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 9 
During a mainshock-aftershock (MSAS) sequence, there is no time to retrofit structures that are damaged by a mainshock, 10 
therefore, aftershocks could cause additional damage. This study proposes a new approach to develop state-dependent 11 
fragility curves using real MSAS records. Specifically, structural responses before and after each event of MSAS sequences 12 
are used to obtain statistical relationships among the engineering demand parameter prior to the seismic event (pre-EDP), 13 
the intensity measure of the seismic event (IM), and the engineering demand parameter after the seismic event (post-EDP). 14 
The developed fragility curves account for damage accumulation, providing the exceeding probability of damage state (DS) 15 
given the IM of the event and the DS of the structure prior to the seismic excitation. The UBC-SAWS model, which was 16 
developed for wood-frame houses in British Columbia, Canada, is considered as a case study application. Results indicate 17 
that, for the examined structural typology, state-dependent fragility curves based on residual inter-storey drift ratio (pre-18 
EDP), peak ground velocity (IM), and maximum inter-storey drift ratio (post-EDP) are the best choice to characterise the 19 
cumulative damage effect. An illustration of the developed fragility curves is provided by considering a hypothetical MSAS 20 
scenario of a Mw 9.0 Cascadia mainshock triggering a Mw 6.0 crustal event in the Leech River fault, affecting wooden houses 21 
in Victoria, Canada. The MSAS scenario increases Yellow tags (restricted access) by 12.3% and Red tags (no access) by 22 
4.8%. 23 
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1 INTRODUCTION 30 

 31 

Recent Mw 9.0 earthquake sequences, such as the 2011 Tohoku earthquake sequence, showed the destructive effects 32 

of aftershocks on buildings [1,2]. Cumulative damage due to aftershocks can have a significant impact on the post-33 

earthquake risk assessment immediately after a mainshock, for example, building tagging, inspection prioritisation, 34 

re-occupancy decision, and retrofitting [3–7]. Similar destructive mainshock-aftershock (MSAS) sequences could 35 

occur in other subduction zone regions. For instance, based on turbidite records in the past 10,000 years, the Cascadia 36 

subduction zone (CSZ) from Vancouver Island to Northern California ruptured 19 times with Mw 9.0-class earthquakes 37 

[8], resulting in an average recurrence period of 526 years. To account for the cumulative damage of MSAS sequences, 38 

a fragility model that can estimate the DS of a structure after each event during an earthquake sequence is necessary. 39 

Many studies have focused on the cumulative damage effects of aftershocks on different types of structures 40 

[9–12]. Among these, Luco et al. (2004) developed a set of state-dependent fragility curves by using non-linear 41 

dynamic analysis. A steel moment-resisting frame model was subjected to scaled mainshock records to attain different 42 

levels of damage (referred as pre-DSs, i.e., the damage registered as a result of the mainshock). Following that, 43 

aftershock records (which were identical to the mainshock record set) were applied to the mainshock-damaged 44 

building by performing incremental dynamic analysis (IDA) attaining cumulative damage resulting from the sequence 45 

(referred as post-DSs, i.e., the damage on the structure subjected to the aftershocks). This is so-called back-to-back 46 

application of mainshock records [10]. The cumulative damage effects due to aftershocks were captured by the damage 47 

accumulation from the pre-DS (characterised by pre-EDP) to the post-DS (characterised by post-EDP). Raghunandan 48 

et al. (2015) extended Luco et al.'s approach to a reinforced concrete building by modelling it as a nonlinear multi-49 

degree-of-freedom system and used the maximum inter-storey drift ratio (MaxISDR) as EDP. Ebrahimian et al. (2014) 50 

developed a performance-based framework for aftershock risk forecasting which consists of an epidemic-type 51 

aftershock sequence model and event-based aftershock fragility curves [7]. The ground motion records that were 52 

constructed for developing event-dependent aftershock fragility curves were selected from the pool of observed 53 

aftershock events. 54 

The procedure by Luco et al. (2004) facilitates various post-earthquake decision-making, such as building-55 

tagging and seismic loss estimation. However, there are four aspects that can be improved. (1) Since the aftershock 56 
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records from the back-to-back application are constructed from mainshock records, the link between the pre-structural 57 

response by the mainshock and the post-structural response by the aftershock is eliminated. Thus, real MSAS records 58 

are desirable. (2) The post-EDP may be overestimated, when the back-to-back application of mainshock records is 59 

used for aftershock records with IDA [13]. (3) The computational cost of the back-to-back approach with IDA is high 60 

[12]. (4) An appropriate set of IMs and EDPs needs to be selected to represent the intensity of ground motions and 61 

structural responses, respectively. The spectral acceleration (Sa) at the fundamental period of a structure is widely 62 

used as IM [14–16]. However, using a single-period Sa may not be effective, because higher mode effects and period 63 

elongation of the structure are also important [17], and a sufficient IM would allow to amplify records with moderate 64 

scaling factors to have more data points without causing significant biases [18]. Therefore, other IMs, such as Arias 65 

intensity (AI), cumulative absolute velocity (CAV), spectral intensity (SI), and peak ground velocity (PGV), should 66 

be taken into consideration in identifying the most suitable IM for the development of state-dependent aftershock 67 

fragility curves. 68 

This study develops a new approach to produce the state-dependent fragility curves due to real MSAS 69 

sequences, which can be implemented to perform short-term post-earthquake risk assessments in major subduction 70 

zones. The novelties of this study are that (1) a large set of real MSAS sequences with wide ranges of rupture distances 71 

