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ARTICLE

Social media usage reveals recovery of small
businesses after natural hazard events
Robert Eyre 1, Flavia De Luca 2✉ & Filippo Simini 1,3✉

The challenge of nowcasting the effect of natural hazard events (e.g., earthquakes, floods,

hurricanes) on assets, people and society is of primary importance for assessing the ability of

such systems to recover from extreme events. Traditional recovery estimates, such as sur-

veys and interviews, are usually costly, time consuming and do not scale. Here we present a

methodology to indirectly estimate the post-emergency recovery status (downtime) of small

businesses in urban areas looking at their online posting activity on social media. Analysing

the time series of posts before and after an event, we quantify the downtime of small

businesses for three natural hazard events occurred in Nepal, Puerto Rico and Mexico. A

convenient and reliable method for nowcasting the post-emergency recovery status of

economic activities could help local governments and decision makers to better target their

interventions and distribute the available resources more effectively.
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Post-event management is of interest to organisations that
deliver aid, provide insurance, and operate in areas affected
by natural hazards. The steps in disaster management

are categorised into phases, with previous literature identifying
anywhere from four to eight phases during the occurrence
of a natural disaster1. Of the four phases used by the Federal
Emergency Management Agency – mitigation, preparedness,
response and recovery2—recovery is the least understood and
investigated3.

Multiple indicators for the recovery process of an area have
been proposed4, with many of them focusing on economic
indicators of business activity thought to capture the long-term
efforts of a region to return to a normal state. In particular, we
refer herein to the recovery time as “downtime” relying on the
definition within the Performance-Based Engineering framework;
i.e., “the time necessary to plan, finance, and complete repairs on
facilities damaged in earthquakes or other disasters”5 and
applying the downtime concept to small businesses.

The definition of actual business downtime, i.e., the time in
which businesses are either closed or not running as expected, has
been debated strongly in the literature. Chang’s framework for
urban disaster recovery6 highlights three such definitions of
recovery; returning to the same level of activity before the dis-
aster, reaching the level of activity that would have been attained
without the disaster happening, or attaining some stable level of
activity that is different from these definitions.

Studies on long-term business recovery have been made using
large-scale economic indicators, such as the number of reported
businesses in Kobe City over a ten year period following the Kobe
City earthquake in 19956. These large-scale economic indicators
are not as readily available or relevant for natural hazard events of
a more moderate scale, inspiring the use of alternative statistics as
predictors for business recovery, such as changes in pedestrian
foot traffic7, manually reporting on when businesses closed and
opened8 and changes in parking transactions9, allowing for a
much smaller scale to be studied. However, surveys and tradi-
tional direct data sources of businesses downtime have either
been too costly or too inconvenient for widespread use.

Remote sensing has been shown to be vital in rapid damage
detection and relief efforts after natural disasters. For example,
the European Union’s Copernicus Emergency Management Ser-
vice and the Jet Propulsion Laboratory’s Advanced Rapid Ima-
ging and Analysis project use satellite imagery to provide
assessment of regions devastated by different types of events. The
main application of post-disaster satellite imagery is on emer-
gency response and large-scale damage estimation10, but as the
frequency of image collection is increased, studies on long term
recovery can be made. One such example is the study by Sher-
meyer on the long term recovery of the electrical infrastructure of
Puerto Rico following Hurricane Maria11.

Other efforts to estimate downtime using satellite imagery
include counting the number of vehicles in imagery collected by
Google Earth, correlating the presence of vehicles in business
zones to the activity of businesses12. This method requires to have
multiple satellite images of the region over time and may not be
reliable in regions with developed public transport links, where
the presence (or lack) of vehicles may not always correlate to
small businesses’ level of economic activity. A desirable secondary
source of data for downtime estimation should be more readily
accessible (easy and cheap to collect), have a high spatio-temporal
resolution and, in the context of natural disaster, be rapidly
obtainable. It is for these reasons that studies have turned to
social media as a source of indicators for damage estimation after
a natural disaster.

