved quantity (96) are also con-
served. Interestingly, when u develops a steep negative gradient, a
pair of solitary waves emerge at the top (wave of elevation) and
bottom (wave of depression) of the u profile and the gradient catas-
trophe is avoided (see Fig. 5). This mechanism by which the incip-
ient shock-like discontinuity is regularized is to be contrasted with
KdV, where an entire train of solitary waves can form.” However, as
with KdV, our solitary waves can suffer a head-on collision and pass
through each other. After the collision, they re-emerge with roughly
similar shapes and a phase shift. Figure 6 shows the space-time tra-
jectories of the centers of several of these solitary waves, showing
their collisions.

We also find that higher modes u, and p, (n 2 9) grow from
zero, but soon saturate and remain a few orders of magnitude below
the first few modes (see Fig. 7). This justifies truncating the Fourier

series at fmax = 16. The modes also display an approximate period-
icity in time. This suggests recurrent motion.” " This behavior is
also captured in Fig. 8(a) where we plot the Rayleigh quotient or the
mean square mode number

b's
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FIG. 6. (a) Space-time trajectories of the “centers” of “solitary waves” in the velocity
profile (for the initial condition p = 1 + 0.1 cos 2% and @ = 0) showing several colli-
sions. The locations of the “centers” are determined by finding the maxima/minima
of ¢ at each instant of time. (b) Close-up of one collision of solitary waves (sol 1
and sol 2), showing approximate asymptotic straight-line trajectories and phase
shifts. The figures include the trajectories of the crests/troughs of small ripples that
typically arise and go away in pairs, but do not qualify as solitary waves.
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FIG. 7. Time evolution of Fourier modes |pn|? for n = 2, 4, 8, and 16 for IC p = cos 2% and i = 0 showing that the higher modes remain uniformly small compared to the first

few, justifying truncation of Fourier series.
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as a function of time. It is found to fluctuate between bounded limits
indicating that effectively only a finite number of modes partici-
pate in the dynamics. Another interesting statistic is the spectral
distribution of energy (E,) and its dependence on time. Figure 8(b)
shows the time evolution of log E, for n = 2, 6, 10, and 16 for the
IC p = cos2x and 4 = 0 and demonstrates that the energy in the
higher modes remains small. Moreover, each mode p,, and u, oscil-
lates between an upper and lower bound and shows approximate
periodicity with differing periods. In Fig. 8(c), log E, vs n is plotted
for a few values of £. Unlike the power law decay n™>" in the inertial
range of fully developed turbulence, here we see that E,, drops expo-
nentially with n. In particular, there is no equipartition of energy
among the modes.

(81)

VII. CONNECTION TO NONLINEAR SCHRODINGER
AND GENERALIZATIONS

Our numerical results indicate recurrence and soliton-like scat-
tering in 1D isentropic R-gas dynamics for y = 2, suggesting inte-
grability. Remarkably, in this case, R-gas dynamics is transformable
into the defocusing (repulsive) cubic nonlinear Schrodinger equa-
tion (NLSE). More generally, adiabatic R-gas dynamics may be
viewed as a novel generalization of the NLSE. Indeed, let us write

the velocity field as v = V¢ + % + "‘TVS, where s is the specific

entropy and a, A, and p are Clebsch potentials.”” As in treatments of
superfluidity'””* and “quantum hydrodynamics,”* if we define the

Density Rayleigh quotient vs time

Log E vs time for modes n =2, 6, 10, 16

Madelung transform, y(r,t) = \/pexp (i¢(r)/2\/B+), then the

R-gas dynamic energy density (4) becomes

N/

s am

Q(Vs) + A2 (Vp)? - pele [yl
2lyf? (-1 pr
Here, p and p are constant reference pressure and density, respec-
tively. The transformation from (p, ¢) to (y, y*) is canonical.
The corresponding equations of motion for y, «, A, y, and s
may be obtained using the canonical bosonic PBs {y(r),y* (')}
= =(i/2y/B)d(x = 1), A0, px)} = 8(x ~ 1), and {a(x), s}
=0(r—1r').
Specializing to isentropic potential flow where s = § is constant,
p=K(y-1)p" (29),and v= V¢, (82) simplifies to

H= [ [26.1vyf + Kly"]d.