(0-270 km) and magnitudes (5.0-9.0) is used for the fragility assessment. (2) Rather than attaining each pre-DS with 72 

scaled mainshock records [10], structural responses before and after each event due to the real MSAS sequences with 73 

moderate scaling factors are used to obtain pre-EDP – IM – post-EDP sets for the development of state-dependent 74 

fragility curves. (3) To reduce the computational cost from the back-to-back approach, a new approach that adopts 75 

cloud analysis [19] with moderate scaling factors to scale the entire real MSAS sequences is proposed to develop the 76 

state-dependent fragility curves. The 3D dataset (pre-EDP – IM – post-EDP) is binned according to the same pre-DS. 77 

For each IM – post-EDP dataset that is classified by the same pre-DS, IM values corresponding to specific post-EDP 78 

intervals are then fitted using the lognormal distribution and multinomial distribution [20,21] to produce the state-79 

dependent fragility curves. (4) Different combinations of IMs and EDPs are evaluated in developing state-dependent 80 

seismic fragility curves given the pre-EDP – IM – post-EDP sets from the real MSAS sequences.  81 

The procedure of developing state-dependent fragility curves for MSAS sequences is applied to wooden 82 

houses in British Colombia, Canada that are represented by the UBC-SAWS (seismic analysis of wood-frame 83 

structure) models. The wood-frame house is selected, because 56% of buildings in British Columbia are wood-frame 84 

houses, 40% of which were built before 1970 [22]. Since seismic provisions of the National Building Code of Canada 85 

were adopted and enforced in British Columbia after 1973, the majority of old residential houses can be considered 86 

as ‘non-engineered’ from seismic design viewpoints. Consequently, many wood-frame houses with low seismic 87 

resistances may suffer significant damage due to a Mw 9.0 mainshock and aftershocks in the CSZ.  88 

This paper is organised as follows. A general description of the new approach to develop the state-dependent 89 

fragility curves is given in Section 2. To demonstrate the new approach, the input ground motion records and UBC-90 

SAWS model are also described in Section 2. After identifying the appropriate EDP and IM for the SAWS model in 91 

Section 3, Section 4 implements the new approach to develop the state-dependent fragility curves and presents the 92 

results of deriving such fragility curves for the wood-frame houses in British Columbia, Canada. 93 

 94 

2 METHODOLOGY 95 

 96 

2.1 Procedures to develop the state-dependent fragility curves 97 

A general procedure to develop the state-dependent fragility curves is illustrated below: 98 

• Real records of subduction-crustal MSAS sequences from local or global record datasets at the target site are 99 

gathered. Such MSAS can later be used as real or scaled records with moderate scaling factor values; 100 

• Non-linear structural dynamic analyses of a target building model using the MSAS sequences are performed; 101 

• Structural responses before and after each event and the intensity measure of each event during a sequence 102 

are recorded and used to develop statistical pre-EDP – IM – post-EDP relationships; 103 

• The efficiency and sufficiency of the IM associated with the post-EDP are examined. This allows using 104 

moderate scaling factors for cloud analysis to reduce the high computational cost from IDA; 105 

• Since EDPs can be associated with the DS of the structure, before developing the state-dependent fragility 106 

curves, the pre-DS and post-DS associated with pre-EDP and post-EDP are defined.  107 

• Finally, the 3D dataset (pre-EDP – IM – post-EDP) is binned according to the same pre-DS; for each bin, IM 108 

values corresponding to specific post-DSs are then fitted progressively using different functional forms (e.g., 109 

lognormal and multinomial functions) to produce the fragility curves.  110 
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To illustrate the key concept of cumulative damage due to repeated earthquakes and the potential application 111 

of state-dependent fragility, a schematic diagram of cumulative damage by multiple events is shown in Figure 1 112 

[10,23]. The residual capacity of the structure may be decreased as more events affect the structure. For instance, for 113 

the first shock, the structure starts from an undamaged condition, and therefore, given IM1 of the first event only, the 114 

post-DS after the first event can be estimated. More in general, with IMj of the j-th shock and pre-DSi before the j-th 115 

shock, the post-DSi can be evaluated, and this procedure can be applied recursively.  116 

 117 
Figure 1. Illustration of damage accumulation due to a mainshock-aftershock sequence. 118 

 119 

2.2 Mainshock-aftershock ground motion records 120 

Using appropriate ground motion records to represent real MSAS sequences is important for seismic demand 121 

estimation. The real MSAS record datasets from [24] and [25] are described in this section, which consist of 596 122 

MSAS sequences of real earthquakes. The magnitude-distance plots of the 596 mainshocks (with filled markers) and 123 

1,685 aftershocks (with unfilled markers) are shown in Figure 2 by distinguishing between the PEER-NGA database, 124 

in which only crustal records are provided, and Japanese K/KiK/SK-net database, where all crustal, in-slab and 125 

interface records are available. Crustal earthquakes from the NGA and K/KiK/SK-net databases have lower 126 

magnitudes and shorter distances than the interface and in-slab events from the K/KiK/SK-net database. The 596 127 

records from this study have a magnitude range of 5.0-9.0 from different types of events, and include the 2011 Mw 9.0 128 

Tohoku sequences with rupture distances up to 270 km. There are 2,281 events (202 crustal NGA events, 374 crustal-129 

K/KiK/SK events, 1,538 interface events, and 167 in-slab events) from 596 sequences × 2 horizontal components, 130 

thus 4,562 pre-EDP – IM – post-EDP triplets (1,192 mainshocks and 3,370 aftershocks) can be obtained. 131 

