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The standard benchmark for teleportation is the average fidelity of teleportation and according to this
benchmark not all states are useful for teleportation. It was recently shown, however, that all entangled states
lead to nonclassical teleportation, with there being no classical scheme able to reproduce the states teleported
to Bob. Here we study the operational significance of this result. On the one hand, we demonstrate that every
state is useful for teleportation if a generalization of the average fidelity of teleportation is considered which
concerns teleporting quantum correlations. On the other hand, we show the strength of a particular entangled
state and entangled measurement for teleportation—as quantified by the robustness of teleportation—precisely
characterizes their ability to offer an advantage in the task of subchannel discrimination with side information.
This connection allows us to prove that every entangled state outperforms all separable states when acting as a
quantum memory in this discrimination task. Finally, within the context of a resource theory of teleportation, we
show that the two operational tasks considered provide complete sets of monotones for two partial orders based
on the notion of teleportation simulation, one classical and one quantum.

DOI: 10.1103/PhysRevResearch.2.023029

I. INTRODUCTION

Quantum teleportation [1] is one of the most important
protocols in quantum information theory. In its standard form
it involves transferring an unknown quantum state to a re-
mote recipient using classical communication and preshared
entanglement. Although nothing actually moves during the
process, the situation cannot be meaningfully distinguished
from one in which the original state has been transported to
another location. To date it has been demonstrated in a wide
range of experiments [2–9] and is currently one of the build-
ing blocks in many quantum information contexts, ranging
from distributed quantum networks [10], quantum repeaters
[11], quantum computers [12], and even the future quantum
internet [13].

In the ideal version of teleportation Alice and Bob share
a maximally entangled state (EPR state) and Alice is given
a system in some unknown state. She performs a Bell-state
measurement on the system and her share of the entangled
state and communicates the result to Bob who applies an
appropriate unitary correction to his share and transforms it
into the state given to Alice.

However, in realistic teleportation protocols the states and
measurements used are never perfect. This motivates studying
a more general teleportation scheme involving arbitrary states
and measurements. We will adapt this approach here and
assume that Alice and Bob share an arbitrary quantum state
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and introduce a third party, called the Verifier, who gives
Alice states to be teleported. She then applies an arbitrary
measurement on her share of the entangled state and the
system given to her and communicates the measurement result
to Bob, who performs a local correction on his state.

The standard figure of merit used to quantify how well a
given teleportation protocol performs is the average fidelity of
teleportation, denoted here by 〈F 〉 and defined as the fidelity
between the state to be teleported and the final state of Bob’s
after the protocol is finished, averaged uniformly over all
measurement results and input states. This quantity was first
introduced in Ref. [14] and since then has been used widely to
quantify the usefulness of states for teleportation [15–17]. The
average fidelity of teleportation is maximal when teleportation
is perfect, i.e., as in the ideal version. If Alice and Bob do not
share an entangled state, or are unable to perform an entangled
measurement, then the corresponding teleportation scheme is
said to be “classical.” For all such schemes the average fidelity
can never exceed the threshold value 〈Fc〉 = 2/(d + 1) [15],
where d is the local dimension of the shared state. Importantly,
it was shown that there exist entangled states in Nature (e.g.,
bound-entangled states [16,18–20]) which cannot surpass this
classical threshold. This led to a common belief that not all
entangled states are useful for quantum teleportation.

However, it was recently shown that the average fidelity is
not sufficiently sensitive to probe all aspects of teleportation
experiments [21,22]. In particular, every entangled state can
lead to nonclassical teleportation if the full data from the ex-
periment are taken into account [21]. To show this a geometric
method of quantifying the nonclassicality of teleportation data
using a measure called the robustness of teleportation (RoT)
was introduced. By showing that the RoT is nonzero whenever
Alice and Bob share entanglement and Alice performs a Bell
state measurement, it was demonstrated that every entangled
state leads to experimental data which could not be produced
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without entanglement. However, the question of in what sense
this nonclassical data showed that the entanglement could
be considered as being “useful” for teleportation in some
operational sense has remained unanswered.

In this work we construct a resource theory of quantum
teleportation. Unlike other resource-theoretic studies in litera-
ture which address a single type of resource, quantum telepor-
tation combines two distinct resources: shared entanglement
and entangled measurement. Using this framework we show
that RoT admits two natural operational interpretations.

First, it quantifies the advantage enabled by an entangled
state and entangled measurement in the task of teleporting un-
known quantum correlations—rather than unknown states—
over all classical instruments. This task can be thought of
as a natural generalization of entanglement swapping [23,24]
where the goal is not only to “swap“ entanglement but to
achieve predefined quantum correlations between parties. We
show that the average score in this task when teleporting
classical correlations reduces to the average fidelity of tele-
portation. This also shows a surprising property of bound-
entangled states [20] (i.e., states from which no entangle-
ment can be distilled)—they provide advantage over sep-
arable states in teleporting genuine quantum correlations.
This also answers an open problem from Ref. [21] by
specifying in what sense all entangled states are useful for
teleportation.

Second, we show that RoT also quantifies the maximal
achievable advantage in the task of subchannel discrimina-
tion with quantum side information. This reveals that RoT
is another robustness-based quantifier which fits into the
program of discrimination tasks, a class of problems with
fundamental importance to the field of quantum informa-
tion [25–27]. Analogous results have been shown also for
entanglement [28–30], coherence [31], EPR-steering [32],
quantum measurement [33–35], measurement incompatibility
[36,37], and fault-tolerant quantum computation [38]. This
surprising connection allows us to infer that every entangled
state can act as a useful quantum memory for local subchannel
discrimination.

Finally, by formulating teleportation in the language of
resource theories, we show that both tasks provide complete
sets of monotones for two natural notions of simulation (free
operations), one classical and the other quantum.

II. FRAMEWORK

We denote the set of all quantum channels by CPTP and the
identity map with I. An instrument E = {Ea} is a collection
of completely positive and trace nonincreasing linear maps
Ea, so-called subchannels, such that

∑
a Ea[·] is a channel.

This naturally captures the concept of branching of a linear
evolution [29,39] and allows one to calculate both the (poten-
tially state-dependent) probability p(a) = trEa[ρ] of different
branches acting on state ρ and the corresponding final state
Ea[ρ]/trEa[ρ].

In our study of teleportation we will assume that Alice
and Bob share an arbitrary quantum state ρAB of dimension
dA × dB and the third party, called the Verifier, provides quan-
tum states {ωV

x }, x = 0, 1, . . . , n of dimension dV, unknown
to Alice. She then applies a general positive operator-valued

measure (POVM) measurement MVA
a on her share of the

entangled state and input system, as a result projecting Bob’s
state into:

ρB
a|ωx

= 1

p(a|x)
trVA

[(
MVA

a ⊗ 1B
)(

ωV
x ⊗ ρAB

)]
, (1)

where p(a|x) = tr[(MVA
a ⊗ 1B)(ωV

x ⊗ ρAB)] is the probability
of a particular outcome a given that state ωx was provided by
the Verifier. For our purposes it will be more convenient to
work with unnormalized states and thus we define:

�a[ωx] := p(a|x) · ρB
a|ωx

= σ B
a|ωx

, (2)

where each �a[·] = �V→B
a [·] is a subchannel from V to B

which transforms the input states ωx into (unnormalized)
output states σa|ωx . We will refer to such a collection as a
teleportation instrument and denote it with Λ = {�a}. Notice
that {MVA

a } form a POVM and hence Λ satisfies:∑
a

�a(ω) = ρB, (3)

irrespective of ω, which can be interpreted as a no-signaling
condition.

When the states {ωx} form a tomographically complete set,
the experiment becomes effectively independent of the input
(see the Appendix). This means that full information about
teleportation instrument can be obtained by probing it with
{ωx} and motivates introducing a notion of a complete tele-
portation experiment, i.e., an experiment in which the set of
input states is tomographically complete. In the remainder of
this paper, we will focus exclusively on complete teleportation
experiments.