Using the above PBs for v, one finds that y satisfies the defocusing
nonlinear Schrédinger equation

. 1 _
iv/Beyn = B Vy + EyK|1//|2(y Dy.

Interestingly, in one dimension, the R-gas dynamic form of the
focusing cubic (y = 2) NLSE had been obtained in the context of the
Heisenberg magnetic chain.’”*" However, as noted in Ref. 39, the
Heisenberg chain leads to negative pressure! Returning to (84), we
see that the real and imaginary parts of the NLSE correspond to the

&= 2B |Vy[* +2

v Vy - yvyt
2i

Ao
+ 17— V- Vs+

e ®2)

(83)

(84)

Log E,, vs mode number n for various times

(a) (b)
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FIG. 8. (a) Rayleigh quotient displays bounded oscillations indicating only a few modes are active. (b) Time evolution of log E, for modes n = 2, 6, 10, and 16. The higher
modes remain small with each one showing approximately periodic oscillations. (c) log E, vs n for a few values of # showing exponential drop with n. In all cases, the IC was

p =cos2xand d=0.
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Bernoulli and continuity equations. The V*y term leads to the diver-
gence of the mass flux, v2, and regularization terms in the isentropic
R-gas dynamic equations

v /p
v

Evidently, B. plays the role of A*. The nonlinear term (yK/2)|y
|27~ Dy corresponds to the isentropic pressure p = (y — 1)Kp” whose
positivity implies that we get the defocusing/repulsive NLSE. Thus,
our regularization term 28, (V*,/p)/\/p is like a quantum correc-
tion to the classical isentropic pressure. For y = 2, we get the cubic
NLSE or Gross-Pitaevskii equation (without an external trapping
potential). Note that 1D isentropic flow on the line with v = (u(x),
0, 0) is always potential flow: u = ¢x. So the above transforma-
tion takes 1D isentropic R-gas dynamics (30) to the defocusing 1D
NLSE, which for y = 2 and periodic BCs admits infinitely many
conserved quantities in involution.”* This explains our numerical
observations of approximate phase shift scattering of solitary waves
and recurrence.

pi+V-(pv) =0 and ¢ = —pKp' - ; + 2P (85)

A. NLSE interpretation of steady R-gas dynamic
cavitons and cnoidal waves

It turns out that the steady solutions of 1D isentropic R-gas
dynamics (Sec. IV B) correspond to NLSE wavefunctions ¥ with
harmonic time dependence. For y = 2, our aerostatic caviton corre-
sponds to the dark soliton of NLSE. More generally, aerostatic steady
solutions correspond to y of the form +/p(x) exp(~iF"t/2\/B+),
where F" is the constant velocity flux (31). Finally, non-aerostatic
cnoidal waves correspond to interesting asymptotically plane wave
NLSE wavefunctions modulated by a periodic cnoidal amplitude.
Here, we consider the cavitons and cn waves in increasing order of
complexity.

Aerostatic caviton: The simplest caviton solution of Sec. IV B 3 is
aerostatic,

= 2 X _
p(x) = po tanh (ZAO ), u(x) =0,
and
2 e
p(x) =Kp~, where K= 2° . (86)
Po

Here, po, Ao, and ¢’ are positive constants. The corresponding
specific enthalpy and velocity flux are

_ _ 2 2f X
h=2Kp = ¢, tanh (2/10)

and

2
Y R e N N7
2 VP

Thus, the Bernoulli equation ¢ + F* = 0 (31) is satisfied, provided
we take the velocity potential ¢ = —c% t to be time-dependent. The
resulting y is the dark soliton solution of the defocusing NLSE (see
Sec. 6.6 of Ref. 2)

y=1\/p exp(z\i/(i;_*) - mtanh(i)e’%. (88)

scitation.org/journal/adv

Non-aerostatic caviton: More generally, for a non-aerostatic caviton
(for 0 < M, < 1and po, Ao and P positive constants),

p(x) :po(l—(l —Mi)sechz(\/ I_Mg")),
4 AO
(89)

coMopo c 2
_CMoPe nd p(x) = S p(e).
p(x) 2po
In this case, the constant velocity flux is F* = ¢2(2 + MZ2)/2. The
resulting velocity potential is

u(x)