The design spectrum with site class C in Victoria [26] and response spectra with median and 16th/84th 132 

percentiles of mainshocks and aftershocks are shown in Figure 3(a). Because some large subduction earthquake 133 

records (e.g., the 2011 Tohoku event with Mw 9.0) were recorded hundreds of kilometres away from the record stations, 134 

the response spectra of the mainshocks is not strong in comparison with the design spectrum. The response spectra of 135 

the mainshocks are generally higher than those of the aftershocks. Such inherent characteristics of natural records 136 

should be automatically incorporated in developing state-dependent seismic fragility curves using the above defined 137 

sets of MSAS series. Figure 3(b) shows the response spectra of median and 16th/84th percentiles of all earthquake 138 

types without distinction between mainshocks and aftershocks. 139 

Since the median response spectra of the aftershocks are smaller than the mainshocks, scaling factors are 140 

necessary to ensure that the structure reaches collapse state for the development of fragility curves. Unlike other IDA 141 

studies [19,27] that performed detailed record selection (e.g., CMS) and allowed high scaling factors up to 10, this 142 

study uses cloud analysis [28] and applies moderate scaling factors to the entire MSAS sequences. Vamvatsikos and 143 

Cornell (2002) indicated that the sufficiency of IM is important to allow a high scaling factor for record scaling. In 144 

this study by selecting the sufficient and efficient IM and the most suitable EDP from Section 3, moderate scaling 145 

factors of up to 5 are considered to be acceptable for cloud analysis, as suggested by other studies [19,29]. 146 
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 147 
Figure 2. Magnitude-distance plot of the mainshocks (with filled markers) and aftershocks (with unfilled 148 

markers) including (a) crustal-NGA, (b) crustal-K/KiK/SK, (c) interface, and (d) inslab events. 149 

 150 
Figure 3. Response spectra (a) of mainshocks and aftershocks with 16th, 50th, and 84th percentiles, and design 151 

spectrum with site class C in Victoria (b) of different earthquake types from both mainshocks and aftershocks 152 

with 16th, 50th, and 84th percentiles. 153 
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2.3 UBC-SAWS model 154 

The UBC-SAWS model is a structural model of typical wood-frame houses in British Columbia, Canada [30]. It is 155 

based on the SAWS model [31,32] with modifications of the model parameters for Canadian wooden house 156 

construction. The basic assumptions of the UBC-SAWS model are: (1) floor and roof diaphragms are rigid (length = 157 

7.62 m, width = 6.10 m, and height = 2.74 m), (2) bi-directional horizontal seismic excitations are considered but 158 

ignoring vertical excitations, and (3) shear walls are represented by nonlinear springs, hysteresis of which is 159 

characterised by the Cyclic Analysis SHEar Walls (CASHEW) model [33] (see Figure 4). The CASHEW model 160 

incorporates stiffness and strength degradation. However, no in-cycle degradation is considered in the hysteresis 161 

model. The parameters of the UBC-SAWS model were calibrated based on static and dynamic tests of wall panels 162 

with different configurations and shake-table tests of full-scale houses that were conducted at the University of British 163 

Columbia [30]. The sheathing materials of the shear wall include horizontal board (shiplap), gypsum wallboard 164 

(GWB), plywood, oriented strand board (OSB), and stucco. 165 

Based on different shear-wall configurations, four types of two-storey wood-frame houses are defined in the 166 

UBC-SAWS model: (1) House 1 with stucco/engineered OSB/GWB, (2) House 2 with engineered OSB/GWB, (3) 167 

House 3 with non-engineered OSB/GWB, and (4) House 4 with horizontal boards/GWB. The term ‘engineered’ for 168 

Houses 1 and 2 indicates that hold-downs and blocking of the wall panel are used to increase its seismic resistance 169 

and to meet the seismic code requirements. Due to the design layout of the house model in Figure 4(b) (e.g., 170 

dimensions of the house along x-axis and y-axis and locations of windows and doors), the stiffness along x-axis is 171 

smaller than that along y-axis, and the expected failure mode of the house models is the soft-storey collapse of the 172 

ground floor level due to larger openings. The fundamental vibration periods along x-axis of Houses 1-4 are 0.25 s, 173 

0.3 s, 0.35 s, and 0.4 s, respectively, whereas those along y-axis are about 0.22 s for all houses [30]. In Figure 4(b), 174 

16 walls (W1-W16), which are represented by nonlinear springs, are present along x-axis and y-axis on the ground 175 

and first floors. Shear-walls along x-axis are different for Houses 1-4 (W1 to W7), whereas shear-wall elements along 176 

y-axis are the same for the four house models (W8 to W16) [27]. The pushover analysis results of Houses 1-4 by using 177 

the inverse triangle load distribution are shown in Figure 4(c). The base shear ratio in vertical axis is the ratio of the 178 

base shear force and the total weight of the house. In terms of pushover curves, House 1 has the highest seismic 179 

capacity; Houses 2 and 3 have similar seismic resistance; and House 4 has the lowest seismic capacity. A recent study 180 

by [34] indicated that House 4 with horizontal boards is not suitable in high seismic regions and median collapse 181 

capacities of House 4 is reduced by 61% under long-duration motions in comparison with short-duration motions. 182 

 183 

 184 
Figure 4. Illustration of the UBC-SAWS model: (a) generic model of wood-frame houses, (b) ground and first 185 

floor plans of wood-frame houses, and (c) pushover analysis of Houses 1-4. 186 

 187 

2.4 Evaluation of IMs 188 

To evaluate different IMs, various studies have focused on the efficiency, sufficiency, and relative sufficiency of IM 189 

