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ABSTRACT 

This paper aims to develop a time domain analysis method capable of accurately simulating the vehicle-

soil-track interaction phenomenon in a computationally rigorous manner. The proposed method takes full ac-

count of wave propagation effects in the subsoil half-space through the development of a systematic frequency 

dependent lumped parameter assembly. A robust multi-objective optimization methodology is proposed for the 

calibration of the developed lumped parameter assembly targeting the dynamic behavior, global stability and 

passivity of the track-subsoil system while maintaining the broad applicability of the method by any commercial 

FEM software. A case study of a ballasted track on a soft clay profile is presented in order to investigate the 

efficiency of the proposed methodology. Finally, the monitored response of a modern ballastless high speed track 

located in mainland Europe is used for further verification. Results demonstrate the efficiency, accuracy and 

applicability of the proposed methodology. 

 

Keywords: Track dynamics; Track–soil interaction; Vehicle–track interaction measurement; Rail-

way vibration; Ground vibration 

 

 

1. INTRODUCTION 

Over the last decades, significant progress in the fields of construction, operating and main-

taining of railway transportation facilities has led to the continuing increase of both the speed and 

the allowable carried load of railway trains. As a result, engineering decisions relating to design and 

maintenance of the high-speed railway substructure are affected by a set of different issues com-

pared to the ones observed in conventional-speed railway. The accurate prediction of the vibration 
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induced by trains traveling at critical speeds is a mandatory requirement and recent topic of discus-

sion for the design of state-of-the-art high-speed track-substructure systems [1]. Additionally, 

maintenance is not always straightforward in the aforementioned scenario due to potential damage 

in the subgrade, a challenging condition to diagnose and remedy [2]. As a result, a realistic repre-

sentation of the subgrade system in a stochastic multivariable, yet computationally efficient, simu-

lation environment can significantly aid during the design of a high-speed railway network and 

provide forecasting information during maintenance planning.  

A vehicle-track-soil dynamic system is composed of subsystems of different natures and there-

fore it is common in literature to integrate the vehicle and track-subsoil segments separately by 

implicitly coupling different simulation techniques. The vehicle is typically modeled as a multi-body 

system in order to fully take into consideration both the interaction between substructures [3,4] of 

the vehicle (wheel, bogie, and passenger stage) and the interaction between the vehicle and the track 

[5–7]. Furthermore, for the track-soil subsystem additional requirements need to be fulfilled during 

the construction of a simulation model as an accurate simulation of wave propagation within the 

semi-infinite medium is of paramount importance in the study of high-speed train behavior. This 

is further reinforced by literature, where simplification on the coupling behavior induced by wave 

propagation in the soil domain has been illustrated to misrepresent the actual behavior of the soil-

track system [8,9]. Subsequently, the popular frequency-independent and uncoupled Winkler model 

frequently used in literature is considered an obsolete approach for the study of high-speed railway 

behavior. Additionally, frequency domain-based methodologies previously proposed are limited to 

the simulation of viscous elastic behavior, a non-realistic assumption for rail pad and wheel-rail 

contact behavior.   

Numerous approaches have been established in the past addressing the simulation of the de-

tailed soil-track interaction subsystem in the time domain. The truncated simulation of the soil 

domain with silent boundaries by the finite element method (FEM) is an example of a direct ap-

proach where the behavior of wave propagation, reflection and refraction within the soil medium 

is maintained. As observed in literature, the direct FEM method has been frequently utilized in the 

simulation of track-soil systems [10–14]. Alternatively, a robust consideration of the semi-infinite 

subsoil half-space can be accomplished through the use of the coupled finite element boundary 

element method (FEM-BEM). Both 2.5D and 3D domain FEM-BEM solutions have been effec-

tively used in the past in [15–17].  

The main disadvantage of the truncated FEM and coupled BEM-FEM methods is the high com-

putational cost associated with both methods. In the light of the above limitation, it is common to 

refine the subsoil domain size and subsequently reduce the analysis computational cost by reducing 
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the order of the system. Such a task can be accomplished through a partition approach of the 

overall dynamic system in segments, where the subsoil domain is significantly condensed on its 

internal degrees of freedom (DOF), while the remaining system is left unaltered. At this point it is 

important to state that an order reduction approach will limit the option of a direct prediction of 

ground vibration at an arbitrary location within the soil medium.  