1
¢ = —Eci(2+M§)t+coMox

/1M tanh( ! _M%x)). (90)

2)o

o

+2¢oAo arctan(

Thus, w is asymptotically a plane wave with phase speed
¢o(2 + M%) /2Ms,. This y may be regarded as a high-frequency car-
rier wave modulated by a localized signal.

Aerostatic snoidal waves: The simplest steady periodic solu-
tions is the aerostatic snoidal wave (54),

X

1
2/10,1—21%) for 0 < xo < > (91)

u=0, p=po(l-2k) snz(
Here, F* = ¢2(1-%,) and ¢ = —F"t. The resulting v is a snoidal wave
with harmonic time dependence,
i (1=ko)

v =/po(1- 2k sn(%,l—ZKo)e WL (92)

Non-aerostatic cnoidal waves: Finally, in the general case, we have
from (51),

p(x) = po[p+ - (p+—p-) an(

coMopo c?,
, and x) =
6 P = 5,

where 0 < ko < 1/2and 0 < Mo < 1 - \/2x, [lower triangu-
lar region of Fig. 3(a)]. Here, p4(ko,Mo) are as in (48). Further-
more, po, C5, and Ao are positive constants that set scales. As before,
¢ = —F't + [ju(x") dx', where the constant velocity flux F* depends
on ¢o, Ko, and Mo, but is independent of p, and Ao. Although an
explicit formula for ¢(x, t) is not easily obtainable, it is evident
that for large x, ¢ grows linearly in x with a subleading oscilla-
tory contribution. Thus, ¥ has a purely harmonic time-dependence

exp(—iF“t/Z\ /[3*), a periodic cnoidal modulus |y| = \/p(x), and

an argument that asymptotically grows linearly in x. Thus, asymp-
totically, ¥ is a plane wave modulated by the periodic amplitude

VP(x).

B. Conserved quantities and Rayleigh quotient
of NLSE and R-gas dynamics

u(x) = p(x)7,

The cubic 1D NLSE admits an infinite tower of conserved
quantities. The first three are
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N:f|‘l’|2dx, PNLSE:/j(W*WX) dx,

and

ENLSE=/(|1//;<\2+ 5. |l//|) Vi (94)

These correspond to the mass M = N, momentum P = 2./ Pnisk,

and energy H = Zﬁi/ 4ENLSE of R-gas dynamics. The next conserved
quantity of NLSE (with periodic BCs) is™

_ [ . K|y|
Q= /:L |:\/ﬂ_*1// Yaxx — \/ﬁ_*(l//l//x +4y ‘(//x):l . (95)

PMQ and JQ correspond to the following in R-gas dynamics:

3 \/_ ( Px Pxpxx) dx

and

Ll 2 8p 8B 4.
In Sec. VI A, we use the conservation of Q, and Q; to test our numer-
ical scheme. In Ref. 35, it was shown that for the cubic 1D NLSE, the
Rayleigh quotient or mean square mode number for periodic BCs,

L
Loyl dx
Y
f - [w]? dx

is related to the number of active degrees of freedom and is bounded
in both focusing and defocusing cases. This has a simple interpreta-
tion in R-gas dynamics, since
2
Bx px

11, H
Ruise = —— [ [2pu?+ BxPx A
NISE = 2B M [L(ZP T2 )dx g P

Consequently, 1D isentropic R-gas dynamic potential flows are
recurrent in the sense discussed in Ref. 35.

