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Brain perfusion patterns are altered in chronic knee
pain: a spatial covariance analysis of arterial spin
labelling MRI
Sarina J. Iwabuchia,b,c, Yue Xingb,c, William J. Cottama,b,c, Marianne M. Drabeka,b,c, Arman Tadjibaeva,b,c,
Gwen S. Fernandesa,d, Kristian K. Petersene,f, Lars Arendt-Nielsene,f, Thomas Graven-Nielsenf, Ana M. Valdesa,b,d,
Weiya Zhanga,b,d, Michael Dohertya,b,d, David Walsha,b,d, Dorothee P. Auera,b,c,*

Abstract
Chronic musculoskeletal pain is a common problem globally. Current evidence suggests that maladapted central pain pathways are
associated with pain chronicity, for example, in postoperative pain after knee replacement. Other factors such as low mood, anxiety,
and tendency to catastrophize are also important contributors. We aimed to investigate brain imaging features that underpin pain
chronicity based on multivariate pattern analysis of cerebral blood flow (CBF), as a marker of maladaptive brain changes. This was
achieved by identifying CBF patterns that discriminate chronic pain from pain-free conditions and by exploring their explanatory power
for factors thought to drive pain chronification. In 44 chronic knee pain and 29 pain-free participants, we acquired both CBF and T1-
weighted data. Participants completed questionnaires related to affective processes and pressure and cuff algometry to assess pain
sensitization. Two factor scores were extracted from these scores representing negative affect and pain sensitization. A spatial
covariance principal component analysis of CBF identified 5 components that significantly discriminated chronic pain participants from
controls, with the unified network achieving 0.83 discriminatory accuracy (area under the curve). In chronic knee pain, significant
patterns of relative hypoperfusion were evident in anterior default-mode and salience network hubs, while hyperperfusion was seen in
posterior defaultmode, thalamus, and sensory regions.One component correlatedpositivelywith the pain sensitization score (r50.43,
P 5 0.006), suggesting that this CBF pattern reflects neural activity changes encoding pain sensitization. Here, we report a distinct
chronic knee pain-related representation of CBF, pointing toward a brain signature underpinning central aspects of pain sensitization.

Keywords: Chronic pain, ASL, Cerebral blood flow, PCA, Knee osteoarthritis, MRI, Experimental pain, Sensitization

1. Introduction

Chronic musculoskeletal (MSK) pain is a common public health,
social, and economic problem36 with prevalence rates between
20% and 44% in the United Kingdom and United States.12,14

Unfortunately, as many as 40% of people living with chronic pain
report unsatisfactory effect of treatment,8 highlighting a clear and
urgent need to better understand chronic pain mechanisms for
developing better treatments.

Recent work has focused on identifying specific neural
signatures to explain the varied processes that contribute to the
experience of physical pain,45 but relatively little progress has
been made to unravel the neural basis of the chronic pain
experience. Cerebral blood flow (CBF) as measured using arterial
spin labeling (ASL) is particularly well-suited to study chronic pain
because it allows the capture of an absolute measure of
nonevoked brain activity that underlies a “tonic” state such as
ongoing spontaneous pain. To date, few CBF studies have
investigated chronic pain, with even fewer studies in MSK
pain.11,21,24,46,47 Observations of CBF changes in chronic MSK
pain21,46,47 are not consistent and are often limited by small
sample sizes (N #17), although appear to show a pattern of
widespread hyperperfusion. Increased CBF in osteoarthritis has
been observed in premotor, somatosensory, salience network
regions, thalamus, amygdala, hippocampus and midbrain
regions (including the periaqueductal gray) that were related to
ongoing pain.21 Similarly, Wasan et al.47 reported increased
CBF in similar cortical regions as well as hyperperfusion in an
area of the dorsal attention network during worsening of clinical
pain in chronic low back pain. One recent study using
a slightly larger sample (N 5 26) did not observe any CBF
differences between osteoarthritis (OA) participants and healthy
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controls, although did observe an association between ongoing
pain and regional CBF in areas predominantly involved in
emotional and fear regulation.11 Most of these studies use either
voxel-wise or region-of-interest methods, which are known to
lack the sensitivity to capture effects that may bemore subtle and
spatially distributed.

Multivariate analysis of CBF data provides a data-driven way to
extract latent features of ongoing coordinated brain activity even
frommultiple parallel processes. This approach may allow for the
decoding of these processes and determine which markers
distinguish participants with chronic pain from thosewithout pain;
a similar approach has been applied to distinguish subjects with
and without Parkinson’s disease.31 Recently, a Gaussian pro-
cess classifier was applied to CBF data to discriminate
presurgical and postsurgical molar extraction intervention with
just under 95% accuracy,33 demonstrating that certain CBF
features are associated with acute severe pain in a clinical setting.
To extend this further toward clinically relevant chronic pain, we
aimed to identify novel discriminating markers of chronic pain in
a population of largely community-dwelling people with mild–
moderate knee pain and explore how these features relate to
specific facets of the chronic pain experience.