[15,16,35]. Efficiency means that the prediction variability of EDP is small given IM, which can potentially reduce 190 

the number of structural response analyses. Consider a linear relationship between IM and EDP in logarithmic scale 191 

(base 10): 192 

 193 

log10(𝐸𝐷𝑃) = log10(𝑎𝐼𝑀) + 𝑏𝐼𝑀 × log10(𝐼𝑀)  (1) 194 

 195 

where aIM and bIM are the coefficients of the linear regression. The efficiency is calculated by [35]: 196 
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𝛽𝐼𝑀 = √
∑ (log10(𝐸𝐷𝑃𝑖)− log10(𝑎𝐼𝑀×𝐼𝑀𝑖

𝑏𝐼𝑀))2𝑚
𝑖=1

𝑚−2
  (2) 197 

 198 

Sufficiency of IM indicates that the EDP is independent of other explanatory variables, such as rupture 199 

distance and magnitude, when IM is taken into account. Therefore, if IM is sufficient, the inclusion of other variables, 200 

in addition to the main IM, does not affect the distribution of EDP. To evaluate the sufficiency of IM, the residual 201 

(ResIM) between IM and EDP from Equation (1) is calculated as: 202 

 203 

𝑅𝑒𝑠𝐼𝑀 = log10(𝐸𝐷𝑃) − log10(𝑎𝐼𝑀 × 𝐼𝑀
𝑏𝐼𝑀)  (3) 204 

 205 

Following that, the dependency of ResIM on rupture distance (Rrup) and magnitude (Mw) can be examined by: 206 

 207 

𝑅𝑒𝑠𝐼𝑀 = 𝑐𝐼𝑀 + 𝑑𝐼𝑀 × log10(𝑅𝑟𝑢𝑝)  (4) 208 

𝑅𝑒𝑠𝐼𝑀 = 𝑐𝐼𝑀 + 𝑑𝐼𝑀 ×𝑀𝑤  (5) 209 

 210 

where cIM and dIM are the coefficients of the regression. The sufficiency of IM can be quantified by the significance 211 

level (pIM-value) for dIM [16]. 212 

Moreover, Jalayer et al. (2012) proposed relative sufficiency as a measure to compare the sufficiency between 213 

different IMs based on the concept of relative entropy from information theory. The relative sufficiency between two 214 

IMs is calculated by: 215 

 216 

𝐼(𝐼𝑀𝑗|𝐼𝑀𝑘) =
1

𝑚
× ∑ 𝑙𝑜𝑔2

(

 
 
 
 𝛽𝐼𝑀𝑘×𝜙

(

 
 log10(𝐸𝐷𝑃𝑖)−log10(𝑎𝐼𝑀𝑗.𝑖

×𝐼𝑀
𝑗.𝑖

𝑏𝐼𝑀𝑗.𝑖
)

𝛽𝐼𝑀𝑗

)

 
 

𝛽𝐼𝑀𝑗×𝜙(
log10(𝐸𝐷𝑃𝑖)−log10(𝑎𝐼𝑀𝑘.𝑖

×𝐼𝑀
𝑘.𝑖

𝑏𝐼𝑀𝑗.𝑖
)

𝛽𝐼𝑀𝑘
)

)

 
 
 
 

𝑚
𝑖=1   (6) 217 

 218 

where IMj and IMk represent different IMs, and βIM is calculated from Equation (2). 219 

 220 

2.5 Seismic fragility functions 221 

Using the selected ground motion records (Section 2.2) and the structural models (Section 2.3), 23,840 nonlinear 222 

dynamic analyses (= 4 house models × 596 MSAS sequences × 2 horizontal components × 5 scaling factors) are 223 

performed. The calculated structural responses are obtained for developing state-dependent seismic fragility functions 224 

as described in Section 2.1. The pre-EDP, IM, and post-EDP are selected and evaluated based on the different types 225 

of structural models and the preference of the modeller. The choice of the IMs and EDPs of SAWS model are further 226 

investigated in Section 3. To develop the post-DS fragility models in terms of associated IM and pre-DS, two methods 227 

are used as in Sections 2.5.1 and 2.5.2. 228 

 229 

2.5.1 Lognormal distribution 230 

The lognormal distribution has been widely used to fit seismic fragility curves [20]. The advantages of using the 231 

lognormal distribution for the fragility curve fitting are that (1) it is easy to apply because it has a simple format with 232 

a median and a logarithmic standard deviation as model parameters, and (2) it usually fits the data reasonable well 233 

[36]. The lognormal distribution is defined as: 234 

 235 

𝑃(𝐷𝑆𝑖) = 𝛷 (
ln⁡(𝐼𝑀 𝜃𝐼𝑀

⁄ )

𝛽𝐼𝑀
)⁡  (7) 236 

where  is the standard normal distribution, and IM and IM are the median value and the standard deviation of the 237 

post-DSi fragility curves, respectively. 238 

 239 

2.5.2 Multinomial distribution 240 

The multinomial distribution has been applied in recent studies on fragility modelling [21,37]. In comparison with the 241 

lognormal distribution, the advantages of the multinomial distribution are that (1) it does not require binning of IM, 242 

so the pair of IMi and post-DSi given the same pre-DS can be used directly to estimate the coefficients of the 243 
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multinomial distribution, and (2) since it can accommodate the hierarchical nature of damage state severity, derived 244 

fragility curves do not intersect. The multinomial probability distribution is given by: 245 