L 2 3 2
Qi:—f [”"P"+3“""+“P+3K”P ]dx. (96)

RNLsE = 97)

VIil. DISCUSSION

It is a significant feature of our attempt to conservatively reg-
ularize singularities in gas dynamics that it has led us (in the case
of isentropic potential flow) to the defocusing NLSE. Heuristically,
the defocusing interaction tends to amplify linear dispersive effects
and thereby prevent blowups. For y = 2, this connection to the cubic
NLSE should provide powerful tools [including the inverse scatter-
ing transform in one dimension (see Refs. 24 and 41 and Sec. 9.10
of Ref. 2)] to deal with the initial-boundary value problems in vari-
ous dimensions as well as alternative numerical schemes. Moreover,
the bound on the NLSE Rayleigh quotient obtained in Ref. 35 (see
also Sec. VII B) generalizes to two and three dimensions as well as to
nonlinearities other than cubic (y # 2). This would have implications
for recurrence in more general R-gas dynamic isentropic potential
flows even in the absence of integrability. The techniques of disper-
sive shock wave theory"*** could provide additional tools to address
R-gas dynamic flows.

In Refs. 43 and 44, a classification of semilinear PDEs [per-
turbations of linear equations by lower order nonlinear terms] into

ARTICLE scitation.org/journall/adv

subcritical, critical, and supercritical based on conserved quanti-
ties (mass and energy), scaling symmetries, and regularity of the
initial data is described. Although the equations of R-gas dynam-
ics given in Sec. I are not semilinear, in the special case of isen-
tropic potential flow, the transformation to NLSE makes them
semilinear. It is thus interesting to examine the implications of
this classification for R-gas dynamics. For example, the critical
scaling regularity” of NLSE in d spatial dimensions is s. = d/2
— 1/(y — 1). Thus, if the initial data are such that the number
of particles and energy are finite (so that w, Vy € L* and vy ¢
H 1), then according to the scaling heuristic, the NLSE is sub-
critical for any y > 1 in one and two dimensions and also for
1 < y < 3 in three dimensions.

In Sec. V B, we argued that 1D R-gas dynamics does not admit
any continuous shock-like steady solutions. In fact, we found that
if we try to patch half a caviton at its trough density with a con-
stant state, then the Rankine-Hugoniot conditions are violated. We
conjecture that this absence of steady shock-like solutions is a gen-
eral feature of a wide class of conservatively regularized gas dynamic
models. Loosely, this is like d’Alembert’s “theorem” that continu-
ous solutions of Euler’s equations cannot ever lead to drag, although
possibly to lift. On the other hand, inclusion of viscosity does permit
drag as well as steady shock-like solutions as in Burgers.”” Allowing
for non-steady solutions, we find that in R-gas dynamics, the gradi-
ent catastrophe is averted through the formation of a pair of solitary
waves (see Sec. VI B). It would be interesting to see if this mechanism
is observed in any physical system, say, one where dissipative effects
are small as in nonlinear optics, weak shocks, cold atomic gases, or
superfluids. For further discussion on steepening gradients and cri-
teria for detecting wave breaking in dispersive hydrodynamics, see
Refs. 45 and 46.

Intriguingly, the negative pressure (p = —p/8"), y = 2 isen-
tropic R-gas dynamic equations for 8+ = 1/2 in one dimension (30)
are equivalent to the vortex filament equation & = G& x & for a fil-
ament & with curvature k = /p and torsion 7 = 4" when G = 1/2.
Furthermore, it is well-known”” that the vortex filament equation
is related to the continuous Heisenberg magnetic chain equation
§=GS x §” with S = £. It is noteworthy that negative pressures (rel-
ative to atmospheric pressure) can arise in real flows, for instance,
in the presence of strong currents. “ An open question is to give a
geometric or magnetic chain interpretation of the positive pressure
R-gas dynamic equations as well as those for other values of y.