The purposes of this study were to use a multivariate approach
(principal components analysis) to (1) discriminate participants
with chronic knee pain from pain-free controls using nonevoked
brain activity measures and (2) determine whether these differ-
ences in CBF covariance patterns are related to affective or
sensitized pain mechanisms in the pain syndrome. We hypoth-
esized that the discriminatory components would comprise
previously reported regions of CBF changes somatosensory,
salience, and dorsal attentional network regions; the thalamus,
amygdala, and hippocampus; and key regions of the descending
and ascending pain modulatory pathways, notably the periaque-
ductal gray. In addition, we hypothesized that these CBF patterns
would differentially correlate with pain sensitization and affective
pain phenotypes.

2. Materials and methods

2.1. Design and participants

This was a cross-sectional nested study within a larger knee OA
multidimensional phenotyping study (INCOPE, Imaging Neural
Correlates of Osteoarthritis Phenotypes) that will be reported in
a future manuscript. For this CBF substudy, the initial batch of the
full INCOPE data set comprising 54 participants with chronic knee
pain and 33 healthy and pain-free participants was included (from
a total data set of 87 chronic knee pain participants and 39 healthy
and pain-free participants), allowing for a reasonably matched
group of chronic knee pain and pain-free controls to test our
multivariate approach on CBF data. The relationship between
sample size and discriminatory accuracy and hence power is
complex for multivariate pattern analysis or machine-learning
approaches because increasing sample heterogeneity may more
than offset gains from larger sample sizes.38 The final sample of 78
participants compares favourably with the bulk of published ASL
brain imaging studies and multivariate pattern analysis studies to
discriminate complex psychiatric disorders.23 The larger chronic
knee pain cohort also allowed for regression analyses within the
group.Recruitment pathwayswere fromadatabaseof participants
from the community through the East Midlands–based Knee Pain
and Related Health in the Community study cohort (Nottingham
Research Ethics Committee 1, NREC reference 14/EM/0015;
registered with ClinicalTrials.gov [NCT02098070])15,16 (N 5 53),

primary care through general practitioner surgeries (N5 27) within
the Nottinghamshire region, or secondary care through the
Sherwood Forest Hospitals NHS Foundation Trust orthopaedic
referrals or poster advertisements atNottinghamCity Hospital (N5
7). All participants completed a set of questionnaires, quantitative
sensory testing (QST), followed by an MRI session. The study was
approved by theNottinghamResearch Ethics Committee 2 (NREC
reference: 10/H0408/115), and all participants provided written
informed consent. Inclusion criteria for chronic knee pain
participants was self-reported diagnosis of knee osteoarthritis
and/or reported chronic pain in the knee (ie, pain for most of the
day and pain for.14 days/month), and their knee pain was their
most troublesome pain. Healthy participants reported no
current or past history of knee pain (nor pain elsewhere).
Participants were excluded if they had any history of stroke or
had any current major neurological condition, psychosis, or had
a contraindication to MRI (full list of inclusion and exclusion
criteria is provided in the supplementary materials, available at
http://links.lww.com/PAIN/A966).

2.2. Psychometric data

Participants all underwent psychometric assessments before the
MRI scan session. Pain intensity on the day was taken in the hour
before scanning using a numerical rating scale ranging from 0 (no
pain) to 100 (worst imaginable pain). Questionnaires included the
Beck’s Depression Inventory II6 (BDI-II), the Trait Anxiety Scale of
the State-Trait Anxiety Inventory (STAI-T)42 and the Pain
Catastrophizing Scale (PCS),43 which was broken down into
the subscales of helplessness, magnification, and rumination.
The BDI-II and the STAI-T were converted using Rasch
conversion following the method of Lincoln et al.,28 which
recommended the BDI-II to be divided into 2 subscales (negative
thoughts and negative behaviours) for measuring depression in
participants with osteoarthritis.

2.3. Quantitative sensory testing

All participants underwent QST before the MRI scan session,
which consisted of pressure algometry (pressure pain thresholds
[PPTs]) using a handheld pressure algometer with a 1-cm2 probe,
and pressure was increased at a rate of approximately 30 kPa/s
(Somedic AB, Sösdala, Sweden), and cuff pressure algometry
using a computer-controlled cuff algometer (Cortex Technology
and Aalborg University, Denmark). The pressure algometry
assessed PPTs at 2 sites: the sternum and the most painful
knee (or either knee in pain-free healthy controls). The cuff
pressure algometry assessed pressure pain detection threshold
(PDT), pressure pain tolerance threshold (PTT), temporal sum-
mation of pain (TS), and conditioned painmodulation (CPM) using
the same method as described in previous studies.35,37,44

Detailed methods of the QST is provided in the supplementary
materials (available at http://links.lww.com/PAIN/A966).