Consider now the case when ρAB is a separable state,
i.e., ρAB = ∑

λ pλ ρA
λ ⊗ ρB

λ and denoted by ρAB ∈ SEP. The
associated teleportation instrument takes the form:

�c
a(ωx ) =

∑
λ

pλtrVA
[(

MVA
a ⊗ 1B

)(
ωx ⊗ ρA

λ ⊗ ρB
λ

)]
=

∑
λ

pλ p(a|x, λ) ρB
λ , (4)

where p(a|x, λ) = tr[MVA
a (ωV

x ⊗ ρA
λ )]. This is the most gen-

eral classical teleportation scheme which can be realized if
Alice and Bob have access only to classical randomness λ

and the ability to locally prepare quantum states in their labs.
We will denote the set of all such teleportation instruments
by F , in analogy with the set of free objects studied in
the context of resource theories [40–57]. If the teleportation
data {σ B

a|ωx
} cannot be explained as coming from a classical

teleportation instrument, then we will refer to the associated
teleportation instrument as “quantum” and denote the set of
all such instruments with R.

In the standard approach the quality of a given teleportation
instrument is assessed using the average fidelity of teleporta-
tion [14], which in the present context is given by:

〈F 〉 = max
{Ua}∈U

1

n

∑
a,x

p(a|x)〈ωx|Uaρ
B
a|ωx

U †
a |ωx〉, (5)

where the maximization is over all correcting unitaries {Ua}
for Bob, denoted U. This quantity does not utilize all the
data produced in the teleportation experiment. A method for
quantifying how “close” a set of data is to that which could
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arise from a classical teleportation instrument is to solve the
following convex optimization problem:

T (Λ) := min
{�c

a},{�′
a},r

r,

s.t.
1

1 + r
�a[ωx] + r

1 + r
�′

a[ωx] = �c
a[ωx],{

�c
a

} ∈ F , {�′
a} ∈ R. (6)

where �′
a[ωx] describes the “noise” which comes from some

other teleportation instrument Λ′ and which has to be added to
the teleportation data σa|ωx for there to exist an explanation in
terms of classical data �c

a[ωx]. This noise is allowed to arise
from any teleportation instrument, not necessarily classical
one.

The quantity T (Λ) is the (generalized) robustness of tele-
portation (RoT) and was introduced in Ref. [21]. We highlight
that for complete teleportation experiments the RoT is a func-
tion of the teleportation instrument Λ alone and is independent
of the specific set of states used {ωx}, and the data they
produce {σ B

a|ωx
}. We prove this important fact in the Appendix.

III. RESULTS

A. Properties of robustness of teleportation

Similarly to other robustness and weight-based measures
[28,31,33,57–59], the RoT has a number of useful properties
which can be easily deduced from (6). Leaving the details to
the Appendix, here we state the most important ones.

(i) It is faithful, meaning that it vanishes if and only if
teleportation instrument is classical, i.e.,

T (Λ) = 0 ⇐⇒ Λ ∈ F . (7)

(ii) It is convex, meaning that having access to teleporta-
tion instruments Λ1 and Λ2 one cannot obtain a better one by
using them probabilistically, i.e., for Λ′ = pΛ1 + (1 − p) Λ2

with 0 � p � 1, we have:

T (Λ′) � pT (Λ1) + (1 − p) T (Λ2). (8)

(iii) It is monotonic (nonincreasing) under quantum and
classical simulations. That is if Λ′ can be simulated by Λ using
a quantum or a classical simulation then

T (Λ′) � T (Λ). (9)

A quantum simulation is one whereby there exist probabil-
ity distributions pλ, p(b|a, λ) and channels �λ and �λ such
that:

�′
b =

∑
a,λ

pλ p(b|a, λ) �λ ◦ �a ◦ �λ, (10)

holds for all b. We denote the order induced by this type of
simulation by Λ′ ≺q Λ. A classical simulation is one whereby
there exist probability distributions p(b|a) such that:

�′
b =

∑
a

p(b|a) �a, (11)

holds for all b and is similarly denoted by Λ′ ≺c Λ. In the
resource-theoretic approach one can think about these maps
as free operations of the framework. The two notions of

FIG. 1. The two operational tasks. Panel (a) presents teleporta-
tion of quantum correlations specified by G = {σ, ξb, f (b)}, where σ

is the input state, {ξb}b are the target states and f (b) is the score
given when a correct target state is obtained. Bob is allowed to
perform any local quantum simulation of his teleportation instrument
Λ, i.e., he has access to �′

b of the form (10). Panel (b) shows the task
of subchannel discrimination with quantum side information which
involves a set of subchannels to discriminate E = {Ex}x and uses
quantum resources of the teleportation experiment (bipartite state and
measurement).

simulation will each be seen to be relevant for one of the
operational tasks introduced below.

B. Operational significance of RoT

Here we show that RoT can be viewed as the maximal
achievable advantage when using quantum over classical re-
sources in two unrelated operational tasks. Often it is illustra-
tive to phrase such tasks in terms of games played between
parties according to a predefined set of rules and scores. We
follow this approach here and describe two operational tasks
in terms of such games.

1. Teleportation of quantum correlations

Consider a game played between a Verifier and Bob who
tries to convince the Verifier about his ability to transfer cor-
relations between two spatially separated labs (see Fig. 1(a)).
More explicitly, we consider the following scenario:

(1) The Verifier prepares an arbitrary bipartite state σ V’V

and shares one part of this state with Bob.
(2) Bob inputs the state he received into a teleportation

instrument Λ′ = {�′
b

V→B}b which he can locally simulate
using Λ, obtaining measurement outcome b and state σ V′B

b =
(IV′ ⊗ �′

b
V→B)[σ V′V].

(3) Conditioned on the value of b Bob applies locally a
unitary correction UB

b to his share of the state and returns the
output state and outcome of the measurement to the Verifier.

(4) The Verifier assesses the quality of the teleportation
instrument by checking the overlap between the joint state
after correction (IV′ ⊗ UB

b )[σ V′B
b ] and a predefined set of

target states {ξV′B
b }. If the teleported state is the same as the

target state, then Bob receives a score f (b) � 0.
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The game is fully specified by a tuple G = {σ, ξb, f (b)}.
The average score using the teleportation instrument Λ is
given by:

q(G,Λ) = max
Λ′ ≺q Λ
{Ub} ∈ U

∑
b

f (b)tr[(I ⊗ Ub ◦ �′
b)[σ ] · ξb], (12)

where the optimization ranges over all unitary corrections
{Ub} and all teleportation instruments Λ′ which can be
quantum-simulated using Λ, via (10).

In the Appendix we show that the maximal advantage
which Bob can achieve using a teleportation instrument Λ ∈
R over any classical instrument Λc ∈ F is fully specified by
the robustness of teleportation:

max
G

q(G,Λ)

qc(G)
= 1 + T (Λ), (13)

where qc(G) = maxΛc∈F q(G,Λc) is the maximal score which
can be achieved using classical resources in the same game
(see Appendix for details). The proof technique is to (i) use (6)
to show that 1 + T (Λ) is an upper bound on the advantage for
all games G and (ii) use duality theory of convex optimization
[60] to find the dual form of (6) and construct a game G∗ from
the optimal dual variables that saturate the bound.

It is interesting that the average fidelity 〈F 〉 can be viewed
as the average score in this type of task for a particular game
G. To see this, consider a setting in which the Verifier provides
a classically correlated state σ ∗ = 1

n

∑
x |x〉〈x| ⊗ |ωx〉〈ωx| and

demands that the state returned by Bob is exactly the same
for all b, that is, ξ ∗

b = σ ∗. For each transmission the Verifier
will give Bob the same score f ∗(b) = n. This defines a game
G∗ = {σ ∗, ξ ∗

b , f ∗(b)}, whose average score is

q(G∗,Λ) = max
{Ua}∈U

1

n

∑
a,x

p(a|x)〈ωx|Uaρ
B
b|ωx

U †
a |ωx〉. (14)

This is exactly the ordinary average fidelity (5). In interesting
feature of this game is that Bob does not need to tell the
Verifier which measurement result occurred.