The lumped parameter (LP) method has been established as a popular and computationally viable 

alternative for the reduced simulation of soil structure interaction under earthquake induced vibra-

tions [18–22]. The LP method has also illustrated promising results in the simulation of vehicle-

track-soil dynamics. Low order LP models have been utilized in the past, capturing the single point 

semi-infinite track-soil behavior for the study of wheel-rail dynamic interaction [23],  and a multiple 

point subsoil LP assembly in the time domain  has been proposed in  [24]. The proposed method 

provides a frequency dependent representation of the direct dynamic flexibility but neglects any 

coupling behavior of the subsoil system. An LP assembly considering both the direct and coupling 

behavior of the subsoil segment in a simplified manner has been recently proposed in [25] and used 

in [26] where the direct and coupling behaviors are roughly approximated by Kelvin-Voigt and 

enhanced Kelvin-Voigt models. Finally a sophisticated LP methodology for the simulation of the 

subsoil domain has been recently proposed in [27]. However, even the most sophisticated LP meth-

ods implemented in the simulation of soil-track-vehicle interaction introduce a number of limita-

tions. Most importantly, the properties of global stability and passivity [28] for the overall train-

track system are not necessarily preserved. Both the stability and passivity of a targeted system are 

fundamental properties that are not necessarily maintained in an order reduction process. This is 

expected since the reduced system is only targeting the particular solution (steady state) of the 

original system in the form of dynamic flexibility functions and not the complementary solution 

(transient state). The aforementioned omission could potentially lead to an unstable complementary 

solution of the reduced ordinary differential equation system regardless of the external excitation. 

Furthermore, the use of the Routh–Hurwitz stability criterion as a constraint in the lumped param-

eter model calibration, a strategy adopted by a family of rational approximation models in the lit-

erature, does not necessarily lead to a stable overall system as mathematically and numerically 

proven in [21,29,30]. Secondly, the calibration process of the LP model is formulated as a multi-

objective optimization problem with an infinite number of objective functions. The optimization 

problem is complex and the selection of an LP model variable combination even among the gen-

erated pareto front is not a trivial task.  

To this end the original contribution of the paper is twofold, namely (a) the proposal of a 

globally stable and commercially applicable LP assembly procedure, capable of significantly 
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reducing the computational cost introduced by the soil-track interacting system and (b) the devel-

opment of a robust and reliable optimization approach for the calibration of the proposed LP 

assembly. Regarding the first aspect, an infinite LP assembly is mathematically derived in accord-

ance to the longitudinal periodicity of the isolated sleeper-ballast-soil (or slab-soil) system. The 

proposed LP assembly utilizes a proposed coupling LP component capable of capturing the fluc-

tuations of the imaginary part of coupling receptance functions typically observed in soil-track sys-

tems, while maintaining global stability of the system. Regarding the second aspect, the authors 

present a robust optimization approach which exploits the importance of adjacent coupling be-

tween neighboring sleepers. The proposed optimization approach can select a reliable point along 

the pareto front in a consistent manner.  

 

2. DYNAMIC MODEL ORDER REDUCTION  

2.1 Methodology overview  

Given the inability of existing modeling procedures to capture the frequency dependent vehi-

cle-track-soil interaction in a computationally viable and reliable manner, the methodology for an 

optimization-based model order reduction of the soil-track system is proposed herein. The pro-

posed procedure implements the reduced order simulation of a vehicle-track-soil system in differ-

ent individual steps as illustrated in the flowchart of figure 1. In an initial step, segments of the 

overall system associated with high computational cost are highlighted. The selected segments are 

isolated from the remaining dynamic system and transformed in the frequency domain. In a second 

step, the transformed segments are significantly reduced through a dynamic condensation proce-

dure. The order reduction procedure reformulates the isolated segment in the frequency domain 

representing the behavior of the isolated segment at its interface with the remaining dynamic system.   

In a final step the condensed segment is transformed back to the time domain through a 

multi-objective optimization procedure. In more detail, a lumped parameter model defined as a 

parametric ordinary differential equation system is constructed in accordance with the morphology 

of the targeted condensed segment. The parameters of the lumped parameter model are calibrated 

with the goal of capturing the condensed system behavior in the frequency domain while maintain-

ing fundamental properties of the targeted system such as passivity and stability. The reduced LP 

assembly and the remaining multi-body dynamics system are recombined in accordance with the 

interface regions defined during the partition step of the proposed procedure. 

At this point it is important to state that the proposed procedure is formulated in accord-

ance with an extraction of the dynamic flexibility functions of the track-soil system from a simula-

tion model defined either through the finite element method or the hybrid finite element and 
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boundary element method. In the following paragraphs the formulation of the proposed method-

ology is presented in detail. 

 

Figure 1. Flowchart of proposed methodology 

 

2.2 Overall system formulation and partition  

The mathematical representation of the track– foundation – semi-infinite soil domain sys-

tem can be illustrated in the classic ordinary differential equation (ODE) formulation after the 

appropriate geometrical discretization of the original partial differential equation system through 

the finite element method.  

