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BVI-SynTex: A Synthetic Video Texture Dataset for
Video Compression and Quality Assessment
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Abstract—Highly textured video content is challenging to
compress since the bit-rate to video quality trade-off is high
and complex perceptual masking influences performance. Test
datasets that cover a wide range of texture types are thus
important for codec evaluation, but few exist. In order to study
the properties of video texture, this paper introduces a Synthetic
video Texture dataset (BVI-SynTex) that was generated using a
Computer-Generated Imagery (CGI) environment. It contains
196 sequences clustered in three different texture types and
offers the capability of being able to generate many versions
of the same scene with different video parameters. It therefore
provides a flexible basis for studying the influence of texture
type and parameters on video compression and perceived video
quality. A thorough validation and comparison of BVI-SynTex
with similarly textured natural video content is performed.
The comparisons show that BVI-SynTex exhibits a comparable
coverage over the spatial and temporal domain and that it
produces similar encoding statistics to real video datasets. A
subset of the BVI-SynTex dataset was selected to perform a
subjective evaluation of compression using the MPEG HEVC
codec.The results show the impact of the content parameters
to both the compression efficiency and the perceived quality.
The publicly available BVI-SynTex dataset contains all source
sequences, the objective and subjective analysis results, providing
a valuable resource for the research community.

Index Terms—Video Texture, CGI Video Dataset, Video Con-
tent Analysis and Compression, HEVC.

I. INTRODUCTION

THE technologies to support emerging video formats are
rapidly advancing, creating an enormous demand for

higher compression rates while preserving quality and de-
livering a satisfying experience to the end users [1]. Cisco
reports that, by 2022, 82% of the consumer traffic will be video
data [2], with Internet video traffic growing fourfold from 2017
to 2022. This implies a massive demand and an ever-increasing
requirement for efficient video coding solutions.

It is well known that the trade-off between compression
efficiency (or bit-rate) and quality is content related. This poses
the hypothesis that, if we can better comprehend the relation-
ship between content properties and compression, then we will
be able to design more efficient video coding solutions. Highly
textured video, particularly scenes that include dynamic tex-
tures, are some of the most challenging in this respect.
Several researchers have presented approaches that enhance
compression of textured content either via synthesis [3]–[5],
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by adopting different quantization strategies for textured areas,
e.g. [6], or by proposing better local motion compensation
techniques for those areas, e.g. [7], [8]. All of these approaches
however base their studies on a limited number of video
sequences that are publicly available, allowing only a partial
exploration of the full video texture space.

It has been widely reported [1], [9], [10] that different
textures exhibit different compression performance in terms of
perceived quality. In order to fully understand and model the
relationship between video texture type and compression, we
need a dataset that provides within-sequence homogeneity and
flexibility and diversity in terms of content (e.g. different levels
of coarseness, or object motion) and acquisition (e.g. camera
motion) parameters. Ideally, we would require full parametric
control over the acquisition process, but this is impossible for
natural video.

A. Related Work

1) Existing Video Datasets: Since the Video Quality Expert
Group (VQEG) released one of the first subjective video
quality databases, VQEG FR-TV Phase I [11], numerous video
databases for either video compression or quality evaluation
have been generated, e.g. VQEG-HD [12], IRCCyN/IVC
1080i [13], EPFL-POLIMI [14], LIVE [15], BVI-HFR [16],
BVI-HD [17]. Typically, a video database for testing compres-
sion performance and evaluating quality assessment methods
should comprise diverse content that is representative of ev-
eryday viewing consumption. For the latter reason, Zhang et
al. [17] compare BVI-HD to BBC Redux [18].

In this context, there are few freely available video datasets
that are designed to represent homogeneous textured scenes
BVI-Texture [9], DynTex [19], and HomTex [20], but none
that offer flexibility in texture parameters. DynTex [19] is
one of the most cited datasets on texture related research.
It has been generated for dynamic texture classification and
recognition research purposes and contains 650 PAL resolution
dynamic video sequences (spatial resolution 720 × 576 at 25
frames per second (fps)) with a wide range of texture types.
However, the video parameters (spatial resolution and frame
rate) are obsolete compared to current requirements and thus
are not suitable for conducting subjective experiments. Hom-
Tex [20], [21] and BVI-Texture [9] datasets were generated
with the aim of understanding and analysing the properties of
video textures and their associated coding performance. The
BVI-Texture dataset [9] contains 20 video sequences with Full
High Definition (FHD) resolution (1920 × 1080) at a frame
rate of 60 fps and 8 bits depth. This dataset was used to test
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HEVC compression efficiency and its perceptual quality versus
bit rate performance. It has been also used to develop video
quality assessment metrics and future video coding algorithms,
e.g. [6], [8]. Although the BVI-Texture dataset satisfies modern
video specifications, the small number of available sequences
is not sufficient for an extensive analysis of texture properties.
It is also heterogeneous in terms of the different textured
and non-textured areas it contains. Another publicly available
dataset focusing on video textures derives from the former two.
HomTex [20] contains 120 video textures that are manually
cropped and selected from the DynTex (101 out of 120) and
BVI-Texture (19 out of 120) datasets. This results in spatially
homogeneous video textures at a 256 × 256 resolution and a
frame rate of 25 fps and 60 fps (depending on whether the
sequence originates from DynTex or BVI-Texture).