2.4. MRI data acquisition

Participants underwent multimodal MRI at 3T (Discovery MR750;
GE Healthcare, Chicago, IL) using a 32-channel head coil, as part
of a larger phenotyping study (INCOPE) including ASLdata and T1-
weighted anatomical data used for image registration, which are
reported here for the CBF pattern substudy. Cerebral blood flow
was assessed using a pulsed-continuous ASL sequence with 3D
spiral read-out (tag/control image pairs5 72, flip angle5 111˚, TE
5 10.536 ms, TR 5 4844 ms, labelling duration 5 1450 ms,
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postlabelling duration 5 2025 ms, field of view 5 240 mm, slice
thickness5 4mm, slice gap5 4mm, number of slices5 36, echo
train length 5 1, number of excitations 5 3, matrix 5 128 3 128,
and voxel resolution 5 1.875 3 1.875 3 4 mm).13 Arterial spin
labeling imaging also used background suppression and an M0

image for image quantification in line with current recommenda-
tions.2 High-resolution anatomical images were acquired in the
sagittal plane using a fast-spoiled gradient echo sequence (TE/TR
5 3.164/8.132ms, TI5 450ms, slice gap5 1mm, field of view5
256, matrix5 2563 256, flip angle5 12˚, and voxel resolution5
1 mm3). T1-weighted images were acquired parallel to the AC-PC
line, while the bottom of the acquired ASL image was positioned
just below the cerebellum to allow for whole-brain CBF imaging.

2.5. Image preprocessing

Each image was visually assessed for quality including artefacts
induced by motion and poor labelling defined by extremely low
CBF values in the occipital regions (,20mL/100 g/min) relative to
the rest of the cortex. Following quality control, there were 10
chronic knee pain and 4 healthy control data sets excluded from
the final analysis resulting in a total of 44 chronic knee pain and 29
healthy and pain-free control subjects. Cerebral blood flow maps
(ml/100 g/min) were produced with the use of an automatic
reconstruction script as reported in Zaharchuk et al.48 Both the
T1-weighted images and CBF maps were first skull-stripped
using the brain extraction tool from FSL v5.0.11 (FMRIB Software
Library). The CBF maps were then linearly registered to the T1-
weighted images and then to MNI space using FLIRT v6.0
(FMRIB’s Linear Image Registration Tool).22 The images were
then spatially smoothed using a 5-mm full-width half-maximum
Gaussian kernel and masked to exclude voxels that had
a probability of less than 42% gray matter. This was chosen as
it provided the most reliable CBF measures in an independent
test–retest data set (unpublished). These masked images were
then used in the principal component analysis (PCA) analysis.

2.6. Principal components analysis of cerebral blood
flow data

A voxel-based principal components analysis was used to generate
patterns of spatial covariance in gray matter perfusion across the
sample. We followed the method of Spetsieris et al.41 and Melzer
et al.31 whereby the data were log-transformed and demeaned
using the subject’s mean perfusion and the group mean and then
entered in a principal component analysis to calculate the
eigenvectors and eigenvalues of the covariance. The spatial images
of principal componentswith unit variancewere generated using the
same approach as it was proposed previously.31 As a result, the first
16 components were selected, which explained 87.8% of the
variance, with the first component captured the most variance and
the last component accounts for the least. A backward stepwise
binomial logistic regressionwas used to determine the components,
which successfully distinguished pain participants and pain-free
controls (based onAkaike InformationCriterion). These components
were then linearly combined to create a unified network representing
a chronic knee pain-related perfusion network and z-scores. To test
for the network reliability, a 500 permutation bootstrap estimation
method was employed using the same approach as Melzer et al.31

2.7. Region of interest analysis

To validate the PCA findings, we also applied a region-of-interest
analysis to determine whether the patterns of hyperperfusion and

hypoperfusionwere reflected in absolute CBF changes. The positive
and negative loadings (thresholded at z .1.96 and z , 21.96,
respectively) and the remaining regions of the unified network and
component 12 (the one component of 16 correlatingwithQST factor
score) were masked onto each subject’s CBFmap to extract mean
CBF values. Age, sex, and mean global CBF were regressed out of
the absolute CBF data, and all subsequent analyseswere applied to
the residuals. For the behavioural measures, both age and sex were
regressed out of the data. Mean CBF of the unified network and
component 12 were then compared between the 2 groups. In
addition, the component 12 positive and negative loading CBF
means for chronic knee pain participants were correlated with the
QST factor score to explore whether the relationship was driven by
hyperperfusion or hypoperfusion.