 246 

𝑃(𝐷𝑆𝑖) =
1

∏ 𝑦𝑖𝑗!
𝑛𝐷𝑆
𝑗=1

∙ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗𝑛𝐷𝑆
𝑗=1   (8) 247 

 248 

where nDS is the total number of DS, yij is the number of data points in the ith IM falling in DSj, and ij is the 249 

probability that the ith observation is in DSj. The systematic component of the model is represented by a link function: 250 

 251 

𝑓(𝜋𝑖𝑗) = 𝜃𝑗,0 + ∑ 𝜃𝑗,𝑘 ∙ 𝜒𝑘
𝑛𝑃
𝑘=𝑖   (9) 252 

 253 

where  is the regression parameter, nP is the number of explanatory variables . The explanatory variable can be IM, 254 

structure type, and pre-DS if a large number of data points are available. Taking the mainshock fragility curves with 255 

DS0:n as an example, 𝜃𝑗,0 is the intercept terms for the relative probability of DSi given the reference DSi+1:n. 𝜃𝑗,𝑘 is the 256 

coefficient of the explanatory variable, which is the mainshock IM in this example, and shows the probability of DSi 257 

versus DSi+1:n in the log scale as the IM increases. 258 

 259 

3 EVALUATION OF EDP – IM TRIPLETS USING REAL GROUND MOTION RECORDS 260 

This section presents the preliminary exploratory phases of the model development by introducing pre-EDP, 261 

investigating the suitability of EDPs for pre-EDP and post-EDP, and evaluating the efficiency and sufficiency of IMs. 262 

 263 

3.1 Pre-EDP 264 

The conventional seismic fragility assessment for mainshock ground motions requires IM and post-EDP (e.g., only 265 

event1 in Figure 5(a)). To derive state-dependent aftershock fragility curves, a suitable pre-EDP needs to be specified. 266 

Figure 5(a) illustrates a MSAS sequence from the Tohoku sequence, and Figure 5(b) and (c) display the structural 267 

displacement response time-history and hysteretic response, respectively, using the UBC-SAWS model for W1 on the 268 

ground floor of House 4. 269 

Since the failure mode of the SAWS model is the soft-storey collapse of the ground floor level, three EDPs 270 

suitable to describe such a mechanism are selected: (a) the maximum inter-storey drift (MaxISDR) at the first level, 271 

(b) the residual inter-storey drift (ResISDR) at the first level, and (c) the maximum difference between MaxISDR and 272 

ResISDR (MaxIISDR) at the first level. Figure 5(b) shows the maximum, residual, and maximum incremental 273 

displacements of W1 for an illustrative earthquake sequence consisting of 3 events. MaxISDR1 and MaxIISDR1 of the 274 

first event are identical, because the residual displacement before the first event is zero. If the residual displacement 275 

is small, MaxIISDR becomes similar to MaxISDR. 276 

 277 
Figure 5. (a) An example of the 2011 Tohoku mainshock-aftershock sequence with (b) the displacement 278 

response time-history of House 4 of the maximum displacement (Max disp), the residual displacement (Res 279 

disp) and the incremental maximum displacement (Δ Max disp), and (c) hysteretic response plot of Events 1-3. 280 
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3.2 Evaluation of EDPs 281 

Different combinations of EDPs for pre- and post-earthquake conditions are assessed by focusing upon three EDPs, 282 

i.e., MaxISDR, ResISDR, and MaxIISDR. In total, 9 combinations of pre-EDP and post-EDP are considered: Case 283 

1-MaxISDR and post-MaxISDR, Case 2-pre-MaxIISDR and post-MaxISDR, Case 3-pre-ResISDR and post-284 

MaxISDR, Case 4-pre-MaxISDR and post-MaxIISDR, Case 5-pre-MaxIISDR and post-MaxIISDR, Case 6-pre-285 

ResISDR and post-MaxIISDR, Case 7-pre-MaxISDR and post-ResISDR, Case 8-pre-MaxIISDR and post-ResISDR, 286 

and Case 9-pre-ResISDR and post-ResISDR. These are displayed as a scatter plot where each pre-EDP – post-EDP 287 

point is associated with Sa(T=0.3 s) as IM (i.e. the coloured grading in Figure 6). According to Figure 6(a) and (b), 288 

the plots of pre-EDP – IM – post-EDP datasets from Cases 1 and 2 are similar. This is because (1) MaxISDR1 and 289 

MaxIISDR1 of the first event are identical given the residual displacement before the first event is zero, and (2) if the 290 

residual displacement is small, the MaxISDR and MaxIISDR tend to be similar. The same observation can be seen 291 

from Cases 4 and 5, and Cases 7 and 8. 292 

 293 

 294 
Figure 6. Plots of 9 cases of post-EDPs against pre-EDPs for House 4. (a) pre-MaxISDR and post-MaxISDR, 295 

(b) pre-MaxIISDR and post-MaxISDR, (c) pre-ResISDR and post-MaxISDR, (d) pre-MaxISDR and post-296 

MaxIISDR, (e) pre-MaxIISDR and post- MaxIISDR, (f) pre-ResISDR and post-MaxIISDR, (g) pre-MaxISDR 297 

and post-ResISDR, (h) pre-MaxIISDR and post-ResISDR, and (i) pre-ResISDR and post-ResISDR. 298 

