
 Chopra, S., Nautiyal, L., Malik, P., Ram, M., & Sharma, M. K. (Accepted/In
press). A non-parametric approach for survival analysis of component-based
software. International Journal of Mathematical, Engineering and
Management Sciences, 5(2), 309-318.
https://doi.org/10.33889/IJMEMS.2020.5.2.025

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.33889/IJMEMS.2020.5.2.025

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via IJMEMS at
http://www.ijmems.in/volume5number2.php. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.33889/IJMEMS.2020.5.2.025
https://doi.org/10.33889/IJMEMS.2020.5.2.025
https://research-information.bris.ac.uk/en/publications/a-nonparametric-approach-for-survival-analysis-of-componentbased-software(e18cc684-d75a-4bbe-837a-982cb146b90c).html
https://research-information.bris.ac.uk/en/publications/a-nonparametric-approach-for-survival-analysis-of-componentbased-software(e18cc684-d75a-4bbe-837a-982cb146b90c).html

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

309

A Non-Parametric Approach for Survival Analysis of Component-

Based Software

Sandeep Chopra

Department of Computer Application & Information Technology,

S.G.R.R. University, Dehradun, Uttrakhand, India.

Lata Nautiyal
Department of Computer Science,

University of Bristol, Bristol, United Kingdom.

Corresponding author: lata.nautiyal@bristol.ac.uk

Preeti Malik
Department of Computer Science and Engineering,

Graphic Era Deemed to be University, Dehradun, Uttrakhand, India.

Mangey Ram
Department of Mathematics; Computer Science and Engineering,

Graphic Era Deemed to be University, Dehradun, Uttrakhand, India.

Mahesh K. Sharma
Department of Computer Application & Information Technology,

Amrapali Institute, Haldwani, Uttrakhand, India.

(Received September 11, 2018; Accepted August 27, 2019)

Abstract

Reliability of a software or system is the probability of system to perform its functions adequately for the stated time

period under specific environment conditions. In case of component-based software development reliability estimation

is a crucial factor. Existing reliability estimation model falls into two broad categories parametric and non-parametric

models. Parametric models approximate the model parameters based on the assumptions of fundamental distributions.

Non-parametric models enable parameter estimation of the software reliability growth models without any

assumptions. We have proposed a novel non-parametric approach for survival analysis of components. Failure data is

collected based on which we have calculated failure rate and reliability of the software. Failure rate increases with the

time whereas reliability decreases with the time.

Keywords- Component-based software, Failure, Survival analysis, Non-parametric method, Reliability.

1. Introduction
Now a days, software development organization of industry has become progressively dependent

on third party for functionality. This is due to financial and time-to-market consideration. These

third party’s software or components are then integrated to form complete software as per the

needs of the customer. Components are high-quality and pretested software entities. This

methodology of software development is called Component-based software engineering (CBSE)

(Gayen and Misra, 2008).

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

310

CBSE plays an important role in this era of software. CBSE comprises of application and

component engineering. One of the grimmest problems for successful CBSE is its reliability

estimation. Analyzing the reliability of software is crucial for predicting software field failure

(Tyagi and Sharma, 2012). The term reliability can be defined as “Probability of a system to

perform its functions correctly for a specified period of time.”

Reliability is measured with respect to time. Traditional methods for estimating reliability can’t

be applied to component-based software (CBS) applications. There are various methods already

proposed by researchers. These approaches for reliability estimation involve two steps (Goseva-

Popstojanova and Trivedi, 2003): Approximating the reliability of distinct components, and the

reliability of system. Nautiyal and Preeti (2016) have proposed an evaluation process for

certification of component based software. Certification is performed at component as well as

system level. Author has used unstructured weighting technique to certify the system or

component. The author Gokhale (2007) has proposed an overview of the existing research in the

area of architecture-based software reliability analysis and critically examined the growing size

and complexity of software applications.

Reliability estimation models falls into three categories: state-based, path-based and additive

models (Singh et al., 2001; Yacoub and Ammar, 2002). To estimate reliability, State-based

models observe the flow of control among components. The models assume that components may

be faulty autonomously and current behavior of a component doesn’t depend on its earlier

behavior. Failure is modeled as Non-Homogeneous Poisson Process (NHPP). The limitation of

these models is that the component’s failure probability cannot be constant because failure rate

may be high for frequently used components. So, the assumption of constant failure rate cannot

lodge this fact.

Path-based models take into account the possible execution paths for estimating the system

reliability. Experiments and algorithms are two ways to obtain different paths. Path’s reliability is

defined in terms of a function of the reliabilities of the components along that particular path.