2.8. Statistical analyses

We performed the Kaiser–Meyer–Olkin test and Bartlett’s test of
sphericity to ensure that a factor analysis was suitable for dimension
reduction of both the psychometric andQST scores. This dimension
reduction approach allows for the integration of numerous variables
gathered from psychometric questionnaire scores and QST scores
to provide measures reflecting an overall measure of negative affect
and sensitization respectively. Unrotated principal components
analysis was used to extract a principal component for the
psychometric scales and the QST scores using SPSS v25.0.0.1.

To address our primary outcome, a binomial generalised linear
model was used to predict the labels of participants with chronic
knee pain and healthy controls using eachCBF component alone as
well as the unified network, and the area under the receiver-
operating characteristic curve (AUC) was analysed to assess the
performance of the prediction. The AUCwas obtained usingMatlab
2018a for all the individual components and the unified network.

For the second outcome, we used the PCA-derived pain
sensitization and affect scores to relate to CBF measures. Linear
regression was used to relate the network scores of the chronic knee
pain groupwith numerical rating scale pain severity score, affect factor
score and QST factor score, correcting for age and sex. For the
region-of-interest analyses of absolute CBF, age, sex, and mean
global CBF were regressed out of the data, and all subsequent
analyses were applied to the residuals. Mean global CBF was also
compared between groups after regressing out age and sex. For the
behavioural measures, both age and sex were regressed out of the
data. Mean CBF comparisons between groups was performed using
an independent-sample t test.All analysesusedana level ofP,0.05.

2.9. Data availability

Anonymised data may be made available upon request to the
authors.

3. Results

Demographics, psychometric, and QST results in the final cohort
of chronic knee pain participants and controls are provided in
Table 1. Table of medications are included in the supplementary
materials (available at http://links.lww.com/PAIN/A966).

3.1. Psychometric data

Between-group comparisons showed significant differences for
BDI-II–negative behaviour subscale, PCS, and all PCS subscales
(Table 1). The Kaiser–Meyer–Olkin measure (0.81) and significant
Bartlett’s test of sphericity (P , 0.0001) indicated that a factor
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analysis was suitable for dimension reduction of the BDI-II
subscales, STAI-T, and the PCS subscale scores. The extracted
principal component explained 68.7% of the variance. This
component loaded positively on all scores with maximum loading
for PCS helplessness, where higher factor scores indicated more
negative affective characteristics (Table 2).

3.2. Quantitative sensory testing data

Between-group comparisons revealed a significantly lower PDT
of the affected leg and reduced CPM in chronic pain participants
(Table 1). There was also a trend toward greater sensitivity in
chronic knee pain participants for the PPT of the knee and PTT of
the affected leg (P , 0.1, Table 1). A total of 8 scores were
derived from the QST (PPT of sternum and knee, PDT and PTT of
each leg, TS, and CPM). The Kaiser-Meyer-Olkin test (0.65) and
Bartlett’s test of sphericity (P , 0.0001) indicated suitability of
a factor analysis for dimension reduction of the QST scores. The

extracted component explained 54.5% of the total variance
which loaded positively and highly on all measures indicating
greater pain sensitivity (maximum ipsilateral (PTT) except for the
TS, where high scores indicate greater sensitivity resulting in
negative loading albeit of much smaller extent (Table 3).

Table 1

Demographic and clinical data of participants.

Data Knee pain participants Healthy controls P

N 44 29 —

Mean age 62.82 (8.63) 64.41 (11.07) 0.49

Sex (male/female) 22/22 18/11 0.31

Laterality of affected knee (L/R) 22/22 — —

Mean educational scores 5* 3* 0.02

Pain duration (mo) 119.68 (121.94) — —

NRS pain 0–100 on the d 36.3 (29.35)* — —

PainDETECT (Rasch converted) 20.58 (0.72)* — —

BDI-II negative thoughts subscale (Rasch

converted)

2.85 (3.04) 1.7 (2.16) 0.07

BDI-II negative behaviours subscale (Rasch

converted)

9.41 (3.25) 5.25 (3.2) <0.001

STAI-T (Rasch converted) 21.32 (1.51) 21.77 (0.93) 0.124

PCS 18.37 (14.43)* 9.17 (7.44) <0.01

PCS: helplessness 8.53 (6.32)* 3.21 (3.11) <0.01

PCS: magnification 3.35 (3.44)* 1.9 (1.57) 0.04

PCS: rumination 6.81 (5.17)* 4.07 (3.58) 0.02

PPT sternum [kPa] 260.5 (162.32)* 300.43 (161.68)* 0.31

PPT knee [kPa] 308.72 (202.47)* 398.94 (221.5)* 0.08

PDT affected leg [kPa] 17.48 (6.81)* 21.28 (7.99)† 0.04

PTT affected leg [kPa] 32.9 (13.27)* 39.4 (14.8)† 0.06

PDT unaffected leg [kPa] 17.24 (6.91)* 19.63 (9.37)‡ 0.23

PTT unaffected leg [kPa] 30.55 (12.07)* 35.74 (13.86)‡ 0.11

TS [VAS points] 0.99 (1.25)† 0.6 (0.95)† 0.16

CPM [kPa] 4.83 (8.36)† 9.49 (10.27)‡ 0.04

Affect factor score 0.31 (1.12)* 20.46 (0.54) 0.001

QST factor score 0.04 (1)† 0.59 (1.02)‡ 0.03

Values displayed are mean values and SDs (in parentheses). Education is scored as 1 with highest level of qualification to 8 with no formal education. PainDETECT Rasch conversion according to Lincoln et al. (2017).