Although we have formulated R-gas dynamics in 3D, our ana-
Iytic and numerical solutions have been restricted to one dimension.
It would be interesting to extend this work to higher dimensional
problems such as oblique shocks and the Sedov-Taylor spherical
blast wave problem. The mechanical and thermodynamic stability of
our traveling caviton and periodic wave solutions is also of interest.
One also wishes to examine whether the capillarity energy consid-
ered here arises from kinetic theory in a suitable scaling limit of
small Knudsen numbers as for the Korteweg equation.'®"” Finally,
our Hamiltonian and Lagrangian formulations of R-gas dynamics
can be used as starting points in formulating the quantum theory.
The transformation to NLSE provides another approach to quanti-
zation for isentropic potential flow, especially when y = 2. Although
we have focused on the conservatively regularized model, a more
complete and realistic treatment would have to include viscous
dissipation just as in the KdV-Burgers equation.
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Our attempt to generalize KdV to include the adiabatic dynam-
ics of density, velocity, and pressure has led to an interesting link
between KdV and NLSE that is quite different from the well known
ones (see, e.g., Ref. 2). In fact, we may view R-gas dynamics as a nat-
ural generalization of both. While it extends the KdV idea of a mini-
mal conservative dispersive regularization to adiabatic gas dynamics
in any dimension and shares with it the cnoidal and sech? solutions,
it also reduces to the defocusing cubic NLSE for isentropic poten-
tial flow of a gas with adiabatic index two. Thus, the cubic 1D NLSE
is a very special member of a larger class of R-gas dynamic equa-
tions that make sense in any dimension and for nonlinearities other
than cubic while also allowing for adiabatically evolving entropy and
vorticity distributions.
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APPENDIX A: VECTOR FIELD AND PHASE PORTRAIT
FOR STEADY SOLUTIONS

With x and p viewed as time and position, steady, isentropic
density profiles must satisfy the Newtonian ODE (39). Ignoring the
velocity-dependent force, two cases arise: (a) for F* < 0, V has only
bound states corresponding to periodic p and (b) for F* > 0, there
are periodic waves and a caviton, provided V has a local minimum
[this happens when FP and A = (FP)*)? —2(y* —1)F*(F™)? are both
positive]. The velocity-dependent force o< p;/p is reminiscent of the
drag force o< — |p«|px on a body at a high Reynolds number. How-
ever, while air drag tends to decrease the speed, this force is positive
and tends to increase the velocity px. Moreover, although the naive
“energy” B.p2/2+V is not conserved, Eq. (39) is non-dissipative and,
in fact, Hamiltonian (see Appendix B). Since the velocity-dependent
force tends to push the particle outwards, it cannot convert a scatter-
ing state into a bound state. We also find that the qualitative nature
of the phase portraits is not significantly altered by this force.

Introducing 1 = px, (39) defines a vector field W on the right
half p—px phase plane,

P B n
=W= / 2. Al
(11),5 (_ V‘B(*p) + (V;'l) p) ( )

Although #%/p is singular along the p = 0 axis, it is “shielded” by the
repulsive logarithmic potential in V. The bounded integral curves
of W correspond to bounded steady densities. Fixed points (FPs)
of W correspond to constant density solutions. They are located at
(pp,m» 0), where py  are the extrema of V,

~ yFP + VA
STy

=~

(A2)

There may be two, one, or no FPs in the physical region p
> 0. We are interested in the cases where there is at least one FP
in the physical region, as otherwise p is unbounded. This requires

scitation.org/journal/adv

A > 0. Assuming this is the case and also assuming that the flow is
not aerostatic (F™ # 0 or u % 0), we find that there are two physical
FPs if F? and F" are both positive, one fixed point if F* < 0 and none
otherwise. The character of these FPs may be found by linearizing W
around them. Writing p = py,m + 8p and 7 = 0 + 07, we get

d (6p\ _ ,(dp _ 01
I (&1) = A(é‘q)’ where A= (_V”(Pp,m)/ﬁ*o). (A3)