 

          FufuCuM =++ )(                                                    (1) 

 

The variables M and C denote the mass and damping coefficient matrices of the overall 

vehicle-track-soil system, f(u) denotes the force to displacement relation vector while F is the ex-

ternal loading vector applied to the respective degrees of freedom (DOFs). 
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Figure 2. Illustration of the region partition for a) the ballasted track and b) ballastless track systems 

 

The overall system can be partitioned into individual segments by selecting regions where 

order reduction criteria are fulfilled. The partition methodology for two conceptually different types 

of track systems, the ballasted track and the slab track system, are illustrated in figures 2a and 2b 

respectively. In the ballasted track scenario, the sleepers along with the ballast, subballast and sub-

soil layers are included in the system segment targeted by the order reduction approach. For the 

slab track scenario, a similar strategy is followed where the slab supporting layers and subsoil layers 

are included in the reduced segment of the system. The overall system’s individual partitions are 

notated as r, soil and i corresponding to the vehicle-rail-rail pad segment, the foundation-subsoil 

segment and the interface segment DOFs respectively. The vehicle-rail-rail pad segment is not 

affected by the model order reduction process and can be simulated by any multi-body train–track 

interaction method available in the literature. For example, in the experimental case study of section 

5, the car body, bogies, and wheel-sets are modelled as mass blocks, the suspension systems as 

springs and dampers while interaction between the vehicle and rail is simulated in accordance with 

[31]. Through the aforementioned notation, the dynamic system of equation (1) is expanded ac-

cording to the selected segmentation. 
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In equation (2) subscripts denote the segment where the DOF is located, while the super-

scripts used only on the interface DOF terms denote the segment from which the contributing 

stiffness, mass or damping is originating.  
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2.3 Order reduction in the frequency domain 

A basic requirement for the proposed methodology is to represent the wave propagation, 

refraction and reflection phenomena within a ballast-subsoil system (or slab-subsoil system for the 

ballastless track case) in a compact yet accurate manner. This is accomplished through the use of 

the dynamic flexibility matrix in the frequency domain capable of mapping the displacement of the 

ballast-subsoil domain at any given location ui(t) with a loading excitation fk(t) applied somewhere 

in the medium, taking into account all dynamic phenomena contributing in the displacement re-

sponse as illustrated in figure 3. The transfer function Hk,l for a specific load location k and dis-

placement response location l is illustrated in the following equation.  

 

( ) ( ) ( )ωuωHωF llkk = ,
                                                        (3) 

Where ( ) dtetfF ti

kk

−

+

−
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 2)( and ( ) dtetuU ti
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= 
 2)(

 

 

Figure 3. Transfer functions representation in the subsoil-ballast medium  

 

The aforementioned formulation is utilized in the vehicle – track-soil system reduction 

through the condensation of the equations corresponding to the soil subsoil segment of the system. 

Since direct condensation is not applicable for the differential equation system, reformulation of 

the system is essential. The matrix system of equation (3) is initially expanded, while the equation 

terms of the foundation-subsoil segment are reformed in the frequency domain through the use of 

the Fourier transformation. 
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0)( ,,,, =++++ soilsoilsoiliisoilsoilsoilsoilsoilsoilsoilsoil uKuKuCuCuM ii,

F
           

(6) 

 

The notations F  and 1−F denote the Fourier and the inverse Fourier transformation 

respectively. Through the use of the dynamic stiffness notation Sij=-Mijω
2+Cijωi+Kij equations (5) 

and (6) take the following form.  
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The Fourier transformation of a displacement vector u is denoted with the capital notation 

U while the convolution operator is symbolized with the notation “* ”. The dynamic system of 

equation (8) can now be significantly reduced in size through the elimination of the displacement 

vector Usoil . 

 









=

i

r

u

u
u ,  








= r

ii

rr

,

,

M0

0M
M  ,  








= r

iiri

irrr

,,

,,

CC

CC
C  ,  








=

i

r

F

F
F

 

( )
( )( ) 








+








= −−

iiri

irr

uH

0

uuf

uuf
uf

*),(

),(
11 F

  

                   Where  ( ) ( ) 1

,

1

,,,

−−
−= isoilsoilsoilsoili

soil

ii SSSSH 
                                     

(9) 

                                      

The variable H(ω) is the N by N dynamic flexibility matrix of the foundation-subsoil segment 

(reduced segment) and N is the number of DOFs located at the interface region between the re-

duced segment and the remaining dynamic system as described in the previous section. Due to the 

specific morphology of the track system it is more convenient to sort the interface DOFs in M 

number of interface groups corresponding to each rail to slab connection interface or sleeper to 

rail interface depending on the track type in question. The dynamic flexibility matrix formulated in 

accordance with the sorted interface groups is illustrated in the following equation, where C corre-

sponds to a selected interface region as the center of the system, while i,L and i,R correspond to 

the i consecutive interface group on the left and right respectively.  
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 The authors exploit a fundamental property of the longitudinally periodic isolated soil-bal-

last-sleeper system as presented in [8]. For a selected sleeper its direct receptance and coupling to 

its neighbouring sleepers is identical to any other sleeper along the track. The aforementioned 

property is implemented in the reduced model flexibility matrix targeting the soil-ballast-sleeper. 

For the scenario where the transverse direction is neglected, each submatrix corresponds to a single 

vertical DOF flexibility function (Hij(ω)= Hij(ω)). 

