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ABSTRACT

SYCL is a parallel programming model for developing single-source
programs for running on heterogeneous platforms. To this end, it
allows for one code to be written which can run on a different archi-
tectures. For this study, we develop applications in SYCL which are
representative of those often used in High-Performance Computing.
Their performance is benchmarked on a variety of CPU and GPU
architectures from multiple vendors, and compared to well opti-
mised versions written in OpenCL and other parallel programming
models.

CCS CONCEPTS

+ General and reference — Performance; - Computing method-
ologies — Parallel programming languages; Massively par-
allel and high-performance simulations; « Software and its
engineering — Parallel programming languages.

KEYWORDS
SYCL, GPGPUs, performance portability, benchmarking

ACM Reference Format:

Tom Deakin and Simon McIntosh-Smith. 2020. Evaluating the performance
of HPC-style SYCL applications. In IWOCL/SYCLCon °20: The 8th Interna-
tional Workshop on OpenCL, SYCL, Vulkan and SPIR-V, April 27-29, 2020,
Munich, Germany. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

SYCL is an open standard parallel programming model allowing
the development of codes which can run on heterogeneous systems
containing devices from a range of hardware vendors. This means
a single-source code base can be written (in C++11) which will run
key parts of the application on accelerator devices, or in parallel
on the host CPU. To this end, it provides a unified programming
model for programming whatever device is present in the system:
an attractive proposition for the endeavour for performance porta-
bility.

Although SYCL was first released in 2014, it has recently gained
traction as hardware vendors release their own implementations
alongside those from the open source community. As such, it is now
possible to run a SYCL application on a wider range of HPC and
consumer (desktop) grade hardware than ever before. The breadth
of support is only now similar to those of other established models
such as OpenMP and OpenCL.
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This study therefore explores the performance of three SYCL
applications from a High-Performance Computing domain across a
range of CPU and GPU architectures. Importantly, we utilise multi-
ple SYCL implementations in order to test devices from multiple
hardware vendors, testing both the portability and performance
portability of the application. The applications we use have a her-
itage in this pursuit and so we can use the prior evaluation of
these codes in order to fairly assess the current state of the SYCL
ecosystem. As such, it is possible to know a priori the expected
performance of the codes on a given architecture independent of
the choice of programming model used for the implementation.
This approach is extremely valuable in benchmarking these SYCL
applications fairly.

In particular, the following contributions are made:

e We introduce two open source mini-apps which have been
ported to SYCL. These applications, along with BabelStream,
are benchmarked on a number of CPU and GPU architec-
tures.

o The performance of SYCL is assessed with respect to peak
hardware expectations and other portable parallel program-
ming models including OpenMP and OpenCL.

1.1 Related Work

Some studies have looked at the performance of SYCL applications
across a range of hardware. The study by Reguly looks at the per-
formance of one particular application across a range of devices
in a number of models, including SYCL [10]. The study focuses
on the performance portability of each kernel across multiple de-
vices implemented in a variety of programming models and show
findings similar to our work [2]. Reguly does not include OpenCL
in their study as we do here as it is highly pertinent for the SYCL
community.

Similarly the study by Joo et al. looks at the performance of a
single kernel implemented in SYCL and Kokkos [7]. They focus
primarily on GPU performance only and the reference shows few
CPU results. The CPU results used an experimental OpenCL driver
from Intel for which the support position is unclear according to
the Intel driver webpage!.

Silva et al. compare the performance of two kernels written in
SYCL, OpenCL, and OpenMP on CPU devices [11]; GPUs were not
considered in their study.

Trigkas looked at the performance of OpenCL and SYCL on
the Intel Xeon Phi Coprocessor [12]. At this stage, SYCL was very
new and as such the performance of SYCL is shown with a large

Uhttps://software.intel.com/en-us/articles/opencl-drivers
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overhead of OpenCL, contrary to what we demonstrate in this paper
today. The test architecture (Knights Corner) is also now defunct.

The study by Hammond et al. compared the SYCL and Kokkos
programming models with respect to semantics and parallelism,
but does not present performance results directly [5].