Bold indicates significant group differences (uncorrected for multiple comparisons).

* One subject score missing.

† Two subject scores missing.

‡ Three subject scores missing.

BDI-II, Beck’s depression index; CPM, conditioned pain modulation; NRS, numerical rating scale; PCS, Pain Catastrophizing Scale; PPT, pressure pain threshold; PDT, pain detection threshold; PTL, pain tolerance threshold;

STAI-T, State-Trait Anxiety Inventory; TS, temporal summation; QST, quantitative sensory testing.

Table 2

Component loading scores for the affective measures.

Affect measures Component 1

Trait anxiety (STAI-T) 0.81

PCS helplessness 0.91

PCS magnification 0.87

PCS rumination 0.83

BDI-II negative thoughts 0.80

BDI-II negative behaviours 0.75

BDI, Beck’s depression index; PCS, Pain Catastrophizing Scale; STAI-T, State-Trait Anxiety Inventory.
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3.3. Principal components of cerebral blood flow data

The PCA extracted 16 components that were used for predicting
group classification. Components 2, 6, 8, 12, and 13 significantly
classified knee pain participants from controls. These components
explained 19.9%, 2.2%, 1.3%, 1%, and 0.9% of the variance,
respectively, and were considered to be knee pain-related
components. The AUC of the unified network was 0.83 while the
5 included individual components yielded 0.62 to 0.64 classification
power. The unified network achieved 82% specificity and 76%
sensitivity. The unified component and component 12 are illustrated
in Figures 1A and B, respectively, with details of cluster regions
(clusters.20 voxels) listed in Table 4.

Of the 5 discriminatory components, only component 12 was
significantly associated with the QST factor score (r 5 0.43, P 5
0.006). The affect factor score was not significantly correlated with
any of the knee pain-related components. Correlation between the
discriminating components and the individual QST and affect
measures canbe found in the supplementarymaterials (available at
http://links.lww.com/PAIN/A966). Pain severity did not significantly
correlate with any of the 5 discriminatory components. Of note,
flipping the images of those in the knee pain cohort with a painful
left knee to test the effect of pain laterality did not significantly alter
the ability for the combined component to discriminate between
healthy and knee pain participants (data not shown).

3.4. Region-of-interest analysis

3.4.1. Unified network

Mean CBF (ml/100g/min) was significantly higher in participants with
kneepain (M550.23,SEM50.48) comparedwith healthycontrols (M
5 47.01, SEM5 0.54) within the knee pain-related perfusion network
with positive loadings (t(71) 5 4.38, P , 0.001, Fig. 1C), and
significantly lower CBF (knee pain participants: M 5 47.93, SEM 5
0.43; pain-free controls: M5 50.49, SEM5 0.43) was seen within the
regions with negative loadings (t(71) 5 24.02, P , 0.001, Fig. 1C),
confirming that thepositive andnegative loadings reflect hyperperfusion
and hypoperfusion, respectively. Conversely, mean CBF outside of the
pain-related network (ie, gray matter regions that did not reach the
threshold forpositiveornegative loadings)didnotdifferbetweenchronic
kneepainandpain-freeparticipants (kneepainparticipants:M548.94,
SEM5 0.02; pain-free controls: M5 48.97, SEM5 0.02).

3.4.2. Component 12

Clusters fromcomponent 12with positive andnegative factor loading
showed significant hyperperfusion (t(71) 5 3.26, P 5 0.002) and

hypoperfusion (t(71) 5 22.36, P 5 0.02) in pain participants vs
controls.Within the chronic knee pain group, absoluteCBFaveraged
over the networks of component 12 showed a significant positive
association with the QST factor for the positive regions (r5 0.423, P
5 0.005) but no significant association for the negative regions (r 5
20.224, ns). These results are illustrated in Figure 1D. A closer
inspection of this CBF correlation was performed to explore the
correlation with individual QST measures, which showed an
association with all measures except for TS (these results are
provided in the supplementarymaterials, available at http://links.lww.
com/PAIN/A966).