Social media data has been shown to be effective at rapidly
detecting the presence of disrupting events such as earthquakes

and floods, however the underlying process of social media use
during these situations is not completely understood13. The
micro-blogging service Twitter is often a source of related data,
due to the nature of the platform—only allowing short 280
character maximum (often geo-tagged) posts promotes the
exchange of informative data. Other social media and content
sharing websites have also been shown to exhibit correlating
behaviour to natural hazard events, such as the photo sharing
website Flickr14,15. Many current social-media methods rely on
sentiment analysis to filter messages by relevancy and quantify
the severity of response to an event13,16–20. These methods offer
rapid assessment of an event’s infancy and are useful tools for
understanding human behaviour during emergencies and to
improve the delivery of hazard information in a region.

Recently private companies such as Facebook have started to
look at how their own data can be used to support non-
governmental and humanitarian organisations in understanding
factors such as how people are displaced during natural disasters
over longer time periods21.

Mobile phone data has also been used to obtain insights on
human behaviour during emergencies. Bagrow et al.22 show that
mobile phone data can be used to identify how human behaviour
changes during periods of unfamiliar conditions, in a variety of
situations ranging from bombings to festivals. In the context of
natural disasters, the use of mobile phone records23,24 have been
used to measure population displacement after the 2015 Gorhka
earthquake in Nepal, where negative inflows were recorded in
Kathmandu for 56 days after the event25. One of the main lim-
itations of mobile phone data is that it is usually not publicly
available because of privacy concerns, hence obtaining mobile
phone records for a specific region is not always possible.

In this paper we show that downtime can be estimated in real
time using the public posts of local businesses on the social media
site Facebook collected before, during and after a natural hazard
event, without the need for natural language processing or
semantic analysis. In particular, we consider three events of dif-
ferent types (two earthquakes and one hurricane) which occurred
in countries with different indicators of socioeconomic develop-
ment (Nepal, Mexico and Puerto Rico). The locations of the
businesses collected in the three regions considered are shown in
Fig. 1a–c and the respective time series of the total number of
posts retrieved are shown in Fig. 1d–f.

Results
Facebook usage as an indicator of business downtime. On the
social media website Facebook, businesses can set up their own
pages to advertise and interact with users, with approximately 65
million local businesses pages created as of 201726. These business
pages include the latitude and longitude of the business, allowing
for the possibility of spatial analysis on the posts created in a
given region. We apply our framework to estimate the average
length of downtime of businesses in three different regions after
three natural hazard events: the 2015 Gorkha Earthquake in
Kathmandu, Nepal; Hurricane Maria in San Juan, Puerto Rico;
Chiapas Earthquake in Juchitán de Zaragoza, Mexico (Fig. 1a–c).
A rectangular bounding box containing each region of interest is
specified. Publicly available business pages within the specified
region were retrieved from Facebook via the Facebook Graph
API, searching over the bounding box with different radii to
maximise the number of found businesses. Once businesses’
pages had been collected from Facebook, an additional set of
queries were ran using the API to collect the time-stamps in
which each business made a post. It should be noted that a visible
post on a business page can be made by the owner of the business,
or a member of the public. For the purpose of this study, we only
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collected the messages made by the owner of the page. The raw
data consists of a list of posts and for each post two pieces of
information are known: the date when the post was published
and a unique ID of the business that made the post. The raw time
series of the total number of posts in each region are shown in
Fig. 1d–f. The number of businesses found in these regions and
the number of Facebook posts collected are reported in Table 1.

To gauge the impact of a natural hazard event on the
businesses within a specific region, we consider the businesses’
posting activity on Facebook. Specifically, we compare the time
series of number of posts of businesses in the time period after the
event with the typical posting activity before the event.

Once the data has been collected, the framework is composed
of two stages—data processing and downtime detection (Fig. 2).
In the data processing stage, the time series of the posting
activities are processed in order to remove trends and hetero-
geneous posting rates that are present in the raw data. In the
downtime detection stage we define an automatic method to
determine whether the posting activity presents anomalies, such
as a posting rate significantly lower than the average rate, and use
this to estimate the length of the downtime.