This provides insight into why not all entangled states
are “useful” for teleportation. Since the average fidelity of
teleportation corresponds to a game in which the Verifier
asks Bob to transfer classical correlations, the fact that 〈F 〉
cannot surpass the classical threshold for some entangled
states only means that they cannot be used to transfer classical
correlations better than the optimal classical state. However, if
the verifier poses a more difficult talk where the correlations to
be transferred are genuinely quantum, then all entangled states
can outperform classical states for a specific choice of target
states. Alternatively, one can view this task as a generalising
from teleportation to entanglement swapping, in which both
the input and target states can be both chosen arbitrarily.

2. Subchannel discrimination with quantum side information
and fixed measurement

Let us now consider the task of subchannel discrimination,
where the player is allowed to use a quantum memory to assist
them, and only has the ability to perform a fixed entangled
measurement [see Fig. 1(b)]. The task is specified by a collec-
tion of subchannels, E = {Ex}, which form an instrument. The

resources of the player will be specified by A = {{Ma}, ρ},
where {Ma} ∈ POVM is a bipartite measurement and ρ is the
state of the quantum memory. We consider the following game
set-up:

(1) Alice sends one half of the state ρVA to the Verifier.
(2) The Verifier applies a subchannel EV

x from the instru-
ment E to their share of ρVA, which results in ρVA

x = (EV
x ⊗

IA)[ρVA] with probability p(x|ρ) = tr[ρVA
x ]. The Verifier then

returns their share to Alice.
(3) Alice uses the measurements {MVA

a } to identify which
subchannel EV

x was applied. Based on her measurement out-
come a she produces a guess g according to p(g|a).

The average probability of guessing which subchannel was
applied when having access to ρ and {Ma}, optimized over all
postprocessings p(g|a) is given by:

psucc(E,A)=max
p(g|a)

∑
x,a,g

p(g|a)tr[(Ex ⊗ I )[ρ] · Ma]δg,x. (15)

We will compare this to the best success probability Alice
could achieve if she had access to only classical resources. In
particular, if either the memory used or the measurement per-
formed is separable, then we will say that she uses a classical
strategy Ac and denote the set of such strategies with F . The
(maximal) average guessing probability for such a classical
strategy is given by pc

succ(E) = maxAc∈F psucc(E,Ac). It can
be shown (see Appendix) that the optimal classical probability
of guessing can be equivalently written as:

pc
succ(E) = max

σ
max

x
trEx(σ ). (16)

In other words, the best classical strategy is to guess the most-
likely outcome x with the additional freedom to choose the
probe state σ which maximizes the guessing probability.

In the Appendix we show that the maximal advantage
offered by the strategy A = {{Ma}, ρ} over the best classical
strategy is given by

max
E

psucc(E,A)

pc
succ(E)

= 1 + T (Λ), (17)

where Λ is the teleportation instrument formed by the mea-
surement {Ma} and the state ρ. Thus, the maximal advantage
is constant among all strategies A that lead to the same tele-
portation instrument Λ. In the Appendix we show furthermore
that psucc(E,A) in fact only depends on A through Λ.

The above reveals that the RoT fits into the program of
robustness-based quantifiers and discrimination tasks, where
the specific restrictions are on the resource state and resource
measurement used to play the game. Interestingly, in Ref. [22]
the following relation between RoT and robustness of entan-
glement R E (ρ) := min{r � 0|ρ � (1 + r)σ, σ ∈ SEP} was
shown:

max
{Ma}∈POVM

T (Λ) = R E (ρ). (18)

This combined with our result provides a new operational
meaning for the (generalized) robustness of entanglement: It
quantifies the advantage entangled states offer when acting as
quantum memories in local subchannel discrimination, i.e.,

max
E

max
{Ma}∈POVM

psucc(E, {Ma}, ρ)

pc
succ(E)

= 1 + R E (ρ). (19)
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In other words, every entangled state can act as a useful
quantum memory in local subchannel discrimination.

3. Complete sets of monotones for teleportation simulation

The average score (12) and average guessing probability
(15) are also important as they provide complete charac-
terizations for the two notions of teleportation simulation
introduced in (10) and (11). In particular, in the Appendix we
show that Λ can quantum-simulate Λ′, Λ q Λ′ if and only if

q(G,Λ) � q(G,Λ′) for all games G. (20)

Similarly, Λ can classically simulate Λ′, Λ c Λ′ if and only if:

psucc(E,Λ) � psucc(E,Λ′) for all games E. (21)

This means that both q(G,Λ) and psucc(E,Λ) constitute “com-
plete set of monotones,” the former for the partial order of
quantum simulation, and the latter for classical simulation.

IV. CONCLUSIONS

We have analyzed a robustness-based quantifier of tele-
portation and shown that it has operational significance in
two unrelated directions. On the one hand, it quantifies the

advantage that a given teleportation instrument offers for the
task of teleporting quantum correlations. On the other hand, it
also quantifies the advantage offered by a fixed entangled state
and fixed entangled measurement in the task of subchannel
discrimination with side information.

We showed that the first task is a natural generalization
of the standard task used for benchmarking the quality of a
teleportation set-up (the average fidelity of teleportation) and
thus provides an answer to the question of in what sense is
every state useful for teleportation: Every state has the ability
to teleport quantum correlations strictly better than can be
achieved by any classical teleportation scheme.

We finally showed that the two tasks which give opera-
tional meaning to the robustness of teleportation also form
complete sets of monotones, which fully characterize two
natural notions of simulation that arise for teleportation, one
purely classical, and the other quantum.
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APPENDIX A: NOTATION AND USEFUL FACTS

In what follows we restrict all quantum systems (A, B, etc.) to be associated with finite-dimensional Hilbert spaces (HA, HB,
etc.). The maximally entangled state for two orthonormal basis sets {|i〉A} and {|i〉B} for HA and HB with dim HA = dim HB = d ,
respectively, will be denoted as:

|φ+〉AB = 1√
d

d∑
i=1

|i〉A ⊗ |i〉B. (A1)

Transpose map T acting between linear operators is defined as:

T (X ) = X T , (A2)

where X T denotes the ordinary transpose of matrix X . Partial transpose of a bipartite operator X AB with respect to subsystem A
is denoted (X AB)TA and defined as:

(X AB)TA := (T A ⊗ IB)[X AB], (A3)

and similarly for subsystem B. If a state ρ is separable, denoted ρ ∈ SEP, then its density operator has a positive partial transpose.
In that case we call it a PPT state [61] orm in the case of general operators, a PPT operator. Transpose of a linear map E is denoted
ET and defined as:

ET [X ] := T ◦ E [X ], (A4)

where ◦ denotes composition of maps. The adjoint of E is defined to be the unique map E† which satisfies:

tr[X · E†[Y ]] = tr[E[X ] · Y ]. (A5)

In what follows we will make extensive use of several important properties of the maximally entangled state |φ+〉AB. The first of
them holds for an arbitrary linear operator E :

(1A ⊗ EB)|φ+〉AB = ((EA)T ⊗ 1B)|φ+〉AB. (A6)

Using Kraus decomposition of a linear map [62] it can be further shown that the following holds for an arbitrary linear map E :

(IA ⊗ EB) φAB
+ = ((EA)T ⊗ IB) [φAB

+ ], (A7)

where we denoted φAB
+ := |φ+〉〈φ+|AB. Another identity which will be utilized frequently in this Appendix is given by:

trB[(φAB
+ ⊗ 1C)(1A ⊗ X BC)] = 1

d
(X AC)TA , (A8)
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which holds for an arbitrary bipartite linear operator X . Similarly, we will also use the identity:

trCD[(1A ⊗ φCD
+ ⊗ 1D)(X AC ⊗ φDB

+ )] = 1

d2
X AB, (A9)

which is again valid for an arbitrary bipartite linear operator X . Finally, the Choi-Jamiołkowski operator of a linear map E is
given by:

JE := (IA ⊗ EB) [φAB
+ ]. (A10)

The map E is completely positive if and only if JE � 0 and trace preserving if and only if trB[JE ] = 1A. The action of map E on
operator X is fully specified by the Choi-Jamiołkowski operator and given by:

E[X ] = trA
[
((X A)T ⊗ 1B)JAB

E
]
. (A11)