The eigenvalues of the coefficient matrix A are

-v m 7
A=+ ‘ %, where V"' (ppm) = ¥ﬂ. (A4)
* Pp.m

Thus, the physical FPs of W must be either X or O points (sad-
dles or centers in the linear approximation) accordingly as V"’ < 0
(real eigenvalues) or V' > 0 (imaginary eigenvalues). The Hartman-
Grobman theorem guarantees that the linear saddles remain saddles
even upon including nonlinearities. Moreover, the linear O-point at
(pm> 0) is always a true O-point since we may verify that (pm, 0)
is a minimum of the conserved quantity K (41). Thus, as summa-
rized in Table I, there are two types of phase portraits leading to
bounded solutions p(x): (i) if F* and F* are both positive, then W
has an O-point at (p., 0) and an X-point at (pp, 0) to its right and
(i) if F* < 0, W has only one physical fixed point, an O-point at
(pm> 0). As shown in Figs. 9(a) and 9(b), in case (i), we have two
types of bounded solutions: periodic waves corresponding to closed
curves around the O-point (p, 0) and a solitary wave corresponding
to the separatrix orbit that begins and ends at (p,, 0) and encircles
the O-point. Since p, > pm, a solitary wave must be a caviton. In
case (ii), the only bounded solutions p(x) are periodic waves cor-
responding to the closed curves encircling the O-point (p, 0), as
shown in Figs. 9(c) and 9(d). Solutions with K < 0 have negative
pressure.

TABLE . Nature of fixed points and bounded solutions on the p—py half-plane. (a)
General non-aerostatic case, when F™, F¢ = 0 and A > 0. (b) Aerostatic limit (u = 0,
F™=Fe =0). K < 0 corresponds to solutions with negative pressure.

FP F* Fixed point Bounded solutions

(a) Non-aerostatic steady solutions

+ + O and X point Periodic, caviton
+ — O point Periodic (K < 0)
- — O point Periodic (K < 0)
— + None None

(b) Aerostatic steady solutions

+ + X point Periodic, caviton
— — O point Periodic (K < 0)
+ — None Periodic (K < 0)
— + None None

0 + None None

0 — None Elevatons (K < 0)
0 0 None None
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FIG. 9. [(a) and (b)] The vector field W on the p—px phase plane for y = 2 and 8« = 0.1 and the entropy constant K(p,) (43) (which labels trajectories) for F™ = 1, FP = 0.9,
and F* = 0.5. As K is decreased from infinity, we encounter unbounded solutions followed by a bounded caviton separatrix emanating from the X-point. The caviton encircles
periodic orbits around the O-point. The X and O points are the only constant solutions. [(c) and (d)] The vector field W and corresponding K for F™ = 1, FP = -2, and F
= —1. Scattering states for K > 0 are followed by periodic orbits around the O-point with K < 0 and an infinite caviton separatrix at K = 0. Solutions with K < 0 have negative

pressure.

Isentropic aerostatic steady solutions: In the aerostatic limit
(u = 0), both the fluxes F® and F™ vanish, though their ratio F¢/F™
= F" is finite. Equation (39) for steady solutions becomes

(y+1)Bs pi

Bupa==V'(p) + = P

,
where

Vip) =yF'p—(y- I)F?pz- (A5)
In this limit, the small-p logarithmic barrier in V (39) is absent,
and the singularity along p = 0 becomes “naked.” One of the FPs
in Eq. (A2) tends to (0, 0), while the other one tends to (yF?/(y
— 1)F"%, 0). Table I summarizes the nature of physical fixed points
and bounded solutions for various possible signs of F¥ and F". Inter-
estingly, for FP = 0 and F" < 0, there is a family of solitary waves of
elevation, though with negative pressure.

APPENDIX B: CANONICAL FORMALISM FOR STEADY
SOLUTIONS

The equation for steady solutions (39) describes a mechanical
system with 1 degree of freedom and conserved quantity K(p, px)
(41). Here, we give a canonical formulation for (39) by taking K to
be the Hamiltonian. We seek a suitable PB {p, p«} so that Hamilton’s
equations px = {p, K} and pxx = {px, K} reproduce (39). The former

gives
1 B.px
{p. K} = {P: z'iyfl } = px
or
y+1
ﬁpyfl {ppxt=px = Appst= Pﬁ (B1)

Using this PB, pxx = {px, K} reproduces (39). This PB is not canon-
ical, but if we define @ = ﬁ*px/py“, then {p, @} = 1 so that @ is the
momentum conjugate to p. The corresponding Hamiltonian is

+1

o’
B
with U asin (41). The “mass” factor in the kinetic term is “position”

(p) dependent. In terms of the contravariant “mass metric” m™"(p)
=p"*B., K = (1/2)m™'@* + U. The corresponding Lagrangian is

1 B.
L = exto(@ps—K) = Epliﬂpi -

K(p.@) = % @+ U(p) (B2)

1
U=_m(p)pi-U. (B3
The Euler-Lagrange equation reduces to (39). Thus, we have Hamil-
tonian and Lagrangian formulations for both the full R-gas dynamic
field equations and their reduction to the space of steady solutions.