Reliability of the system is the average of reliabilities of all paths. Third category of models is

additive model. Failure data of the component is used to estimate the system reliability. Additive

models study growth of software reliability. Additive models do not explicitly take into account

architecture of the software. Reliability of a system can be estimated from failure rate by using

many techniques. We can categorize these techniques into two broad categories:

 Non-parametric techniques

 Parametric techniques.

Non-Parametric methods are commonly used for estimating the reliability characteristics. These

methods are simple to use. The constraint is that the results cannot be precisely generalized

outside the last reported failure rate. In Parametric techniques, the failure rate is to fit to a

statistical distribution (exponential, normal, Weibull, or lognormal). The resultant model can be

used for efficient calculation of reliability parameters for the entire lifetime of the system.

We have proposed a non-parametric additive model to estimate the reliability of the CBS. In

proposed approach the reliability estimation is based on failure data of the components. Failure

data of a CBS is collected and accordingly reliability is computed. Probability of failure is used to

represent the failure behavior. Remaining paper is organized as follows; next section discusses

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

311

the related work done in this area. Section 3 consists of proposed approach. Final section includes

conclusion of the paper.

2. Related Work
Software reliability model falls into two main categories: parametric and non-parametric models

(Lakshmanana and Ramasamy, 2015). Parametric models approximate the model parameters

based on the assumptions of fundamental distributions. These models can be further divided into

three types: NHPP, Markovian models (Whittaker et al., 2000) and Bayesian models. Non-

parametric models enable parameter estimation of the software reliability growth models

(SRGM) without any assumptions. Non-parametric methods yield models with better analytical

accurateness than parametric models (Karunanithi et al., 1992).

The author, Su et al. (2007) have proposed a fuzzy-logic based model to estimate the reliability of

CBS. Author considers four factors that affect the reliability, reusability and operational profile in

case of component reliability and component dependency and application complexity to estimate

interface reliability. Zhang et al. (2009) have introduced the concept of reliability estimation

using architecture-based model. This approach for reliability evaluation can be applied in design

phase. This approach assumes that the overall reliability is related to the individual component’s

reliability.

The author Isaac (1995) focused on the main two points i.e. risk assessment and risk control

where risk assessment helps a manager to make judgment about his future and helps others to

overcome their errors. This paper also highlighted on ten points that should be kept in mind while

using risk management techniques. Bowers and Khorakian, (2014) has proposed new method

which is quite similar to other projects which include failure rate and emphasizes on creativity.

Without risk management it is difficult to achieve success. But an excessive risk can also hamper

the creativity. So, to be on the safer side one should use risk management technique.

The authors, Wang and Huang (2008) have offered reliability analysis based on rewrite logic

technique. This method is based on analysis of operation profile and specifications. Rewrite

language Maude is used to execute these specifications. Execution process is used to calculate

transition probabilities and statistically analyze the expected numbers of components, which will

be visited. Critical components can also identified by this algorithm.

Weiss and Weyuker (1988) have provided the approach in faces a problem of test case selection

from a specific input domain since there were no strategies concerning selection of test cases and

occurrence of operational errors. Gayen and Misra (2009) have solved this problem by dividing

the input field into operational error subfield and logical subfield. Path coverage based testing

methodology is used to select test cases and to predict the reliability in the logical sub-domain. To

obtain the actual input domain based reliability this value is multiplied with the probability of

non-occurrence in the operational error sub-domain.

Yacoub et al. (2004) have proposed Scenario-based reliability evaluation method. This approach

presents component dependency graphs that can be extended for complex distributed systems.

The approach is constructed on scenarios which can be seized with sequence diagrams. It means

that this approach can be automated. A disadvantage of this approach is that it does not take into

account the failure dependencies among the components.

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

312

Gokhale et al. (1998) have discussed an approach in which author assumes that the application

can be represented as a control flow graph. Component failures are randomly generated for

simulation. A programmatic procedure is used to return the inter failure arrival time for a

particular component. Simulation failures use these failure and repair rate while executing the

application and its reliability is estimated. Component interface and link failure are not

considered while simulation is being performed.