Mean global CBF did not differ significantly between both
groups (P 5 0.72). In addition, as the chronic pain signature did
not include the periaqueductal gray (PAG) as expected,9,19,22 we
undertook a regional periaqueductal gray (PAG) post hoc analysis
to mitigate against the risk that the PCA dimensionality reduction
may fail to detect small clusters forming local networks. As shown
in the supplementary results (available at http://links.lww.com/
PAIN/A966), mean PAG CBF suggested hyperperfusion in
chronic knee pain participants compared with controls.

4. Discussion

Using PCA of CBF data, we have identified a novel covariance
pattern derived from nonevoked brain activity that discriminates
chronic knee pain participants from pain-free controls. This
discriminating knee pain-related network revealed a pattern of
hypoperfusion/hyperperfusion within extended pain connectome
regions. A component of the hyperperfusion network was related
to the degree of pain sensitization pointing to a brain signature
underpinning the central aspects of pain sensitization.

4.1. Knee pain-related network and its link to
sensitisation measures

The ability of CBF covariance maps to clearly discriminate between
chronic pain and pain-free groups and highlights the dual advantage
of combining a multivariate pattern approach with a quantitative
physiological measure of brain activity as previously exploited for
acute pain.33 There is, however, evidence demonstrating spatial
correlation between network hubs measured through fMRI and
CBF27 allowing for comparisons across modalities, albeit with
caution. The knee pain-related network corresponds well with
regions considered part of the pain connectome from resting-state
fMRI, with a distinct pattern of increased perfusion in posterior
default mode network (DMN) regions and reduced perfusion in
salience network regions. Previous studies commonly report
dysfunctions of regions comprising both the DMN and salience
network in various chronic pain conditions and across a range of
imaging modalities.3,4,9,21,26,30 In one study using CBF data to
discriminate presurgical and postsurgical third molar extraction, the
multivariate pattern of perfusion classifying postsurgical painful
state33 is in striking contrast to the current unified component
classifying chronic knee pain participants. They showed increased
CBF after surgery in the thalamus, salience network, secondary
somatosensory, and anterior cingulate cortices, with decreased
CBF in visual and parietal cortices. This dissociative pattern between
our knee pain participants with mild ongoing pain and the
postsurgery participants with severe acute pain from O’Muirchear-
taigh et al.’s study, thus largely excludes upregulated nociception as
underlying mechanism, and conversely suggests a maladaptive
neuroplasticity process linked to pain chronification.

The observed CBF pattern of chronic pain showed, however,
an overlap with the acute postsurgical pain CBF signature

Table 3

Component loading scores for the QST measures.

QST measures Component 1

PPT sternum 0.77

PPT knee 0.68

TS 20.16

CPM 0.75

PDT affected leg 0.82

PTT affected leg 0.89

PDT unaffected leg 0.77

PTT unaffected leg 0.81

CPM, conditioned pain modulation; PPT, pressure pain threshold; PDT, pain detection threshold; PTT, pain

tolerance threshold; TS, temporal summation; QST, quantitative sensory testing.
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reported in O’Muircheartaigh et al. with both displaying increased
CBF of the thalamus. It is tempting to speculate that persistent
thalamic activation may be a key process in driving pain
chronification. In fact, thalamic volume changes have been
observed in participants with chronic hip OA pain; moreover, this
effect is normalized following successful arthroplasty interven-
tion.18 In our data, the right dorsomedial nucleus was specifically
observed to be hyperperfused in the chronic knee pain group and
this was seen across the unified components map as well as the
component that showed a correlation with QST measures. This
nucleus is part of the medial pain pathway that is responsible for
the affective-motivational elements of pain perception and,
moreover, has extensive connections with the cortex including
somatosensory and limbic regions,1 akin to those regions we
observed to be hypoperfused in participants with chronic knee
pain. The association between one of the discriminating
components with the QST score aligns well with the notion that
aberrancies within this network are more pronounced in those
who are more centrally sensitized to pain. The continuous
nociceptive barrage may result in a sensitized state of the
thalamic circuitry that links to numerous areas of higher-order
cognitive processes.1 This cascading effect of the overactive
thalamus may explain the lack of deactivation of posterior DMN
regions in our chronic knee pain participants and perhaps extend
to affect other sensory (visual) regions. The reverse pattern
observed in the aforementioned acute postsurgical pain study33

may be a demonstration of the normal function of this thalamic
circuitry to effectively upregulate and downregulate salience and
default mode regions, respectively, during an acute pain
experience. By contrast, in chronic knee pain, continuous
peripheral input may have resulted in a breakdown of this system
leading to dysfunctional bottom-up processes and an abnormal
interaction between salience and default mode networks. This

constant peripheral pain drive has previously been proposed to
maintain sensitization of central pain pathways in MSK pain.17