2 SYCL APPLICATIONS

We use three applications all implemented in, amongst other models,
SYCL. The applications are capable of supporting a heterogeneous
memory model and as much of the data as possible remains fully
resident on device memory for the duration of the application; such
an approach is a basic but crucial requirement of a high performance
code. The applications are all main memory bandwidth bound but
vary in complexity.

The applications presented all capture characteristics of HPC-
style codes. The software engineering is idiomatic of HPC applica-
tions [9], likewise is the use of the chosen programming models. In
some cases these codes are proxy applications (or mini-apps) which
represent closely performance characteristics of a parent code. In
others the code expresses a parallel pattern which is extremely
common within HPC.

Two of the applications have inbuilt performance models to cap-
ture the aggregate useful memory bandwidth attained. As such they
themselves provide an insight into the expected performance. The
performance of the final application is well known in the literature
and has been studied extensively and so the expected performance
can be estimated accurately in advance. In this way, all the applica-
tions here should achieve close to the peak performance and if they
do not this is clear. Such knowledge is exceedingly important when
quantifying performance and it is this which has led to our choice
of applications for this study into the performance of HPC-style
applications written in SYCL.

2.1 BabelStream

The BabelStream benchmark is an implementation of the infamous
STREAM benchmark in many parallel programming models. In
this way, it is a highly useful application for benchmarking the
achievable performance of a very wide range of CPU and GPU
architectures. Additionally, it covers the spectrum of programming
models from high-level abstractions (such as SYCL and Kokkos),
directive based models (such as OpenMP and OpenACC) and lower
level offload models (such as OpenCL and CUDA). As such, Babel-
Stream has been a stalwart of our work in investigating performance
portability (e.g. [2, 4]).

BabelStream implements the four main STREAM kernels (Copy,
Mul, Add and Triad) along with a Dot product to test reduction
performance. Such simple kernels are all memory bandwidth bound.
Our expectation is that any parallel programming model should
be able to leverage a high fraction of peak theoretical hardware
memory bandwidth for these kernels, and BabelStream therefore
allows for a consistent benchmarking effort to test this. In this
work we focus on SYCL performance and will compare to the peak
performance of the devices. Results from some other models will be
included for perspective to show that SYCL is highly competitive.

Although SYCL results for BabelStream have been presented
in the past [3], this work contains new and updated results on a
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wider and more up to date range of architectures. In particular, a
broader choice of SYCL implementations and compilers from both
vendors and the open source community are now available for us
to use which greatly expands the range of architectures supported
by SYCL today in comparison to our prior work.

This application requires a simple one-dimensional
cl::sycl::parallel_for kernel, and each work-item operates
on a unique part of the buffer with no sharing. The kernels are
enqueued and run in order as the output of one kernel is used as
in put to the next. This is a trick from STREAM to ensure that the
hardware memory caches are fully overwritten by each kernel. The
dependencies from the accessors mean this ordering remains true.

The dot product kernel requires a reduction to be implemented,
and as of SYCL 1.2.1 there is no first-class support for this as there
is in other models including OpenMP, RAJA, Kokkos, etc. A com-
mutative tree reduction is therefore implemented inside each work-
group, with the final value from each work-group reduced on the
host. The number of work-groups is chosen differently for CPUs
and GPUs according to a simple rule based on device properties.

2.2 Heat

A great many simulation codes can be categorised as requiring
what is known as a stencil update to each point in the domain. This
pattern updates each cell or value with some average of neighbour-
ing values. This type of kernel is found in image processing, linear
solver libraries and in many finite difference modelling-simulation
codes.

The Heat code is a simple explicit finite difference solve for a
simple differential equation, used primarily for teaching parallel
programming of GPUs in OpenMP 2. The Method of Manufactured
Solutions is applied so that the code produces a simple analytically
known answer. The main kernel is a simple 5-point kernel, averag-
ing the value in each cell with those in the four axial neighbouring
cells.

Although a simple code, and as with BabelStream, it allows us
to test robustly how a typical 5-point stencil performs in different
parallel programming models on a wide range of architectures. The
performance limiting factor of such a kernel is again main memory
bandwidth, and so in this study we compare to the achievable
memory bandwidth on each platform.