Lo (2010) has proposed a software reliability estimation model based on a Support Vector

Machine (SVM) and Genetic Algorithm (GA). Advantage of this model is that it does not depend

on failure data much. This approach states that topical failure data itself is enough for estimating

reliability. Reliability estimation parameters for the SVM are determined by the GA. Goswami

and Acharya (2009) have considered component usage ratio (CUR) for reliability analysis of

CBS. Mathematical formulas are used to compute CUR. Due to the suppleness of the CUR, this

technique may be used in real-time applications. Everett (1999) proposes a six step process for

software reliability; dividing software into components, Characterize the component, define usage

of components, Model the reliability of discrete components, Superimpose the reliability of

components, Component analysis through testing.

3. Proposed Approach
Let t1, t2, t3…represent the time of failure of component. Also let n1, n2, n3… symbolize the

number of component failure that happen at each of these times, and let r1, r2, r3… be the

corresponding number of components lasting. It means r2 = r1 − n1, r3 = r2 − n2, etc. We know that

the probability of lasting beyond time t2 i.e. (P(T>t2)) depends on probability of lasting beyond

time t1 i.e. (P(T>t1)). Similarly, probability of lasting beyond time t3 depends on probability of

lasting beyond time t2etc. We can use this recursive relation to iteratively build a numerical

estimate R (t) of the true survival function R(t).

For any time t ϵ [0, t1), we have R (t) = P (T >t) = “Probability of surviving beyond time t” = 1,

because no failures have occurred as yet. Therefore, for all t in this interval, let R (t)=1.

Note: For any two events A and B, P (A and B) = P(A) × P(B | A).

Let A = “survive to time t1” and B = “survive from time t1 to beyond some time t before t2”. As

both events occurs therefore equivalent time of the event “A and B” = “survive beyond time t

before t2,” i.e, “T >t.” Hence, the following condition holds.

For any time t ϵ [t1, t2), we have…

R(t) = P (T >t) = P(survive in [0, t1)) × P(survive in [t1, t] | survive in [0, t1)),

R(t) = 1 x (
1 1

1

r n

r

)

S(t) = (
1

1

1
n

r
).

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

313

For any time t ϵ [t2, t3), we have…

S(t) = P(T >t) = P(survive in [t1, t2)) × P(survive in [t2, t] | survive in [t1, t2)),

 = (1

1

1
n

r
) x (

2 2

2

r n

r

)

S(t) = (1

1

1
n

r
) x 2

2

(1)
n

r

In general, for t ϵ [tj, tj+1), j = 1, 2, 3… we have…

S(t) =(
1

1

1
n

r
)

2

2

(1)
n

r
 …………………… (1)

j

j

n

r
 =

1

(1)
j

i

i i

n

r

 where,

rj = the number of component failures in the interval j,

n = the total number of components,

tj = time taken for dj failure,

nj = the operating components in the interval j i.e. n − Σrj .

3.1 Steps for Survival Analysis of CBS
Proposed approach comprises of four phases. Figure 1 shows the diagram of proposed approach.

Four phases are as follows:

(i) Take a CBS and Test it: We have coded a CBS comprises of 30 components. These

components don’t perform any function but only prints something on the screen. We

consider a component is failed if at some time it is not printing its statement on the screen.

Each component runs as a thread of java program. For introducing failure we have stopped

the particular thread.

(ii) Collect Time-To-Failure and Number of Components Failed: Table 1 shows the failure

data collected in testing this CBS.

(iii) Calculate Failure Rate: Third column in Table 2 gives calculated failure rate. Failure rate

vs. time graph (in Figure 2) shows failure rate increases as the time increases.

(iv) Calculate Reliability: Last column of Table 2 in gives reliability calculated by using the

proposed approach. Reliability Vs. time graph (in Figure 3) shows reliability decrease as

the time increases.

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

314

Figure 1. Flow chart for proposed approach

3.2 Reliability Analysis
Reliability of the software is the ability of the software to perform the required function, under

some scenario or pre-defined condition for a stated period of time. It is usually defined as the

probability of failure free operation for a specified time, in specified environment for a specific

purpose. It is the important attribute of software quality. Reliability is basically categorized into

two parts

 Hardware Reliability

 Software Reliability

Hardware reliability means, what is the probability of hardware component failing and how long

does it take to repair that component? Software reliability is the probability that the software

system will function properly without failure over a certain period of time. This section presents

reliability analysis a system with 31 components.