Although the aforementioned datasets have been valuable
to the research community, they are not sufficient to fully
study video textures for compression related research. The
main reasons for this are:

• The number of sequences is small, thus insufficient to
allow full exploration and understanding of the video
parameter space that includes an enormous number of
potential combinations of parameters related to video
content (e.g. spatial patterns, colourfulness, complex local
motion patterns).

• None of the datasets provide parametric variability of
the same content (different camera motions, frame rates,
spatial resolutions, etc.) to support studies of different
compression performance that these parameters induce.

• DynTex and HomTex include content with obsolete spa-
tial and temporal resolutions that are not suitable for
contemporary subjective studies.

• BVI-Texture is FHD and has been subjectively evaluated
at different compression levels. In spite of that, it is
hard to draw conclusions for the different textural content
itself as the majority of the sequences are heterogeneous.
Thus, the subjects who evaluate the sequences as a whole
are unconsciously performing some type of spatial and
temporal pooling.

Furthermore, due to the enormous number of potential com-
binations of parameters related to video content (e.g. spatial
patterns, colourfulness, complex local motion patterns) and
acquisition (e.g. frame rate, shutter angle, camera position),
the cost in person-hours of capturing multiple variants is
prohibitive. Also the randomness of some textural content (e.g.
foliage, falling leaves), makes capturing an identical scene
with different video parameters unfeasible.

2) Synthetic Video Datasets: The use of synthetic data
is a common practise in many research areas, especially in
situations where real data may be difficult to acquire, due to
budget, time or privacy concerns. For example, in computer
vision, synthetic data are used for scene understanding [22]
or object recognition [23] and have been proven reliable and
useful especially for training neural networks [24], [25]. In
the field of video compression, there is one synthetically-
generated dataset [26] (to the best of our knowledge), designed
to simulate a multi-lens stereoscopic video system with the aim

to be used for multi-view compression, streaming, or other
computer graphics related research.

The use of CGI content is also common practise in cin-
ematography, not only for animated content, but also for
movies. It is typically combined with real scenes, especially
when special effects are to be utilised. In practice this means
that a large amount of data that video technologists are
compressing is actually synthetically generated. Drawing in-
spiration from this fact and the recent use of synthetic data in
other research fields, we propose the generation of a synthetic
video texture dataset for video compression purposes. Such
an approach has the benefit of using parameterised models
for the production of the synthetic content. This translates to
datasets that are reproducible and can densely cover the video
parameter space.

B. Contribution

The lack of publicly available of homogeneous textured
video content, along with the prohibitive cost and weakness
of capturing natural textured content with identical features,
are limiting factors that prevent us from drawing robust
conclusions about the perception of compressed video tex-
tures with varying features (such as motion). Furthermore, it
makes it harder to develop robust content-driven algorithms
for compression. To address this shortfall, we have created a
publicly available synthetic texture video dataset, BVI-SynTex,
that contains a diverse set of 5 sec FHD video sequences
captured at 60 fps and 8 bits of depth [27]. Building upon
our previous work in this area [27], we further extended it
and this paper presents the following contributions:

i. the requirements established for the design of the syn-
thetic dataset are outlined;

ii. the study of coding performance is extended by applying
clustering on the encoding statistics and by associating
those to texture types;

iii. the relationship between common content parameters,
such as granularity and motion levels, and encoding
statistics is explained;

iv. a subjective study on a subset of BVI-SynTex sequences
is performed in order to evaluate the perceived quality
for different types of texture and to study the effect
of different content parameters, such as granularity and
motion levels on video textures;

v. a statistical analysis of the collected opinion scores is
performed following the recommendations of ITU [28];

vi. state-of-the-art objective quality assessment metrics on
the subset of BVI-SynTex that was subjectively evaluated
are calculated, the rate-quality curves for the different
compression levels are plotted and their correlation to
mean opinion scores is examined;

vii. the publicly available BVI-SynTex dataset is updated
by including the objective and subjective results on the
encoded subset of sequences.

The remainder of this paper is organised as follows. Sec-
tion II characterises the BVI-SynTex video dataset, provides an
analysis of BVI-SynTex coding statistics and its comparison to
real video texture datasets and studies the content parameters
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TABLE I: Sample frames from the three video texture types of the BVI-SynTex dataset and a short description of the model parameters per texture type.

Type of Texture: Static

S1. Brick Cut S.2 Brick Hewn S.3 Ceramic Tile S.4 Clay Brick S.5 Cobble Stone S.6 Fabric S.7 Hexagon Tile S.8 Panel

Model Parameters: three levels of camera distance; three different levels of speed of moving camera.

Type of Texture: Dynamic Continuous

C.1 Fire C.2 Flowing River C.3 Ocean Wave C.4 Pond Water C.5 Smoke C.6 Steam C.7 Swing Fabric C.8 Waterfall

Model Parameters: spread width of fire; wave speed; intensity of smoke; initial velocity of smoke and steam; different wind direction of fabric; swing speed;
density of waterfall; granularity.

Type of Texture: Dynamic Discrete

D.1 Falling Leaves D.2 Flower I D.3 Flower II D.4 Fountain D.5 Grass D.6 Tree I D.7 Tree II D.8 Tree III

Model Parameters: three levels of wind speed; three levels of density of fountain; three levels of spread width of fountain; three levels of camera distance for
the flowers, the grass and the trees.

and the relation to coding performance. Section III reports
the results of the subjective evaluation of a subset of the
dataset, while Section IV the results of the objective quality
assessment. Conclusions and suggestions for future work are
then presented in Section V.