APPENDIX B: EQUIVALENT FORMULATION FOR THE ROBUSTNESS OF TELEPORTATION

Let us start with the definition of the optimization problem (6). Our first goal is to rewrite the first line of constraints in (6)
using Choi-Jamiołkowski operators: Ja := (I ⊗ �a)[φ+], Ra := (I ⊗ �′

a)[φ+], and Fa := (I ⊗ �c
a)[φ+]. Notice that using the

Choi-Jamiołkowski isomorphism [63,64] [see (A11)] the first line of constraints in (6) can be equivalently written as:

∀ a, x trV

[((
ωV

x

)T ⊗ 1B
)( 1

1 + r
JVB

a + r

1 + r
RVB

a

)]
= trV

[((
ωV

x

)T ⊗ 1B
)(

F VB
a

)]
. (B1)

Let us now assume that the set of input states {ωx} form a tomographically complete set. This means that any density matrix ω′
can be expressed as a linear combination of states from the set {ωx}, i.e., ω′ = ∑

x p(x) ωx for some probability distribution p(x).
In this case (B1) can only be satisfied if:

∀ a
1

1 + r
JVB

a + r

1 + r
RVB

a = F VB
a . (B2)

The original problem (6) can be then equivalently rewritten as:

T (Λ, {ωx}x ) = min
{Ra},{Fa},r

r
1

1 + r
Ja + r

1 + r
Ra

= Fa ∀a{�c
a} ∈ F , {�′

a} ∈ R ∀ a. (B3)

Notice that in this form the optimization problem (6) becomes effectively independent of {ωx}, which we will denote by writing
T (Λ) instead of T (Λ, {ωx}x ). Our next goal is to write the constraints on the instruments {�′

a} and {�c
a} in (B3) in terms of

equivalent constraints on the associated Choi-Jamiołkowski operators {Ra} and {Fa}.
Before we proceed let us recall the general form of the teleportation instrument Λ = {�a} which is formed from a

measurement {Ma} and a shared state ρAB:

�V′→B
a [ω] := trV′A

[(
MV′A

a ⊗ 1B
)
(ωV′ ⊗ ρAB)

]
. (B4)

The associated Choi-Jamiołkowski operators are given by:

JVB
a = (

IV ⊗ �V′→B
a

)
[φVV′

+ ] = trV′A
[(

1V ⊗ MV′A
a ⊗ 1B

)
(φVV′

+ ⊗ ρAB)
]
. (B5)

Let us now characterize these operators for the case of arbitrary and classical teleportation instruments.

1. Characterization of {Ra}
The constraint {�′

a} ∈ R means that {�′
a} forms an arbitrary teleportation instrument. Let {RVB

a } be the set of the associated
Choi-Jamiołkowski operators, i.e.,

RVB
a = trV′A

[(
1V ⊗ NV′A

a ⊗ 1B
)
(φVV′

+ ⊗ ηAB)
]
, (B6)

where {NV′A
a } can be any bipartite POVM and ηAB can be any bipartite state. By inspection we can see that {RVB

a } are (i) positive
for all a and (ii) satisfy the no-signalling condition

∑
a RVB

a = dV
−1 · 1V ⊗ ηB. These are not only necessary, but also sufficient

conditions for a set of operators to be Choi-Jamiołkowski operators of some teleportation instrument. In other words, any family
of operators satisfying (i) and (ii) can be written in the form (B6).

To see this, consider an arbitrary set of positive operators {Xa} satisfying
∑

a X VB
a = dV

−1 · 1V ⊗ ηB and let |η〉AB be the
purification [65] of ηB, i.e.,

|η〉AB =
√

dA
(
1A ⊗ η

1/2
B

)|φ+〉AB. (B7)
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We now make the following choice of operators in (B6):

ηAB = |η〉〈η|AB NV′A
a = dV′

[
1V′ ⊗ (

η
−1/2
A

)T ](
X V′A

a

)T [
1V′ ⊗ (

η
−1/2
A

)T ]
. (B8)

It can be easily verified that the operators {NVA
a } form a POVM. Moreover, by plugging these into (B6) we obtain:

RVB
a = dA dV′ · trV′A

[(
1V ⊗ (

1V′ ⊗ (
η

−1/2
A

)T )(
X V′A

a

)T (
1V′ ⊗ (

η
−1/2
A

)T ) ⊗ 1B
)(

φVV′
+ ⊗ (

1A ⊗ η
1/2
B

)
φAB

+
(
1A ⊗ η

1/2
B

))]
, (B9)

= dA dV′ · trV′A
[(

1V ⊗ (
X V′A

a

)T ⊗ 1B
)
(φVV′

+ ⊗ φAB
+ )

]
, (B10)

= X VB
a , (B11)

where in the first line we used (A6) and in the second one we applied twice (A8). Since X VB
a was by assumption an arbitrary set

of operators satisfying (i) and (ii) we conclude that any such operator can be written as RVB
a for some choice of measurement

and shared state. Hence we have the following equivalence:

{�′
a} ∈ R ⇐⇒ RVB

a � 0 and
∑

a

RVB
a = 1

dV
1V ⊗ ηB. (B12)

2. Characterization of {Fa}
The constraint {�c

a} ∈ F means that the teleportation instrument Λc = {�c
a} is classical, i.e., it arises either from a separable

shared state or a separable measurement. Let us denote the state with τAB and the measurement with OVA
a . The associated

Choi-Jamiołkowski operator has the following form:

F VB
a = trV′A

[(
1V ⊗ OV′A

a ⊗ 1B)
(φVV′

+ ⊗ τAB)
]
, (B13)

where either τAB ∈ SEP or OV′A
a ∈ SEP ∀ a. Since the analysis of these two cases is essentially the same we will just consider the

case when τAB is separable. The most general separable state τAB can be written as:

τAB =
∑

λ

pλ τA
λ ⊗ τB

λ . (B14)

This means that operators F VB
a take the form:

F VB
a =

∑
λ

pλtrV′A
[(

1V ⊗ OV′A
a ⊗ 1B)(

φVV′
+ ⊗ τA

λ ⊗ τB
λ

)]
, (B15)

=
∑

λ

pλ OV
a|λ ⊗ τB

λ , (B16)

where OV
a|λ = trV′A[(1V ⊗ OV′A

a )(φVV′
+ ⊗ τA

λ )]. This implies that the operators F VB
a (i) sum up to d−1

V · 1A ⊗ τB where τB =
trA[τAB] and (ii) are separable operators. Similarly as before we now infer that any family of operators satisfying (i) and (ii) can
be written as in (B15). Let us assume that {Y VB

a } is such a family. Following similar steps as in the case (a) we take |τ 〉AB to be
the purification of τB, i.e.,

|τ 〉AB =
√

dA (1A ⊗ √
τ

B
)|φ+〉AB (B17)

and consider the following choice of operators in (B15):

τAB = |τ 〉〈τ |AB, OV′A
a = dV′

[
1V′ ⊗ (

τ
−1/2
A

)T ](
Y VA

a

)T [
1V ⊗ (

τ
−1/2
A

)T ]
. (B18)

By plugging these into (B13) and performing analogous steps as in (B9)–(B11) we obtain:

F VB
a = dA dV′ · trV′A

[(
1V ⊗ Y V′A

a ⊗ 1B
)
(φVV′

+ ⊗ φAB
+ )

]
, (B19)

= Y VB
a . (B20)

Since Y VB
a up to this point were arbitrary separable operators satisfying the no-signalling condition, we can infer that any such

family of operators can be written as in (B15). Hence we obtain another equivalence:{
�c

a

} ∈ F ⇐⇒ F VB
a ∈ SEP and

∑
a

F VB
a = 1

dV
1V ⊗ τB. (B21)

Let us now return to the optimization problem (B3). We multiply both sides of the first line of constraints by 1 + r, label
R̃a = r Ra, F̃a = (1 + r)Fa, η̃ = r η, τ̃ = (1 + r) τ , and write the second line of constraints using (B12) and (B21). This allows
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(B3) to be written in the equivalent form, which is now manifestly a semidefinite program:

T (Λ) = min
{R̃a},{F̃a},̃τ ,̃η

tr̃τ B − 1

JVB
a + R̃VB

a = F̃ VB
a ∀ a∑

a

F̃ VB
a = 1

dV
1V ⊗ τ̃ B

∑
a

R̃VB
a = 1

dV
1V ⊗ η̃ B

∀ a F̃ VB
a ∈ SEP, ∀ a R̃VB

a � 0. (B22)

Notice that the first three lines of constraints in (B22) are linearly dependent, hence without loss of generality we skip the
third line of constraints. Furthermore, we can replace the equality in the condition

∑
a F̃ VB

a = d−1
V · 1V ⊗ τ̃ B with an inequality

since adding a positive part to d−1
V · 1V ⊗ τ̃ B can only increase tr̃τ B. Finally, we multiply the second and third line of constraints

by dV (this will lead to a simpler form of the dual problem later). This allows us to reach the following form of the primal
problem:

T (Λ) = min
{F̃ VB

a },̃τ B
tr̃τ B − 1

dV · F̃ VB
a � dV · J VB

a ∀ a AVB
a

dV ·
∑

a

F̃ VB
a � 1V ⊗ τ̃ B, ∀ a F̃ VB

a ∈ SEP, BVB, W VB
a . (B23)

We now look at the dual formulation of the above problem. To do so we first write the associated Lagrangian using the dual
variables associated with each set of constraints (displayed above on the right-hand side in gray):

L = tr̃τ B − 1 −
∑

a

trAVB
a

[
dV · F̃ VB

a − dV · JVB
a

] − trBVB

[
1V ⊗ τ̃ B − dV ·

∑
a

F̃ VB
a

]
−

∑
a

tr
[
W VB

a F̃ VB
a

]
, (B24)

=
∑

a

trF̃ VB
a

[−dV · AVB
a + dV · BVB − W VB

a

] + tr̃τ B[1B − BB] + dV ·
∑

a

tr
[
AVB

a JVB
a

] − 1, (B25)

where {AVB
a }a, BVB, and {W VB

a }a are the dual variables corresponding to each set of constraints. We can ensure that L � r
by (i) demanding AVB

a � 0, BVB � 0, and W VB
a ∈ W , where W = {W |tr[ρW ] � 0 ∀ρ ∈ S} is, by definition, the set of all

entanglement witnesses [66] and (ii) demanding that the terms in the square brackets which appear along with the primal
variables in the last line vanish. This leads to the following (dual) semidefinite program:

T (Λ) = max
{AVB

a }a, BVB
dV ·

∑
a

tr
[
AVB

a JVB
a

] − 1

BVB − AVB
a ∈ W ∀ a

BVB � 0, BB = 1B, ∀ a AVB
a � 0. (B26)

Finally, notice that in our case strong duality holds since we can always find a feasible F̃ VB
a = α · 1VB and τ̃ B = α · ∑a 1B for

some α � 0 in the primal formulation of the problem. Thus, via the Slater’s condition [60] we can infer that there is no gap
between the solutions of (B23) and (B26).

Let us now return to the primal formulation of the problem (B23) and let F̃ VB
a = F̃ ∗

a and τ̃ B = τ̃ ∗ be the optimal choice of
primal variables. Notice that 1 + T (Λ) � ∑

a trF̃ ∗
a , where F̃ ∗

a is a separable operator. Denoting τ ∗
a := F̃ ∗

a /trF̃ ∗
a and p∗

S (a) :=
trF̃ ∗

a /[
∑

a′ trF̃ ∗
a′ ] we can write:

Ja � F̃ ∗
a � [1 + T (Λ)] pS (a) · τ ∗

a , (B27)

where τ ∗
a is a separable state and pS (a) forms a probability distribution. Equivalently, we can write this inequality in terms of

Choi-Jamiołkowski operators as: Ja � [1 + T (Λ)]Fa, where {Fa} is a set of Choi-Jamiołkowski operators corresponding to a
classical teleportation instrument Λc = {�c

a}.
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APPENDIX C: PROPERTIES OF ROT

In this Appendix we prove the three properties of robustness of teleportation highlighted in the main text.

1. Faithfulness

If a teleportation instrument is classical, that is Λ ∈ F , then we can always choose a feasible r = 0 in the defining optimization
problem (6). Since T (Λ) is non-negative, then r = 0 is also optimal.

2. Convexity

Let {�′(1)
a [ωx], �c (1)

a [ωx]} be the optimal primal variables in the defining problem (6) for T (Λ1) with Λ1 = {�(1)
a } and

similarly for {�′(2)
a [ωx], �c (2)

a [ωx]} and T (Λ2) with Λ2 = {�(2)
a }. Let Λ′ = {�′

a}a be a convex mixture of the two teleportation
instruments, that is �′

a[·] = p�(1)
a [·] + (1 − p) �(2)

a [·] for each a. We can construct (potentially suboptimal) solutions for
T (Λ′) using: �′

a[ωx] = p�′(1)
a [ωx] + (1 − p) �′(2)

a [ωx] and �c
a[ωx]′ = p�c (1)

a [ωx] + (1 − p) �c (2)
a [ωx]. Substituting �′

a[ωx]′
and �c

a[ωx]′ into the constraints of problem (6) for Λ′ shows that this choice is feasible. This leads to the upper bound on
T (Λ′):

T (Λ′) � tr
∑

a

�′
a[ωx]′ = p · tr

∑
a

�′(1)
a [ωx] + (1 − p) · tr

∑
a

�′(2)
a [ωx] = p · T (Λ1) + (1 − p) · T (Λ2). (C1)

3. Monotonicity

Let us start with quantum simulation. Assume that Λ can simulate Λ′, i.e., Λ q Λ′. This means that there exists a collection
of channels �λ, �λ and probability distributions pλ and p(b|a, λ) such that for all b:

�′
b(·) =

∑
a,λ

pλ p(b|a, λ)�λ ◦ �′
a ◦ �λ(·). (C2)

Suppose now that we solved the dual problem (B26) for T (Λ′) using optimal dual variables B′ and A′
b. Using these we can

construct an educated guess for T (Λ′) in the following way:

B∗ =
∑
b,λ

pλ p(b|a, λ)
((

�T
λ

)† ⊗ �
†
λ

)
[B], A∗

a =
∑
b,λ

pλ p(b|a, λ)
((

�T
λ

)† ⊗ �
†
λ

)
[A′

b]. (C3)

Using these we can find the following lower bound:

1 + T (Λ) � dV ·
∑

a

tr[Ja · A∗
a], (C4)

= dV ·
∑
a,b,λ

pλ p(b|a, λ) tr[(I ⊗ �a) [φ+] · ((
�T

λ

)† ⊗ �
†
λ

)
[A′

b]], (C5)

= dV ·
∑
a,b,λ

pλ p(b|a, λ) tr
[(

�T
λ ⊗ �a

)
[φ+] · (I ⊗ �

†
λ) [A′

b]
]
, (C6)

= dV ·
∑
a,b,λ

pλ p(b|a, λ) tr[(I ⊗ �a ◦ �λ)[φ+] · (I ⊗ �
†
λ) [A′

b]], (C7)

= dV ·
∑

b

tr[(I ⊗ �′
b) [φ+] · A′

b], (C8)

= 1 + T (Λ′). (C9)

Let us now show that the choice (C3) is feasible. By construction we have B∗ � 0, A∗
a � 0 and trVB∗ = 1, since:

trV
[((

�T
λ

)† ⊗ �
†
λ

)
B
] = trV

[((
�T

λ

)† ⊗ �
†
λ ◦ B†)[φ+]

]
, (C10)

= trV[(I ⊗ �
†
λ ◦ B† ◦ �

†
λ)[φ+]], (C11)

= �
†
λ ◦ B† ◦ �

†
λ(1), (C12)

= 1, (C13)

where in the first line we used the Choi-Jamiołkowski isomorphism B = (I ⊗ B†)[φ+] for a map B ∈ CPTP and in the third line
we used the fact that the adjoint of a CPTP map is unital. It remains to show that B∗ − A∗

a is an entanglement witness. Let ρS be
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an arbitrary separable state. We have:

tr[(B∗ − A∗
a )ρS] =

∑
b,λ

pλ p(b|a, λ) tr
[((

�T
λ

)† ⊗ �
†
λ

)
[B − A′

b] · ρS
]
, (C14)

=
∑
b,λ

pλ p(b|a, λ) tr[(B − A′
b) · (

�T
λ ⊗ �λ

)
[ρS]], (C15)

=
∑
b,λ

pλ p(b|a, λ) tr[(B − A′
b) · ρ ′

λ], (C16)

� 0, (C17)

where we used the fact that Wb = B − A′
b is by assumption an entanglement witness and ρ ′

λ = (�T
λ ⊗ �λ)[ρS] is a separable

operator. To show analogous statement about classical simulation is simple, as this is just a special case of quantum simulation
resulting from choosing pλ = 1

oλ
, where oλ size of the alphabet associated with λ, �λ = �λ = I.