Take a CBS and test it

Collect Time-To-Failure and

No. of Components Failed

Calculate Failure Rate

()
*

j

j

j j

r
F t

n t

Calculate

(
1

1

1
n

r
)

Calculate Reliability

1

(1)
j

i

i i

n

r

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

315

Table 1. Time-to-failure of CBS

Rank Time to Failure No. of Component Failure (rj)

1 0 0

2 80 1

3 81 1

4 83 1

5 84 1

6 87 1

7 90 1

8 91 1

9 93 1

10 94 1

11 95 1

12 97 1

13 99 1

14 100 1

15 101 1

16 102 1

17 103 1

18 107 1

19 110 1

20 111 1

21 113 1

22 117 1

23 120 1

24 122 1

25 123 1

26 125 1

27 127 1

28 129 1

29 132 1

30 134 1

31 137 1

Figure 2. Failure rate vs. time graph

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

0

8
0

8
1

8
3

8
7

9
1

9
4

9
7

1
0
0

1
0
3

1
1
1

1
1
7

1
2
3

1
2
7

1
3
2

1
3
4

1
3
7

time

Failure rate vs time

Failure
rate

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

316

Table 2. Calculated values of failure rate and reliability using proposed approach

Rank Time To Failure
No. of

Component

Failure (rj)

No. of

components at

the beginnings
of the time (nj)

Failure Rate F(tj) (nj - rj) / nj
Reliability

{∏ (nj - rj) / nj }

1 0 0 30 0 1 1.000

2 80 1 30 0.000417 0.966667 0.967

3 81 1 29 0.000426 0.965517 0.933

4 83 1 28 0.000430 0.964286 0.900

5 84 1 27 0.000441 0.962963 0.867

6 87 1 26 0.000442 0.961538 0.833

7 90 1 25 0.000444 0.960000 0.800

8 91 1 24 0.000458 0.958333 0.767

9 93 1 23 0.000468 0.956522 0.733

10 94 1 22 0.000484 0.954545 0.700

11 95 1 21 0.000501 0.952381 0.667

12 97 1 20 0.000515 0.950000 0.633

13 99 1 19 0.000532 0.947368 0.600

14 100 1 18 0.000556 0.944444 0.567

15 101 1 17 0.000582 0.941176 0.533

16 102 1 16 0.000613 0.937500 0.500

17 103 1 15 0.000647 0.933333 0.467

18 107 1 14 0.000668 0.928571 0.433

19 110 1 13 0.000699 0.923077 0.400

20 111 1 12 0.000751 0.916667 0.367

21 113 1 11 0.000805 0.909091 0.333

22 117 1 10 0.000855 0.900000 0.300

23 120 1 9 0.000926 0.888889 0.267

24 122 1 8 0.001025 0.875000 0.233

25 123 1 7 0.001161 0.857143 0.200

26 125 1 6 0.001333 0.833333 0.167

27 127 1 5 0.001575 0.800000 0.133

28 129 1 4 0.001938 0.750000 0.100

29 132 1 3 0.002525 0.666667 0.067

30 134 1 2 0.003731 0.500000 0.033

31 137 1 1 0.007299 0 0.000

Figure 3. Reliability vs. time graph

0

0.2

0.4

0.6

0.8

1

1.2

0

8
1

8
3

8
4

9
0

9
3

9
5

9
9

1
0
2

1
0
7

1
1
0

1
1
7

1
2
0

1
2
5

1
2
9

1
3
4

1
3
7

time

Reliability vs time

Reliability

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

317

Column 7 of Table 2 is the calculated reliability. Figure 2 and 3 respectively show the

growth/decay of failure rate and reliability. Figure 2 shows the failure rate vs. time graph based

on proposed approach. As can be seen from Figure 2, the failure rate is increasing with time. The

reliability vs. time graph is shown in Figure 3. It shows that the reliability value decreases as time

increases.

4. Conclusion

Reliability of a software or system is the probability of system to perform its functions adequately

for the stated time period under specific environmental conditions. In case of component-based

software development reliability estimation is a crucial factor. Existing reliability estimation

models falls into two broad categories parametric and non-parametric models. Parametric models

approximate the model parameters based on the assumptions of fundamental distributions. Non-

parametric models enable parameter estimation of the software reliability growth models without

any assumptions. We have proposed a novel non-parametric approach for survival analysis of

components. Failure data is collectively based on this. We have calculated failure rate and

reliability on the basis of this software. Failure rate increases with the time whereas reliability

decreases with the time. Various authors proposed parametric approaches for estimating

reliability of the CBS. Thus, we have tried to contribute a non-parametric approach.

Conflict of Interest

All authors have contributed equally in this work. The authors declare that there is no conflict of interest for this

publication.

Acknowledgment

The authors would like to thank all participants in the proposal for their active and valuable responses.