The data is stored in a two-dimensional buffer, allocated using
cl::sycl::range<2>(nx,ny). The kernel is a two-dimensional
cl::sycl::parallel_for, with the global number of work-items
defined with the same range.

The nature of a stencil code requires offsetting the work-item IDs
to access neighbouring elements. The componentsof cl: :sycl: :id
are therefore used to memory access through the accessor as fol-
lows:

size_t j = id[e];

size_t i = id[1];

u_tmp[j10i] = r2 * uljI0i] + r * u[j-1101] + ...
Note that this unpacking of the cl::sycl::id conforms to the
get_linear_id() ordering of work-items and memory layout in
a consistent manner as specified in the SYCL 1.2.1 standard. By this

Zhttps://github.com/uob-hpc/openmp-tutorial
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we mean that the following notations are equivalent and should
ensure a stride-one access pattern in memory:

u_tmp[id]
u_tmp[id.get_linear_id()]
u_tmp[id[@]1[id[1]]

Further discussion on the accessor notation will be presented in
Section 3.3.

A minor point in this implementation which may be of inter-
est to those with large legacy applications is the get_pointer()
function belonging to a host accessor of a buffer. This returns a
host accessible pointer to the memory, which here could be passed
to an existing routine as a double * without modification of that
routine. We use this to our advantage here when checking the final
solution.

2.3 CloverLeaf

The CloverLeaf mini-app is a performance proxy for a 2D struc-
tured grid Lagrangian-Eulerian hydrodynamics code [8]. It con-
tains around a dozen kernels consisting of both point-wise and
stencil-like update of grid values. Whilst primarily main memory
bandwidth bound, some kernels do require math library functions
such as exponentials and square roots. As part of the Mantevo
benchmark suite [6] and our other work (most recently [2]), the
performance portability of CloverLeaf has been well studied.

For this work, we present the first SYCL port of CloverLeaf along
with results across CPU and GPU architectures. The wealth of
existing implementations and performance data provide an ideal
comparison for exploring the performance of such a SYCL imple-
mentation.

CloverLeaf is by far the largest application in this study; the
SYCL port is nearly 8,000 lines of code (excluding comments, blank
lines, etc.).

CloverLeaf is primarily formed of a number of kernels which
consist of two tightly nested loops which iterate over the spatial
domain: this is the source of parallelism whence we use a two-
dimensional c1: :sycl: :parallel_for. The Fortran origins of this
code mean that halo (ghost) cells are allocated surrounding the main
grid data. The offset mechanism in the parallel dispatch is used
to adjust the global IDs of the launched work-items appropriately
so that the work-item id can be passed directly to the accessors.
As such this application explore additional features of the SYCL
programming model that BabelStream and Heat do not use.

Two kernels require a reduction operation: one on a single FP64
value, the other on five FP64 values. For those readers familiar with
OpenMP, the latter could be very simply expressed as follows:

#pragma omp parallel for collapse(2) \
reduction(+:vol,mass,ie,ke,press)

As we saw with BabelStream, the current lack of reduction support
in SYCL 1.2.1 means a reduction operation must be implemented. To
this end, the Dot product reduction from BabelStream was brought
into CloverLeaf and updated to support the summation of multiple
values for our needs in this mini-app. Some additional details on
the implementation can be found online at [1].
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3 RESULTS

3.1 Platforms and SYCL compilers

Table 1 details the devices used in this study which capture three
consumer GPU devices from different vendors along with a HPC
server CPU. This represents a selection of the devices hosted in
the University’s of Bristol HPC Zoo where SYCL compilers and
runtimes are made available. The memory bandwidth is quoted
from the tech sheets where available®.

The range of devices from different vendors requires us to use
various SYCL compilers in order to collect results. We use three
SYCL compiles/runtimes which each support one or more of our
selected platforms:

e ComputeCpp 1.2.0

e LLVM/SYCL (an open source development effort lead by
Intel)

o hipSYCL (an open source implementation lead by Heidelberg
University)

As a set, these compilers provide support for all our devices.