 

𝑯𝐶,𝐶(𝜔) = 𝑯𝑖𝐿,𝑖𝐿(𝜔) = 𝑯𝑖𝑅,𝑖𝑅(𝜔)
                                         

(11) 

Where ),1[ +i  

 

𝑯𝑖𝐿,𝑖𝐿(𝜔) = 𝑯𝑘𝐿,𝑘𝐿(𝜔) = 𝑯𝐶,𝑞𝐿(𝜔) = 𝑯𝑘𝑅,𝑘𝑅(𝜔) = 𝑯𝐶,𝑞𝑅(𝜔)
                   

(12) 

Where  qlkji =−=−    and  ),1[,,,, +qlkji  

 

Finally, a finite number of coupling flexibility matrices is taken into account, as the influence 

between two interface groups with significant distance between them is expected to be negligible 

and thus have minor impact on the behavior of the overall dynamic system.  

 

3. SYSTEM RECONSTRUCTION IN THE TIME DOMAIN  

Upon the completion of the reduction procedure it is essential to recombine the reduced seg-

ment with the remaining unaltered system. The remaining vehicle-rail-rail pad segment is formu-

lated in the time domain as illustrated in section 2.1. As a result, the reduced soil-track segment is 

reconstructed to a compatible version in the time domain, through a multiobjective optimization 

procedure presented in the following section. 

 

3.1 Selection of the lumped parameter assembly 

A predefined ordinary differential equation system, indicated as an infinite lumped param-

eter (LP) assembly throughout this study, is selected as an appropriate translation of the reduced 

segment in the time domain in accordance with the longitudinally repeated morphology of the 

segment. The predefined LP assembly selected for the proposed methodology is illustrated in figure 

4.  
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Figure 4. Single coupled lumped parameter model assembly 

 

The assembly is defined by a recursive pattern of LP models indicated as LPcoupling and 

LPfixed respectively. Each LP model is composed of a group of springs, dashpots and mass com-

ponents.  In contrast to the fixed LP models, the coupling LP models dynamically connect two 

individual DOFs. The relationship between diagonal and off-diagonal dynamic stiffness terms can 

be derived upon selection of the components comprising the LP model in question. 

As previously indicated, the calibration of the LP assembly targets the dynamic flexibility 

matrix derived from the reduction procedure of the foundation subsoil segment. As a result, it is 

essential to derive the frequency domain flexibility matrix of the LP assembly in a similar parametric 

form prior to the formulation of the optimization procedure. In more detail, the isolated LP as-

sembly system in the frequency domain and under the loading conditions of a dynamic excitation 

Pext at a location c of the infinite assembly takes the following form: 

   

  (𝑆𝑓𝑖𝑥𝑒𝑑 + 2 ⋅ 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑) ⋅ 𝑈𝑐 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈1,𝐿 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈1,𝑅 = 𝑃𝑒𝑥𝑡                 (13) 

(𝑆𝑓𝑖𝑥𝑒𝑑 + 2 ⋅ 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑) ⋅ 𝑈1,𝐿 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈𝑐 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈2,𝐿 = 0                     (14) 

(𝑆𝑓𝑖𝑥𝑒𝑑 + 2 ⋅ 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑) ⋅ 𝑈𝑛,𝐿 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈𝑛−1,𝐿 + 𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑
𝑜𝑓𝑓

⋅ 𝑈𝑛+1,𝐿 = 0               (15) 

due to symmetry:  𝑈𝑛,𝐿 = 𝑈𝑛,𝑅          infinite boundaries:  n∈ [2, +∞)                  (16) 

 

The parameter Ui corresponds to the Fourier transformation of the displacement time his-

tory ui at the location i and n is the sequence number of the interface group. Sfixed corresponds to 

the dynamic stiffness of the fixed component and Scoupled and Soff
coupled are the direct and cross terms 

of the dynamic stiffness matrix of the coupling component. The displacement Fourier transfor-

mation ratio Un+1/Un, between successive interface groups can be depicted in a recursive manner 

as illustrated in the following equation. 
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Un+1

Un

=-
Scoupled
off

Sfixed+2⋅Scoupled
diag

 - 
Scoupled
off 2

Sfixed+2⋅Scoupled
diag

 - 
Scoupled
off 2

⋱

                                       (17) 

 

By direct substitution of equation (17) back into equations (13) and (14) and isolation of 

the displacement to excitation Fourier transformation ratio, the flexibility dynamic matrix of the 

LP assembly takes the following form. 
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The term R∞ demonstrates a recursive sequence pattern as illustrated in equation (18). As 

the R∞ recursive sequence is increasing and bounded above, it is possible to calculate the value of 

the sequence for the infinite boundary conditions (n → ) by applying the appropriate limits and 

solving for the unknown R∞. 
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The remaining terms of the dynamic flexibility matrix of the LP assembly can be derived 

from equations 11 and 12, as the LP assembly is periodic. 

