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Abstract

The effect of uniform inclined flow suction on an equilibrium turbulent boundary layer developing over a flat

plate is experimentally investigated for aeroacoustic purposes. Simultaneous measurements of streamwise

velocity with hot-wire anemometry, and surface pressure fluctuations using flush-mounted microphones were

performed at various locations downstream of the flow control treatment. The paper discusses the effects

of flow suction on the turbulent quantities describing the boundary layer, and the associated hydrodynamic

pressure field to assess the effects of flow suction on trailing edge noise generation. Two parameters were

varied, the inclination of the flow suction velocity (α) and the flow suction severity (σ). The former is the

angle of flow suction with respect to the free-stream flow (α = 30◦, 50◦, 70◦ and 90◦), while the latter is the

ratio of momentum deficit within the boundary layer to the momentum of flow suction (σ = 2.5−9.1). Flow

suction reduces the height of the boundary layer, which results in an increase of mean shear. The flow energy

content within the boundary layer is reduced by suction with the most significant amount of reduction is

observed within the logarithmic region. A moderate energy increase is observed in the buffer layer. These

effects strengthen with growing suction severity until σ ≈ 6. Above this point, no further changes are

observed in the turbulent quantities. The reduction in the size and energy content of the logarithmic layer

is responsible for the reduction of the surface pressure fluctuations at mid-frequencies, while the increased

energy content in the buffer layer increases the pressure spectral content at high frequencies. The estimates

of the far-field trailing edge noise show that flow suction leads to a noise reduction at mid-frequencies with

penalties observed at low and high frequencies. Flow suction at an angle of α = 70◦ and σ ≈ 6 exhibits the

best performance in reducing the estimated far-field overall noise levels. Above this point, further increasing

the flow suction severity does not provide any additional noise reduction benefits.
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1. Introduction

The increasing demand for renewable energy has resulted in a dramatic growth of wind farms over the past

few decades. However, stringent regulations on the noise pollution in several countries pose strict limitations

to the allowed acoustic emissions of on-shore wind farm installations. This makes the reduction of wind

turbine noise an urgent engineering task. Trailing edge (TE) noise in particular, which is aerodynamically

generated when an aerofoil is in relative movement inside of a fluid [1–3], is the dominant noise component

emitted by wind turbine blades [4, 5].

The physical understanding of TE noise and its modeling have been the object of several investigations,

with the ultimate goal of developing techniques for its reduction. It was shown that as the hydrodynamic

pressure field associated with the turbulent boundary layer passes over the TE, the pressure field scatters

into sound in a dipole manner [1–3, 6, 7]. As a result of extensive research on TE noise during the 70s

and the 80s, analytical [3, 6, 8, 9] and empirical [1] noise models became robust tools to predict the TE

noise. Nonetheless, the development of flow control techniques for noise reduction only relying on analytical

modelling is a rather challenging task. In addition, analytical models should be somehow validated [10].

Recently, computational fluid dynamics (CFD) and large-eddy simulations were used to predict the far-

field noise in a number of studies [11–14]. However, due to the rather high Reynolds numbers, in the

order of millions, associated with wind turbine blades, the numerical estimation of far-field TE noise is still

computationally unfeasible. As a result, wind tunnel testing is often the only available resource to assess

the noise emission levels of wind turbines, and to develop TE noise reduction strategies.

In general, two families of flow control techniques exist that can attenuate the far-field TE noise, namely,

passive and active techniques. Changes introduced to the geometry of the TE can be classified as passive noise

reduction techniques. Serrated trailing edges are one of the most widely studied passive TE noise reduction

methods [10, 15–21], where the geometry of the straight trailing edge is most often replaced by triangulated

wedges. These wedges were observed to scatter sound to the far-field at a reduced efficiency compared to

straight trailing edges [20]. Further examples of passive techniques are TE brushes [22, 23], porous materials

[24–30], surface treatments [31–35], shape optimization, and morphing [36]. Overall, the passive techniques

are relatively simple and inexpensive, and their noise reduction performance can often be optimized for a

given range of operating conditions (Reynolds number, angle of attack, etc.). Active techniques, on the

other hand, introduce changes to the boundary layer flow to reduce the energy content of the hydrodynamic

pressure field. Active techniques can offer higher aeroacoustic performance than passive techniques, and they

can be tailored to changes of the working conditions. Their main drawback is that they require a supply
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of external energy, which needs to be kept conveniently low to sustain efficient operation [37, 38]. While

passive techniques received a high research interest over the past decades [10, 20, 29, 35], active techniques

are still in their early stages of development [4, 5, 39–43]. It has been shown that active techniques can

reduce the TE noise [5], but our understanding of their underlying noise reduction mechanism is still modest

and superficial. Flow suction, which is utilized in this work as an active noise control technique, has been

studied by Wolf et al. [5], Lutz et al. [39], Matera [40] and Arnold et al. [4, 41]. These works confirm that

flow suction can reduce the TE noise of up to 5-10 dB, which over-performs the noise reduction capabilities

of the passive techniques. Shedding light on the mechanism that drives the reduction of TE noise could lead

to a significant improvement in the performance of flow control techniques.

Understanding the effects of flow suction on boundary layer turbulence is essential to utilize it efficiently

as an active noise control technique. In their pioneering study, Antonia et al. [44] observed that flow suction

increases the stability of the longitudinal coherence of the large-scale low-speed streaks within the turbulent

boundary layer. Their dye flow visualizations revealed that flow suction reduces the average frequency of

dye ejections from the wall into the outer region of the turbulent boundary layer. This effect is an indication

of reduced turbulent activity within the boundary layer. Their work was followed by a series of experimental

and numerical investigations on the effect of concentrated flow suction from a turbulent boundary layer at

low Reynolds numbers, see Antonia et al. [45], Oyewola et al. [46–48], Park and Choi [49] and a more

recent work of Kametani et al. [50]. These studies [45–48, 50] covered a wide range of suction rates (σ),

which they defined as the ratio of momentum flux of flow suction and momentum flux of the boundary

layer. A number of studies [46] reported that flow suction can re-laminarise the boundary layer at moderate

momentum thickness Reynolds numbers (Reθ < 660). At higher Reθ and severe suction rates (σ > 5.5),

however, a clear indication of a laminar boundary layer was not observed [45–48], and the boundary layer

at this state was described as pseudo-laminar.

The pioneering numerical work of Park and Choi [49] shed more light on the flow behavior downstream

of the flow suction slit. Their direct numerical simulations showed that uniform flow suction can bring

streamwise vortices closer to the wall, which then increases viscous diffusion. This effect resulted in the

break-up of the turbulent structures and the reduction of turbulence intensities and Reynolds shear stresses

downstream of the flow control section. They showed that downstream of the flow suction slit, the boundary

layer thickness increases as an effect of momentum deficit within the boundary layer. Further downstream,

they reported a drop in the boundary layer integral quantities. In general, the majority of the previous

studies [44–50] focusing on boundary layer turbulence downstream of flow suction reported a flow suction
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severity rate at which a saturation in the studied turbulence parameters was observed. Overall, the studies

on flow suction reviewed here suggest that the flow suction area shall be placed upstream of the trailing

edge in order to utilize its favorable effects on boundary layer turbulence.