At the time of writing for our selected platforms, ComputeCpp
supports the Xeon processor and the NUC, however the support
for NVIDIA is only experimental and we have found severe host
side performance degradation. The offloaded kernels themselves
achieve runtimes close to that which we expect, however we notice
significant inexplicable idle time is present between kernel submis-
sions. Codeplay recently announced updated support for NVIDIA
GPUs will be available later in 2020 and so this issue should be
resolved shortly. The AMD GPU uses the ROCm driver stack which
does not support SPIR which is required by ComputeCpp.

The LLVM/SYCL compiler at present supports only Intel OpenCL
platforms. This compiler is under heavy development and so the
results represent a recent snapshot of the compiler.

For Intel we present the most favourable result in the figures
and highlight the choice of ComputeCpp and LLVM/SYCL and any
performance differences observed in the text.

hipSYCL supports AMD GPUs (via HIP and the ROCm software
stack) and NVIDIA GPUs (via CUDA). Therefore for NVIDIA and
AMD GPUs we present hipSYCL results only.

We use the following drivers:

o The Intel NUC has the Intel OpenCL Graphics Driver 19.44.14658

installed.

e The Intel Xeon (Skylake) uses the Intel OpenCL runtime
18.1.0.0920.

e The NVIDIA RTX 2080 Ti uses the NVIDIA driver 418.39.

e The AMD Radeon VII uses AMD’s ROCm driver 2833.0
(HSA1.1,LC).

3.2 BabelStream

We present results from three BabelStream kernels (Triad, Dot and
Copy) for SYCL and OpenCL. The default problem size is used of
arrays of 225 FP64 elements and 100 iterations.

3.2.1 Triad. Triad is the canonical STREAM-style kernel and so we
begin by showing these results in Figure 1. The values are shown as

3The Intel ARK does not publish memory bandwidth for Xeon Scalable Processors.
We quote the value here from https://en.wikichip.org/wiki/intel/xeon_gold/6126.
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Table 1: Platform details

Name Architecture Device Type Mem. BW (GB/s)
Intel Xeon Gold 6126 (12-core) Skylake HPC CPU (1 socket) 119.21
Intel NUC i7-6770HQ with Iris Pro 580 Graphics  Skylake/Gen9 CPU + Integrated GPU 34.1
AMD Radeon VII Vega 20 Discrete GPU 1024
NVIDIA RTX 2080 Ti Turing Discrete GPU 616
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Figure 1: BabelStream Triad results

The Intel NUC result is for the GPU; we omit the CPU result.
The figure shows the result using ComputeCpp; the LLVM/SYCL
result is very similar at 79.7%. For the Intel Xeon we show the
ComputeCpp result and were unable to successfully build with
LLVM/SYCL and the Intel OpenCL 18.1 runtime.

In all cases we find there is a slight overhead of between 0.25-
4.26% for SYCL over OpenCL. The largest difference is seen on the
NVIDIA platform, but do recall we use hipSYCL here as there is no
other official way to target NVIDIA GPUs with SYCL currently.

OpenMP is very well supported on the Intel Xeon platform, and
so it is useful to include that result here for comparison. We use
the Intel C++ Compiler 19.4, and find that we attain 80.3%; there is
unfortunately a clear performance penalty from OpenCL on this
true HPC platform.

3.22 Dot. The Dot product kernel has equivalent implementations
in the OpenCL and SYCL versions as detailed in [4]. The number
of work-groups launched differs on CPUs and GPUs, however the
number is the same for both SYCL and OpenCL on a given platform.
Figure 2 shows the percentage of theoretical peak bandwidth for
the Dot kernel for SYCL and OpenCL.

We show the LLVM/SYCL result for the Intel NUC, noting that
ComputeCpp achieves a similar 69.6%.

Despite the implementations being equivalent we observe a
greater overhead on the discrete GPUs using hipSYCL of 11.7-
20.0%. The reduction requires work-group barriers, local memory
along with a device to host transfer of an array of reduced values
for each work-group; any of which may have overheads. The lack
of proper profiling tools for SYCL makes the job of identifying
this intractable at present. hipSYCL does not currently implement
SYCL event profiling?; as it does not use OpenCL as a backend
(technically rendering it not SYCL 1.2.1 compliant), event timings
are not obtainable either. As such we cannot use the manual event
profiling technique built into the SYCL standard. Vendors do not
provide SYCL tools to enable us to identify where the source if the
performance degradation may be.