The required degree of coupling between successive interface groups is determined directly 

from the targeted flexibility matrix generated from the FEM model, thus no additional restrictions 

are essential other than the optimization procedure presented in the following sections. Further-

more, there are no limitations in the degree of coupling as both significant and insignificant cou-

pling can be captured by the LP assembly. This is better illustrated by the correlation between the 

gradual decrease of the vertical displacement, and the Euclidian norm of the fading out ratio  

Scoupled(ω)/Roo(ω). 
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Figure 5. displacement amplitude ratio to sequence number of interface group 

 

Figure 5 illustrates the amplitude of vertical displacement of eleven consecutive sleepers 

for a harmonic load with frequency ω assigned on the j=0 sleeper. In the figure different values of 

the fading out ratio are included corresponding to different degree of coupling between the inter-

face regions. 

 

3.2 Selection of lumped parameter components 

The infinite LP assembly presented in the previous paragraph consists of individual LP 

models taking the role of directly fixed and coupling dynamic springs. A predefined design of the 

LP models with constrained parameters is utilized in the current study, retaining the stability and 

passivity properties of the target dynamic system as suggested in [21].  

For the role of the fixed dynamic spring, the configuration of the LP model is illustrated in 

figure 6. The dynamic stiffness Sfixed of the fixed LP model is derived from the direct solution of 

the model’s equations of motion transformed in the frequency domain in accordance with the 

component notation depicted in figure 6. 
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For the role of the coupling dynamic spring, the selected LP model is illustrated in figure 

7a. For the simulation of the coupled behavior between different interface groups, conventional 

dashpots and springs provide limited emulating capabilities. This limitation is attributed to the na-

ture of coupling terms of conventional springs and dashpots applying relationships in the same 

direction. However, it is possible to cope with this issue by also including modified springs and 

dashpots with positive coupling terms. This approach will retain the stability of the overall dynamic 

system as the damping and stiffness matrices remain positive definite. However, for reasons of 
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applicability in conventional FEM software, a simplified spring and dashpot coupling system is also 

included as an alternative option. 

 

 

Figure 6. Fixed lumped parameter model 

 

 

Figure 7. Coupling lumped parameter model a) complete version b) simplified version 
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of the complete coupling LP model 

(briefly referred to as Cpl. Com.) are derived from the direct solution of the model’s equations of 

motion transformed in the frequency domain in accordance with the component notation depicted 

in figure 7a. 
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3.3 Assembly calibration through multi-objective optimization 

The infinite LP assembly presented in the previous section is composed of numerous dash-

pot, spring and mass subcomponents. The subcomponent parameters are calibrated by targeting 

the extracted dynamic flexibility matrix derived in section 2. The calibration procedure can take the 

following multi-objective optimization form.  

 

    
( ))(),...(),(min ,1,, xxx

x
mLCLCCC fff   

subject to blx
  

( )( ) ( )( )  ( )( ) ( )( ) 
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N

i

i

LP

ki

tar
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Each objective function fk corresponds to the efficiency of the LP model with subcompo-

nent parameters x in emulating the dynamic flexibility function Hk. Scalarization of fk is accom-

plished  through the weighted-sum method [32], following an a priori preference of unity weights 

for the squared difference between the targeted Hk
tar and LP assembly flexibility function Hk

LP. 

Index m corresponds to the maximum distance between interface regions where coupling is non-

negligible. Finally the values of the lower boundary constraint lb are equal to − for the upper 

dashpot subcomponents of the coupling LP model ci,up and equal to 0 for the remaining subcom-

ponents. 

The multiobjective optimization problem illustrated in equation (24) can be further decom-

posed into two single objective optimization problems by focusing on the direct flexibility and 1st 

cross flexibility functions Hc,c and Hc,1L. 
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The decomposed optimization problem provides solutions that optimally capture the direct 

and 1st cross flexibility functions, while the remaining flexibility functions fC,2L to fC,mL  are simulated 

in accordance with the fading out ratio of the LP assembly (equation 18). The efficiency of the 

decomposed optimization problem is assessed during the verification of the proposed methodol-

ogy in the following section. 

The optimization problems of equation (25) and equation (26) are solved through the com-

bined efforts of a deterministic search method operating on a local level and a general plan operat-

ing on a global level. The search method selected for the local level is the interior point trust region 

approach proposed by Coleman and Li [33]. The global level general plan is achieved through the 

multiple execution of the interior point trust region method, initiated from different stochastically 

generated variable combinations xi inside a prediction region. The termination criteria for the pro-

posed optimization scheme consists of an iterative evaluation of the objective function value for 

the normalized static stiffness of the LP model, along with a maximum boundary on the number 

of the overall sampling points xi. 

The proposed method introduces a few limitations to the analysis of a soil-track interacting 

system, namely (1) the soil is modelled with a viscous elastic constitutive law, an assumption not 

always valid for high speed trains traveling on soft soil profiles and (2) the track is periodic on the 

longitudinal direction. 