In the present work, we assess the effects of flow suction on a turbulent boundary layer from an aeroa-

coustic point of view. Flow suction was applied upstream of the TE on a zero pressure gradient flat plate

test rig. Signals were simultaneously acquired from a single sensor hot-wire probe and a number of flush

mounted microphones, which were both positioned at the same streamwise location. These measurements

were used to estimate the necessary physical quantities for the prediction of the far-field noise through

Amiet’s model [3], and therefore, the aeroacoustic performance of flow suction. As a secondary goal, we

intend to clarify the relationship between the turbulence characteristics of the flow and the resulting surface

pressure fluctuations at the TE, which are the main responsible quantities for far-field noise emission. This

approach can reveal the underlying mechanism of how flow suction can reduce the TE noise.

2. Experimental Approach

Experiments were conducted on a zero pressure gradient flat plate test rig in the open-jet wind tunnel

of the University of Bristol. The closed-loop wind tunnel has a circular nozzle with a diameter of 1.1 m,

and a 2 m long test volume where it is capable of producing flow speeds up to 26 m/s with incoming flow

turbulence intensity below 0.5 %. The flat plate test rig has a length of L = 1 m and a width of W = 0.7 m,

and it ends in a sharp (12◦) TE, see Fig. 1. An 80-grit sandpaper was mounted immediately after the plate

semi-elliptical leading-edge to trigger the development of the turbulent boundary layer on the surface of the

plate. Downstream of the flow tripping, the boundary layer passes over the suction area, where flow suction

is applied in an open-loop manner of control. The rig is instrumented with flush-mounted microphones

downstream of the flow suction area. Tests were carried out at the uniform flow velocity of u∞ = 15 m/s,

corresponding to a Reynolds number of ReL = 106 based on the length of the plate (ReL = u∞L/ν).

2.1. Test Rig and Instrumentation

During the measurement campaigns, the surface pressure fluctuations and the streamwise component

of the velocity were measured simultaneously in the vicinity of the TE (see Fig. 1) at locations BL1, BL2

and BL3 located 99, 58.5 and 4.5 mm upstream of the trailing edge, respectively. Flush-mounted Knowles

FG-23329-P07 type microphones were used for the measurement of the surface pressure fluctuations. A

total number of 21 pressure transducers were positioned along the streamwise and the spanwise directions,
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Figure 1: Schematics of the test rig and the simultaneous velocity and surface pressure measurements performed at locations
BL1, BL2 and BL3, corresponding to x/δ0 =, 0.6, 1.8 and 4, respectively.

and in the vicinity of the TE, see Fig. 1. The streamwise component of the velocity was measured with

hot-wire anemometry, to characterise the boundary layer flow downstream of the flow suction area. The

Dantec 55P16 type single-sensor hot-wire probes were operated by a Dantec StreamWare Pro CTA91C10

module. The hot-wire probe was positioned above the flush-mounted microphones (see Fig. 1), and it was

traversed along the wall-normal direction (y) using a ThorLabs LTS300/M stage which has a positioning

accuracy of 5 µm. Data from the microphones and the hot-wire sensor were acquired using a National

Instruments PXIe-4499 system at a sampling rate of 216 = 65, 536 Samples/s for a time span of 16 seconds

at each measurement location. Data processing was performed with the use of Python’s SciPy package. For

a more detailed description of the test rig, measurement apparatus, and the detailed quantification of the

baseline case we refer to Refs. [42, 51, 52].

In the current work, the boundary layer properties are defined as follows. The boundary layer thickness,

δ, is the distance between the wall (y = 0) and the location where the mean velocity (u(y)) reaches 98 % of

the free-stream velocity, i.e. u(y = δ) = 0.98u∞. The boundary layer displacement thickness, δ∗, is obtained

through the numerical integration of

δ∗ =

∫ δ

0

(
1− u(y)

u∞

)
dy. (1)

The boundary layer momentum thickness, θ, is calculated in a similar manner as δ∗ using

θ =

∫ δ

0

u(y)

u∞

(
1− u(y)

u∞

)
dy. (2)

In addition, the subscript 0 refers to properties of the undisturbed boundary layer obtained at location BL1.
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2.2. Flow Suction Parameters

Inclined flow suction is applied upstream of the sharp TE to perturb the boundary layer flow. In order

to incline the flow suction, a honeycomb structure is installed within the surface of the plate, see Fig. 1.

The size of the pores in the honeycomb structure are 5 mm × 5 mm, the thickness of the edges between the

neighbouring cells is 0.5 mm, and the overall thickness of the honeycomb structure is 10 mm. Inclining the

pores of the honeycomb structure ensures an inclined flow suction velocity (uAFC) with respect to the free-

stream flow (u∞). Four different inclination angles (α) are considered in this work, namely, α = 30◦, 50◦, 70◦,

and 90◦. The honeycomb pores were oriented towards the upstream direction thus creating a favorable

condition for the boundary layer flow to enter the flow suction area, see Fig. 1. The suction area was

covered by a wire mesh to ensure that the surface of the flow control section remains smooth. The wire

mesh was made of square weaved stainless steel with a filament diameter of 0.1 mm and pore size of 0.2 mm.

Preliminary measurements showed that the described configuration of the flow suction unit did not introduce

any additional perturbation to the boundary layer.

The velocity of the flow suction (uAFC) was measured using hot-wire anemometry with the sensor

positioned at a distance of approximately 1 mm from the surface of the flow suction area. A radial fan,

whose power was computer controlled, enabled us to smoothly adjust the flow suction velocity. From this,

the flow suction velocity (uAFC) was obtained and used to determine the flow control severity, σ. The flow

control severity relates the momentum deficit of the boundary layer to the momentum of the flow control

system. According to Antonia et al. [45], the flow control severity (σ) can be quantified as follows:

σ =
uAFCb

u∞θ0
= CQ

b

θ0
, (3)

where uAFC is the magnitude of the mean flow control velocity, b = 30 mm is the streamwise length of the

flow control section, u∞ is the velocity of the free-stream flow, θ0 = 2.6 mm is the momentum thickness of

the non-disturbed boundary layer and CQ = uAFC/u∞ is the mass flow coefficient.

Figure 1 gives the geometrical description of the rig and provides the definition of the coordinate system.

The coordinate system consists of the streamwise (x), the wall-normal (y), and the spanwise (z) directions,

and its origin is at the mid-span of the plate, at the downstream edge of the active flow control section.