Neither ComputeCpp nor LLVM/SYCL show any variation over
OpenCL on the Intel platforms, however the Xeon performance
is significantly reduced compared to Triad. The OpenMP version
of BabelStream compiled with Intel C++ compiler 19.4 achieves
91.6% peak memory bandwidth for the Dot kernel. It is possible
that our CPU reduction implementation is not as well optimised as
that inside OpenMP. As we found in our performance portability
work [2, 4], it is a significant challenge to have a wide support for

4 An example of event profiling for SYCL can be found at https://codeplay.com/portal/
08-27-19-optimizing-your-sycl-code-using-profiling
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OpenCL on HPC processors. It is a limitation of both OpenCL and
SYCL that the user is required to implement a highly performant
reduction for such a key parallel programming pattern; other mod-
els including OpenMP do allow manual reduction implementation
where the provided one is not suitable or sufficient.

3.2.3 Copy. The Copy kernel provides some interesting counter-
point to the other kernels. This kernel is simply copying from one
array to another with no floating point operations. Note too that in
contrast to Triad which has two input and one output array, Copy
moves less data overall.

The results are shown in Figure 3. Again, we present the LLVM/SYCL

result for the Intel NUC; ComputeCpp achieved a similar 90.8%.
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Figure 3: BabelStream Copy results

The overheads of hipSYCL over native OpenCL are reduced a
little for this kernel, and similar bandwidth to the other kernels
was attainable. The Intel NUC manages to demonstrate 10% more
memory bandwidth compared to Triad and this is likely due to
the change in the number of data streams. This behaviour was
previously observable in [4].

Although SYCL and OpenCL are similar for Triad and Dot, there
is a stark difference for Copy. The Xeon platform is showing the
largest range of performance for these three kernels in both models:
8-63% of peak bandwidth. As SYCL 1.2.1 relies on an OpenCL im-
plementation, this variability that comes from OpenCL will clearly
impact SYCL performance. Additionally, there is clearly a missed
optimisation for this Copy kernel in the LLVM/SYCL compiler as
this is the only result for BabelStream where there is such a large
difference between OpenCL and SYCL. On Intel Xeon SYCL is only
achieving 22.8 GB/s where as OpenCL was able to attain 64.9 GB/s.
Here OpenMP attained 81.16% (96.7 GB/s) highlighting the issues
here.

3.3 Heat

A problem size of 8000 by 8000 spatial cells is used, with 1000
timesteps. This ensures the benchmark runs for long enough and
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that the arrays are larger than caches so that the application should
be limited by the performance of main memory bandwidth.

The main kernel reads from one array and writes to a different
array (overwriting), and so it most similar to the Copy kernel from
BabelStream. We therefore present the performance results as a
percentage of the Copy bandwidth as presented in Figure 3. As
noted in Section 3.2.3, this kernel performs poorly on the Intel Xeon,
however for consistency we use the attainable Copy bandwidth —
the performance of Heat should be similar to that of Copy after
all. Likewise the OpenCL result is presented as a percentage of the
OpenCL Copy bandwidth.

The hipSYCL implementation does not currently correctly sup-
port the ALj1[i] buffer accessor notation and so we therefore had
to replace all such accesses with A[cl::sycl::id<2>{j,i}]. On
platforms where both notations were supported we noticed no per-
formance difference between the notations. The results we present
here therefore use the later notation for 2D access.

The source code was edited to use cpu_selector instead of
gpu_selector on the Intel Xeon platform.

Figure 4 shows the performance of the SYCL version of Heat on
all the architectures in our study. We present the average (mean)
of five runs, with the minimum and maximum values shown with
error bars. For the Intel NUC we present LLVM/SYCL results; the
ComputeCpp kernel time was similar however had a larger overall
runtime from the host code parts of the application (host code and
solution checking).
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Figure 4: Heat results, showing average percentage of achiev-
able memory bandwidth of five runs with min/max range

The error bars show that there is more performance variability
with the discrete GPU platforms using hipSYCL compared to the
Intel platforms. The difference is still fairly small at around 2% for
the SYCL versions.