References

Bowers, J., & Khorakian, A. (2014). Integrating risk management in the innovation project. European

Journal of Innovation Management, 17(1), 25-40.

Everett, W.W. (1999). Software component reliability analysis. In Proceedings 1999 IEEE Symposium on

Application-Specific Systems and Software Engineering and Technology. ASSET'99 (Cat. No.

PR00122) (pp. 204-211). IEEE. Richardson, TX, USA.

Gayen, T., & Misra, R.B. (2009). Reliability assessment of elementary COTS software component.

International Journal on Recent Trends Engineering, 1(2), 196-200.

Gayen,T., & Misra, R.B. (2008). Reliability bounds prediction of COTS component based software

application. International Journal of Computer Science and Network Security, 8(12), 219-228.

Gokhale, S.S. (2007). Architecture-based software reliability analysis: overview and limitations. IEEE

Transactions on Dependable and Secure Computing, 4(1), 32-40.

Gokhale, S.S., Lyu, M.R., & Trivedi, K.S. (1998, November). Reliability simulation of component-based

software systems. In Proceedings Ninth International Symposium on Software Reliability Engineering

(Cat. No. 98TB100257) (pp. 192-201). IEEE. Paderborn, Germany.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858

International Journal of Mathematical, Engineering and Management Sciences
Vol. 5, No. 2, 309-318, 2020
https://doi.org/10.33889/IJMEMS.2020.5.2.025

318

Goševa-Popstojanova, K., & Trivedi, K.S. (2003). Architecture-based approaches to software reliability

prediction. Computers & Mathematics with Applications, 46(7), 1023-1036.

Goswami, V. & Acharya, Y.B. (2009). Method for reliability estimation of COTS components based

software systems. International Symposium on Software Reliability Engineering (ISSRE2009).

Mysuru, India

Isaac, I. (1995). Training in risk management. International Journal of Project Management, 13(4), 225-

229.

Karunanithi, N., Whitley, D., & Malaiya, Y.K. (1992). Using neural networks in reliability prediction.

IEEE Software, 9(4), 53-59.

Lakshmanan, I., & Ramasamy, S. (2015). An artificial neural-network approach to software reliability

growth modeling. Procedia Computer Science, 57, 695-702.

Lo, J.H. (2010, June). Early software reliability prediction based on support vector machines with genetic

algorithms. In 2010 5th IEEE Conference on Industrial Electronics and Applications (pp. 2221-2226).

IEEE. Taichung, Taiwan.

Nautiyal, L., & Preeti. (2016), Evaluating and certifying component-based software using weighted

assignment technique. International Journal of Hybrid Information Technology, 9(1), 241-252

Singh, H., Cortellessa, V., Cukic, B., Gunel, E., & Bharadwaj, V. (2001, November). A Bayesian approach

to reliability prediction and assessment of component based systems. In Proceedings 12th

International Symposium on Software Reliability Engineering (pp. 12-21). IEEE. Hong Kong, China.

Su, Y.S., & Huang, C.Y. (2007). Neural-network-based approaches for software reliability estimation using

dynamic weighted combinational models. Journal of Systems and Software, 80(4), 606-615.

Tyagi, K., & Sharma, A. (2012). A rule-based approach for estimating the reliability of component-based

systems. Advances in Engineering Software, 54, 24-29.

Wang, D., & Huang, N. (2008, October). Reliability analysis of component-based software based on

rewrite logic. In 2008 12th IEEE International Workshop on Future Trends of Distributed Computing

Systems (pp. 126-132). IEEE. Kunming, China.

Weiss, S.N., & Weyuker, E.J. (1988). An extended domain-based model of software reliability. IEEE

Transactions on Software Engineering, 14(10), 1512 – 1524.

Whittaker, J.A., Rekab, K., & Thomason, M.G. (2000). A Markov chain model for predicting the reliability

of multi-build software. Information and Software Technology, 42(12), 889-894.

Yacoub, S., Cukic, B., & Ammar, H.H. (2004). A scenario-based reliability analysis approach for

component-based software. IEEE Transactions on Reliability, 53(4), 465-480.

Yacoub, S.M., & Ammar, H.H. (2002). A methodology for architecture-level reliability risk analysis. IEEE

Transactions on Software Engineering, 28(6), 529-547.

Zhang, F., Zhou, X., Dong, Y., & Chen, J. (2009, May). Consider of fault propagation in architecture-based

software reliability analysis. In 2009 IEEE/ACS International Conference on Computer Systems and

Applications (pp. 783-786). IEEE. Rabat, Morocco.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