Two different sets of measurements were performed. In the first set of measurements, signals from

all flush-mounted microphones were simultaneously recorded for a wide range of flow suction velocities

(uAFC = 0.2 − 0.9u∞) and flow control angles (α = 30◦, 50◦, 70◦ and 90◦). During the second set of
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measurements, the streamwise velocity was measured with hot-wire anemometry along the whole wall-normal

span of the turbulent boundary layer thickness, at three different streamwise locations, marked as BL1, BL2

and BL3, see the dashed lines in Fig. 1. At BL1, BL2 and BL3, the streamwise velocity and surface pressure

fluctuations were recorded simultaneously to develop a comparative analysis of the turbulence characteristics

and of the surface pressure fluctuations. Measurements of surface pressure fluctuations were made with the

microphones marked by m1, m2 and m3 in Fig. 1.

2.3. Amiet’s Trailing Edge Noise Model

The direct measurement of the far-field TE noise requires the use of an anechoic wind tunnel. Nonetheless,

several physical models were developed in the last few decades [1, 3, 8], which estimate the far-field noise from

the flow characteristics. According to these models, pressure and velocity measurements from conventional

wind tunnels can be used as input parameters for the aforementioned models to confidently estimate the

far-field TE noise. In the current work, Amiet’s model [3] was used.

Amiet’s model states that the noise (Spp) at the far-field distance from the TE center-line of the flat

plate (x, y, z = 0), can be estimated with the following equation:

Spp(x, y, z = 0, f) =

(
fLy

4πc0ξ2

)2
W

2
|L|2 Λz(f)φpp(f), (4)

where f denotes frequency, c0 is the speed of sound, ξ2 = x2 + (1 − u∞/c0)2y2 is the convection-corrected

far-field observer position, L is the length of the plate (chord), W is the width of the plate, L is the gust

response transfer function [53], Λz and φpp are, respectively, the spanwise extent of the turbulent structures

within the boundary layer, and the power spectrum of the surface pressure fluctuations near the TE. Amiet’s

model works under the assumption of stationary turbulence. A more detailed description and the derivation

of the model is given by Amiet [3, 6]. According to Amiet’s model, the product Λzφpp drives the far-field

noise emission. Therefore, the reduction of this product is the ultimate goal of every noise attenuation

technique.

The surface pressure power spectrum (φpp) was directly measured in the current work, while the spanwise

extent of the turbulent structures (Λz) could be calculated from surface pressure fluctuations as follows [3]:

Λz(f) =

∫ ∞
0

√
γ2z (f, ζ)dζ, (5)

where γ2z (f, ζ) represents the spanwise cross-spectrum of surface pressure fluctuations acquired from two
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microphones located in the proximity to the TE, with a spanwise separation distance of ζ = ∆z. The

cross-spectrum (coherence) could be interpreted as the spanwise extent of turbulent structures. In the

current work, the spanwise coherence was measured at a streamwise distance of 0.4δ0 upstream the TE, see

Fig. 1. At this streamwise location, the thickness of the trailing edge is sufficiently large to fully embed the

microphones into the rig, therefore they do not introduce any disturbances to the flow traveling below the

plate. To calculate the spanwise coherence at different ∆z, microphone signals acquired at three spanwise

spacings were considered, namely at ∆z/δ0 = 0.12, 0.26 and 0.38, from the array of spanwise pressure

transducers located at x/δ0 = 3.6, near the TE. From this, the estimation of Λz was possible from Eq. (5)

using a trapezoidal integration scheme.

3. Results

In this section, the aeroacoustic performance of flow suction is firstly investigated by estimating the far-

field noise as predicted using Amiet’s TE noise model [3]. Secondly, we focus on the changes that flow suction

produces to the turbulence statistics within the boundary layer (BL). Moreover, we intend to quantify how

the variations of the turbulence statistics from flow suction impact the hydrodynamic pressure field. The

effects of these variations on the observed far-field TE noise generation are the ultimate object of the present

investigation.

3.1. Estimates of Far-field Noise

According to Amiet’s model [3], the product between the surface pressure spectra (φpp) and the spanwise

extent of the turbulent length scales (Λz) drives the generation of far-field TE noise. The surface pressure

spectra was measured in the close vicinity of the TE using microphone m3, see Fig. 1. The spanwise extent

of the turbulent length scales was obtained as described in Section 2.3. From this, we obtained the predicted

far-field TE noise using Amiet’s model [3].

Figure 2 presents the far-field noise (Spp) estimated using Amiet’s model 1 m above the TE, for all

considered cases of α and σ. For all cases, the harmonics observed above 400 Hz are a result of Amiet’s

trailing edge noise model. In particular, the gust response transfer function (|L|2) provides the shape of the

far-field noise results.

Overall, flow suction shows a significant reduction of the far-field noise (Spp) at mid-frequencies and a

mild increase at low and high-frequencies. For α = 30◦, the frequency band where a reduction is observed

ranges between 200 Hz and 1-2 kHz. The extent of the frequency band where noise attenuation is obtained
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Figure 2: Estimation of far-field noise at flow control angles (a) α = 30◦, (b) α = 50◦, (c) α = 70◦ and (d) α = 90◦ using
Amiet’s noise model with the observer located at a vertical distance of 1 m above the TE.

enlarges with increasing flow suction severity, σ. On the other hand, the range of low frequencies where flow

suction fails remains invariably confined to frequencies lower than 200 Hz, independent of the flow control

severity (σ) and of the angle (α). Therefore, the frequency range where a reduction of the estimated far-field

noise is achieved increases with increasing σ. The increase in the predicted far-field noise at low frequencies

will be further investigated in Section 3.3. When comparing Fig. 2(c) and 2(d), i.e. flow suction at α = 70◦

and α = 90◦, it can be seen that flow suction at α = 70◦ is more efficient in reducing the far-field noise than

at α = 90◦.

Additionally, the far-field noise was also calculated for an observer located at 1 m radius from the TE

with varying polar angles of θ = 0◦ − 180◦. The estimated overall sound pressure level (OASPL, dB) was

calculated by integrating Spp over the frequency range of 100− 10, 000 Hz, which is the frequency range of

operation for the flush-mounted microphones used in this study. Results are shown in Fig. 3, at different

polar angles, Θ. In general, an abatement of OASPL is observed when flow suction is applied (σ > 0). This
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Figure 3: Estimation of far-field noise overall sound pressure level at flow control angles (a) α = 30◦, (b) α = 50◦, (c) α = 70◦

and (d) α = 90◦ using Amiet’s TE noise model with the observer located at different polar angles with a radial distance of 1 m
above the TE.

indicates that the broadband noise reduction at mid-frequencies is dominant, see Fig. 2. In agreement with

Spp, as the flow suction severity (σ) and flow control angle (α) grow, the OASPL undergoes a decrease. Flow

suction at α = 70◦ offers the best performance in reducing the OASPL levels, where up to 5 dB of noise

reduction is estimated when σ > 6. Above this threshold (σ ≈ 6), further increasing σ does not provide any

further reduction of the estimated far-field noise. Therefore, based on these estimates of Spp and OASPL,

applying uniform flow suction at a flow control angle α = 70◦ with a flow control severity σ ≈ 6 appears to

offer the best aeroacoustic performance.