Data processing. We define the aggregated time series describing
the behaviour of the entire region, rðtÞ, as the time series of the
total number of posts made by all the businesses, B:

rðtÞ ¼
X
i2B

xiðtÞ ð1Þ

where xiðtÞ is the number of posts made by business i on day t.
Typically, the raw time series rðtÞ displays a reduced activity
during a period of time following a natural hazard event (see for
example Fig. 1d–f). However, it is difficult to estimate the sig-
nificance and the length of the downtime from the raw time series
because it is non-stationary. In particular, there is a general
increasing trend in the average number of posts, due to wide-
spread adoption to Facebook by local businesses over time.

Additionally, businesses have very different posting rates, with
some being up to two orders of magnitude more active than the

average. Such very active businesses can introduce significant
biases and lead to over or under estimate the activity level of the
entire region, when the overall number of businesses is small.
This is the case of the activity spikes in Fig. 1f in 2015, which are
caused by a very small number of businesses.

To account for these issues, we develop a method to transform
the raw time series into a detrended and rescaled series that
allows us to clearly identify the periods of anomalous activity and
measure their length. The methodology to process the time series
is composed of four steps: the single business probability integral
transform (PIT) and aggregation step, a shifting and rescaling
step, a step in which we correct for the mean and variance,
followed by the aggregated probability integral transformation.

The single business probability integral transform. The raw
time series of the posts of each business is transformed into the
time series of the corresponding “mid-quantiles”. Formally this is
obtained using a procedure similar to the PIT27. Let xiðtÞ be the
number of posts of business i on a given day t and let PXi

ðxÞ be
the empirical cumulative distribution function (CDF) denoting
the fraction of days of the current year when business i made less
than x posts. We define the corresponding mid-quantile for xiðtÞ
as qiðtÞ ¼ ½PXi

ðxiðtÞÞ þ PXi
ðxiðtÞ þ 1Þ�=2. We use the CDF of the

current year, instead of considering the business’ entire lifetime,
to take into account long-term changes in a business’ posting
behaviour. Using the mid-quantile variable q instead of the raw
number of posts x helps to reduce the bias due to outliers, for
example days with an unusually high number of posts, and the
bias caused by businesses with mean posting rates much higher
than the average. Aggregating the transformed data, we have the
time series

rPITðtÞ ¼
X
i2B

qiðtÞ ð2Þ

Shifting and rescaling. After the PIT, the mid-quantiles qiðtÞ are
expected to be uniformly distributed between 0 and 1. Under
normal conditions (i.e. non-emergency and non-holiday periods),
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we expect businesses to have independent posting activities.
Specifically, this is our definition of normal conditions: when
businesses’ posting activities can be considered independent
random variables. Hence, the aggregated transformed data rPITðtÞ
of Equation (2) is expected to follow the Irwin-Hall distribution,

which is the distribution of the sum of nðtÞ uncorrelated Uniform
random variables between 0 and 1. Here nðtÞ is the total number
of businesses with a Facebook account on day t. When nðtÞ is
large, the Central Limit Theorem ensures that the distribution of
rPITðtÞ is well approximated by a Normal distribution with mean
nðtÞ=2 and variance nðtÞ=12. Hence, by appropriately shifting
and rescaling each day of rPITðtÞ we define the time series

rNðtÞ ¼ ðrPITðtÞ � nðtÞ=2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðtÞ=12

p ð3Þ
whose distribution is a Standard Normal with mean 0 and variance
1 for all days t. To perform the transformation of Equation (3) we
have to estimate nðtÞ. The number of businesses with an active
Facebook account on a given day is estimated by recording the first

and last post date for each business i, denoted as tðf Þi and tðlÞi
respectively. We make the assumption that a business remains
active between these dates, plus a period of three more days to
be sure that it has closed. This period was chosen to give an
unbiased estimate of the number of active businesses at the tail end
of the data collected. Formally, we estimate the number of
businesses with an active Facebook account on day t as nðtÞ ¼
jfi : tðf Þi ≤ t ≤ tðlÞi þ 3gj.