 

4. NUMERICAL VERIFICATION OF PROPOSED METHODOLOGY 

As presented in the previous paragraphs, the proposed procedure can provide a computa-

tionally viable alternative for the simulation of vehicle-track dynamic systems. The main goal of the 

proposed procedure is to accurately capture the complex wave propagation phenomena taking 

place within the subgrade medium. To this end, a validation of the proposed procedure is essential, 

thus a numerical case study is presented in the following paragraph. More specifically, a ballasted 

track set on a multilayer cohesionless soil medium is selected as the case study reference system for 

which a detailed 3D FEM model is constructed. The 3D finite element model has been verified in 

a preliminary stage for a single isolated sleeper on a homogeneous half-space. This is accomplished 

initially with pulse excitations monitoring the amplitude of the waves reflected on the artificial 

boundaries and secondly with the closed form solution of shallow foundation impedance functions 

[34]. The constructed FEM model includes a 40m x 60m truncated region of the semi-infinite soil 

domain, where frequency domain absorbing boundaries are introduced at the sides and bottom of 

the model in accordance with [35,36]. Both the soil and ballast are simulated with hexahedral finite 

Accepted manuscript



 16 

elements with sizes from 0.2m to 2m. The construction of the dynamic stiffness matrix of the FEM 

model is accomplished by direct summation of the Fourier transformation of the truncated FEM 

system and the frequency domain generated Novak boundaries. 

 

NovakBound

soilsoil

FEM

soilsoil

FEM

soilsoil

FEM

soilsoilsoilsoil i ,

,,,

2

,, SKCMS +++−=                          (27) 

 

The reference track is founded on a cohesionless soil profile with parabolic distribution of 

elastic modulus along the depth as depicted in figure 8 (Ez=9m=48.3Mpa, Ez=7m=66.7Mpa, 

Ez=5m=88.4Mpa Ez=3m=106.7Mpa and Ez=1m=122.9Mpa) with specific density γ = 1.9 t/m3 and 

Poisson ratio v = 0.40. A single ballast layer is considered with a depth of zb = 0.3 m and with elastic 

modulus Eb = 270 MPa, specific density γ = 2 t/m3 and Poisson ratio v = 0.3. The rail pads used 

have a stiffness of Krp = 100000 kN/m and the rail moment of inertia is equal to I = 3038.3 cm4 

for each rail. The distance between two consecutive sleepers is 0.6 m and the sleeper mass has a 

value of m = 0.3 t.  

 

 

Figure 8. Finite Element model of foundation subsoil segment  

 

The proposed method efficiency and two additional simplified modeling options, namely (1) 

the popular representation of the subsoil and ballast with Kelvin-Voigt models and (2) a simplified 

discrete model proposed by Kouroussis [25] with coupling taken into account through an additional 

Kelvin-Voigt component are evaluated in reference to the detailed 3D FEM model. The parameter 

values for the four models included in the case study can be found in Appendix A.  
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The isolated segment’s flexibility function H(ω) is extracted from the detailed FEM model through 

the dynamic condensation of the system in the frequency domain as presented in equation (9). The 

extracted dynamic flexibility functions are used as a target for the calibration of two different LP 

assemblies, an LP assembly with the complete LP coupling model figure 7a and one with the sim-

plified LP coupling model figure 7b.  

The efficiency of the decomposed optimization scheme of equation (25) and equation (26) 

is assessed for the particular case study through the comparison of the solutions derived from the 

multi-objective optimization version of equation (24) as illustrated in figure 9. The pareto front for 

the direct fC,C and first cross fC,1L objective functions is calculated through the use of a multi-objec-

tive implementation of the particle swarm optimization (PSO) method [37]. 

 

 

Figure 9. Location of solution in Pareto front  

 

The calibration efficiency of the simplified coupling and complete coupling LP assemblies 

are illustrated in figure 10 for the direct,1st and 2nd cross dynamic flexibility functions. As observed 

in figure 10, the direct dynamic flexibility function Hc,c of the targeted dynamic system is accurately 

captured by both the complete and simplified coupling LP assemblies. On the other hand, the 1st 

cross dynamic flexibility function Hc,1L is not accurately represented by the simplified coupling LP 

assembly for a frequency higher of 40 Hz. This can be attributed to the fact that the simplified 

coupling component of figure 7b cannot capture the oscillating behaviour of the targeted cross 

dynamic flexibility functions indicated in higher frequencies. For the remaining cross flexibility 

function a small divergence is observed in the 20-40Hz range in the complete coupling LP assembly 

while a higher divergence in the 20-100Hz range is observed in the simplified coupling LP assembly.   
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Figure 10.  Optimization results of LP assemblies for dynamic flexibility matrix terms  

a) HC,C b) HC,1L c) HC,2L  

 

The success of the proposed methodology is illustrated in figure 11by comparing the direct 

receptance function of the complete track system between the targeted FEM model and the two 

LP assemblies presented in the previous section.  

 

 

Figure 11. Comparison of receptance amplitude and receptance phase of soil – track system  
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As observed in figure 11 the rail-railpad system dominates the response of the overall track 

system for the higher frequency range while the subsoil representation mainly influences the track 

system behavior in the lower frequency range. The complete coupling LP assembly closely approx-

imates the targeted receptance for the overall frequency range with Mean Absolute Percentage 

(MAP) error lower than 4%. A higher error is observed in the simplified coupling LP assembly for 

the frequency range 30-80Hz. On the scenarios of the Kelvin-Voigt and Kouroussis et al simplified 

methodologies it can be observed that for the multilayer soil profile the dynamic characteristics of 

the subgrade medium are not accurately captured. 