3.2. The Effects of Flow Suction on the Turbulent Statistics of the Boundary Layer

From the estimates of the far-field noise, it is found that α = 70◦ and σ ≈ 6 offers the best aeroacoustic

performance in far-field noise reduction. In the following, we seek an explanation for how flow suction

reduces noise, and why the best aeroacoustic performance is obtained at the aforementioned configuration.

To understand the effects of uniform flow suction on the turbulent boundary layer, the developing flow

pattern is firstly investigated by means of turbulent statistics obtained at locations BL1, BL2 and BL3, see
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Fig. 1. Because the turbulence statistics were found to have a similar behavior for all cases of α and σ, the

results of α = 30◦ and 70◦ only are discussed in the followings.

α σ CQ δ δ∗ θ uτ
[◦] [-] [-] [mm] [mm] [mm] [m/s]

BL1 BL2 BL3 BL1 BL2 BL3 BL1 BL2 BL3 BL1 BL2 BL3
- 0 0 29.5 30.2 30.5 3.81 3.61 3.69 2.57 2.59 2.63 0.617 0.618 0.622

30 2.5 0.28 57.0 46.0 12.5 3.69 2.70 1.20 3.08 2.21 2.01 0.692 0.679 0.685
30 3.7 0.42 58.1 49.4 10.1 3.84 2.42 1.30 3.23 1.98 1.12 0.596 0.623 0.632
70 5.0 0.57 60.4 54.7 3.0 3.76 2.58 0.25 3.35 2.14 0.17 0.622 0.656 0.751
70 7.5 0.85 63.4 61.1 1.2 4.69 3.21 0.31 4.12 2.65 0.16 0.642 0.604 0.740

Table 1: Boundary layer properties obtained at the angles of flow suction α = 30◦ and 70◦, at locations BL1, BL2 and BL3,
corresponding to x/δ0 = 0.6, 1.8 and 4, respectively.

The flow behavior in the vicinity of the trailing edge was studied prior to investigating the effects of

flow suction on boundary layer turbulence. Our thorough flow assessment analysis, consisting of hot-wire

anemometry, static pressure (not presented here for brevity), and unsteady surface pressure measurements,

found pieces of evidence that a zero pressure gradient turbulent boundary layer develops over the surface of

the flat plate test rig. These observations confirmed that the flat plate test rig is a suitable tool to study the

aeroacoustic effects of flow suction. For a more detailed analysis of the baseline case, we refer to Ref. [52].

To investigate the turbulence properties of the boundary layer, the streamwise velocity was measured

at BL1, BL2 and BL3 along the wall-normal direction, corresponding to x/δ0 = 0.6.1.8 and 4, respectively.

Boundary layer parameters, such as boundary layer thickness (δ), displacement thickness (δ∗), momentum

thickness (θ) and friction velocity (uτ ) are given in Table 1 for varying α and σ cases. To study the effects of

flow suction on the different regions of the boundary layer, namely, buffer, logarithmic and wake regions, the

dimensionless velocity profiles (u+) are presented in Fig. 4 as a function of the dimensionless wall distance

(y+). The + superscript denotes normalization by inner boundary layer quantities, i.e. u+ = ū/uτ and

y+ = yuτ/ν. The dimensionless velocity (u+) and dimensionless wall distance (y+) are found iteratively

by changing the friction velocity (uτ ) until a minimum discrepancy is reached between the measured and

Spalding’s empirical [54] velocity profile for the baseline case (σ = 0) and the viscous sublayer (u+ = y+)

for σ > 0. This optimization was performed over a limited range of y+, namely, for σ = 0 the discrepancy is

minimized between y+ = 10 and 300, while it is limited to y+ < 30 for σ > 0. The boundary layer structures

are identified with the help of Spalding’s equation [54] for σ = 0, see black dashed lines in Fig. 4. A portion

of the buffer layer is resolved below y+ < 20. The logarithmic layer is located between 20 < y+ < 300,

followed by the wake layer 300 < y+ < 2000, until the mean velocity reaches the value of the free-stream
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velocity. The observed extent of these regions within the boundary layer match well with the numerical

data provided by Schlatter and Örlü [55], at a similar Reynolds number (Reθ = 3800).
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Figure 4: Dimensionless velocity profiles at flow control angles α = 30◦ and α = 70◦, obtained at locations BL1, BL2 and BL3.

The dimensionless velocity results in Fig. 4 reveal that flow suction significantly affects the structure

of the boundary layer downstream of the flow control section (BL1-BL3). Therefore, the structure of the

boundary layer is expected to change significantly. At BL1 (x/δ0 = 0.6), at the lowest angle of flow suction

(α = 30◦) and at the lowest suction severity (σ = 2.5), the buffer layer follows the properties of the baseline

case, which is in agreement with previous studies [45]. However, a quick recovery of the buffer layer was

reported immediately downstream of the flow control section in Refs. [45, 46, 49]. The lowest amount of

flow suction (σ = 2.5) efficiently reduces the span of the logarithmic layer at BL1 to the approximate range

of 20 < y+ < 100, see Fig. 4. Similar observations can be made in the case of α = 30◦ for both σ = 2.5 and

3.7 rates at location BL2 (x/δ0 = 1.8). At BL3, on the other hand, the dimensionless velocity (u+) deviates

more from the baseline case compared to BL1 and BL2. A possible explanation for this can be that the TE

affects the turbulence properties of the boundary layer at BL3.

Analogous observations can be made for α = 70◦ and at higher rates of flow severity, see Fig.4. At
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BL1 and at low dimensionless wall distances (y+ < 20), the u+ profiles follow the shape of the viscous

layer (u+ = y+). Above this region, the results suggest the presence of an inhomogeneous logarithmic

layer, because the wake layer is not observed immediately. The larger extent of the viscous layer suggests a

tendency towards laminar boundary layer behavior at all streamwise locations under analysis. Oyewola et

al. [46] studied a turbulent boundary layer characterized with a lower Reynolds number (Reθ ≈ 600) and

observed a pseudo-laminar boundary layer at severe (σ ≈ 5.5) suction rates. In our case, a similar behavior

to that of Oyewola et al. [46] is observed, but a clear evidence of the presence of a laminar boundary layer,

such as Tollmien–Schlichting waves, was not found. Only a saturation in the boundary layer shape at σ ≈ 6

is observed, to which similar observations have been reported in previous flow suction studies [44–50].

At locations BL2 and BL3, the results reveal that the wall-normal extent of the logarithmic layer is

significantly reduced, therefore, it can be expected that the turbulence properties in the logarithmic layer

are also affected by flow suction. The results suggest that a saturation in the behavior of the boundary

layer profiles can be reached at σ ≈ 6. Above σ ≈ 6, the effects of flow control are preserved at farther

downstream locations with respect to BL1. This can be understood from the u+(y+) profiles significantly

departing from Spalding’s equation at BL2 and BL3. Table 1 also reveals that the boundary layer thickness

(δ) significantly reduces at BL3. From a general point of view, within a thinner boundary layer, the

flow reaches the free-stream velocity over a shorter wall-normal span, which results in a larger mean shear

(dū/dy). The currently observed behavior of the dimensionless velocity profiles agrees well with the previous

observations presented at similar streamwise locations (x/δ0) by Antonia et al. [45] and Oyewola et al. [46].