Mean and variance correction. The assumption that the busi-
nesses’ posting activities are independent and the estimate of the
number of businesses on Facebook nðtÞ are reasonable, but may
not be perfectly exact. In fact, a small correlation between busi-
nesses’ posting activity may be present even during normal (non-
emergency and non-holiday) conditions and this would affect the
variance of rPIT . On the other hand, deviations in the estimate of
nðtÞ could also change the mean of rPIT . To correct for these
possible sources of bias, we fit and remove a linear trend from
rNðtÞ, so that its mean becomes zero, and we divide it by its
standard deviation, so that its variance becomes one. The
resulting corrected time series, ~rNðtÞ, for Kathmandu is shown in
Fig. 3c and those for the other regions considered are shown in
Supplementary Figs. 1 and 2.

Aggregated probability integral transform. Finally, we apply the
Probability Integral Transform to the aggregated time series of
normally distributed variables, ~rNðtÞ, to obtain a time series of
variables uniformly distributed between 0 and 1. This is done
using the CDF of the Standard Normal distribution, PN :

rUðtÞ ¼ PNð~rNðtÞÞ ð4Þ
The final time series rUðtÞ for Kathmandu is shown in Fig. 3d and
those for all the regions are shown in Fig. 4. The four steps of the
data processing for all the regions considered are shown in the
Supplementary Figs. 1 and 2.

To summarise, the outcome is a transformed time series
without any long-term trend and without bias towards highly
active businesses. Specifically, the methodology removes the long-
term nonlinear trend of aggregated posting activity, while
retaining the dynamics at short and medium time scales (i.e.,
weeks, months), and equally weights the contribution of each
business avoiding to over-represent the activity of businesses with
higher posting rates.

Downtime detection. The length of downtime of a system is
generally defined as the length of time during which it is not
operating as expected, i.e., the level of a given indicator of the
system’s performance or activity is significantly reduced6. In the
context of estimating the downtime of small businesses in a
region, we define the indicator of aggregated activity for the region
as the transformed time series of the number of posts made by all
businesses, rUðtÞ. The transformed time series rUðtÞ is a good

Table 1 Business data collected from Facebook in the three
regions considered. The locations of the businesses are
shown in Fig. 1a–c.

Region Number of
businesses

Number
of posts

Kathmandu, Nepal 11,818 1,182,878
San Juan, Puerto Rico 10,894 2,258,872
Juchitán de Zaragoza, Mexico 1728 62,999

D
ata collection

D
ata processing

Threshold detection, T *

Downtime detection, d *

D
ow

ntim
e detection

Fig. 2 Schematic for the proposed framework to detect downtime of
small businesses after natural hazard events. Data collection: The time
series of posting activity xiðtÞ for each business i is collected. Data
processing: The ‘mid-quantiles' of each series xiðtÞ are computed to
determine transformed individual time series qiðtÞ for each business i. The
aggregate time series rPITðtÞ is transformed by a shifting and rescaling to
have mean zero and variance one (~rNðtÞ). The probability integral transform
is then applied to form a final transformed time series rUðtÞ for the level of
activity in the region. Downtime detection: Threshold T� is found using the
elbow method to identify anomalous events. For a given event, the
downtime length, d� is determined.
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indicator of the aggregated activity of all businesses because it has
no long-time (yearly) trend and it equally weights the activity of
each business. To identify periods of significantly reduced aggre-
gated activity (i.e., downtime) we propose the elbow method,
which allows to determine a threshold on the level of activity, T�,
where activity fluctuations become unusually large. The length of

downtime is then estimated as the time taken for rUðtÞ to return
to a normal level of activity, above the threshold T�.

In normal conditions the transformed time series rUðtÞ is
expected to fluctuate uniformly within 0 and 1. In anomalous
conditions, for example when all businesses are closed after a
natural hazard event, their posting activities are instead highly
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correlated. In these cases, large fluctuations will be present in
rUðtÞ, which are the signature of an anomalous behaviour (i.e., a
period of downtime) that we would like to detect using the elbow
method described in the following. The length of downtime is
estimated considering the rolling weekly mean of the transformed
time series rUðtÞ. This is primarily to account for differing posting
behaviour over the course of a week (e.g., weekdays vs. weekends).

