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ABSTRACT 

 

Robotic systems have been successfully applied in the nuclear industry for several decades as a safe 

approach to minimize the exposure dose of human operators. As nuclear waste management and 

decommissioning gathers pace, there is an emerging interest integrating modern off-the-shelf industrial 

robots in nuclear robotic systems which make use of complex electronics and software to improve 

functionality over traditional machines. The use of the industrial robots will significantly increase the pace 

of development of automated waste management systems at a reduced cost, and although these off-the-

shelf robots are proven robust in typical industrial environments, performance in radioactive environments 

is less clear. This paper investigates the performance degradation of a lightweight industrial robot (KUKA 

iiwa 7 LBR 800) in a controlled radiation field, aiming to simulate conditions in highly radioactive nuclear 

waste handling facilities. The degradation of the industrial robot’s performance is identified while 

measuring the air kerma dose-tolerance of sensitive components, via a systematic experimental 

methodology. The experience from this experiment has demonstrated the significant capabilities of 

industrial robots, which tolerated a large gamma dose of 164 Gy before a system failure. Future tests are 

planned, aiming to enable faster, safer and sooner waste management and decommissioning using complex 

robotic systems  

 

INTRODUCTION 

 

Simple robotic systems have been widely applied to construction, emergency response, decommissioning, 

and waste management by the nuclear industry [1]. For instance, in 1996, remote camera robots were used 

to inspect the waste stored in an area containing radiation and chemical hazards at the Hanford Nuclear 

Reservation (in Washington State, USA) [2]. In addition to the inspection of well-controlled areas, robotic 

systems also play critical roles in nuclear decommissioning tasks, where lethal radiation and complex 

unknown potential hazards exist, such as the decommissioning of Fukushima Daiichi Nuclear Power Plant 

[3]. These cases have shown that the use of robots in nuclear waste management brings significant potential 

benefits of safety by avoiding human exposure.  

 

However, these robotic systems are typically developed for specific missions in the nuclear industry. 

Although the customized design of robotic systems can guarantee robust performances for the assigned 

missions, an adequate design needs a relatively long development period with respect to the demand 

applications. For instance [3], it took weeks to enhance only the robot vehicle control unit with thermal 

sensors and laser imaging systems before being deployed for field inspection in Fukushima Daiichi. 

Researchers at the UK’s National Nuclear Laboratory have integrated different off-the-shelf industrial 

robotic components into a postprocessing system for solid nuclear waste material [4]. In this case, the use 

of the off-the-shelf industrial robots required only simple modifications and a short development period 

before they performed useful tasks. 

 

The UK’s Nuclear Decommissioning Authority (NDA) has reported many successful demonstrations, 

which integrated industrial robotic components, designed for inspection and repacking of nuclear waste 

stores [5]. Some of the prototype systems (e.g. the semi-automated gripping system using a KUKA 

lightweight robot in [4]) adopted industrial robots without considering the impact of radiation to the robots. 
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Off-the-shelf industrial products are almost never designed for the harsh conditions of radioactive 

environments and so the influence of radiation on electronic components needs to be understood before 

these systems are used in safety-critical applications. 

 

In order to guarantee robust performances over extended lifetimes, it is critical to systematically evaluate 

the radiation tolerance of the off-the-shelf robotic components for practical applications [6]. Therefore, a 

series of radiation tests have been carried out to test various robotic components by the South West Nuclear 

Hub at the University of Bristol, aiming to underpin a practice of fast integration at low cost. 

 

This paper will focus on the irradiation test of a KUKA lightweight robot arm, iiwa LBR7-800 [7]. This 

arm has seven degrees of freedom providing high flexibility in a confined working area. The robot arm has 

a maximum payload of 7 kg at a high load-to-weight ratio, which fits the inspection and manipulation tasks 

in gloveboxes [5]. Additionally, the lightweight robot is designed with a redundant safety control 

mechanism, which satisfies human-robot collaboration tasks, at high precision. Therefore, it is a 

competitive robotic manipulator promising automated operations, e.g. repacking of historic plutonium cans 

in sealed gloveboxes [8], safely and efficiently. The initial irradiation result will give a reference to the 

expected radiation tolerance of the robot in nuclear waste handling tasks by measuring the dose to failure 

and determining the failure mechanism from exposure to a high activity sealed source. This also suggests 

further investigation of the less radiation-tolerant components which might benefit from minor 

modifications.  

 

Quantification of radiation tolerance and an understanding of the robot’s capabilities in a radioactive 

environment will enable system engineers to plan the use of the KUKA LBR7-800 (abbreviated as LBR800 

in the paper) or similar robots in the knowledge that tasks are within its radiation tolerance. Importantly, 

the deployment of robotic systems in lieu of human operators satisfies the as low as reasonably practicable 

(ALARP) criteria for reducing dose and hazards in nuclear waste decommissioning. The last part of the 

paper gives the experience and lessons gained, in order to provide practical suggestions for future irradiation 

tests of industrial robots. 