II. BVI-SYNTEX - A SYNTHETIC VIDEO TEXTURE
DATASET

The synthetic video texture dataset BVI-SynTex is presented
in this section. The main purpose of this dataset is to provide a
publicly available CGI-based dataset of homogeneous textures,
created with parameterisable models.

In order to evaluate the video texture compression perfor-
mance and its perceived quality, the new dataset was designed
to meet the following requirements:

• The reference video content that will be the basis for the
different variations of the content should be interesting
and representative of real videos.

• The synthetic content should be as realistic as possible in
order not to influence viewer experience during subjective
quality evaluation.

• There should be a reasonable variation of the content
parameters to allow the study of their interactions.

• The acquisition parameters should be the same for all
videos within a class, to prevent any resulting differences
of the same content, e.g. same speed of moving camera.

• The scene capture process should be as realistic as
possible, simulating camera parameters such as shutter
angle.

• The video content should be homogeneous both spatially
and temporally to allow the study of video textures
without any bias.

• The motion patterns of the dynamic textures should be
stochastic and similar to real video textures.

A. Description of the Dataset

BVI-SynTex was created using a widely used CGI tool,
Unreal Engine 4 (UE4) [29]. UE4 is a C++ based tool
employed by the games industry and also by movie makers.
Recently, it has also been used for research purposes, for
example for the analysis of stereo vision [22] and studying
virtual reality (VR) [30]. UE4 offers a variety of assets that
include models for different scenes and objects. For each of
these models there is a set of different parameters that can be
adjusted, for example the amplitude or the speed of a water
wave.

UE4 also includes universal parameters for capturing video
that simulate a real camera, such as resolution, frame rate,
shutter angle, and viewing angle. It is notable that, based on
these parameters, it delivers content that has similar properties
to real content, e.g. motion blur. Hence UE4 can be controlled
to capture similar texture content using different parameters,
e.g. frame rate, shutter angle or camera position. We carefully



4

selected models that resemble datasets that already exist (e.g.
HomTex) and typically exist as part of video scenes, for
example foliage, grass or water. A further criterion was to
include video textures that fitted our taxonomy developed
previously [19], [20], [31]. In those works, video textures are
classified into three types, static (e.g. a camera panning over
a still scenery) and dynamic continuous (e.g. a scene of ocean
waves) and dynamic discrete (e.g. a scene of moving foliage).
In this paper, we followed the same definitions to generate
synthetic video textures.

BVI-SynTex is open and publicly available on-line at [32]. It
consists of 196 homogeneous video sequences and, in Table I,
we illustrate sample frames of the generated video sequences
grouped according to texture type. For video generation, we
used typical parameters like those from other datasets: a spatial
resolution of 1920×1080, a frame rate of 60 fps, a 180◦ shutter
angle, 8 bit depth and YUV420 colour sampling. Each scene
has a wide range of associated parameters that can be flexibly
modified.

The parameters we used for the different models are also
reported in Table I. These parameters are related to the motion
and granularity levels of the different textures. In UE4 these
parameters are defined within context, for example instead of
defining the granularity level for sequence containing smoke,
there is a parameter called intensity that regulates it. Also,
parameters related to texture granularity and the amount of
motion were designed to be uniform for the different versions
of the videos, e.g. in three levels low-medium-high (wherever
that was applicable). In Fig. 1 an example of the variations
of the content parameters is illustrated. It is important also to
mention that the motion patterns in the dynamic textures are
based on stochastic models and are different for the different
spatial patterns. We provide examples of the optical flow (OF)
fields extracted using Farnebäck’s method [33] in Fig. 2. Last,
we note that the video acquisition parameters are the same for
all videos.

Fig. 1: Example of the scene S.5 Cobble Stone at three different levels of
granularity: low, medium and high, from left to right, respectively.

Plot of Optical Flow Vectors

(a) Clay Brick.

Plot of Optical Flow Vectors

(b) Pond Water.

Plot of Optical Flow Vectors

(c) Tree I.

Fig. 2: Examples of OF fields for the different texture types.

B. Content Feature Analysis

In this section, the content of the dataset is characterised
using a method employed by many other researchers in the

1
0

100

200

S
I

1

0

20

40

60

T
I

1

0

50

100

150

C
F

HomTex median SynTex median

1

0

20

40

M
V

Fig. 3: Distribution plots of the low-level content descriptors of BVI-SynTex-
256 and HomTex.

field [9], [17], [34]–[37]. It involves computing the coverage
of BVI-SynTex over four low-level descriptors as introduced
by Winkler in [38]. This method was introduced with the
aim to ensure fair and sufficient scrutiny when benchmarking
new and existing algorithms. According to this method, we
compared the coverage of content features extracted from
BVI-SynTex with the BVI-Texture and HomTex datasets. The
content features employed are: Spatial Information (SI) as an
indicator of the variety of scenes (edge energy), the Motion
Vectors (MV) and the Temporal Information (TI) as indicators
of the variety of motion, and last the Colourfulness (CF) as
indication of the variety of colours and contrast.

In order to perform a fair comparison of the content features
with those of other (real) datasets, we must match at least their
spatial resolution and frame rate. Since the spatial resolution
of BVI-SynTex is 1920×1080 at a frame rate of 60 fps, it was
directly compared with BVI-Texture [9] which has the same
characteristics. However, BVI-Texture does not exclusively
comprise of homogeneous textured scenes. Therefore, in order
to compare BVI-SynTex with the only available homogeneous
video texture dataset, HomTex [20], each sequence in BVI-
SynTex was downscaled from 1920×1080 to 256×256 using
Lanczos-3 filter [39], as implemented by FFmpeg [40]. This
downscaled version will be referred to as BVI-SynTex-256.