The elbow method. We define an event as a period of time when
the weekly mean of rUðtÞ is below a given threshold value, T , for
more than 7 consecutive days. The value of the threshold is set
using a method aimed at detecting all periods when posting
activity is significantly below the characteristic range of normal
activity fluctuations. This value is found using the following
elbow method. First, the number of potential downtime events
are recorded at multiple threshold values; the number of events
for a given threshold value is denoted as f ðTÞ and it is shown in
Fig. 3e for Kathmandu. Second, we identify the threshold value,
T�, at which the number of events begins to rapidly rise. This
point marks the transition between the size of activity fluctuations
due to anomalous events and the characteristic size of normal
activity fluctuations. We define T� as the abscissa of the point on
the “elbow” of function f ðTÞ, i.e. the value of T that maximises
the distance between f ðTÞ and the line connecting the origin to a
point on f such that its slope, θ, is maximum (see Fig. 3e):
T� ¼ argmaxTðθT � f ðTÞÞ. The dashed vertical line in Fig. 3e
denotes the value of T� for Kathmandu. The length of downtime
is estimated as the number of days from the event date in which
the rolling weekly mean of the transformed activity is below the
threshold T�. Given that we are using a weekly rolling mean to
detect the end and duration of the downtime, we expect our
estimates to have an uncertainty of around one week. Examples of
downtime detected using this method are shown as red vertical
bars in Fig. 4, where the thresholds T� are marked with red
dashed horizontal lines.

After applying the whole framework to the three regions that
we have considered, we see the events shown in Fig. 4; the start
date, end date and the length of downtime of all the events
detected are reported in Supplementary Tables 1–3. We find
downtime in Kathmandu (48 days), Juchitán de Zaragoza
(52 days) and San Juan (118 days) on the dates of their respective
natural hazard events. The following sections describe the three
natural hazard events and discuss the validation of our downtime
estimates. Finally, we show that our methodology can accurately
estimate the recovery status of businesses in real-time during the
weeks after natural hazard events.

Observed downtime in Kathmandu. The 2015 Gorkha earth-
quake was one of the worst natural hazard events in Nepalese
history, killing around 9,000 people, and injuring nearly 22,000
people. It occurred on April 25th, with a magnitude of Mw 7.8. Its
epicentre was located 77 km North West of Kathmandu (east of
the Gorkha district). Hundreds of aftershocks were reported
following the earthquake, five of which registered Mw above 6.
The most notable aftershock occurred on the 12th of May, killing
a further 200 people and injuring a further 2500. 8.1 million
Nepalese citizens were thought to be affected by the earthquake28.
The event affected the whole country, with notable damage to
historical buildings in the northwestern part of Kathmandu29.

Our method estimates a downtime of 48 days over the entire
city of Kathmandu after the Gorkha earthquake in 2015 (see
Fig. 4a). We detect shorter downtimes in other times of the year,
further supporting the validity of our method (see Supplementary
Table 1). Indeed, the majority of the Nepalese people (84.7%)
practice Hinduism and celebrate multiple festivals throughout the

year. The main festival, Dashain, is celebrated for two weeks in
September or October and is of such importance to the religious
and cultural identity of the country, that businesses and other
organisations are completely closed for 10 to 15 days to celebrate.
As a result, we detect downtime during Dashain for each year in
which we have data.

Observed downtime in San Juan. Puerto Rico, along with
Florida and the US Virgin Islands, was hit by a Category 5
hurricane on September 20th, 2017 causing significant damage to
infrastructure30, affecting 100% of the population31, with an
estimated 45% of islanders being without power for three months
after the event32. Hurricane Maria is estimated to have caused $94
billion in damage, with as many as 60,000 homes still lacking
roofs as of December 201733. As of August 2018, the Federal
Emergency Management Agency (FEMA) have approved 50,650
loans to small businesses proving $1.7 billion to aid in recovery,
in total obliging $21.8 billion in relief efforts31.

Our method estimates a downtime of 118 days in San Juan
after hurricane Maria (see Fig. 4b). This can be split into
downtime from the hurricane (104 days), and downtime from the
Christmas to New Years period (14 days). In fact, in San Juan, we
find other shorter periodic downtime periods each year between
Christmas and New Year (see Supplementary Table 2). Compared
to Nepal, Puerto Rico has a majority Christian population, which
explains the downtime observed during the Christmas period.