 299 
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Individual pre-EDPi should represent the DS of the structure from event1 to eventi. In other words, since IM 300 

is the only input of the current fragility simulation framework, pre-EDP that only represents the DS of individual 301 

eventi is not suitable for the state-dependent aftershock fragility curves. In this regard, MaxIISDRi that only describes 302 

the relative DS between eventi-1 and eventi may not be appropriate as pre-EDP. Based on that, Cases 2, 5, and 8 are 303 

excluded from fragility fitting. 304 

An ideal pair of pre-EDP and post-EDP should retain as many IM–EDP points as possible in fitting the 305 

fragility curves robustly, and a higher pre-EDP should correspond to a higher post-EDP to represent the cumulative 306 

damage due to an earthquake sequence. To include more IM–EDP points for the development of the fragility curves, 307 

the EDP pairs of Cases 3, and 6 are more suitable than Cases 1, 4, 7, and 9. This is because the points in Cases 1, 4, 308 

7, and 9 need to be divided into two parts which are pre-EDP > post-EDP and pre-EDP < post-EDP, respectively. 309 

The former would be no damage scenario and only the latter part can be used for the aftershock fragility development. 310 

On the other hand, when Cases 3 and 6 are considered in Figure 6(c) and (f), since the absolute maximum displacement 311 

is always larger than the absolute residual displacement, all points can be used for the development of the fragility 312 

curves, resulting in more robust curve fitting (i.e., all points are above the bisector of the quadrant). 313 

Based on these considerations, Cases 3 and 6 are suitable options for the development of aftershock fragility 314 

curves. However, an issue of adopting Case 6 is that the post-DS definitions of MaxIISDR may need to be changed 315 

with pre-ResISDR. In other words, the DS associated with MaxIISDR is not constant given different pre-DSs, because 316 

MaxIISDRi only represents the response of eventi. Considering MaxIISDR has not been widely used for aftershock 317 

risk assessment in comparison with MaxISDR, in the subsequent part of this study only Case 3 (pre-ResISDR and 318 

post-MaxISDR) is considered to represent pre-EDP and post-EDP. 319 

 320 

3.3 Evaluation of IMs 321 

To evaluate different IMs, metrics for efficiency, sufficiency, and relative sufficiency are calculated for Sa(T=0.05-5 322 

s), AI, CAV, PGV, and SI [16,35,38]. The non-collapse EDP values [39] of House 4 are used for the evaluation of 323 

IMs from the unscaled records of MSAS sequences, because the majority of the wood-frame houses in British 324 

Columbia are classified as House 4 with non-seismic resistance [22,30]. 325 

The efficiency is examined based on [35]. A small standard deviation (βIM) in Equation (7) indicates less 326 

variability of the IM–EDP relationship (i.e., higher predictability). The values of βIM in a range of 0.2 to 0.3 and 0.3 327 

to 0.4 are considered as a good and acceptable IM in terms of efficiency, respectively [40]. According to Figure 7(a), 328 

Sa(T=0.3-0.5 s), PGV, and SI are more efficient than others for House 4. 329 

Next, the sufficiency (pIM) of IMs is checked against source parameters (rupture distance and magnitude) for 330 

House 4. pIM captures the statistical independence between the source parameters and IM given pIM>0.05. The 331 

sufficiency of IMs in terms of rupture distance and magnitude is shown in Figure 7(b) and (c), respectively. Sa with 332 

periods 0.2 to 2 s, PGV, and SI are good candidates of IM. On the other hand, Sa with periods 0.05-0.2 s and 2-5 s, 333 

AI, and CAV show a high dependence on the source parameters, which indicates that these IMs are not appropriate 334 

for use as sole IM for the fragility curve fitting of the wood-frame houses. 335 

The relative sufficiency (I) is plotted in Figure 7(d) to rank different IMs for House 4. The fundamental 336 

period of the wood-frame house (T=0.3 s) is considered as a reference IM, therefore, the relative sufficiency of 337 

Sa(T=0.3 s) is 0. Sa values with periods T=0.32-1 s, PGV and SI have superior performance than Sa(T=0.3 s). 338 

Especially, Sa(T=0.4-0.5 s) and PGV have the highest relative entropy. This suggests the period elongation of the 339 

damaged structure in comparison with the fundamental period of 0.3 s. Since the most suitable IMs are in the range of 340 

0.3-0.5 s and PGV shows a good performance of House 4, in this study Sa (T=0.3 s and 0.5 s) and PGV are used to 341 

derive the state-dependent fragility curves in Section 4. In addition, the selection of IM should also be related to the 342 

availability of the ground motion prediction equation (GMPE), when the developed fragility models are implemented 343 

for seismic risk assessments. Although PGV is not widely used for the subduction GMPEs based on the global dataset 344 

[41], other GMPEs for the CSZ have considered PGV as the output [42]. SI is also an appropriate IM based on the 345 

results of sufficiency and efficiency. However, SI is calculated by taking the integral of spectral accelerations over a 346 

period range from 0.1 to 2.5 s, which requires a high computational cost with the spatial correlation. In addition, the 347 

correlations between periods are also necessary, therefore, in this study SI is not considered in the development of 348 

aftershock fragility curves.  349 

 350 
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 351 
Figure 7. Plot of (a) efficiency (βIM), sufficiency (pIM) for (b) rupture distance and (c) magnitude, and (d) relative 352 

sufficiency (I) of each IM (Sa(T=0.05-5 s), AI, CAV, PGV, and SI) given the non-collapse EDP with unscaled 353 

records for House 4. 354 

 355 

4 STATE-DEPENDENT FRAGILITY MODELLING 356 

 357 

4.1 Definitions of pre-DS and post-DS  358 

This subsection defines DSs in terms of pre-ResISDR and post-MaxISDR of Houses 1-4. Various studies investigated 359 

the relationship between ResISDR and MaxISDR for different types of structures, e.g., moment resisting steel frames 360 

and non-ductile reinforced concrete buildings [43,44]. For wood-frame houses, a FEMA study [45] defined 361 

performance level (PL) of wood stud walls based on MaxISDR. MaxISDR thresholds with PL1-1%, PL3-2%, and PL5-362 