Kucyi et al.25 found that spontaneous mind wandering away
from pain resulted in increases in DMN activity with greater
salience network activity when attending to pain. This is
consistent with the present findings of increased and decreased
perfusion in the DMN and salience regions, respectively, in
chronic knee pain participants who had lower sensitivity to pain.
The higher activity of the posterior cingulate, precuneus and
cuneus regions in less sensitized participants may allow these
participants being better able to assess and appropriately orient
attention toward and/or away from pain. We speculate that the
greater effectiveness of this system may have enabled partic-
ipants with chronic knee pain to become better adapted to cope
with frequent nociceptive input and thus preventing central
sensitization. The deactivation of regions such as the insula and
anterior cingulate cortex may be reflective of hypoarousal and
a lesser ability for interoception. Theremay be a complex interplay
between the salience and default mode networks that result in an
impaired capacity to effectively disengage their attention to pain.
Although purely speculative, this difference in the ability to attend
to or disengage from pain may determine the reorganisation of
one’s brain circuitry during the chronification and central
sensitization process.

4.2. Changes in the periaqueductal gray in chronic knee pain

It is, however, surprising that the PAG was not evident as a pain-
relevant region in our cohort given previous reports of PAG
changes in chronic pain10,19,21,25,40 and its well-documented
involvement in the antinociceptive system for inhibition of
pain.5,29,34 One might expect this region to robustly differentiate
chronic knee pain participants from pain-free controls and

Figure 1.Components discriminating people with chronic pain and healthy controls and their association with pain sensitization. (A) The unified knee pain-related
network (combination of 5 components) that classified chronic knee pain participants and controls. Clusters in hot colours are regions with positive loadings,
clusters in cold colours are regions with negative loadings. (B) Component 12 from the PCA that classified chronic knee pain participants from controls. This
component was also significantly correlated with the QST factor score. Clusters in hot colours are regions with positive loadings, and clusters in cold colours are
regions with negative loadings. (C) The mean absolute CBF values extracted from the unified network within regions with positive, negative loadings and the
remaining regions outside of the unified component, in knee pain participants and controls (plotted with standard error of the mean). (D) Mean CBF of the regions
with positive loadings of component 12 (red clusters in B) correlated with the QST factor score. CBF, cerebral blood flow; QST, quantitative sensory testing.
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furthermore be related to sensitization of central painmechanisms,
particularly if our theory above regarding the attending toward/
away from pain is true. However, the spatial resolution that is
feasible with ASL does not allow for the segregation of the
subcomponents of the PAG, and therefore, the signal measured
from the PAG will be an average across both the ascending and
descending pain pathways, which are known to have distinct
connections and mechanisms underlying the pain experience.29

Furthermore, small clusters are less likely to be detected using
a PCA approach due to the thresholds applied for explained
variance. A post hoc exploratory analysis of the PAG in our data set
revealed that, similarly to a previous report,21 there is indeed
increased perfusion in participants with chronic knee pain
(supplementary Figure 1, available at http://links.lww.com/PAIN/
A966), suggesting that although there are PAG alterations in
chronic knee pain, the PAGperfusion patternmay not contribute to

Table 4

Cluster maxima of the unified of components that significantly classified knee pain participants from controls.

Region Cluster size (voxels)* MNI coordinates Z value

X Y Z

Hyperperfusion in chronic knee pain

Lateral occipital, cuneus, precuneus, and posterior cingulate cortex 3320 214 284 40 4.03

Cerebellum 1907 8 288 232 3.84

Fusiform gyrus and inferior temporal gyrus 349 242 226 222 2.99

Inferior temporal gyrus and lateral occipital cortex 252 54 262 212 2.85

Lingual gyrus and parahippocampal gyrus 131 214 242 210 2.4

Lateral occipital cortex 124 240 276 18 3.11

Cerebellum 83 226 252 256 3.1

Cerebellum 52 26 250 260 2.86

Brain stem 46 24 244 262 3.86

Temporal pole 43 248 22 224 2.8

Thalamus 41 4 218 10 2.4

Inferior temporal gyrus 39 48 26 246 2.71

Lingual gyrus 38 16 268 22 2.54

Parahippocampal gyrus 36 226 222 220 2.49

Frontal pole 28 212 66 24 2.18

Lateral occipital cortex and fusiform gyrus 23 244 274 216 2.53

Frontal pole 22 26 70 8 2.26

Parahippocampal gyrus and fusiform gyrus 21 26 210 238 2.52

Caudate 20 216 210 24 2.49

Hypoperfusion in chronic knee pain

Supramarginal gyrus, postcentral gyrus, and parietal operculum 1339 258 220 28 3.42