In Fig. 3 the distributions of the content features of BVI-
SynTex-256 and HomTex are depicted using violin plots in a
side-by-side comparison. As can be seen, the distributions of
the two datasets overlap in all four content descriptors with the
median values. The distribution of SI in BVI-SynTex-256 is
narrower but quite symmetric (median value is in the centre of
the distribution) compared to HomTex that is skewed towards
the lower SI values. This is expected as HomTex contains a
wider variety of scenes compared to BVI-SynTex-256, which
has only 24 scenes but many different versions of the same
scene. For the same reason, CF is shifted towards the lower
range and has a narrower range. TI is expected to have a
lower range of values as BVI-SynTex-256 has a higher frame
rate, thus the temporal consistency is higher. Additionally, we
note that the motion patterns in BVI-SynTex-256 are generated
using models and this ensures a uniform motion across all
frames. Finally, it should be noted that the distribution of MV
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TABLE II: The relative total coverage of BVI-SynTex, BVI-Texture, BVI-
SynTex-256 and HomTex.

BVI-SynTex BVI-Texture BVI-SynTex-256 HomTex
Rel. To-
tal Cov-
erage

0.34 0.35 0.40 0.33

for BVI-SynTex-256 is significantly wider than in HomTex.
This is explained by one of the BVI-SynTex requirements that
required for the same content three different levels of motion:
low, medium and high, thus, the wider distribution of the MV
descriptor.

To further compare the video datasets, we computed the
relative total coverage based on the cube root of the convex
hull of all source sequences in the normalized MV×SI×CF
space, as in [38]. A higher relative coverage implies a better
representation of the feature space with more variability across
the different feature dimensions. The relative total coverage for
BVI-SynTex is reported in Table II. BVI-SynTex-256 achieves
a better relative total coverage compared to HomTex. On the
1920×1080 resolution comparison of datasets, BVI-SynTex
has almost the same coverage as BVI-Texture. Also, compared
to other video datasets that are reported in [38], BVI-SynTex’s
total relative coverage is around the mean value of the video
datasets reported.

C. Coding Statistics for BVI-SynTex-256 and HomTex

To further validate the effectiveness of BVI-SynTex, we
compare the coding statistics of BVI-SynTex-256 to those
of HomTex [20], encoding both with HEVC HM16.2 at five
quantization levels, QP={22, 25, 27, 32, 37} using the Random
Access configuration [41], which is one of the most commonly
used mode in practice in broadcasting and streaming applica-
tions [42].

First, despite the fact that the two data sets contain different
textural patterns, we are showing in Fig. 4, examples of
the resulting quality-rate curves of video textures from the
compared datasets that appear similar both in spatial and
temporal characteristics. It is clear that for all three video
texture types, the real and synthetic example sequences have
similar curves. Moreover, between the three texture types there
is a noticeable difference in the compression efficiency. The
static textures exhibit very high quality even at low bit rates,
while the dynamic discrete sequences require a much higher
number of bits per pixel (bpp) for the same quality. For
example, to achieve a PSNR value of 36 dB, the static textures
of Fig. 4 require less than 0.012 bpp, the dynamic continuous
0.025-0.04 bpp and the dynamic discrete 0.4-1.3 bpp.

Furthermore, in Table III a subset of the extracted coding
statistics are presented (for the full list refer to our previous
work [20]). We have selected the specific statistics as they are
adequately representative for the comparison and validation
purposes1. The employed statistics are reported in four general
categories, two of which are related to the encoding decisions
(i.e the prediction modes and the partitioning) and the other

1For more plots and comparisons on the encoding statistics of BVI-SynTex-
256 and HomTex, please, refer to our previous work [27].

two categories are related to the impact of certain encoding
decisions (i.e. the residual statistics and the motion vectors).
In Fig. 5, a comparison of the distributions of the statistics
mentioned in Table III of BVI-SynTex-256 and HomTex is
presented.

TABLE III: The subset of the presented extracted encoding statistics [20].

Category Statistics

Prediction Modes
Average percentage of the prediction mode - In-
tra, Skip, Merge, Inter - selected for the Coding
Unit (CU).

Partitioning Average of the number of partitions per Coding
Transform Unit (CTU).

Residual Statistics Percentage of bits used to encode the residual
signal.
Average MSE of the reconstruction error.
Average of the correlation between original and
residual frames.

Motion Vectors Average length of motion vectors.

1) Prediction Modes: A first observation from Fig. 5 (a)-
(d) is that, for both BVI-SynTex-256 and HomTex, there are
significant differences between the different types of video
textures. Static textures exhibit a high percentage of Skip
modes and a low percentage of Intra modes, mainly because
they only have simple camera motion with a fixed movement
direction [43]. Intra mode is also mainly used to encode dy-
namic textures. A noticeable difference between BVI-SynTex-
256 and HomTex is in the Intra and Skip modes, particularly
for the dynamic continuous textures. This is explained by the
different acquisition parameters of BVI-SynTex, the impact
of the downsampling process on BVI-SynTex-256 (greater
than a 4 downsampling factor) and by the fact that many of
sequences from HomTex suffer from noise, as also explained
in [31]. Another reason that explains the differences in Skip
statistics for the dynamic continuous textures is the frame rate.
BVI-SynTex is captured at 60 fps which is higher than that
of HomTex (the frame rate for most continuous textures in
HomTex is only 25 fps). A higher frame rate results in a higher
redundancy, thus more CUs can be skipped.