 

4.2 Time domain numerical verification 

The final part of the numerical verification case study is focused on the model’s competence 

in capturing the track response for trains approaching the critical velocity of the subsoil medium. 

It is important to state that the phenomenon of deformation amplification in the railway track due 

to a train moving near the critical velocity of the medium is now also influenced by the contribution 

of body waves reflected by the lower stiffer layers of the selected multilayer soil profile. The re-

sponse of the railway track is calculated for the detailed FEM model under the excitation of a 

moving load of Wz=200 kN running at three individual constant velocities of v1= 68km/h, v2 

=347km/h and v3 =470km/h. The selected velocities correspond to subcritical, near critical and 

post critical values for the specific multilayered soil-track system. The absolute displacement am-

plification factor (DAF) on the ground surface for the selected velocities is illustrated in figure 12, 

as generated by the FEM model.  

 

 

Figure 12. Vertical displacement amplification on ground surface for a) v1=86km/h b) v2=347km/h c) v3=470km/h 

 

 The rail deflection response for the proposed LP methods along with the previously se-

lected simplified methodologies are compared with the 3D FEM model rail deflection response as 

illustrated in figure 13. 

Accepted manuscript



 20 

 

 

  

 

Figure 13. Rail vertical displacement time history for load moving in a) v1=86km/h b) v2=347km/h c) v3=470km/h 

 

The results depicted in figure 13 indicate the importance of an accurate representation of 

the frequency dependent coupling subsoil behavior. As observed with both the Kouroussis et al 

and the simplified LP methodologies, an approximate representation of the coupling behavior will 

not necessarily lead to a correct simulation of the wave propagation phenomena within the soft 

multilayered subsoil medium. This phenomenon is especially highlighted for the near critical speed 

load velocity (v=347km/h). As observed in figure 14, the pulse excitations from the moving load 

applied in the rail-track system indicate a Fourier amplitude concentration in the frequency range 

of 0-120Hz. The mean absolute percentage error (MAPE) [38] of the track receptance function for 

the simplified LP approach is mainly concentrated in the 40-120 Hz frequency region. The source 

of inaccuracy for the specific frequency region is well illustrated in figures 9b and 9c where the 1st 

and 2nd cross receptances diverge from the targeted extracted behavior. Furthermore, the error 

w

ballast

Soil subgrade

u

V1< Vs

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

V
er

ti
ca

l 
D

is
p
la

ce
m

en
t 

o
f 

ra
il

 (
m

m
)

time (Sec)

FEM model

LP comp.

LP simp.

Kelvin Voigt

Kelvin Voigt with coupling

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 0.05 0.1 0.15 0.2

V
er

ti
ca

l 
D

is
p
la

ce
m

en
t 

o
f 

ra
il

 (
m

m
)

time (Sec)

w

ballast

Soil subgrade

u

V2= Vs

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

V
er

ti
ca

l 
D

is
p

la
ce

m
en

t 
o

f 

ra
il

 (
m

m
)

time (Sec)

w

ballast

Soil subgrade

u

V3 > Vs

Accepted manuscript



 21 

introduced by the non-coupling Kelvin-Voigt method leads to a significant error in the represen-

tation of both dynamic and static properties of the soft subsoil system.  

 

 

Figure 14. MAPE error of direct track receptance function for the different simulation methods  

 

Finally, the peak vertical track displacement as a function of train speed for a moving load 

velocity range of 80km/h to 520km/h is illustrated in figure 15.  The results here further reinforce 

the conclusion that the correct representation of the frequency dependent behavior of the direct 

and cross receptances of the subsoil-track system is a mandatory requirement for the simulation of 

track systems founded in a multilayered soil medium. In more detail, the error of the direct re-

ceptance function of the overall track-soil system by the three simplified methods leads to an inac-

curate estimation of the peak vertical displacement. Since the simplified LP method’s inefficiency 

to capture the receptance function is limited in the frequency range of 40-120 Hz, the peak vertical 

displacement is accurately estimated up to a velocity of 280km/h, while the remaining simplified 

methods introduce an inaccurate representation along the overall velocity range of importance.  

 

Figure 15. Maximum downward vertical track displacement versus train speed for the selected modeling methods 
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Finally, the proposed methodology is experimentally verified with rail displacement measure-

ments of a ballastless track excited by the ICE2 high-speed train power car. The power car is at-

tached to a modified wagon with measurement equipment. Data has been extracted from instru-

mentations of a section of a modern high-speed track in mainland Europe. The top view in Figure 

16b illustrates locations of several displacement sensors recording the relative displacement be-

tween rail foot and top of slab track (blue) and vertical displacement sensors between top of slab 

track and top of sub grade (green and red). For clarification Figure 16a depicts the sensors in the 

cross-sectional view for an isolated rail of the ballastless track. The available measurements have 

been extracted using the ICE2 test-train consisting of one power car and one passenger car oper-

ating with a constant velocity of 160 km/h. The relative displacement between rail foot (blue sensor) 

and top of concrete serves as the reference solution for the numerical model.  