APPENDIX D: ROT AS AN ADVANTAGE IN THE TELEPORTATION OF QUANTUM CORRELATIONS

Here we prove that the robustness of teleportation T (Λ) can be viewed as the best advantage in the task of teleporting
quantum correlations using a fixed quantum teleportation instrument Λ over any classical teleportation instrument. We start by
constructing a particular game G∗ using the dual formulation of the RoT and then show that 1 + T (Λ) gives a meaningful lower
bound on the advantage. We then use primal formulation (B23) and show that 1 + T (Λ) also bounds the advantage from above.

Let us begin by noting that the classical average score qc(G) for game G is given by:

qc(G) = max
Λc∈F

max
{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua ◦ �c
a) [σ ] · ξa]. (D1)

Suppose we have solved the dual problem for the RoT as given by (B26) using dual variables B and Aa. We can construct a
(potentially suboptimal) task G∗ = {σ ∗, ξ ∗

a , f ∗(a)} using these optimal variables in the following way:

σ ∗ = φ+, ξ ∗
a = Aa

trAa
, f ∗(a) = trAa. (D2)

The maximal average score which can be achieved using classical teleportation instruments Λc in game G∗ can be bounded by:

qc(G∗) = max
Λc∈F

q(G∗,Λc) = max
Λc∈F

max
{Ua}∈U

∑
a

f ∗(a)tr
[(
I ⊗ Ua ◦ �c

a

)
[σ ∗] · ξ ∗

a

]
, (D3)

= max
Λc∈F

max
{Ua}∈U

∑
a

tr
[(
I ⊗ Ua ◦ �c

a

)
[φ+] · Aa

]
, (D4)

= max
{Fa}∈F

max
{Ua}∈U

∑
a

tr[(I ⊗ Ua)[Fa] · (B − Wa)], (D5)

� max
{Fa}∈F

∑
a

tr[Fa · B], (D6)

= 1

dV
max

τB
tr[τB · BB], (D7)

� 1

dV
, (D8)

where in the second line we used Fa = (I ⊗ �c
a) φ+ ∈ SEP and with a slight abuse of notation we denoted optimization over

Choi-Jamiołkowski operators Fa corresponding to classical teleportation instruments as {Fa} ∈ F . In the third line we used the
constraint from the dual: B − Aa = Wa ∈ W and in the fourth line we employed the fact that Wa is an entanglement witness.
Finally, in fifth line we used the no-signalling condition

∑
a Fa = d−1

V · 1V ⊗ τB.
Notice now that for an arbitrary teleportation instrument Λ = {�a} with Choi-Jamiołkowski operators Ja = (I ⊗ �a)[φ+] we

can write:

max
G

q(G,Λ)

qc(G)
� q(G∗,Λ)

qc(G∗)
� dV

∑
a

tr[Ja · Aa] = 1 + T (Λ). (D9)

To prove the reverse direction let d = dA′ = dB′ and notice that using (A9) we can rewrite any bipartite state σ AB as:

σ AB = d2 trA′B′[(1A ⊗ φA′B′
+ ⊗ 1B)(σ AA′ ⊗ φB′B

+ )]. (D10)
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Let Λ = {�B→C
a } be an arbitrary teleportation instrument with Choi-Jamiołkowski operators {Ja}. Then (D10) leads to:(

IA ⊗ �B→C
a

)
[σ AB] = d2 trA′B′

[(
1A ⊗ φA′B′

+ ⊗ 1B
)(

σ AA′ ⊗ (
IB′ ⊗ �B→C

a

)
[φB′B

+ ]
)]

, (D11)

= d2 trA′B′
[
(1A ⊗ φA′B′

+ ⊗ 1B)
(
σ AA′ ⊗ JB′C

a

)]
, (D12)

� d2 (1 + T (Λ))trA′B′
[
(1A ⊗ φA′B′

+ ⊗ 1B)
(
σ AA′ ⊗ F B′C

a

)]
, (D13)

= (1 + T (Λ)) · (IA ⊗ (
�c

a

)B→C)
[σ AB], (D14)

where in the second line we used (B27) to upper-bound Ja with the Choi-Jamiołkowski operator Fa of a classical teleportation
instrument {�c

a}. We can now calculate the average score for an arbitrary game G = {σ, ξa, f (a)}:
q(G,Λ) = max

Λ′�Λ
max

{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua ◦ �′
a) [σ ] · ξa], (D15)

� max
Λ′�Λ

max
{Ua}∈U

[1 + T (Λ′)]
∑

a

f (a)tr
[(
I ⊗ Ua ◦ �c

a

)
[σ ] · ξa

]
, (D16)

� max
Λ′�Λ

[1 + T (Λ′)] max
Λc∈F

max
{Ua}∈U

∑
a

f (a)tr
[(
I ⊗ Ua ◦ �c

a

)
[σ ] · ξa

]
, (D17)

= max
Λ′�Λ

[1 + T (Λ′)] qc(G), (D18)

� [1 + T (Λ)] qc(G), (D19)

where in the first line we used (D14) and in the fourth line we used the monotonicity property of the RoT (9). Note that the above
reasoning is valid for any game G and thus by taking the maximum over all G we obtain:

max
G

q(G,Λ)

qc(G)
� 1 + T (Λ). (D20)

Combined with the lower bound, this proves the equality.

APPENDIX E: ROT AS AN ADVANTAGE IN SUBCHANNEL DISCRIMINATION WITH QUANTUM SIDE INFORMATION

Let E = {Ex} be an instrument, such that
∑

x Ex[·] = E[·] forms a valid quantum channel, and let A = {{Ma}, ρ} be a resource
used in the game; it consists of a bipartite measurement {Ma} ∈ POVM and a bipartite state ρ acting as a quantum memory in the
game. The average probability of guessing which subchannel from E was applied locally to ρ is given by:

psucc(E,A) = max
p(g|a)

∑
x,a,g

p(g|a) tr[(Ex ⊗ I )[ρ] · Ma] δg,x. (E1)

In what follows we will use the following operator identity:

d2
V tr[X VB φVB

+ ] = tr[(EA ⊗ IB)[ρAB] · MAB], (E2)

where

X VB = trV′A[(1V ⊗ MV′A ⊗ 1B) · ((IV ⊗ EV′
) [φVV′

+ ] ⊗ ρAB)] (E3)

and E is an arbitrary channel. The above identity can be proven by direct substitution and becomes almost natural when expressed
in a diagrammatic form [67–69].