 

EXPERIENMENT SETUP FOR KUKA LBR800 

 

Irradiation test requirements and approach 

The experimental setup was designed according to the requirements for the robot manipulator in a remote 

handling task. Typically, the maximum dose rates in ILW facilities are below 1 Gy/hr. In this experiment, 

a conservative dose rate of 10 Gy/hr was chosen as a target exposure as an extreme condition also applicable 

to high-level waste handling environments.  

 

Typically for these types of tests, a robotic system would be assessed during a stationary exposure of 

radiation-sensitive components at a constant dose-rate (e.g. [9,10]). However, control performance of 

operating robotic components is strongly influenced by radiation in operations (see the particular irradiation 

test of robotic motors in [11]) and the commonly-adopted “stationary” test approach cannot assess the 

transient performance of the tested robotic components. In safety-critical nuclear decommissioning 

applications, it is critical to very closely simulate actual operations to guarantee robust performance in real 

applications. 

 

Therefore, this paper suggests assessing the performance of a KUKA LBR800 via a “hybrid” approach, 

which consists of “dynamic” performance and “stationary” performance assessments. In detail, the 

“dynamic” assessment investigates the robot’s performance degradation, when the robot follows a given 

pre-planned trajectory periodically simulating handling operations. Then, the robot is positioned in 

“stationary” mode being exposed to radiation at a constant dose-rate, until any system failure occurs.  
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Test facility and the radiation source 

A gamma dose rate of 10 Gy/hr was required, necessitating the use of high activity sealed sources in a 

radiation cell at the UK Medical Research Centre (MRC). The cell contains Co-60 sources to generate pure 

gamma via β-decay. There are four sources remotely controlled to be inserted into four parallel tubes (see 

Figure 1). The combined radiation can be assumed effectively to be a point source in practice. A dose rate 

of 10 Gy/hr was obtained approximately 1 m away from the assumed point source location. 

 

 
Fig. 1. A photo of the tested LBR800 in the irradiation cell. Four Co-60 sources were inserted via the 

highlighted insertion pipes during the experiments.  

 

Industrial robot deployment and sensor installation 

The proposed primary function of the industrial robot would be to handle nuclear waste directly or carry 

tools on its flange for inspection, characterization, manipulation, or size reduction. Therefore, an important 

performance requirement is highly accurate positioning performance in the given workspace. Typically, the 

position and the orientation of the flange (where tools such as grippers would be attached) must follow 

specific calculated trajectories. Certainly, the robot’s flange would also happen to be the closest robotic 

component to the radioactive materials being handled, so its performance is of particular interest. The 

location of the LBR800’s flange is marked “7” in Figure 2a.   

 

Motivated to assess the control performance in the “dynamic” test, real-time communication was set up 

between a host PC and the robot controller as shown in Figure 2b. The host computer sent predefined 

demand signals to the robot’s 7 joints (along 7 joint axes), enabling rotational motion of each joint to control 

the flange position and orientation in 3D. Employing the communication set-up, the robot’s joint control 

performance can be obtained and recorded by the host computer. In practice, 100 Hz communication rate 

is configured in order to ensure a robust connection, using a non-real-time host-PC.  

 

A robot’s motion trajectory was required to be designed considering practical constraints: 

1. The robot’s flange needed to be kept a constant distance toward the assumed point source to 

expose it at a relatively constant dose rate. 

2. The robot had to be placed at a safe distance from obstacles, avoiding any potential collisions 

between the robot and the environment.  

A repetitive trajectory was conceived that would respect these constraints whilst allowing the robot to move 

continuously, thereby simulating service conditions. In detail, importantly, the robot flange was controlled 

to run a periodically arc motion 1 m away pointing at the assumed source location. The flange was retained 
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at the same height of the source. The motion speed was programmed such that traversing each arc took a 

period of 1 minute. 

 

Three measurement observations were acquired during the radiation test to understand robot’s behaviors: 

1. Joint control performance data was collected using the data acquisition set-up in Figure 2b.  

2. A diamond detector [12] measuring dose rate was placed at each of the locations marked 1-7 in 

Figure 2a. These were the locations of sensitive measurement and actuation electronics in each 

joint, so of interest for quantification of joint radiation tolerance.  

3. Three cameras were placed to provide different views of the moving robot from within the radiation 

test cell. The video data was collected as ground truth data of robot motions. 

 

 
Fig. 2. The assessed LBR800 robot: (a) highlights the positions where the radiation detectors are installed 

in the experiment; (b) shows the control set-up that provides the target trajectory and acquires robot’s data 

at 100 Hz sampling rate in real-time.  

 

Experiment methodology 

The hybrid performance assessment was carried out in two major stages:  

 

Stage 1: Dynamic test to assess robot’s radiation tolerance during continuous motion 

This stage evaluates the LBR800’s control performance of each joint axis. The robot was instructed to 

follow the given periodic trajectory. The control error of the robot was calculated using the real-time data 

by comparing the instructed joint rotations with actual values. Significant increases of the control error at 

any axis was considered as a degradation of the robot’s dynamic performance. Obvious differences between 

the measured real-time robot position and the ground-truth video also denotes a performance degradation. 