Observed downtime in Juchitán de Zaragoza. The 2017 Mw 8.2
Chiapas earthquake was the second strongest earthquake recor-
ded in Mexico’s history (and most intense globally in 2017),
triggered in the Gulf of Tehuantepec, just off the south coast of
Mexico. Multiple buildings in the city closest to the epicentre,
Juchitán de Zaragoza, were reduced to rubble with people
sleeping outdoors due to fears of further damage34. The main
hospital in Juchitán also collapsed causing severe disruption to
medical services in the area, with 90 reported dead in Mexico.
Food shops were also affected, with prices rises due to closures,
and fears from looting causing more closures. According to local
authorities, roughly 30% of houses were damaged in the earth-
quake. This is probably aggregated by the lack of earthquake
resilient houses, predominantly made of adobe block with con-
crete bond beam and mud wall constructions35.

Our method estimates a downtime of 52 days in Juchitán de
Zaragoza after the Chiapas earthquake (see Fig. 4c). Other shorter
downtime periods are detected that may be due to religious and
national holidays, but these attributions are uncertain due to the
noisier time series (see Supplementary Table 3).

Validating observed downtimes. We use a variety of validation
sources of the actual downtime (see Table 2): text analysis, sur-
veys, official reports and scientific publications. We find that they
all agree on similar downtime estimates that are compatible with
the estimates of the proposed framework. Each validation source
is described in the Methods.

Downtime detection in real-time. The proposed system can be
applied in real-time giving estimates of the recovery status during
the weeks immediately after an event. We simulate the collection
of data in real time by cropping our data in the weeks following
the event and we calculate dRTðtÞ, the real-time estimate of the
downtime t days after the event, using just the posts published
until day t. Results for Kathmandu are shown in Fig. 5, for the
other regions see Supplementary Figs. 3 and 4. To evaluate the
accuracy of the real-time estimate, we measure the root mean
squared distance (RMSD) between dRTðtÞ and the ideal
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downtime, dðtÞ ¼ minðt; d�Þ, where d� is the downtime esti-
mated using all data (d� ¼ 48 days for Kathmandu). Computing

the RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd�

t¼0ðdRTðtÞ � dðtÞÞ2=d�
q

from the date of the
event t ¼ 0 until t ¼ d�, i.e. for a time period of the length of the
actual downtime from the date of the event, we obtain 1.94, 1.34,

3.16 days for Kathmandu, San Juan and Juchitán de Zaragoza
respectively. In all cases the errors are within the method’s
accuracy of plus/minus one week, demonstrating the possibility to
obtain accurate real-time estimates of downtime. The error is
larger in Juchitán de Zaragoza because of the larger fluctuations
of the estimates due to a lower number of businesses.

Table 2 Validation sources for the proposed framework. Downtimes estimated with the proposed framework (Estimated
downtime) for the three natural hazard events considered, along with the downtimes reported by the various validation sources
described in Methods.

Region and Event Source Downtime Length

Kathmandu, Nepal Estimated downtime 48 days
Gorkha Earthquake Business surveys, from12 41 days

Kathmandu Post Disaster Needs Assessment41a 37 days
Mobile phone data, from25 56 days
Facebook posts text analysis (n= 299) 51 days

San Juan, Puerto Rico Estimated downtime 118 days
Hurricane Maria Satellite imagery, from11,37 134 days

Puerto Rico Tourism Companyb 97 days
U.S. Energy Information Administrationc 128 days
Facebook posts text analysis (n= 755) 71 days

Juchitan de Zaragoza, Mexico Estimated downtime 52 days
Chiapas Earthquake Facebook surveys (n= 16) 63 days

Facebook posts text analysis (n= 19) 55 days

a“The earthquakes and series of continuing aftershocks led to the complete closure of schools and colleges for 37 days” (https://www.nepalhousingreconstruction.org/sites/nuh/files/2017-03/PDNA
%20Volume%20A%20Final.pdf).
bhttps://tourism.pr.gov.
chttps://www.eia.gov/electricity/monthly/.
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Discussion
A framework has been proposed to determine the recovery status
of small businesses in the aftermath of natural hazard events
through the analysis of the businesses’ posting activity on their
public pages on the social media site Facebook. The framework
relies on the assumption that businesses tend to publish more
posts when they are open and fewer when they are closed, hence
analysing the aggregated posting activity of a group of businesses
over time it is possible to infer when they are open or closed.