 

 

Figure 16.a) Cross section of the monitoring assembly at an isolated rail b) top view of the monitoring assembly  

 

The ballastless track system is simulated by the proposed LP model with coupling terms according 

to figure 7.b. The calibration of the LP model targets a truncated FEM model constructed accord-

ing to the guidelines presented in the previous section. The rail moment of inertia is equal to 

I = 3038.3 cm4 for each rail, while the support spacing is equal to sx=0.65m. The slab properties 

used in the analysis are those of the equivalent rectangular section slab with young modulus 
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E=29GPa, height h=0.4m and width w=2.4m. Since soil conditions on site are not available, a 

uniform soil profile with shear wave velocity vs = 190 m/s, Poisson ratio v = 0.41 and density 

ρ = 1.8 t/m3 has been numerically reverse engineered in accordance with plate load test calculations 

[34] of the strain modulus equal to Ev2 = 120 MPa. 

The vehicle model , illustrated in figure 17b, is simulated according to the rigid-body dynamics 

method [31], where the car body, bogies, and wheel-sets are simplified as mass blocks, and the 

suspension systems as springs and dampers.  The component parameters for the ICE2 power car 

can be found in  [39] (MC=60.8t, θC=1344tm2, Mb=5.6t, θb=21.84tm2,MW=2t,Ks1=9600KN/m, 

Cs1=30 KN*s /m3, Ks2=3520KN/m, Cs2=80 KN*s /m3).  

 

 

Figure 17. a) ballastless track FEM model b) vehicle model  

 

Τhe measurements at the monitored location along with the response history representing the 

numerically computed counterpart are illustrated in figure 18a. Additionally, the vertical accel-

eration of the rail at the monitored location has been calculated from the derivative of a cubic 

spline function interpolating the measured displacement history. The derived results are com-

pared with the model acceleration in figure 18b.  
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Figure 18.  Comparison of numerical and experimental response histories for the rail a) displacement and b) acceleration 

 

Although the train is expected to operate at a constant velocity of 160 km/h, the instantaneous 

velocity, however, slightly deviates. Thus, the response history has been appropriately modified 

in order to match a constant instantaneous velocity of 160 km/h.  

 

6. CONCLUSIONS 

A step by step reduced order procedure has been proposed for the simulation of the high-speed 

vehicle-track-subsoil interaction in the time domain. The proposed methodology incorporates a 

detailed yet computationally efficient representation of wave propagation, refraction and reflection 

phenomena within the semi-infinite subsoil domain while maintaining the global stability and pas-

sivity properties of the vehicle-rail-soil system. The procedure is verified in a numerical case study 

of a ballasted track founded on a multi-layered soil medium, where the rail response under pre and 

post critical velocity excitation is evaluated. Complementary verification is accomplished by direct 

comparison with measured response of an existing monitored ballastless railway track in Germany. 

The results demonstrate the efficiency of the proposed methodology. Additionally, the proposed 

method has been implemented by the authors in [40] in an extensive sensitivity analysis of coupled 

vehicle-track-soil systems where rail irregularities have been incorporated in the reduced analysis. 

Future work is essential to the expansion of the proposed method for the case of inelastic behaviour 

within the subsoil domain. 
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APPENDIX A 

Table I – parameter values, stiffness in (KN/m), damping constant in (KN*s/m), mass in (tn) 

Direct component Coupling component Parameter values 
Core component: 

K=14792.90, C=0, M=0 

m1=32.70, m2=2.17, m3=1.27 

c1,up=716.73, c2,up=0, 

c3,up=97.58 

c1,down=0, c2,down=154, 

c3,down=0 

k1=3293, k2=3230, 

k3=582487 

Coupling Component: 

Kc= 85470, Cc= 9482*, 

mc1= 6.88, mc2=0, mc3= 6.05 

cc1,up= 6885, cc2,up= 3169, 

cc3,up= 205.06 

cc1,down= 6.00, cc2,down= 8349, 

cc3,down= 4592.94 

kc1= 3752022, kc2= 46.59, 

kc3= 6000264.58  

Core component: 

The same as the model above. 

Coupling Component: 

Kcoupling=14792.90  

Ccoupling=0.016 

Core component: 

Ks= 14777, Cs= 853 

Kb= 970563, Cb= 480 

Coupling Component: 

Kcoupling= 85630.85 

Ccoupling=0.016

- 
Core component: 

Ks= 72700, Cs= 853 

Kb= 970563, Cb= 480  

* cross diagonal terms of Cc dashpot have positive sign instead of conventional negative

C 

K

c1,upc2,upc3,up

m1m2m3

c1,downc2,downc3,down

k1k2

k3

M

Cc
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cc1,upcc2,upcc3,up

mc1mc2mc3

Cc1,downcc2,downcc3,down

kc3 kc2 kc1
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K

c1,upc2,upc3,up
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