Let us now use the identity (E2) and recall that �V′→B
a is a subchannel from the teleportation instrument Λ = {�a} which was

defined in (2) and acts in the following way:

�V′→B
a [ω] = trV′A

[(
MV′A

a ⊗ 1B)
(ωV′ ⊗ ρAB)

]
. (E4)

The associated Choi-Jamiołkowski operators J VB
a = (IV ⊗ �V′→B

a ) [φVV′
+ ] are given by:

JVB
a = trV′A

[(
1V ⊗ MV′A

a ⊗ 1B
)
(φVV′

+ ⊗ ρAB)
]
. (E5)

This leads to the following realization:

d2
V · tr

[(
IV ⊗ EB

x

)[
JVB

a

] · φVB
+

] = d2
V · tr

[((
EV

x

)T ⊗ IB
)[

JVB
a

] · φVB
+

]
(E6)

= d2
V · tr

[((
EV

x

)T ⊗ IB
)[

trV′A
[(

1V ⊗ MV′A
a ⊗ 1B

)
(φVV′

+ ⊗ ρAB)
]] · φVB

+
]
, (E7)

= d2
V · tr[trV′A[(1V ⊗ MV′A ⊗ 1B)((IV ⊗ EV′

) [φVV′
+ ] ⊗ ρAB)] · φVB

+ ], (E8)

= tr
[(
EA

x ⊗ IB
)
[ρAB] · MAB

a

]
, (E9)
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where in the first and the third line we made use of the special property of the maximally entangled state (A7). In this way we
can rewrite (E1) as:

psucc(E,A) = d2
V · max

p(g|a)

∑
x,a,g

p(g|a) tr[(I ⊗ Ex )[Ja] · φ+] δg,x, (E10)

= d2
V · max

p(x|a)

∑
x,a

p(x|a) tr[Ja · (I ⊗ E†
x )[φ+]]. (E11)

Suppose now that we have solved the dual problem for the RoT as given by (B26) using dual variables B∗ and A∗
x . Using these

optimal variables we will now construct a sequence of games E∗ = {E∗
x }, parametrized with N , that is the number of subchannels

forming the instrument. This proof technique is inspired by the methods used in Ref. [32]. Let us define a set of subchannels via
their duals, i.e.,

(E∗
x )†[ρ] =

{
α trV[(ρT ⊗ 1) A∗

x ] for 1 � x � oa,

1
N ·dV

[1 − α
∑oa

x′=1(A∗
x′ )B]tr[ρ] for oa + 1 � x � oa + N.

(E12)

In the above α = ‖∑oa
x′=1 AB

x′ ‖−1
∞ is a real parameter chosen such that the map defined above is completely positive. Notice

that the constraints of the dual problem (B26) imply that 0 � Ax′ � 1. To verify that E∗ = ∑
x E∗

x defines a channel recall that
E ∈ CPTP if and only if its dual map E† is unital. By construction we have:

oa+N∑
x=1

(E∗
x )†[1] = α

oa∑
x=1

trV[A∗
x ] + 1 − α

oa∑
x=1

trV[A∗
x ] = 1. (E13)

Notice that by our particular definition of the instrument G∗ we also have the following relation:

[I ⊗ (E∗
x )†][φ+] =

{
α
dV

A∗
x for 1 � x � oa,

1
N ·d2

V
1 ⊗ (

1 − α
∑oa

x′=1 trA[A∗
x ]

)
for oa + 1 � x � oa + N.

(E14)

Let us now upper bound the maximal probability of guessing in a game specified by G∗ and when having access only to classical
resources. This is specified by pc

succ(E∗) = maxAc∈F psucc(E∗,Ac), where the optimization is performed over all Ac = {{Ma}, σ }
with σ ∈ SEP and arbitrary measurements {Ma}. Using (E11) and the fact that this optimization is equivalent to an optimization
over a classical teleportation instrument with Choi-Jamiołkowski operators Fa = (I ⊗ �c

a)φ+ = pT(a) σa for some σa ∈ SEP
and probability distribution pT(a), this becomes

pc
succ(E∗) = d2

V max
σa ∈ SEP, pT(a)

max
p(x|a)

∑
x,a

p(x|a) pT(a)tr[(I ⊗ E∗
x )[σa] · φ+]

= d2
V max

σa ∈ SEP, pT(a)
max
p(x|a)

∑
a

pT(a)

[
α

dV

oa∑
x=1

p(x|a)tr[σaA∗
x ] + 1

N · d2
V

oa+N∑
x=oa+1

p(x|a)tr

[
σa − α

(
1 ⊗

oa∑
x′=1

(A∗
x′ )B

)
σa

]]

� dV max
σa ∈ SEP, pT(a)

max
p(x|a)

∑
a

pT(a)

[
α

oa∑
x=1

p(x|a)tr[σaA∗
x ] + 1

N · dV

oa+N∑
x=oa+1

p(x|a)tr[σa]

]

� dV max
σa ∈ SEP, pT(a)

max
p(x|a)

∑
a

pT(a)

[
α

oa∑
x=1

p(x|a)tr[σaA∗
x ]

]
+ 1

N
. (E15)

In the third line we used the fact that the subchannels corresponding to fictitious outcomes oa + 1 � x � oa + N are positive.
Recall that the operators A∗

x must satisfy certain constraints in order to be feasible solutions of the dual problem (B26). In
particular, A∗

x = B∗ − W ∗
x , where B∗ is a positive matrix with trVB∗ = 1 and W ∗

x ∈ W is an entanglement witness. This allows
for the following bound to be obtained:∑

a

pT(a)
oa∑

x=1

p(x|a)tr[σaA∗
x ] =

∑
a

pT(a)
oa∑

x=1

p(x|a)tr[σa(B∗ − W ∗
x )], (E16)

�
∑

a

pT(a)
oa∑

x=1

p(x|a)tr[σaB∗], (E17)

�
∑

a

pT(a)tr[σaB∗], (E18)

= 1

dV
tr[(1 ⊗ σ B)B∗], (E19)
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= 1

dV
tr[σ B(B∗)B], (E20)

= 1

dV
. (E21)

In the first line we used the fact that for a separable σa and entanglement witness W ∗
a the value of tr[σaW ∗

x ] is always positive.
In the third line we used the fact that pT(a) and σa is an ensemble arising from a (classical) teleportation instrument and thus
it satisfies the no-signalling condition, i.e.,

∑
a pT(a) σa = 1

dV
1 ⊗ σ for some state σ . These realizations lead to the following

bound on the classical probability of guessing (E15) in game E∗:

pc
succ(E∗) � α + 1

N
. (E22)

Let us now bound the average probability of guessing in game E∗ when having access to a resource A. We have:

psucc(E∗,A) = d2
V · max

p(x|a)

∑
x,a

p(x|a) pT(a)tr[(I ⊗ E∗
x )[ρa] · φ+], (E23)

� α dV ·
∑

a

pT(a)tr[ρaA∗
a], (E24)

= α · [1 + T (Λ)]. (E25)

In the second line we chose a strategy which does not use the fictitious outcomes, i.e., p(x|a) = δx,a and used the identity:
[I ⊗ (E∗

x )†][φ+] = α
dV

A∗
x . Combining bounds (E22) and (E25) we find that the maximal advantage optimized over all games is

lower bounded by:

max
E∗

psucc(E,A)

pc
succ(E)

� psucc(E∗,A)

pc
succ(E∗)

� [1 + T (Λ)] · 1

1 + 1
αN

, (E26)

where Λ is a teleportation instrument constructed from A. Since we are free to choose N as big as we like, in the limit N → ∞ the
advantage is lower-bounded by 1 + T (Λ). To prove the reverse direction we look at the probability of guessing for an arbitrary
game E:

psucc(E,A) = d2
V · max

p(g|a)

∑
x,a,g

p(g|a) tr[(I ⊗ Ex )[Ja] · φ+] δg,x, (E27)

� [1 + T (Λ)] d2
V · max

p(g|a)

∑
x,a,g

p(g|a) pT(a)tr[(I ⊗ Ex ) [σa] · φ+] δg,x, (E28)

� [1 + T (Λ)] d2
V · max

σa∈SEP, pT(a)
max
p(g|a)

∑
x,a,g

p(g|a) pT(a)tr[(I ⊗ Ex ) [σa] · φ+] δg,x, (E29)

= [1 + T (Λ)] pc
succ(G), (E30)

where the first inequality follows from (B27), that is, Ja � [1 + T (Λ)] pT(a) σa for a probability distribution pT(a) and a
separable state σa. Since this holds for any game E we can equivalently write:

max
E

psucc(E,A)

pc
succ(E)

� 1 + T (Λ). (E31)

Combining the bounds (E26) (in the limit N → ∞) and (E31) we arrive at:

max
E

psucc(E,A)

pc
succ(E)

= 1 + T (Λ). (E32)