The Merge and Inter modes are very similar for both
datasets, as can be seen in Fig. 5 (a) and (c). For the
Merge mode a slightly higher median value is observed for
the dynamic textures. This can be explained by the higher
variety of granularity levels in BVI-SynTex-256 compared
to HomTex. On the other hand, the small differences of the
median values for the Inter mode are related to the variety of
motion levels of BVI-SynTex-256 (low, medium, high). The
effect of the different levels of motion on the Inter mode is
also illustrated in Section II-E.

2) Partitioning: It can be seen from Fig. 5 (e) that the
distribution of BVI-SynTex-256 is within the value range of
HomTex with similar median values. It is also noticeable
that for both datasets, different types of video textures also
have different ranges of values. Static textures have the lowest
number of partitions (medians of 2 and 4 partitions per CTU
for BVI-SynTex-256 and HomTex, respectively). The highest
number of partitions is observed for dynamic discrete textures.
This is attributed to the higher density of high frequencies
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(a) BricksTiltingWall2. (b) CarpetPanAverage. (c) ShinnyBlueWater. (d) BlueReflection_down. (c) LampLeaves-bushes3. (d) RiceField_down.

(e) BrickCutLowSpeedLow-
Gran.

(f) CeramicTileMedSpeed-
HighGran.

(g) OceanWaveMedWind-
SpeedShortFetchLength.

(h) PondWaterHigh-
WaveSpeedLowGran.

(i) Tree1MedWindSpeed-
LowGran.

(j) GrassMedWindSpeed-
LowGran.
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Fig. 4: Examples of Rate-Quality (RQ) curves for sequences with similar textural content from BVI-SynTex-256 (blue lines) and HomTex (red lines) [27].
Example frames from the sequences of the displayed RQ curves are displayed on top of each plot.
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Fig. 5: Distributions of coding statistics of BVI-SynTex-256 (in blue) and HomTex (in red). The orange squares on the distributions mark the median values.

in discrete textures [44]. Also, BVI-SynTex-256 has a lower
mean value of partitions for the dynamic textures. This is
related to the wider range of granularity of the structures, as
the same content has been represented in three different levels.
On the other hand, HomTex consists mainly of fine structures
which explains the higher number of partitions.

3) Residual Signal: Figures 5 (f)-(h) show that the residual
statistics are well aligned for BVI-SynTex-256 and HomTex.
Also, both datasets show a variability for the different texture

types. It should be noted that the average correlation of the
residual to the original frames2 for static textures of BVI-
SynTex-256 is slightly higher than HomTex. This is because
the camera motion was simulated in UE4 with models that
ensure a uniform motion trajectory across all frames, while for
HomTex this would only be feasible if a motorised dolly was

2The Pearson correlation coefficient was used only on the luminance
component of the frames.
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used for the acquisition of the content3. Also, higher levels
of motion were selected which as expected impacts to the
residual energy, as also explained in [45], [46]. Finally, the
percentage of bits used for the residual and the average MSE of
the reconstructed signal are slightly higher for HomTex. This
is expected as many of these sequences suffer from acquisition
noise, as mentioned above.

4) Motion Vectors: For both BVI-SynTex-256 and Hom-
Tex, static and dynamic discrete textures produce short motion
vectors with a similar median value. This is expected for
static textures due to simple global translational (camera)
motion. It is also expected for the case of dynamic textures
due to the restricted range of local random motions of small
structures [20].

Different distributions of the average length of motion
vectors is observed for dynamic continuous textures. These
have the widest distribution, especially for HomTex. Both
datasets however have very similar mean and median values.

(a) BVI-SynTex-256. (b) HomTex.

Fig. 6: Undirected graph representation of the (a) BVI-SynTex-256 and (b)
HomTex sequences using k = 33 neighbors (equal to the number of extracted
coding statistics).

D. Relation of Texture Types with Coding Statistics

Given the large number of features, visual inspection of the
data challenging. We therefore represent them as an undirected
graph where each node is a sequence. The edges that connect
two nodes of the graph consist of the k nearest neighbors
(k-NN) of each sequence, based on the distance expressed as
the correlation of the extracted statistics. The resulting graph
is depicted in Fig. 6 (a), where static, dynamic continuous
and dynamic discrete textures are distinguished by the colors
red, blue and green, respectively. Inspecting the graph, it is
possible to identify three distinct clusters in the data in addition
to a number of centrally located nodes. These latter nodes
correspond to textures that do not fit into only one class due
to their characteristics. Also, it is evident that the clustering
due the application of k-NN on the coding statistics is not
fully aligned with the expert annotations, which were purely
based on the context. Similar clustering patterns appear in the
HomTex dataset, as also shown in Fig. 6 (b).

An example of a sequence whose encoding statistics bias
them towards another texture group is the C.4 Pond Water
sequence. This sequence, according to its statistics, is closely
related to dynamic discrete textures and it appears that, as

3The detailed shooting parameters of the HomTex sequences that originate
from DynTex dataset are unknown.

the motion and the granularity increase, the more its encoding
performance resembles the dynamic discrete class. Similarly,
other sequences that are static appear closer to dynamic
continuous textures. It is also interesting that dynamic discrete
sequences demonstrate encoding statistics that are similar
to static textures. This is attributed to sequences with low
granularity and low motion.