3% are considered as immediate occupancy, life safety, and collapse prevention, respectively. In [46], the DSs of the 363 

wood-frame house associated with MaxISDR thresholds 1%, 2%, 4.5%, and 7% were defined as minor damage, 364 

significant damage, major damage, and collapse risk, respectively. In terms of the collapse state associated with 365 

MaxISDR, the collapse state of the SAWS model was defined as MaxISDR>7% in [39]. Considering different shear 366 

wall types of wood-frame houses and record durations, in [34] the collapse state of the wood-frame houses was defined 367 

based on the short and long durations of the records (same hysteretic model as this study but with modified hysteretic 368 

parameters). Regarding the DSs associated with ResISDR, PL1,3,5 of wood stud walls were considered with the 369 

ResISDR thresholds with 0.25%, 1%, and 3% [45], while ResISDR of 0.2%, 0.5%, 1%, and 2% were suggested for 370 

DS1-4FEMA in [47]. In terms of building tagging for the post-earthquake evaluation, three tagging levels are usually 371 

considered, which are Green tag (unrestricted access), Yellow tag (restricted access), and Red tag (no access) [4].  372 
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Given the pushover analysis results of Houses 1-4 are significantly different in Figure 4(c), the DS thresholds 373 

of each house model should be defined individually based on the literature and the IM–EDP results from this study. 374 

The following procedures are carried out to define the DSs with MaxISDR and ResISDR of Houses 1-4 by first 375 

determining the collapse states of ResISDR and MaxISDR: 376 

• The collapse state associated with MaxISDR for Houses 1-4 is defined by taking the average collapse state 377 

limits of short and long record durations from [34], which is 7%, 6%, 6%, and 5.5% for Houses 1-4 (Table 378 

1). This is because the ground motion records used in that study include both short- and long-duration records 379 

and the application of the fragility curves would focus on both crustal and subduction-zone earthquakes. 380 

• The collapse state associated with ResISDR for Houses 1-4 is determined by the IM–EDP results from this 381 

study. The 3D dataset including pre-ResISDR, Sa(T=0.3 s), and post-MaxISDR is binned according to pre-382 

ResISDR expressed in terms of percentage (i.e., [0; 0.3], [0.3; 0.5], [0.5; 1], [1; 2], [2; 3], [3; 4], [4; 5], [5; 383 

6], [6; 7], and [7; 8]). The linear regression of log(non-collapsed post-MaxISDR) and 384 

adsRes+bdsReslog(Sa(T=0.3 s)) given each binned pre-ResISDR is obtained, where adsRes and bdsRes are the 385 

regression coefficients. The slope (bdsRes) of linear regression is used to detect the change of pre-ResISDR. 386 

Since the higher Sa(T=0.3 s) results in higher MaxISDR and ResISDR, the collapse state associated with 387 

ResISDR is determined when the slope (bdsRes) of MaxISDR against Sa(T=0.3 s) given the binned pre-388 

ResISDR is less than 0.1, which leads to 4%, 4%, 3%, and 3% for Houses 1-4. 389 

 390 

Table 1. Collapse state limits of Houses 1-4. 391 

 House 1 House 2 House 3 House 4 

ResISDR 4% 4% 3% 3% 

MaxISDR 7% 6% 6% 5.5% 

 392 

By having the collapse state limits of ResISDR and MaxISDR, the ratios between three tagging levels and 393 

collapse state are provided in Table 2 based on the DS descriptions [4,45–47]. Green tag (DS1) can be regarded to be 394 

equivalent as immediate occupancy [4]. Yellow tag (DS2) is the intermediate DS between life safety and collapse 395 

prevention, because Yellow tag is defined for only acceptable entry for workers doing maintenance which is beyond 396 

the life safety [3]. Red tag (DS3) is the intermediate DS between collapse prevention and collapse because Red tag 397 

forbids assess to a damaged building and the building is assumed to be near collapse. The description of each DS is 398 

also summarised in Table 2 based on [45], the Static and Dynamic Testing of Shear Wall Panels Project for the UBC-399 

SAWS model [48], and the Earthquake 99 Wood-frame House Project EQ 99 Project [30]. Wall components that are 400 

described in Table 2, including wall frame, sheathing material, and hold-down, are shown in Figure 4(a). 401 

 402 

Table 2. Summary of damage states  associated with the lower limits of ResISDR and MaxISDR (CS=collapse 403 

state). 404 

 No damage (DS0) Green tag (DS1) Yellow tag (DS2) Red tag (DS3) 

ResISDR 0.01% 0.10×CS 0.30×CS 0.70×CS 

MaxISDR 0.01% 0.10×CS 0.30×CS 0.70×CS 

Performance 

level 

No damage Immediate 

occupancy 

Life safety Collapse prevention Collapse 

Description 

of damage 

state 

No damage is 

observed. 

Minor 

cracks are 

observed 

in 

sheathing 

materials. 

Hairline 

cracks are 

observed 

in external 

walls. 

Studs are attached to 

the sheathing at end 

but are easy to bend in 

the middle. 

Nails partially loose 

and are attached to the 

stud for OSB of 

Houses 1-3. 

Sheathing is detached 

in the middle. 

Glass is partially 

damaged. 

Studs are not attached to 

sheathing for some shear 

walls. 