The root mean square (rms) of the velocity enables us to study the effects of flow suction on the flow

energy content within the turbulent boundary layer. Figure 5 presents the root mean square velocity profiles

as a function of dimensionless wall distance (y+), at α = 30◦ and 70◦, at BL1, BL2 and BL3. Analogous

to the dimensionless velocity profiles shown in Fig. 4, the urms results also reveal that uniform flow suction

significantly affects the energy content throughout the entire span of the turbulent boundary layer, therefore

not only the near-wall region. Downstream of the flow control treatment, i.e. at BL1-BL3, the energy

content within the boundary layer is significantly lower over the entire extent of the boundary layer for

all cases of α and σ as a consequence of flow suction. Therefore, flow suction is effective in reducing the

turbulent kinetic energy in the boundary layer over the entire range of wall-normal locations. The urms

profiles as a function of y+ reveal which regions of the flow lose or gain energy as a consequence of flow

suction. According to Amiet’s model, the far-field noise is proportional to the energy content of the surface

pressure fluctuations. In general, it can be expected that a reduction in the flow energy content (urms) leads
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to a reduction in the surface pressure energy content [56]. The analysis of the urms profiles and, therefore,

the turbulent kinetic energy within the flow could clarify the physical mechanism by which flow suction

reduces the far-field noise.

In general, the energy distribution of the baseline boundary layer (σ = 0) indicates that two peaks exist

in the urms profile. An inner peak can be observed in the buffer layer in the vicinity of y+ ≈ 20− 30, and

an outer peak, that is visible at the upper edge of the logarithmic layer, at y+ ≈ 200− 300. The inner peak

is associated with the small-scale near-wall energetic turbulent motions, whereas the outer peak is related

to the large-scale structures of the outer region (see Pope [56] and Smits et al. [57]).

Figure 5 shows that flow suction significantly attenuates urms. Surprisingly, flow suction is more effective

in reducing the energy content of the outer peak than the inner peak. The larger is the suction severity, the

larger is the attenuation of the outer peak. The outer peak is observed to disappear above σ ≈ 6 at BL1,

which is in agreement with previous observations of Oyewola et al. [46], who reported pseudo-laminarisation

above σ = 5.5 for a turbulent boundary layer associated with a low Reynolds number (Reθ ≈ 600). As the

dimensionless velocity profiles (u+(y+)) in Fig. 4 reveal, flow suction reduces the width of the logarithmic

layer and it affects the turbulent motions over the entire span of the boundary layer. Similar observations

regarding the reduction of urms were also reported in Refs. [45–49, 58], therefore these findings are consistent

with previous studies.

The inner peak recovers to the baseline levels of rms over a short downstream distance. Overall, a growth

of σ is associated with a longer distance for the inner peak to recover to the baseline values of rms. The

inner peak could present a mild overshooting as compared with the baseline case (σ = 0) when flow suction

is applied (σ > 0). At α = 30◦, higher levels of urms are found for σ > 0, at BL1, BL2 and BL3 at y+ < 30,

i.e. in the buffer layer. The observed increase of the inner peak can be explained as a growth of the mean

shear (dū/dy), which is associated with decrease in the thickness of the boundary layer. At α = 70◦, the

rms levels for σ > 0 remain below the baseline case (σ = 0) at all streamwise locations under analysis

(BL1-BL3). At BL3, the magnitude of the rms at the inner peak is observed to increase and to move closer

to the wall when suction is applied, which can be a consequence of the close proximity to the TE.

With the aim of showing the energy contributions of the different frequencies, the power spectral density

(PSD) of the velocity fluctuations (φuu) is computed. To the purpose of the present investigation, it is

particularly insightful to present the changes that flow suction produces on the velocity PSD, at different
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Figure 5: Profiles of the root mean square velocity as a function of dimensionless wall distance at flow control angles of α = 30◦

and 70◦ at locations BL1, BL2 and BL3.
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downstream locations of the flow control treatment. The velocity PSD is calculated in the following way:

φuu = 10 log10

( |û(f) (û(f))∗|
u2∞

)
, (6)

where û(f) is the fast Fourier transform of the velocity signal, the asterisk, ∗, denotes the complex conjugate,

| | is the absolute value operator, and u∞ is the free-stream velocity. Figures 6 and 7 show the difference

between the PSD of the velocity fluctuations in presence of the active flow control and the PSD of the

velocity fluctuations for the baseline case:

∆φuu = φuu,σ 6=0 − φuu,σ=0. (7)

From the velocity profiles presented in Figs. 4 and 5, the boundary layer was observed to change significantly

as a consequence of flow suction, which would make it incorrect to subtract the two power spectral densities

(φuu,σ 6=0 and φuu,σ=0) at the same physical wall-normal locations (y), because these physical locations

correspond to different dimensionless wall-distances (y+). To enable the subtraction between the values of

power spectral densities at the same y+, linear interpolations were applied from the existing values of power

spectral densities to a new set of y+. This new set of y+ is bounded below by the largest y+ of φuu,σ 6=0 and

φuu,σ=0; and bounded above by the smallest y+ of φuu,σ 6=0 and φuu,σ=0, therefore this new set of y+ is not

identical for the different cases under investigation. Analyzing these PSD differences at varying wall-normal

locations enables us to determine the range of frequencies and wall-normal locations where the turbulent

kinetic energy diminishes as a result of flow suction. This is at the basis of interpreting how the changes of

the turbulence properties of the flow could lead to an attenuation of the surface pressure fluctuations, and

therefore the estimated far-field noise.

In Fig. 6, the difference in the power spectral density (∆φuu) is presented for flow suction at a flow

control angle of α = 30◦, and for values of the flow control severity σ = 2.5 and σ = 3.7, at BL1, BL2 and

BL3. As can be observed, flow suction reduces the energy content over a broad range of frequencies and

wall-normal locations. At BL1 and for σ = 2.5, a significant reduction in φuu is observed in the logarithmic

region (30 < y+ < 200) and in the wake region (200 < y+ < 1000), and this reduction is more significant

at high frequencies (f > 1 kHz). From the u+(y+) and urms(y
+) velocity profiles, see Figs. 4 and 5, the

observed reduction in the PSD can be attributed to a reduced extent of the logarithmic region when flow

suction is applied. This is consistent with lower values of urms at the outer peak. Figure 6 reveals an increase

in the energy content (φuu) at high frequencies (f > 1 kHz), at wall-normal locations corresponding to the
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Figure 6: Changes in the velocity power spectral density at flow control angle α = 30◦ for σ = 2.5 and σ = 3.7 at locations
BL1, BL2 and BL3.

inner peak (y+ ≈ 30). The spectral content is observed to grow at wall-normal locations below y+ ≈ 30−40

at all streamwise locations, i.e. at BL1, BL2 and BL3. These areas of increased PSD are consistent with the

increase in urms at the inner peak (y+ ≈ 30) for σ = 2.5, see Figs. 5 and 6. At BL3, a significant increase in

φuu is observed at σ = 2.5 at frequencies larger than f ≈ 1.4 kHz and wall-normal locations below y+ = 100.