E. Relation of Content Parameters with Coding Statistics

In the previous subsections, the varying levels of granularity
and motion and the lack of homogeneity have been suggested
as factors that might cause misalignment of the distributions
of the two compared datasets. Therefore, in Fig. 7, we show
examples of the effect of granularity and motion on encoding
statistics on the percentages of Intra and Inter mode. As can
be seen, for Intra mode, the lower the granularity the higher
the selection of Intra mode and the vice versa for the motion
levels.
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Motion levels.

Fig. 7: Examples of the effect of granularity and the motion level on the
encoding statistics on the whole dataset.

Interesting cases relating to effect of granularity and motion
level are given in Section III where both an objective and
subjective evaluation is performed on a subset of BVI-SynTex
that takes into account the different versions of the same source
content.

F. Discussion

The detailed comparison of BVI-SynTex-256 and HomTex
in the previous subsections has shown that the two datasets are
aligned and exhibit similar content characteristics and coding
statistics. For the observed differences, we have to account for
the following fundamental differences of the two datasets:

i. The datasets were acquired with different parameters,
i.e. camera, resolution, frame rate and shutter angle,
that influence the spatio-temporal features of the source
sequences.

ii. BVI-SynTex-256 was heavily downsampled from its na-
tive resolution, 1920 × 1080, to 256 × 256 and this has
an important impact on the spatial characteristics.
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iii. BVI-SynTex was captured at 60 fps frame rate, whilst
most HomTex sequences (101/120) were captured at 25
fps and the remaining at 60 fps.

iv. Moreover, the HomTex sequences that originate from
the DynTex dataset [19] (they are cropped patches from
DynTex sequences) suffer from inherent noise caused by
the de-interlacing.

v. BVI-SynTex comprises only of 24 different types of con-
tent but with a combination of varying levels of motion
and granularity. On the other hand, HomTex contains
more variation in spatial texture patterns, however not
many variations of the same texture pattern.

vi. HomTex contains some sequences with characteristics
that are a mixture of texture types as some of the
sequences are not purely homogeneous. Although this
could affect the comparison to BVI-SynTex, HomTex was
selected as a benchmark because it is the only real video
dataset with homogeneous textural content.

vii. Finally, HomTex has a low number of static textures, only
25 out of 120 sequences, thus less variability compared
to a more balanced composition of BVI-SynTex.

Despite these differences, we believe that the presented com-
parison is “fair”, as these dataset differences are encountered
in the real world, where there is no one-to-one alignment of
equipment and specifications in video production.

III. SUBJECTIVE EVALUATION OF BVI-SYNTEX

Besides the study of the content characteristics and encoding
performance related to BVI-SynTex, we also performed a
subjective study to evaluate compression performance. Since
the number of video sequences is large for such a study, we
have selected only two scenes per category (six scenes in nine
different combinations of model parameters, i.e. 54 source
sequences). The motivation behind the selection of the specific
representative sequences was to study the effects of granularity
and the amount of motion in the same content. The selected
sequences are: S.4 Clay Brick, S.5 Cobble Stone, C4. Pond
Water, C.8 Waterfall, D.5 Grass, and D.6 TreeI.

All sequences are encoded with the latest version of the
HEVC reference software, HM16.20, with a configuration as
defined in the JVET Common Testing Conditions [47]. The
intra-period is set to 64, GoP length is 16 frames and the
quantization range is QP = {22, 27, 32, 37, 42}.

A. Experimental setup

The viewing environment conformed to home environment
conditions, as outlined in BT.500-13 [28]. A consumer dis-
play, SONY KD65Z9D, was used with a peak luminance
of 250 cd/m2 (measured using a Konica Minolta CS-2000
spectroradiometer), BT.2020 colour space (full range), set to
a 1920 × 1080 spatial and 60 fps temporal resolution. The
viewing distance was chosen as 3×H , where H denotes the
height of the screen, as indicated in [48]. The display was
connected to a Windows PC with a high performance GPU and
an open source software, BVI-SVQA [49], developed within
our group, was employed to run the test. The software is
lightweight, user friendly and only requires the user to use

10
5

10
6

10
7

10
8

log (Bit Rate)

0

20

40

60

80

100

1
0
0
-D

M
O

S

dynamic continuous

dynamic discrete

static

Fig. 8: Average subjective quality-rate curves per different texture type.

either a wireless mouse or a wireless keyboard to provide
their scores. The software includes other functionalities useful
to the experiment operator, such as the option to perform the
statistical analysis of the opinion scores and to directly plot
the results.

B. Experimental Procedure

Because of the large number of selected sequences and
the fact that we cover a wide range of quantization levels,
we decided to employ a single stimulus methodology with a
continuous scale from 0−100 and with the original sequences
as hidden references (a slight variation of the Absolute Cate-
gory Rating with Hidden Reference (ACR-HR), as defined in
BT.500 [28]).

After visual acuity and colour blindness were tested using
a Snellen chart and a Ishihara chart respectively, participants
were given instructions and presented with a training trial con-
taining videos that were not featured in the main experiment
and that covered similar quality levels as the main experiment.
The subjective data in the training session were not collected
for subsequent analysis. Eighteen observers (16 non-experts
and 2 expert) participated in the experiment, aged from 20-
40, and with a proportion of 4 females over 14 males.

C. Subjective Rate-Quality (RQ) Curves

Prior to the processing of the scores, subject screening
was performed on the participants’ scores using the outlier
rejection method recommended by BT.500 [28], the β2 test.
None of the participants were rejected.