In general we see that SYCL is achieving good performance
across all the processors. The performance on the AMD GPU is
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however much reduced. An early issue with some SYCL implemen-
tations (which has been addressed by many implementations) was
the mismatch between mappings of SYCL work-items to OpenCL
work-items. SYCL 1.2.1 specifies the ordering of work-items via the
get_linear_id() API call where first dimension in the range is
the slowest with the largest stride. Unfortunately this ordering is op-
posite that chosen by OpenCL implementations. Note that OpenCL
does not stipulate an ordering and so it is simply convention that
the first NDRange dimension was the fastest moving with a stride
of one.

We therefore also test a manual linearisation of the range. Buffers
are changed to be allocated with a one-dimensional c1: : sycl: : range
and the parallel_for dispatch functions also iterate with a one-
dimensional range. Buffers accessors are indexed as:

int j = idx[@] / n;
int i = idx[@] % n;
Ali+j*n] = ...

The memory access pattern here should be no different to that
assumed by the get_linear_id() access pattern, however it is
clear there are performance differences even with runtimes which
have addressed this issue. The right-hand bars of Figure 4 show
this manual 1D access. It is clear that the AMD performance has
much improved. The HIP backend to hipSYCL is exhibiting this
inconsistency with the CUDA backend as the manual change does
not cause any variation on the NVIDIA GPU.

The performance on Xeon looks much reduced with a 1D access
pattern, however the bandwidth achieved for 2D is 13 GB/s which
is reduced to 11 GB/s for the 1D access. The performance on Xeon
is poor in both cases as it was for the Copy kernel in BabelStream
and so this is likely the primary factor rather than the change in
accessor index pattern.

Figure 4 also shows the performance of the OpenCL version of
Heat. The performance is calculated as achieved memory bandwidth
as a percentage of that attained by the OpenCL version of the
BabelStream Copy kernel. The Intel NUC GPU shows very close
alignment with the SYCL version as expected. However the other
platforms each exhibit some differences. The performance of the
Intel Xeon is actually inline with what we would expect as it is
close to the Copy bandwidth (recall Section 3.2.3).

The NVIDIA GPU highlights some issues with the particular
combination of driver and GPU for the same code achieves 93.3%
on a NVIDIA P100 GPU. The lack of good double precision on our
2080 Ti is unlikely to be the issue for a memory bandwidth kernel,
noting too that BabelStream is also double precision.

There are two aspects to the difference observed with the OpenCL
run on the AMD GPU. Firstly there is a very large amount of vari-
ability from run to run and we have been unable to identify the
root cause of. Secondly, a 1D NDRange kernel does not improve
the performance as it did for the SYCL version. The 1D version
attains around 46% of Copy bandwidth, however does seem to more
consistently reach this performance.

The results of this Heat mini-app therefore highlight that portable
performance relies in part on the quality of the software stack for
each platform of interest.
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3.4 CloverLeaf

The SYCL port of CloverLeaf is the newest and most substantial
mini-app in this study. As such, we present our early results col-
lected at the time of submission and we hope to include additional
results later.

As with the other mini-apps, in order to build with hipSYCL we
needed to change the buffer accessor notation as already detailed.
With this change, the code compiles however does not run with
hipSYCL; we have narrowed this down to the capturing of the
required accessors in order to perform the reduction operation.

Figure 5 shows the runtime of the clover_bm16_short. in input
file for the SYCL and OpenCL implementations. The results were
stable so we present the minimum value of five runs in each case.
On the Intel NUC we show the result from LLVM/SYCL noting that
the ComputeCpp result was within around 2%.
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Figure 5: Latest CloverLeaf results

Here it is clear that the SYCL performance is similar to that of
OpenCL (within 10%). It is slightly faster due to the differing perfor-
mance of the advection kernels as shown in Figure 6. This routine
consists of a large number of small kernels, and the implementa-
tions look superficially fairly similar. A challenge with studying
performance portability is the maintenance requirements of a large
number of different implementations of mini-apps developed over
a number of years. We will of course investigate this further as
future work but expect that the OpenCL version can be improved.
For our purposes in this study we see that the SYCL performance
is indeed similar to SYCL for all other kernels.