Frontal pole 1004 30 54 10 3.52

Cerebellum 633 28 238 250 4.68

Heschl’s gyrus, planum polare, and insula 537 244 216 6 3.35

Anterior cingulate cortex 533 22 42 10 3.07

Orbitofrontal cortex 441 0 30 220 3.23

Orbitofrontal cortex and anterior insula 392 36 24 28 3.84

Opercular cortex 241 42 212 18 2.89

Cerebellum 219 248 258 250 3.81

Postcentral gyrus and supramarginal gyrus 208 52 226 40 2.89

Frontal pole 185 232 52 6 2.97

Midcingulate gyrus 121 0 24 36 2.5

Orbitofrontal cortex, inferior frontal gyrus, and anterior insula 110 234 30 22 2.89

Postcentral gyrus and supramarginal gyrus 101 38 232 42 3.14

Precentral gyrus and inferior frontal gyrus 89 54 10 32 3.23

Lateral occipital cortex and angular gyrus 74 42 260 56 2.83

Lateral occipital cortex and superior parietal cortex 67 224 258 68 2.37

Middle frontal gyrus and inferior frontal gyrus 63 42 22 30 3.14

Anterior cingulate cortex 62 12 40 14 2.62

Cerebellum 54 228 282 244 2.56

Inferior frontal gyrus and precentral gyrus 51 56 10 12 3.02

Inferior temporal gyrus and middle temporal gyrus 35 256 210 232 2.6

Superior temporal gyrus, planum temporale, and Heschl’s gyrus 34 258 24 22 2.57

Superior frontal gyrus 34 12 10 62 2.93

Orbitofrontal cortex 31 220 30 222 2.69

Middle frontal gyrus 30 40 10 48 2.82

Planum temporale and insula 26 246 2 212 2.43

Frontal pole 23 224 44 20 2.43

Orbitofrontal cortex 22 22 12 216 2.38

Angular gyrus and supramarginal gyrus 22 250 252 28 2.52

Superior frontal gyrus and supplementary motor cortex 21 10 10 58 2.91

*Only clusters .20 voxels in size are listed.
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themajorCBFnetworks derived through thePCAapproachacross
the full data set. It would be of interest to further investigate in the
same individuals whether there is a link between CBF increases of
the PAG (as seen in the current study) and altered connectivity of
the PAG with default mode regions (as seen in ref. 25).

4.3. Negative affect in chronic knee pain

The lack of association between the affective score and CBF is
not unexpected. Although our patient cohort scored significantly
higher for affective elements, the majority (.93%) scored below
cut offs indicative of severe depression and/or anxiety. Therefore,
the present data set may lack the variation in affective features to
be able to effectively test our hypothesis.We also suggest that the
PCA approach be applied to a chronic pain cohort (ideally with
high variation of affective measures) to identify components that
differentiate participants with high and low negative affective
features to better deconstruct the effect of psychological aspects
contributing to chronic pain. In addition, the natural next step is to
validate this model using an independent data set to test the
predictive confidence and generalizability.

4.4. Limitations

A limitation of our study is that a proportion of our chronic pain
participants had taken opioid medication and/or antidepressants,
which could have affected CBF especially within the salience and
default mode regions. However, comparison of the mean CBF
values of both the positive and negative loadings of the unified
component between those on opioid or antidepressant medication
and those who were not showed no significant difference (see
supplementarymaterials for detailed results, available at http://links.
lww.com/PAIN/A966).Moreover, visual inspectionof the correlation
between theQST factor score and both the component 12 network
score and themeanCBF of component 12 positive loadings did not
show a systematic pattern to suggest there was a strong impact of
medication on the current findings (colour-coded correlation plot of
Fig. 1D is available in the supplementary materials, available at
http://links.lww.com/PAIN/A966). Further limitations are the smaller
number of controls than pain participants and the lack of power and
sample size calculation, which is due to the novelty of the approach
in chronic pain. Nevertheless, this data set is larger than those
usually recommended for ASL studies7,11,20,21,24,32,39 and in line
with published multivariate pattern analysis studies in psychiatric
conditions.23 Also, to maintain maximum power in the given data
set, we refrained from sample splitting and out of sample validation.
Generalizability of our reported chronic pain-relatedCBFpatternwill
hence need to be validated in the future. This is an obvious avenue
of work in a large chronic pain data set to be recruited in the near
future.

5. Conclusions

This study successfully delineated participants with chronic knee
pain from controls using a PCA approach on CBF data, and the
discrimination was related to the degree of pain sensitization as
measured through comprehensiveQSTmethods. The patterns of
CBF alterations indicate greater blood flow changes in primarily
the salience and default mode network regions commonly
implicated in chronic pain, and these were further heightened in
those with greater central sensitization. This pattern was
unrelated to the pain severity on the day and largely opposite to
the reported CBF signature of acute postsurgical pain further
pointing to a neuroplastic and also a potentially non-nociceptive

origin. We demonstrate that task-free CBF assessment contains
important covariance features that may signify the neural
mechanisms of pain chronification and pain sensitization.
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