This observation is consistent with the increase of urms at the location of the inner peak, at BL3, see Fig. 5.

The observed growth of the energy content could be an effect of the close presence of the TE, where the flow

experiences a sudden change in the boundary conditions. At a larger value of suction severity (σ = 3.7), a

broadband reduction of the spectral content can be observed at BL1. At BL2, however, a modest increase

of ∆φuu can be seen in Fig. 6 below y+ = 30, which occurs at high frequencies (f > 1 kHz). In the close

vicinity of the TE, at BL3, the velocity PSD exhibits the same behavior for σ = 3.7 as for σ = 2.5, i.e.
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below y+ = 30 an increase in φuu is observed at high frequencies (f > 2 kHz).

Figure 7 presents the difference of velocity PSD at flow control angle α = 70◦, and at σ = 5.0 and at

σ = 7.5. At BL1, the velocity PSD is observed to decrease over all frequencies for wall-normal locations

below y+ = 1000, independent of σ. This is consistent with the reduced flow energy content at both inner

and outer urms peak locations, see Fig. 5. At BL2, a lower amount of energy reduction takes place in the

close vicinity of the wall (y+ ≈ 30 − 40), at low frequencies (f < 1 kHz). This indicates that the energy

content of the inner peak increases as the flow travels downstream, and this energy increase is associated

with the large-scale turbulent motions characterized by low frequencies (f < 1 kHz). For σ = 5.0 at the close

vicinity of the TE (at BL3), the velocity PSD is observed to increase with respect to BL2 below y+ ≈ 70, and

at high frequencies (f > 2 kHz). This increase in φuu is consistent with the urms results, where an increasing

peak in the rms content is observed below y+ ≈ 70, see Fig. 5. The growth in the magnitude of the inner

peak is broadband in nature, with a more pronounced increase at high frequencies (f > 2 kHz), which is the

footprint of small scale structures. For α = 70◦, the larger suction severity (σ = 7.5) results in an almost

complete elimination of flow energy content, especially at BL1. Downstream of BL1, a redevelopment of the

inner peak can also be observed.

3.3. Effects of Flow Suction on the Surface Pressure Fluctuations

In the following paragraphs, the surface pressure spectra (φpp) are firstly presented, followed by the

estimates of the spanwise extent of the turbulent length scales (Λz) and the velocity-pressure coherence

(γ2pu). Given that the product between φpp and Λz drives the generation of TE noise [3], understanding

how these quantities change as a result of flow suction is of main interest. In addition, the velocity-pressure

coherence quantifies the impact of the different turbulent motions on the surface pressure fluctuations. These

analyses clarify which changes of the turbulence properties can be considered responsible for the observed

variations of the surface pressure fluctuations from flow suction.

Figure 8 presents the power spectral density of the surface pressure fluctuations (φpp, dB/Hz re. 20 µPa)

for flow control angles α = 30◦ and 70◦, respectively. In addition, in measurements where flow control is

applied, the spectra of Fig. 8 show the footprints of the facility’s background noise. Specifically, the strong

tonal peak observed at 3 kHz originates from the fan of the wind tunnel.

Overall, it can be observed that the spectral content of the surface pressure fluctuations is attenuated

over a wide range of frequencies. At BL1, at an angle of α = 30◦ and at a flow severity of σ = 2.5, flow

suction reduces the spectral content of the surface pressure fluctuations in the range of frequencies between

100 Hz and 4 kHz, above which only a modest increase (≈ 1 dB/Hz) of φpp is observed. At increasing
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Figure 7: Changes of the velocity power spectral density at flow control angles α = 70◦ for σ = 5.0 and σ = 7.5, at locations
BL1, BL2 and BL3.
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Figure 8: Power spectral density, φpp (dB/Hz, re. 20 µPa), of the surface pressure fluctuations at flow control angles α = 30◦

and α = 70◦ at locations BL1, BL2 and BL3.

downstream locations (BL2 and BL3), the spectral content (φpp) exhibits a broadband increase compared to

BL1, which can be explained as a result of flow recovery. The recovery of the flow downstream of flow suction

reduces the frequency range where the positive effects of the flow control can be obtained at the TE. At BL3

and for σ = 2.5, the range of frequencies where a reduction of φpp is observed is found between 200 Hz and

1.4 kHz. The PSD of the surface pressure can be related to the behavior of the velocity PSD formerly seen

in Fig. 6. For σ = 2.5, a broadband reduction is achieved of both the velocity and the surface pressure PSD

downstream of the flow control treatment (BL1-BL3), in the frequency range of 100-2000 Hz. Both urms

and φuu suggest that the reduction in the low and mid-frequencies is associated with the reduction of both

the size and energy content of the logarithmic layer. The observed increase of the spectral contents at high

frequencies, namely above f ≈ 4 kHz at BL1 and BL2, and above 1.4 kHz at BL3, is associated with the

increased energy content at the inner peak (y+ ≈ 30). Therefore, it can be concluded that the footprint of

the small-scale near-wall turbulent motions are responsible for the increased energy content of the surface

pressure fluctuations at high-frequencies, when low suction rates (σ = 2.5 and 3.7) are applied.

A larger energy content is found at low frequencies, i.e. below 200 Hz, at the close vicinity of the
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TE (BL3), regardless of the applied flow suction severity. The surface pressure PSD exhibits a sudden

increase below f = 200 Hz only at BL3, which confirms that the effect is not induced by acoustic pressure

fluctuations. Nonetheless, a similar amount of growth within the spectral content at low frequencies is

not observed when looking at the velocity spectrum (φuu). This strongly suggests that the observed low-

frequency increase of φpp is not caused by flow turbulence. Therefore, further investigations, such as large

eddy simulations or direct numerical simulations, are required to shed light on the underlying physics of the

observed low-frequency increase in the surface pressure spectra.

At α = 70◦, the reduction of the spectral content φpp takes place over a wider range of frequencies.

At BL1, the measured spectral content collapses on the level of the background noise above σ ≈ 6.0. For

α = 70◦ at σ = 7.5, a broadband hump is observed at BL1 between f = 2 kHz and f = 10 kHz, which

persists at BL2, even though at lower amplitudes. This observation is further investigated in the analysis

of the velocity-pressure coherence (γ2pu).
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Figure 9: Estimation of spanwise extent of turbulent structures x/δ0 = 0.4 upstream of the TE for α = 30◦ and α = 70◦.