The methodology is tested in three case studies, where it suc-
cessfully estimates the downtime of businesses in three urban
areas affected by different natural hazard events: the 2015 Gorkha
earthquake in Nepal, the 2017 Chiapas earthquake in Mexico and
the 2017 hurricane Maria in Puerto Rico. We validate our esti-
mations using various data sources: field surveys, official reports,
Facebook surveys, Facebook posts text analysis and other studies
available in literature.

Our results demonstrate that the posting activity of small
businesses on social media can be used to estimate the recovery
status of regions hit by natural hazard events in real time. The
methodology has general applicability: it works for different types
of natural hazards (earthquakes and hurricanes) and for regions
in different continents, in both developed and developing coun-
tries. The proposed framework offers several advantages with
respect to other methods to estimate long-term post-disaster
economic recovery: it is cheaper and more scalable than tradi-
tional field surveys, it is privacy-compliant because it is not based
on sensitive personal data, and it is significantly easier to
implement than methods based on text and sentiment analysis of
social media content.

The proposed methodology has the potential to be of interest
to various stakeholders aiming to provide support to regions hit
by disasters, including local and national governments, interna-
tional financial institutions, and humanitarian organisations. A
possible application is the automatic identification of areas whose
recovery appears to be lagging behind, in order to deliver help
and support where it is most needed.

The construction of an automatic system to detect downtime in
various regions is possible because of the method’s unique fea-
tures, which make the proposed framework highly scalable: global
coverage, as the method has no intrinsic geographic coverage
limitation and is applicable to any region where enough busi-
nesses are active on social media; and easy implementation, as it
generates real-time downtime estimates completely automatically,
without the need to make any ad-hoc or manual adjustment to
the algorithm.

Like in all studies based on social media data, it is important to
remark that such data may not necessarily represent all of a
population evenly36. In fact, some businesses may not have a
social media account and the group that does have it may not be
representative of the entire business population. When using the
proposed methodology to draw conclusions on the degree of
impact in different regions, particular attention should be taken
to ensure to have a representative sample of the businesses in the
region. Should that not be the case, the downtime for the type of
businesses not represented in the data set should be estimated
using other methods.

The proposed methodology for the detection of anomalous
events in non-stationary time series is of general applicability to
all cases where the main signal is composed by the aggregation of
a large number of individual components, for example phone
users’ calling activities or internet users’ visits to web pages.

Methods
Facebook posts text analysis. Text analysis of social media content has been
previously used to assess the impact of natural hazards on different

communities13,36. We employ a text analysis method to obtain information
about the reopening date of the businesses looking at the content of their
messages on Facebook. We compute the average reopening times reported by
firstly sampling posts following each natural hazard event. We look at posts
published up to five months from the date of the event (six months in San Juan).
We sampled 40,946 posts in Kathmandu, 94,611 posts in San Juan and 4536
posts in Juchitán de Zaragoza respectively. Next we determinined a set of
keywords that indicate that a business has reopened. We select all messages
containing the words: ‘open again’, ‘reopen’, ‘normal’ and ‘regular’, in English,
Spanish and Nepalese. For each business in our sample, we estimate its
reopening date as the date of the first post that contains one of the selected
keywords. The overall average downtime is defined as the average of the
durations it took for businesses to reopen.

This method is applicable to all three regions considered. Our downtime
estimates using Facebook posts text analysis are: 51 days for Kathmandu, 71 days
for Puerto Rico and 55 days for Juchitán de Zaragoza. The text analysis’ results for
Kathmandu and Juchitán de Zaragoza are very similar to the lengths of downtime
estimated with our method, while a shorter downtime is obtained for San Juan.
Some limitations of the text analysis for estimating the downtime are discussed in
Supplementary Note 1.

Research field data. Surveys from four areas in Kathmandu were used to
verify the downtime found in this region. These surveys were part of a research
field mission in 2016 to examine the extent of the earthquake damage, with
regions chosen that vary in population density, construction methods and
traffic concentration12. These surveys record the length of downtime for each
business, along with the reason for closure. The mean downtime reported by the
businesses surveyed is 41 days (see Supplementary Table 4, Supplementary
Fig. 5).