The Differential Mean Opinion Scores (DMOS) is used
for the analysis of the subjective results, and is calculated as
follows:

DMOS =
1

K

K∑
i=1

(OSorg,i −OScmp,i) (1)

where OSorg represent the opinion score of participant i ∈
{1, . . . ,K} for the original reference sequence and OScmp,i
the opinion score of participant i for the compressed version
of the same video.

In Fig. 8, we plot the average subjective quality-rate curves
per different groups. The vertical ranges denote the standard
deviation of the DMOS, while the horizontal ranges denote the
bit rate standard deviation. A first strong observation is that
there is clear separation of the average perceived quality-rate
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Fig. 9: 100-DMOS-Rate curves for all tested sequences.

performance of the different texture types. Previous work [9],
compared static textures to dynamic textures (aggregating both
dynamic continuous and discrete) and mixed textures. The new
findings from our tests, show the different performance of
dynamic texture types, namely dynamic continuous and dy-
namic discrete. We notice that there is a significant difference
in the performance of the two different dynamic texture types.
On average, dynamic discrete textures require the highest bit
rate compared to the other two texture types. The curves also
indicate that for the tested dynamic synthetic textures there is
a saturation of the scored quality in most cases at the third
tested quantization QP point (32). For the static textures, we
notice this at even higher QP .

In Fig. 9, we plot the 100-DMOS-Rate curves for all tested
sequences. It can be observed that sequences with low motion
have subjective results that show a wider range of perceived
quality. This is expected since lower motion improves the
perception of the content and thus enables better judgment
of quality level. Similarly, for lower granularity, where the
density of the high spatial frequencies is low, the effect of
the spatial masking is weaker and it is easier to spot the
compression artifacts.

D. Statistical Analysis of the Subjective Quality Assessment

We performed a significance test using one-way Analysis of
Variance (ANOVA) between the different QP s. Whenever the
ANOVA shows significant difference, i.e. p < 0.05, we signal
this with “1”, otherwise with “0”. In Table IV, we report the
results of the aggregation of the significance point system. A
first observation is that the highest compression levels (QP =
42) that correspond to the lowest rate points, were indicated as

TABLE IV: Aggregated significant difference of perceived quality between
QPs. The maximum points that can be reached is 54 (aka the number of
tested compressed sequences).

QP 22 27 32 37 42
22 - 30/54 44/54 45/54 45/54
27 30/54 - 17/54 27/54 27/54
32 44/54 17/54 - 0/54 0/54
37 45/54 27/54 0/54 - 0/54
42 45/54 27/54 0/54 0/54 -

significantly different from the other four compression levels
in almost all tested sequences.
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Fig. 10: Average 100-DMOS-Rate curves over all tested sequences grouped
according to their (a) motion and (b) granularity level.

E. Relation of Content Parameters with RQ Curves
In order to explore the content parameters effect on the

perceived quality at various compression levels, we are illus-
trating in Fig. 10 the average RQ curves grouped according
to their (a) motion and (b) granularity level. We observe that
the sequences with low motion have been scored with higher
quality by the observers. Then for the high QPs (low bit
rates), the medium motion sequences are scored with higher
than the high motion sequences. This is naturally expected as
the compression artifacts are more intense in the high motion
sequences where a lot of blockiness is observed. In the low
QP tested range (high bit rates), the curves converge which is
expected as the quality range is very high (> 90). In Fig. 10
(b), it is clear that the high granularity average RQ curve is on
top of the medium and low granularity curves for almost the
whole range of tested QPs. This is attributed to the stronger
spatial masking in content that is dense of high frequencies,
making distortion less visible.

IV. OBJECTIVE QUALITY ASSESSMENT OF THE
SUBJECTIVELY TESTED SYNTEX

To complete the quality assessment, we computed nine
popular objective Image and Video Quality Assessment
(IQA/VQA) metrics, including PSNR, PSNR that takes
into account the Contrast Sensitivity Function (CSF) and
the between-coefficient contrast masking of Discrete Cosine
Transform (DCT) basis functions (PSNR-HVSM) [50], Struc-
tural Similarity Index (SSIM) [51], multi-scale SSIM (MS-
SSIM) [52], Visual Information Fidelity measure (VIF) [53],
Video Quality Metric (VQM) [54], Spatio-Temporal Most
Apparent Distortion model (ST-MAD) [55] and Video Multi-
method Assessment Fusion (VMAF) metric (using model
vmaf_v0.6.1.pkl) [56]. PSNR, PSNR-HVSM, SSIM, MS-
SSIM, and VIF are commonly used IQA metrics, while VQM,
ST-MAD and VMAF are VQA methods.
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Fig. 11: PSNR-Rate curves for all tested sequences.
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Fig. 12: VMAF-Rate curves for all tested sequences.

A. Objective RQ Curves

As PSNR and VMAF are commonly used by the video
compression research community, we plotted the RQ curves of
the selected sequences in Figs. 11 and 12. Each subplot aggre-
gates the curves of the different versions of the same content.

As mentioned earlier, the static textures are more effectively
compressed in all their versions compared to dynamic textures.
Also it can be seen here in more detail that both the spatial
and temporal variation of features highly influences compres-
sion performance. Particularly, for the dynamic textures, the
“HighSpeed” versions (blue curves) are harder to compress as
expressed by both quality metrics and the wider bit rate range.
Also, dynamic discrete textures (Grass and Tree sequences)
are harder to compress compared to dynamic continuous and
static, as shown by the objective metrics RQ curves of Figs. 11
and 12 and also explained earlier in Section II-C.