This stage verifies the radiation tolerance of the robot controlled by its default software. Note that in practice 

any increased control error can be eliminated via advanced control algorithms, but nevertheless it is an 

useful indication of potential performance changes due to exposure. 

  

Stage 2: Stationary radiation exposure until system failure 

In stationary mode all joint axes are energized but remain still. The robot was exposed to radiation until a 

fatal system error occurs.  

 

IRRADIATION ASSESSMENT RESULTS AND SUGGESTIONS FOR FUTURE TESTS  

 

Experiment results 

Following the suggested “hybrid” performance assessment approach, the dose rate was measured for 
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radiation-sensitive components of each joint axis at the marked locations in Figure 2a. The measurements 

of exposure dose rates in air are shown in TABLE I. Here, the data is processed in a conservative manner, 

i.e., the robot has been exposed to more radiation than the data shown in TABLE I and TABLE II.  

 

In the “dynamic” assessment, a performance degradation of robot Axis 2 was observed after about 9.3 hours 

of exposure. No obvious difference was notice comparing the real-time measurements and the ground-truth. 

Then, in the following “stationary” test, a fatal system failure appeared after approximately 7 hours. The 

total exposed dose of each axis is shown in TABLE II. 

 

TABLE I. Air kerma exposure dose rate at each joint axis in the radiation assessment 

Robot’s  

joint axis 

Exposed dose rate during 

 dynamic assessment (Gy/hr) 

Exposed dose rate during  

stationary assessment (Gy/hr) 

1 0.4 0.4 

2 0.4 0.5 

3 0.6 0.9 

4 1.2 1.1 

5 1.4 1.4 

6 2.0 1.9 

7 9.7 9.6 

 

 

TABLE II. Total air kerma exposure dose of each joint axis in the irradiation test 

Robot’s 

Axis 

Total exposed dose during 

 dynamic assessment (Gy) 

Total exposed dose during  

stationary assessment (Gy) 

Total exposed dose before 

system failure (Gy) 

1 91.8 72.7 164.5 

2 19.1 14.4 33.5 

3 13.4 10.6 24.0 

4 11.3 8.7 20.0 

5 6.4 6.8 13.2 

6 4.3 4.0 8.3 

7 3.8 3.0 6.8 

 

 

The LBR800 stopped functioning after a large radiation dose of 164 Gy. The point of failure was found to 

be Axis 7, where an optical encoder reported having a critical error. This figure provides an indication of 

radiation performance, but in practice due to the probabilistic nature of the interaction between photons and 

matter, and manufacturing variations of electronic devices, future testing may cause failure above or below 

164 Gy. 

 

Lessons and suggestions  

As soon as the system failure occurred at Axis 7, the robot was locked by its safety control feature. It was 

impossible to continue to measure the radiation tolerance of the other joints, which reported no errors. 

Although the safety design stops the robot control due to hardware errors, this feature would prevent robot 

movement in case of emergency. In practical nuclear applications, the robot safety mechanism might be 

modified to allowing retrieval of the robot after failure of selected non-critical components. On the other 

hand, overall the safety control system is a benefit to nuclear applications.  

 

In this work, the robot’s control performance was assessed by the control error. This is mainly due to the 

insufficient communication rate of the real-time set-up. The variation of control performance needs a 
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sampling rate of 1 kHz, which is suggested in [11] testing a fully customised motor control system. For 

assessing industrial robots, this is limited by the manufacturer in determining the robot functionalities. 

Specifically, for the LBR800 robot, the use of real-time capable machines is suggested for robot control, 

allowing sufficient data-richness and guaranteeing robust communication.     

   

Additionally, the manufacturer restricted access to low-level robot control data, e.g. driving current of each 

motor, i.e., it would be difficult for design and test engineers to precisely identify the hardware issue after 

performance assessments. Unlocking such restrictions would permit the use of low-level measurements to 

accelerate the development speed for nuclear robotic systems.     

 

CONCLUSIONS AND FUTURE WORK 

 

This paper investigates the radiation tolerance of an industrial robot – KUKA iiwa 7 LBR 800. The 

degradation of the control performance was observed after 9.3 hours of dynamic operation in a constant 

radiation environment. The robot system remained functional until a failure of an optical encoder (of Axis 

7) after a cumulative exposure of 164 Gy over a total 16 hours period. The encouraging radiation tolerance 

results demonstrate promising uses for such an industrial robot in nuclear decommissioning and waste 

management tasks. By introducing appropriate sensors and manipulators, these modern robots have the 

potential to deliver cost savings and safety improvements to the industry. 

 

The future work continues measuring the radiation tolerance of all the joints. The research will develop 

radiation hardening techniques, which are easily applied to industrial robots for an improved lifetime in 

radiation environments.  
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