Official Nepalese government reports. Following the earthquake in Kathmandu,
the National Planning Commission of Nepal released two “Post Disaster Needs
Assessment” reports. The first report (Volume A: Key Findings) reports 37 days of
closure for schools and colleges in the region.

Mobile phone data. A research study25 used mobile phone trajectories to recon-
struct mobility flows among cities in Nepal following the earthquake. This study
reports that after approximately 56 days, the number of people returning to
Kathmandu was greater than the number of people leaving Kathmandu.

Satellite imagery data. A research study11 measured the change of brightness in
satellite images over time to assess electrical and infrastructure recovery around
Puerto Rico. We use data11,37 provided by the author of this work to validate our
methodology by applying the elbow method to this data, returning 134 days of
downtime in which brightness was significantly reduced (see Supplementary
Fig. 6a).

Tourism data. To validate the downtime found in San Juan, historical tourism data
has been retrieved from the Puerto Rico Tourism Company38, listing the cruise
passenger movement in port in Old San Juan. Applying the elbow method to this
data returns 97 days of downtime in which tourist arrivals were significantly
reduced (see Supplementary Fig. 6b).

Energy usage information. The Energy Information Administration provides
detailed usage statistics of energy in the United States. We look at the amount of
bought electricity by the state of Puerto Rico and apply the elbow method to this
data, returning 128 days of downtime in which energy usage was significantly
reduced (see Supplementary Fig. 6c).

Facebook surveys. We sent a survey to 52 of the businesses found via Facebook in
Juchitán de Zaragoza, asking the question “Were you affected by the earthquake,
and if so, for how long were you closed?”. With a response rate of 30% (16
responses), the average closure time reported is 63 days.

Sensitivity analysis. The reported downtime for each region was calculated using
all of the collected businesses that had posted at least once. We tested the sensitivity
of our method to the overall number of businesses considered, including only
busineses that posted one year before the event (see Supplementary Note 2, Sup-
plementary Fig. 7). We observe that the methodology gives consistent estimates
when the number of businesses considered is large (i.e. thousands), whereas the
length of downtime might be underestimated if the number of businesses con-
sidered is small. We verified this in Nepal and Puerto Rico, by randomly sampling
a subset of businesses and computing the average length of downtime over 1000
realisations as a function of the sample size (see Supplementary Fig. 8). Results are
more consistent for large samples because of the law of large numbers: as the
number of businesses increases, the empirical averages of the variables that we
define in our methodology (e.g., rðtÞ, rPIT ðtÞ) tend to their expected values and the
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downtime’s estimate becomes more robust. Moreover, because of the central limit
theorem, the rescaled distribution rN ðtÞ is well approximated by a normal dis-
tribution only when the number of businesses is large. However, establishing a
precise relationship between the number of businesses and the average downtime is
difficult because that estimate depends not only on the number of the businesses
but also on other factors, such as their geographic density and mean posting rate.
Indeed, to assess to what extent the estimate of downtime depends on the posting
activity of the businesses, we filtered businesses by their daily posting rate and by
the total number of posts they have made. The results reported in the Supple-
mentary Tables 5–7 show that the overall downtime of the region is not affected by
the filtering, except in cases of very high thresholds. In particular, we note that we
can obtain an accurate estimate of the downtime with a small number of businesses
(few hundreds) that post frequently (e.g., more than once per week).

Data availability
Data to reproduce the results presented in this paper can be found at https://github.com/
roberteyre/Business-Recovery. In order to preserve the privacy of the businesses
considered, we applied the following procedure to anonymise the data. First, we
substituted the real Facebook ID of each business with an integer number. Second, we
added a random noise uniformly distributed in ½�2;þ2� days to the actual date of each
post. While this procedure prevents the simple reidentification of a business based on the
exact dates of its posts, it does not change the posting pattern on temporal scales longer
than one week, which is the time resolution of our study. As a result of the addition of
random noise to the posting date, the results may be slightly different from those
reported here.

Code availability
Code to reproduce the results presented in this paper is available at https://github.com/
roberteyre/Business-Recovery.
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