Notice that so far our choice for α was somewhat arbitrary. In order to find its physical interpretation let us consider the maximal
probability of guessing using classical resources Ac = {Ma, σ }:

pc
succ(E) = max

Ac∈F
max
p(g|a)

∑
x,a,g

p(g|a) tr[(Ex ⊗ I )[σ ] · Ma] δg,x, (E33)

= max
σ∈SEP max

{Ma}∈POVM
max
p(g|a)

∑
x,a,g

p(g|a) tr[(Ex ⊗ I )[σ ] · Ma] δg,x. (E34)

Notice that due to the convex structure of the set of all separable states w.l.o.g we can assume that the optimal separable state σ

is of the product form σ = ω ⊗ ω′. This allows to write:

pc
succ(E) = max

ω, ω′
max

{Ma}∈POVM
max
p(x|a)

∑
x,a

p(x|a) tr[(Ex[ω] ⊗ ω′) · Ma], (E35)
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= max
ω

max
{M ′

a}∈POVM
max
p(x|a)

∑
x,a

p(x|a) tr[Ex[ω] · M ′
a], (E36)

= max
ω

max
{M ′′

x }∈POVM

∑
x

tr[Ex[ω] · M ′′
x ], (E37)

= max
ω

max
x

tr[Ex[ω]], (E38)

where in the second line we defined a new measurement M ′
a = tr2[Ma(1 ⊗ ω′)] and in the third line we defined M ′′

x =∑
a p(x|a)M ′

a. In the last line we used the fact that maxMx

∑
x tr[ω̃xMx] = maxx tr[ω̃x] with

∑
x Mx = 1, i.e., we re-expressed the

optimization over POVM’s with the optimization over x.

APPENDIX F: COMPLETE SET OF MONOTONES FOR TELEPORTATION SIMULATION

In this Appendix we show that q(G,Λ) which we defined in (12), provides a complete set of monotones for quantum
simulation, i.e., all local pre- and postprocessings of the the teleportation instrument Λ. Similarly, the average success probability
psucc(E,Λ) which we defined in (15) provides a complete set of monotones for classical simulation.

Let us start by focusing on q(G,Λ) and assuming that Λ can be used to simulate Λ∗, that is Λ � Λ∗. We have:

q(G,Λ) = max
Λ′�Λ

max
{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua ◦ �′
a) [σ ] · ξa], (F1)

� max
Λ′�Λ∗

max
{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua ◦ �′
a) [σ ] · ξa], (F2)

= q(G,Λ∗), (F3)

since the set {Λ′|Λ′ � Λ∗} is a subset of {Λ′|Λ′ � Λ}. We will now assume that q(G,Λ) � q(G,Λ∗) holds for all games G =
{σ, ξa, f (a)} and show that there always exist a subroutine which allows for the simulation of Λ∗ by Λ. Let us start by noting that
if q(G,Λ) � q(G,Λ∗) is true for all G then the following holds:

∀G max
Λ′�Λ

max
{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua ◦ �′
a) [σ ] · ξa] − max

Λ′′�Λ∗
max

{U ′
b}∈U

∑
b

f (b)tr[(I ⊗ U ′
b ◦ �′′

b ) [σ ] · ξb] � 0. (F4)

Since Λ′′ � Λ∗ we can write �′′
b = ∑

a,λ pλ p(b|a, λ) �λ ◦ �∗
a ◦ �λ. Let us now make a particular (and possibly suboptimal)

choice of pλ = δ0,λ, p(b|a, λ) = δb,a and �λ = �λ = I for all λ and let us also choose U ′
b = Ub for all b, i.e., we choose the

same correction unitary for both optimization problems. Then (F4) implies:

∀G max
Λ′�Λ

max
{Ua}∈U

∑
a

f (a)tr[(I ⊗ Ua)[(I ⊗ �′
a − I ⊗ �∗

a )[σ ]] · ξa] � 0. (F5)

We will now claim that (F5) can only hold if Λ can be used to simulate Λ∗. First notice that the above relation must hold for all
games G. Hence, let us make a special choice of G∗ = {σ ∗, ξ ∗

a , f ∗(a)}, where:

σ ∗ = 1

d
⊗ ω, ξ ∗

a = 1

d
⊗ U†

a [ηa], (F6)

and U†
a is the adjoint of the optimal unitary correction in (F5). For the moment we assume that f (a), ω, and {ηa} are arbitrary.

Hence, the relation (F5) implies:

∀ f (a), ω, {ηa} max
Λ′�Λ

max
{Ua}∈U

∑
a

f (a)tr[(�′
a[ω] − �∗

a[ω]) · ηa] � 0. (F7)

Denoting �a := �′
a[ω] − �∗

a[ω] we can equivalently write:

∀ f (a), ω, {ηa} max
Λ′�Λ

max
{Ua}∈U

∑
a

f (a)tr[�a · ηa] � 0. (F8)

Now we will claim that (F8) implies that all of the operators �a are necessary zero. We will prove this by contradiction, i.e., we
will start by assuming that there exist a nonzero operator �a and then show that this leads to a contradiction.

To begin with, notice that due to the no-signalling condition (3) the operators �a satisfy:∑
a

tr[�a] = 0. (F9)

This means that either (i) all operators �a are identically equal to zero, or (ii) there exist at least one operator �a∗ with at least one
negative eigenvalue. Suppose for now that (ii) is true and denote this eigenvalue with λa∗ < 0 and the corresponding eigenvector
with |λa∗ 〉〈λa∗ |. Then in (F8) we can choose f (a∗) = δa,a∗ and ηa∗ = |λa∗ 〉〈λa∗ |. This would clearly lead to a contradiction with
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(F8). Hence, we conclude that (ii) cannot be true and the only possibility is that all �a = 0. This equivalently means that Λ can
be used to simulate Λ, i.e., Λ � Λ∗.

We now move to the function psucc(E,Λ) defined in (15). Our goal is to show that it constitutes a complete set of monotones
for classical simulation. We proceed analogously as in the case of q(G,Λ). To prove one direction, assume that psucc(E,Λ) �
psucc(E,Λ∗) holds for all E. This and the identity (E11) implies:

∀E max
p(x|a)

∑
a,x

p(x|a)tr[(I ⊗ Ex )Ja · φ+] − max
p′(x|b)

∑
b,x

p′(x|b)tr[(I ⊗ Ex )J ∗
b · φ+] � 0, (F10)

where we denoted Ja = (I ⊗ �a)φ+ and J ∗
b = (I ⊗ �∗

b )φ+. If we now make a particular choice of p′(x|b) = δx,b for all b, then
(F10) implies:

∀E max
p(x|a)

∑
x

tr

[
(I ⊗ Ex )

(∑
a

p(x|a)Ja − J ∗
x

)
· φ+

]
� 0. (F11)

We will now claim that (F11) can only hold if Λ can be used to classically simulate Λ∗. To do so, we can define an operator
�x := ∑

a p(x|a)Ja − J ∗
x = ∑

a p(x|a)(I ⊗ �a)φ+ − (I ⊗ �∗
x )φ+. Since we have

∑
x �x = 0 we can use analogous arguments

as above and infer that (F11) necessarily implies that �x = 0 for all x, or equivalently:

∀ x �∗
x =

∑
a

p(x|a)�a, (F12)

which means that Λ can be used to classicaly simulate Λ∗ or equivalently Λ c Λ∗. To prove the reverse direction we assume
Λ c Λ∗ which implies that there exist p(b|a) such that �∗

b = ∑
a p(b|a)�a for all b. For all games E we then have:

psucc(E,Λ∗) = max
p′(x|b)

∑
b,x

p′(x|b)tr[(I ⊗ Ex ◦ �∗
b )φ+ · φ+], (F13)

= max
p′(x|b)

∑
a,b,x

p′(x|b)p(b|a)tr[(I ⊗ Ex ◦ �a)φ+ · φ+], (F14)

� max
p′(x|a)

∑
a,x

p′(x|a)tr[(I ⊗ Ex ◦ �a)φ+ · φ+], (F15)

where in the last line we defined a new probability distribution p′(x|a) = ∑
b p′(x|b)p(b|a) and inequality follows since this may

be not the most general conditional probability distribution.
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