APPENDIX C: PARABOLIC EMBEDDING
AND LAGRANGE-JACOBI IDENTITY FOR STEADY
FLOW

For y # 2, the quadrature in (42) cannot be done using elliptic
functions, but could be done numerically. An alternative approach is
to take a linear combination of the equations in (38) to obtain a form
of the steady equation for p without the velocity dependent term, but
with a generally non-integral power of p,

Bspxx = (y+ 1)Kp? = 2F"p + F*. (C1

If we introduce a pseudo-time 7, then steady solutions can be
obtained via a parabolic embedding in a nonlinear heat equation
with a source,

pr = Puprx = —(y+1)Kp" +2F'p — F".

By prescribing suitable BCs and starting with an arbitrary initial con-

dition, the solution of this PDE should relax to the stable solutions
of (C1).

Equation (Cl) may also be used to derive additional

virial/Lagrange-Jacobi-type identities by multiplying it by p and

using (41) and repeating the process. The first two such identities

are
B

2

(C2)

(p")xx = (y+3)Kp"™" — 4Fp* + 3F%p — (F")’
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and
:8* p+2 u 3 p 2
(p Yax = (y+5)Kp"** — 6F"p’ + 5FPp> — 2(F™)?p. (C3)

Integrating (C1) and (C3) with periodic BCs, we get a hierarchy of
integral invariants for steady solutions

L
/ [(y+1)Kp" - 2F"p + F*]dx
-L
L 1 2 2
:[ [(y+3)Kp"" - 4F"p” + 3Fp — (F™)*]dx
L

L
- [ [(y+5)Kp"*? = 6F"p* + 5F°p* — 2(F™)?p]dx
-L
=0, etc (C4)

These integral identities can provide valuable checks on any numer-
ics used to obtain steady solutions.

APPENDIX D: SEMI-IMPLICIT SPECTRAL SCHEME
FOR TIME EVOLUTION

Here, we describe the scheme used to solve the IVP for the 1D
y = 2 isentropic R-gas dynamic equations (79). To include the effects
of the nonlinear terms in (79), we discretize time = jA,j=0,1,
2, ..., denote the Fourier modes p,(jA) = p’,,, and use a centered
difference scheme for the linear part,

i == 2 (a1 ") - 80(F™,

(D1)
! =l = 2 (a0l (L) (B ) - A0

For simplicity, the nonlinear terms are treated explicitly; treating
the linear terms explicitly leads to numerical instabilities. In matrix
form, the equations read

A5~

mA inA
A=1+ _ d B=I-—|,._ D2
2 2 ) an 2 2u) (D2)

n n

where

with p2 = (1 +£*n?). B is related to A via conjugation or by A — —A.
Thus, the variables at the j + 1st time step are

()-o)-s (2)

UcAB- [I+nA( (@’ _P") 3 2)]
_pn Z”(” _Pn)

(detA)A™ =T+ I”A(P _.1),

i
and

i"aA)z L (D3)

detA = (1 +
4
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U is unitary with respect to the inner product ((p,u), (p,it))
pip*p+u*it, which ensures that the linear evolution conserves H; of
(35). An advantage of this scheme is that conservation of fpdx and
Judx is automatically satisfied to round-off accuracy. We also find
that Q, and Q; (96) are quite accurately conserved in our numerical
evolution for the ICs in Sec. VI B. Moreover, since .#™ (75) and F#"
(77) are divergences, their Fourier coefficients can be calculated by
integration by parts without any differentiation.
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