In the following, an estimate of Λz is presented. In order to understand how the inclined flow suction

affects the far-field noise, its effect on the spanwise extent of the turbulent structures is investigated with

the help of Fig. 9. In the case of α = 30◦, a broadband reduction of Λz is obtained above f ≈ 130 Hz, for

both investigated cases of flow suction severity. This is in agreement with urms results, as this implies the

presence of smaller turbulent structures with respect to the baseline case. At increased angles and values of

flow suction severity, the spanwise extent of turbulent structures show a broadband increase. At σ = 5.0,

which is still below the saturation point (σ ≈ 6), Λz is similar to that of the baseline case. Above σ ≈ 6,

the estimated size of turbulent structures increase at all frequencies. Amiet’s model [3] considers a turbulent

boundary layer, and it is valid under the assumption of Taylor’s hypothesis of frozen turbulence. Therefore,
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estimating Λz using Eq. (5) above the saturation point of σ ≈ 6, where the boundary layer significantly

departs from a canonical turbulent boundary layer, could lead to some unexpected deviations from the

underlying physics. In this context, the observed broadband increase in Λz above σ ≈ 6 might fails to

provide physical information about the spanwise extent of the turbulent structures. In addition, at these

severe suction rates (σ > 6), the signal to noise ratio between the hydrodynamic pressure fluctuations of the

boundary layer and the background noise might falls below the range of 8-10 dB, which could potentially

violate the reliability of the Λz results. Considering the estimated far-field noise, see Fig. 2, and the surface

pressure spectra, it can be concluded that the attenuation of the term φpp as a result of flow suction is

stronger than the increase of Λz, which results in a reduction of the estimated noise.

As observed up until now, boundary layer suction alters the spectral content of both velocity and pressure

fluctuations. To examine the spectral content of the velocity-pressure interaction, the coherence (normalized

cross-spectra, γ2pu) was calculated between the velocity and surface pressure signals at different streamwise

(BL1,BL2 and BL3) and wall-normal locations (y+). The velocity-pressure coherence can be calculated as:

γ2pu =
|p̂(f) û(f)|2
φppφuu

, (8)

where p̂(f) and û(f) are the Fast Fourier Transform (FFT) of the pressure p(t) and velocity u(t) time

signals, respectively, and | | is the absolute value operator. From a physical point of view, the velocity-

pressure coherence (γ2pu) represents the frequency dependent relationship between the turbulent motions

and the surface pressure fluctuations.

To determine the contribution of the different regions of the boundary layer to the surface pressure

spectrum (φpp) in the absence of flow control, the velocity-pressure coherence for the baseline boundary layer

(σ = 0) is presented in Fig. 10. As can be observed, the turbulence motions located at decreasing distances

from the wall play an increasing effect on the surface pressure fluctuations. A significant contribution to φpp

originates from the velocity fluctuations below the logarithmic layer (y+ < 20), over the entire range of the

investigated frequencies. The logarithmic layer (20 < y+ < 300) also plays a significant role on γ2pu at low

frequencies (f < 1 kHz). Finally, the wake layer (300 < y+ < 2000), where the largest turbulent motions

are located, is associated with the low frequency portion of the pressure spectrum.

Figures 11 and 12 present the velocity-pressure coherence (γ2pu) for α = 30◦ and 70◦, respectively, over

the entire span of the boundary layer thickness, at BL1, BL2 and BL3. When flow suction is applied,

the velocity-pressure coherence (γ2pu) undergoes changes as compared to the coherence associated with the
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Figure 10: Velocity-pressure coherence for the baseline case (σ = 0) at BL3.

turbulent boundary layer in the absence of flow control. Firstly, the results obtained from the α = 30◦ flow

control angle are discussed, see Fig. 11.

At BL1 for σ = 2.5, the velocity-pressure coherence map reveals that the contribution of the velocity

fluctuations within the buffer layer (y+ < 20) becomes stronger when flow suction is applied. At BL1, four

different islands of high coherence can be identified, which are also marked with boxes of red dashed lines in

Fig. 11. Two areas of high coherence are visible at low frequencies, i.e. f < 500 Hz, one between y+ = 30

and y+ = 300 and one below y+ = 30. In the range between 500 Hz and 3 kHz, a region of high γ2pu is found

at 10 < y+ < 40. Finally, a region of high coherence is visible at high frequencies (f > 3 kHz) at y+ < 20.

The coherence observed at low frequencies (f < 500 Hz) between y+ = 30 and y+ = 300 represents the

effects of the turbulent motions within the logarithmic region on the surface pressure fluctuations. When

compared to the baseline case, flow suction reduces the communication between the velocity fluctuations

and the pressure fluctuations within the logarithmic region. On the other hand, the very high levels of γ2pu

at y+ < 40 could be the result of the increased velocity gradient (dū/dy), which is observed to enhance the

energy content (urms) within this region of the boundary layer, see Fig. 5. The observed increase at high

frequencies (f > 3 kHz, y+ < 20) coincides with the area where an increase in ∆φuu was also found in Fig. 6.

Therefore, the contribution of the velocity fluctuations to the surface pressure fluctuations above f = 3 kHz

and below y+ = 20 also confirms that the turbulent motions below the logarithmic layer (y+ < 30) are

responsible for the increase of φpp (see Fig. 8) at the same range of frequencies (f > 3 kHz).

At BL2 for σ = 2.5 and α = 30◦, the structure of γ2pu changes significantly compared to BL1. At low
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Figure 11: Velocity-pressure coherence at flow control angle α = 30◦ and flow suction severity for σ = 2.5 and σ = 3.7 at
locations BL1, BL2 and BL3. The red boxes indicate areas of high coherence.

frequencies (f < 500 Hz), the magnitude of γ2pu decreases in the logarithmic layer (30 < y+ < 300) as

compared with BL1, which shows that the footprint of the velocity fluctuations within the logarithmic layer

on the surface pressure decreases when moving from BL1 to BL2. This observation also confirms that the

turbulent kinetic energy reduces in the logarithmic region as a consequence of flow suction. At BL2, the

low-frequency area (f < 500 Hz) of high coherence shows significantly lower levels of γ2pu below y+ = 20,

but a larger spectral content can be observed in the region of 10 < y+ < 50 and 200 Hz < f < 2 kHz.

The wall-normal locations of strong communication match well with the locations of high urms observed in

Fig. 5. This also reveals that the turbulent motions are enhanced by flow suction at the location of the inner

peak. The observed changes in the velocity-pressure coherence between BL1 and BL2 suggest that the major
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contribution to the surface pressure fluctuations originates from the inner peak at BL2, as a consequence

of flow suction. This is different from the baseline case, where each region of the boundary layer (buffer,

logarithmic and wake) was found to provide comparable contributions to the surface pressure fluctuations.