4 CONCLUSION

This study highlights that it is often possible to write SYCL ap-
plications which achieve high performance across a number of
architectures. Our results show that across each of the different
codes the SYCL implementation achieves similar performance to a
direct OpenCL implementation. Additionally, both programming
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Figure 6: Kernel runtimes for CloverLeaf running on Intel NUC

models can leverage close to the peak hardware performance. This
is a fantastic position for SYCL as more HPC-style codes begin to
be written in it. The open source applications in this study go some
way to increasing the breadth of SYCL applications in this arena.

However, the results also show there is a clear need for wide-
spread vendor commitment to SYCL. Targeting GPU architectures
today requires using open source projects which do not get commer-
cial support from the hardware vendors which the project supports.
On CPUgs, the reliance on the OpenCL driver leaves exposure to
existing well known performance issues in this space. Additionally,
not all CPU vendors currently offer OpenCL support and therefore
by extension the possibility of SYCL 1.2.1 support. We have had to
omit those CPUs from this study as a result. Although some open
source solutions exist to support additional architectures, one of
which we used in this study, it is important that vendors provide
well tested packaged compilers and runtimes to ease the complexity
of building and running SYCL codes.

The recent announcement of an extension to the LLVM/SYCL
implementation used in this study to provide support for NVIDIA
GPUs is a very much welcomed step in improving the widespread
support for SYCL 5. The success of any programming model lies
primarily in the adoption of both users and vendors in order to
establish a well supported ecosystem across many problem domains
and the increased support is a positive step.

Going forward we hope to compare these results to other pro-
gramming models and assess their performance portability to aug-
ment our previous study [2].
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A REPRODUCIBILITY

The list of devices and compiler and drivers has already been de-
tailed in the main body of the paper. This appendix will detail how
to obtain and build the codes on each platform. The platforms were
all installed into the University of Bristol’s HPC Zoo and the Envi-
ronment Module commands which detail the software choices will
be shown.

Tom Deakin and Simon MclIntosh-Smith

It is important to make sure that the Intel NUC GPU driver has
the hangcheck disabled as follows:

echo N > /sys/module/i915/parameters/enable_hangcheck

A.1 BabelStream

The code can be downloaded from https://github.com/uob-hpc/
babelstream.
BabelStream was built as follows on the AMD Radeon VII GPU:

# SYCL

module load hipsycl/@.8.1-prerelease

syclcc-clang -DSYCL -03 main.cpp SYCLStream.cpp \
--hipsycl-gpu-arch=gfx906 \
--hipsycl-platform=rocm -o sycl-stream_hipsycl_rocm

# OpenCL
module load cuda/10.1
make -f OpenCL.make -B
BabelStream was built as follows on the NVIDIA RTX 2080 Ti
GPU:
# SYCL
module load hipsycl/@.8.1-prerelease

syclcc-clang -std=c++14 -DSYCL -03 main.cpp SYCLStream.cpp \

--hipsycl-gpu-arch=sm_75 --hipsycl-platform=cuda \
-0 sycl-stream_hipsycl_cuda

# OpenCL
module load cuda/10.1
make -f OpenCL.make -B

BabelStream was built as follows on the Intel NUC:

# SYCL

# LLVM/SYCL

module load 1lvm/sycl

clang++ -03 -std=c++11 -10penCL -fsycl -DSYCL \
main.cpp SYCLStream.cpp -o sycl-stream_llvm

# ComputeCpp

module load computecpp/1.2.0 cuda/10.1

make -f SYCL.make -B

# OpenCL
module load cuda/10.1
make -f OpenCL.make -B

BabelStream was built as follows on the Intel Xeon:

# SYCL

# ComputeCpp

module load computecpp/1.2.0 intel/opencl/18.1 cuda/10.1
make -f SYCL.make -B

# NB: Need to preload the Intel OpenCL runtime on running
# OpenCL

module load cuda/10.1 intel/opencl/18.1

make -f OpenCL.make -B

A.2 Heat

The code can be downloaded from https://github.com/uob-hpc/
heat_sycl.
We built the code as follows on the Radeon VII:
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# SYCL

module load hipsycl/@.8.1-prerelease

syclcc-clang -DSYCL -03 heat_sycl.cpp \
--hipsycl-gpu-arch=gfx906 \
--hipsycl-platform=rocm -o heat_rocm

syclcc-clang -DSYCL -03 heat_sycl_ldrange.cpp \

--hipsycl-gpu-arch=gfx906 \
--hipsycl-platform=rocm -o heat_1D_rocm

# OpenCL
module load cuda/10.1
make -f Makefile.ocl -B
We built the code as follows on the 2080 Ti:

# SYCL
module load hipsycl/@.8.1-prerelease

syclcc-clang -std=c++14 -DSYCL -03 heat_sycl.cpp \
--hipsycl-gpu-arch=sm_75 --hipsycl-platform=cuda \

-0 heat_cuda

syclcc-clang -std=c++14 -DSYCL -03 heat_sycl_1drange.cpp \
--hipsycl-gpu-arch=sm_75 --hipsycl-platform=cuda \

-0 heat_1D_cuda

# OpenCL
module load cuda/10.1
make -f Makefile.ocl -B

We built the code as follows on the Intel NUC:

# SYCL

# LLVM/SYCL

module load 1llvm/sycl

clang++ -03 -std=c++11 -10penCL -fsycl \
heat_sycl.cpp -0 heat_llvm

clang++ -03 -std=c++11 -10penCL -fsycl \
heat_sycl_1ldrange.cpp -o heat_1D_11lvm

# ComputeCpp

module load computecpp/1.2.0 cuda/10.1

module load gcc/9.1.0

module load cmake/3.14.5

mkdir -p build

cd build

cmake .. -DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_C_COMPILER=gcc \
-DComputeCpp_DIR=<path to ComputeCpp>

make

# OpenCL
module load cuda/10.1
make -f Makefile.ocl -B

We built the code as follows on the Intel Xeon:

# SYCL

# ComputeCpp

module load computecpp/1.2.0
module load intel/opencl/18.1
module load cuda/10.1

module load gcc/9.1.0
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module load cmake/3.14.5

mkdir -p build

cd build

cmake .. -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc \
-DComputeCpp_DIR=<path to ComputeCpp> \
-DOpenCL_LIBRARY=<Intel OpenCL lib>

make

# OpenCL

module load intel/opencl/18.1 cuda/10.1

make -f Makefile.ocl -B

# NB: Need to preload the Intel OpenCL runtime on running

A.3 CloverLeaf

The code can be downloaded from https://github.com/uob-hpc/
cloverleaf sycl and from https://github.com/uk-mac/cloverleaf
opencl.

For the SYCL version we ensured that the default data access
pattern was used by removing the define of SYCL_FLIP_2D in the
sycl_utils.hpp file.

We built and ran the code as follows on the Intel NUC:

# SYCL

# ComputeCpp

module load computecpp/1.2.0

module load cmake/3.14.5

module load openmpi/4.0.1/gcc-8.3

cmake3 -Bbuild -H. -DCMAKE_BUILD_TYPE=Release \

-DComputeCpp_DIR=<path_to_computecpp> \

-DOpenCL_INCLUDE_DIR=include/
cmake3 --build build --target clover_leaf --config Release

./build/clover_leaf InputDecks/clover_bm16_short.in

# LLVM/SYCL

module load openmpi/4.0.1/gcc-8.3 1llvm/sycl

OMPI_CC=clang OMPI_CXX=clang++ mpic++ -03 -std=c++11 \
-fsycl -10penCL *.cpp \
--gcc-toolchain=/nfs/software/x86_64/gcc/7.4.0 \
-0 clover_leaf_11lvm

./clover_leaf_llvm ../InputDecks/clover_bml16_short.in

# OpenCL
module load openmpi/4.0.1/gcc-8.3 intel/opencl/18.1 cuda/10.1
OMPI_CXX=g++ OMPI_CC=gcc OMPI_F90=gfortran make COMPILER=GNU \
OCL_VENDOR=INTEL -B -j clover_leaf \
COPTIONS="-std=c++98" OPTIONS="-1lstdc++"
sed -i 's/CPU/GPU/' clover_bm16_short.in
cp clover_bm16_short.in clover.in
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