It is also important to note, that although the objective met-
rics indicate significant quality difference, in many cases the
subjective results overthrow these figures as many of the 100-
DMOS-Rate curves have overlapping confidence intervals.

B. Correlation of Objective Metrics to DMOS in synthetic
video textures

It is well known [1] that traditional objective quality metrics
do not correlate well with subjective video quality assess-
ments. This of course is content-dependent and is more no-
ticeable for textured content. We tested the performance of the
aforementioned objective quality metrics using: the Spearman
Rank Order Correlation Coefficient (SROCC), the Pearson
Linear Correlation Coefficient (LCC), the Outlier Ratio (OR)
and the Root Mean Squared Error (RMSE) after performing a
nonlinear regression with a four-parameter logistic function.
SROCC assesses the monotonicity of the objective metric
prediction with respect to opinion scores, while LCC measures
the prediction accuracy [57], [58].

We report the quality metric assessment figures in Table V.
It is evident that for the selected BVI-SynTex sequences, MS-
SSIM shows the highest linear correlation, while SSIM the
lowest. The same ranking of the IQA/VQA metrics results
from the rank correlation values. SSIM, PSNR-HSVM and
VMAF have the lowest OR, while the lowest RMSE is
recorded for MS-SSIM. Generally, the higher the correlation
statistics (LCC, SROCC), the better the perceptual alignment
of the tested objective quality metric to the textured content.

Additionally, it is worth mentioning that the non-linear
behaviour of the tested objective quality metrics in relation to
subjective quality is visually verified by the plots in Fig. 13,
where the 100-DMOS scores are scattered against them and
the fitted logistic function is plotted. As can be seen from the
figure, in the case of PSNR and SSIM, the logistic function
does not fit well resulting in low linear and rank correlation
values. On the other hand, the logistic function fits much better
on the MS-SSIM, VIF and VMAF values resulting in better
linear and rank correlation values. This means that MS-SSIM,
VIF and VMAF are better perceptually aligned than the rest
of the IQA/VQA metrics on the tested textured content.

Fig. 13 also indicates that most objective quality metrics
are performing better on static textures (red markers) as those
points are closely scattered to the fitted logistic curve. This
is expected as the static textures are easier to compress
while maintaining a high quality. For the dynamic textures
(green and blue markers), the tested IQA/VQA metrics do not
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TABLE V: Comparison of Correlation Statistics for the Tested Image/Video
Quality Metrics on the BVI-SynTex Selected Subset.

Metric LCC SROCC OR RMSE
PSNR 0.6695 0.6126 0.0630 11.9701

PSNR-HVSM 0.7794 0.7358 0.0593 10.0971

SSIM 0.6222 0.5289 0.0593 12.6152

MS-SSIM 0.8714 0.7730 0.0778 7.9058

VIF 0.8372 0.7447 0.0667 8.8129

VQM 0.7653 0.6479 0.0593 10.3735

ST-MAD 0.7417 0.6690 0.0481 10.8091

VMAF 0.8162 0.6977 0.0593 9.3111

correlate well and most fitted curves are not monotonic either
at the high quality (PSNR-HSVM, VIF, ST-MAD) or at the
low quality (MS-SSIM, VQM) range.

20 25 30 35 40 45 50
PSNR (dB)

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(a) PSNR vs 100-DMOS.

20 25 30 35 40 45 50 55

PSNR-HSVM (dB)

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(b) PSNR-HVSM vs 100-DMOS.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SSIM

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(c) SSIM vs 100-DMOS.

0.75 0.8 0.85 0.9 0.95 1

MS-SSIM

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(d) MS-SSIM vs 100-DMOS.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VIF

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(e) VIF vs 100-DMOS.

0 0.1 0.2 0.3 0.4 0.5

VQM

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(f) VQM vs 100-DMOS.

0 1 2 3 4 5 6 7 8

ST-MAD

0

20

40

60

80

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(g) ST-MAD vs 100-DMOS.

0 20 40 60 80 100

VMAF

0

20

40

60

80

100

1
0

0
-D

M
O

S

static

dynamic discrete

dynamic continuous

logistic fit

(h) VMAF vs 100-DMOS.

Fig. 13: Scatterplot of 100-DMOS versus the tested objective quality metrics.
The black solid line shows the fitted logistic function.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a CGI generated video texture
dataset, BVI-SynTex. BVI-SynTex benefits from model-driven
content generation and covers a wide range of video textures
with varying spatial and temporal patterns. It provides the

benefit of parameterizable video content (e.g. granularity, wind
speed, camera speed). The relative coverage of traditionally
used content descriptors and coding performance of BVI-
SynTex are shown to be comparable to real video textured
datasets. Thus, we can conclude that BVI-SynTex has similar
properties compared to real videos.

To the best of our knowledge, BVI-SynTex is the first video
texture dataset created for video compression purposes. As
all the original videos and the computed metrics are publicly
available, it can be used by researchers for analysis and
understanding of the video parameter space and its relation to
visual perception and video compression. Its parameterisable
nature, has the benefit of being extensible to include more
video variations (different scene, heterogeneous content, etc.)
to cover the needs of training, testing and validating of any
video acquisition, analysis and compression research method.

It is part of our future work plans to extend BVI-SynTex
with more realistic scenes, including diverse content, changing
lighting conditions, varying camera motion (zooming in and
out, rotation). Also, emphasis will be given in realistic motion
representation by including motion fields that vary within
sequences and by imposing extracted motion fields from real
sequences on synthesized content.
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