Finally, at BL3, the coherence map shows slightly different features as compared to the locations BL1

and BL2. The urms profiles in Fig. 5 show that at BL3 the inner peak moves closer to the wall with respect

to the baseline case. The velocity-pressure coherence results at BL3 are consistent with this observation,

where the mid-frequency region of high coherence (6 < y+ < 20 and 100 Hz < f <1 kHz) is found at

lower levels of dimensionless wall distance with respect to locations BL1 or BL2. Additionally, an area of

high coherence is observed at high frequencies above f > 2 kHz and below y+ = 20, which is in agreement

with the increase in φpp and φuu at high-frequencies, see Figs. 6 and 8. These two mid- and high-frequency

regions of high coherence are isolated from each other in terms of their associated frequency, as very low

coherence (γ2pu < 0.05) is found between these two islands of high γ2pu. This observation suggests that the

flow structures leading to these two islands of high coherence are independent of each other, even though they

are found at nearly the same distance from the wall. Also, at both BL2 and BL3, low levels of coherence are

observed in the logarithmic region (20 < y+ < 300), which also confirms the reduction of turbulent kinetic

energy in this region as a result of flow suction. At σ = 3.7, the pattern of the velocity-pressure coherence

remains very similar to the one obtained at σ = 2.5, see Fig. 11. The coherence decreases in the regions of

high intensity when compared with the corresponding spectra for σ = 2.5. This observation is in agreement

with the PSD of both velocity and surface pressure, where a larger reduction is found at increasing rates of

flow control severity, σ.

For α = 70◦ and σ = 5.0 at BL1 (Fig. 12), the two areas of high coherence observed for α = 30◦ merge

into one at low frequencies (f < 500 Hz), below y+ < 300. At mid-frequencies, γ2pu is characterized by

lower values than at α = 30◦. This is in agreement with the lower flow energy content at mid-frequencies

previously observed for φuu. On the other hand, the high-frequency area of high coherence (f > 2 kHz

and y+ < 20) is not observed at BL1 in Fig. 12, which is consistent with the reduction observed in φpp at

high frequencies, see Fig. 8. At BL2, the same pattern of γ2pu is observed for the two angles α = 70◦ and

α = 30◦, see Fig. 11. Independent of the flow control angle, an increase in the flow control severity (σ)

produces the same effects on the velocity-pressure coherence, which can be observed by comparing the two

cases of suction severity (σ = 5.0 and σ = 7.5) shown in Fig. 12. In particular, the spectral content at BL3

diminishes at increasing values of flow control severity, which is an indication of a saturation in coherence

reduction caused by flow suction. This is due to a significant amount of reduction of both velocity and
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Figure 12: Velocity-pressure coherence at flow control angle α = 70◦ and flow suction severity σ = 5.0 and σ = 7.5 at locations
BL1, BL2 and BL3.

pressure fluctuations. This observation is in agreement with the values obtained earlier for the quantities

urms, φuu, and φpp. Nonetheless, some exceptions to this trend are observed. For example, at BL1, at

α = 70◦ and σ = 7.5, see Fig. 12, the high-frequency (f > 2 kHz) area of high coherence below y+ = 20

exhibits higher levels of coherence than at lower σ, for a constant flow control angle (α). This area of high

coherence matches the increase of the pressure spectral content (φpp) at high frequencies (f = 2− 10 kHz),

see Fig. 8. This effect still persists downstream, at BL2. The observation suggests that the broadband

humps in φpp above f = 2 kHz are associated with near-wall high-frequency turbulent motions.
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4. Conclusions

The current work investigated the effects of flow suction on the generation of trailing edge noise. Exper-

iments were conducted at a free-stream velocity of 15 m/s at the open-jet closed-loop wind tunnel of the

University of Bristol. To this purpose, uniform inclined flow suction was applied on a flat plate rig upstream

of a sharp trailing edge with the aim of controlling the hydrodynamic pressure field associated with the tur-

bulent boundary layer. The simultaneous measurement of velocity with hot-wire anemometry and surface

pressure fluctuations with flush-mounted microphones was performed at a number of locations downstream

of the flow suction area. Results were collected at a range of flow suction severity rates (σ = 0− 9.1), which

relates the momentum deficit of the uncontrolled boundary layer to the momentum of the flow suction. The

flow suction was applied at different angles with respect to the free-stream velocity, namely at α = 30◦, 50◦,

70◦ and 90◦. Inclination to the flow suction velocity was achieved using a honeycomb material with inclined

pores. The honeycomb structure was covered with a fine steel wire-mesh, which was chosen such that it

did not introduce any energy increase to the unsteady surface pressure fluctuations downstream of the flow

control area.

The estimation of far-field trailing edge noise using Amiet’s model [3] showed that inclined uniform flow

suction reduces the overall sound pressure level in all cases under investigation. In more details, the trailing

edge noise was found to reduce at frequencies between 200 Hz and 2-3 kHz, with penalties observed outside

of this frequency range. As the flow suction severity and the inclination angle increased, the reduction at

mid-frequencies improved while the level of penalties did not change significantly. Overall, flow suction at

an angle of α = 70◦ and σ ≈ 6 was found to exhibit the best performance in reducing the noise levels.

Increasing the suction severity above this point failed to further reduce the estimated far-field noise.

The streamwise velocity profiles showed that flow suction reduces the thickness of the turbulent boundary

layer, and therefore, the wall-normal extent of the different regions constituting the boundary layer flow,

namely the buffer layer, the logarithmic region, and the wake region. In agreement with this, flow suction

reduces the energy content of the turbulent boundary layer over its entire span with the most significant

amount of energy reduction obtained within the logarithmic region. On the other hand, the resulting thinner

boundary layer is characterized by an increased level of mean shear, particularly below the logarithmic layer.

These effects increase with the flow suction severity until a saturation in the profiles is observed at σ ≈ 6,

but beyond this point, no additional benefits can be obtained from further increasing σ.

The velocity power spectral density (PSD) downstream of the flow control treatment indicated a sig-

nificant amount of reduction in the boundary layer energy content over the entire range of investigated
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frequencies. In particular, the velocity PSD was observed to decrease most significantly at mid and high fre-

quencies, which was associated with the reduction of the flow energy content within the logarithmic region.

Increase in the velocity PSD was observed at the near-wall regions of the boundary layer at high frequencies,

which was due to the increased energy content within the buffer layer.

The changes in the turbulent statistics have profound effects on the hydrodynamic pressure field. Flow

suction efficiently reduces the energy content of the surface pressure fluctuations over a wide range of

frequencies, which is mainly due to the reduction of the size of the logarithmic layer, and its energy content.

The increased shear in the near-wall region causes penalties at high-frequencies in the surface pressure power

spectra, and therefore, in the predicted far-field trailing edge noise. The velocity-pressure coherence also

confirmed that the contribution of the turbulent motions to the surface pressure fluctuations rearranges

within the boundary layer due to flow suction. Due to the drop in the size and flow energy content of the

logarithmic layer, the footprint of the turbulent motions on the surface pressure fluctuations originated from

the logarithmic layer also reduces. On the other hand, the contribution to the surface pressure fluctuations

from the turbulent motions located below the logarithmic layer becomes more dominant. These trends were

found to increase until σ ≈ 6, where a saturation in the changes of turbulence quantities were found. Above

this point, no further aeroacoustic benefits can be obtained with further increasing the flow suction severity.
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