Nails are pulled out on 

the sheathing. 

Some sheathing failure. 

Some fasteners on GWB 

are pushed. 

Glass is significantly 

damaged. 

Hold downs are loose for 

Houses 1-2. 

Ground 

floor of 

the house 

is 

collapsed.  

 

 405 

A scatter plot of the evaluated EDPs (post-MaxISDR versus pre-ResISDR) with the unscaled records for 406 

House 4, which is colour-coded based on Sa(T=0.3 s), is shown in Figure 8. Although all 596 MSAS sequences are 407 
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included in the structural analysis, small sample sizes with the number of points less than 100 are observed with pre-408 

DS1-2. This indicates that the scaling of records is necessary.  409 

 410 

 411 
Figure 8. Plot of post-MaxISDR against pre-ResISDR with Sa(T=0.3 s) for House 4 using unscaled records. The 412 

number of points from mainshock is 1,192, and the number of points from aftershocks given pre-DS0, pre-DS1, 413 

and pre-DS2 is 2,806, 139, and 36, respectively. 414 

 415 

4.2 Procedures to develop aftershock fragility curves of wood-frame houses 416 

Due to the insufficient data points of pre-DS1-2 in Figure 8, the pre-EDP, IM, and post-EDP of each event during the 417 

mainshock-aftershock sequence with the scaling factors 1 to 5 are used; this leads to 4,562×5=22,810 points in total, 418 

including 5,960 and 16,850 data points for mainshocks and aftershocks, respectively. Since the frequency content of 419 

mainshocks is significantly different from that of the aftershocks (Figure 3), the mainshock fragility curves and the 420 

state-dependent aftershock fragility curves are produced separately. A plot of post-MaxISDR against Sa(T=0.3 s) for 421 

mainshocks only with the scaling factors 1 to 5 given pre-ResISDR=0% with post-DS1-3 is shown in Figure 9(a). 422 

The new approach to develop the state-dependent fragility curves of aftershocks is as follows: 423 

1. The 16,850 data points in Figure 9(b) are classified into pre-DS0-2 based on the pre-ResISDR bins defined 424 

in Table 2. The subplots of MaxISDR against Sa(T=0.3 s) for pre-DS0-2 are shown in Figure 10(a)-(c). 425 

2. For each pre-DSi (i=0, 1, and 2), the number of post-MaxISDR > post-DSi (i=1, 2, and 3) (i.e., exceeding the 426 

damage threshold in terms of MaxISDR in Table 2) is counted.  427 

3. Two fragility functions are used to develop the fragility curves: 428 

a. For the lognormal distribution, fixed IM bins are defined for all pre-DSs in Figure 10 to fit 429 

consistently for all pre-DSi given the same post-DSi. The fraction of post-EDP > post-DSi (i=1, 2, 430 

and 3) from the lognormal distribution (e.g., [20]) is used to develop the fragility curves associated 431 

with IM for each pre-DS using the maximum likelihood estimation (MLE).  432 

b. The multinomial fitting based on the MLE is used to develop the post-DS curves with IM given the 433 

same pre-DS [21,37,49]. 434 



 

13 

 

 435 
Figure 9. (a) Plot of post-MaxISDR against Sa(T=0.3 s) of House 4 for mainshocks only (596 records × 2 436 

horizontal components × 5 scaling factors=5,960 points). (b) Plot of post-MaxISDR against pre-ResISDR for 437 

aftershocks (1,685 records × 2 horizontal components × 5 scaling factors=16,850 points). 438 

 439 

 440 
Figure 10. Plot of post-MaxISDRs against IM(T=0.3 s) for House 4 with scaling factors 1 to 5 given pre-441 

ResISDR (a) 0.01%-0.3% (7,861 points), (b) 0.3%-0.9% (1,337 points), and (c) 0.9%-2.1% (1,351 points). 442 

 443 

4.3 Comparison of aftershock fragility curves with Sa(T=0.3 s), Sa(T=0.5 s), and PGV 444 

Since the state-dependent fragility curves are developed based on post-DSs given the same pre-DS, post-DSs from the 445 

same pre-DS should not intersect. Therefore, only the same post-DSi given pre-DS0 to pre-DSi-1 are presented in the 446 

following fragility curve plots. To make a fair comparison, the state-dependent fragility curves of post-DS3 given pre-447 

DS0 to pre-DS2 of House 4 with Sa(T=0.3 s), Sa(T=0.5 s), and PGV using the lognormal distribution are shown in 448 

Figure 11. The estimated median values (θIM) and standard deviations (βIM) for post-DS1-3 given pre-DS0-2 with 449 

Sa(T=0.3 s), Sa(T=0.5 s), and PGV are summarised in Table 3. The state-dependent fragility curves with different 450 

fragility functions are presented in the next subsection (Section 4.4). The limit of x-axis is constrained by the maximum 451 

IM from the observed records. 452 

The median values of Sa(T=0.3 s), Sa(T=0.5 s), and PGV decrease from pre-DS0 to pre-DS2 in Table 3, 453 

showing that the damaged house requires a low IM to reach the same post-DS. Although Sa(T=0.3 s) has been widely 454 

used as IM for the mainshock fragility curves [27], aftershock fragility curves with Sa(T=0.3 s) in Figure 11(a) are 455 

not well fitted by the lognormal distribution with the standard deviation larger than 1 for the Red tag (DS3) in Table 456 

3. On the other hand, in Figure 11(b) and (c), PGV and Sa(T=0.5 s) show better performances of aftershock fragility 457 

curves for representing the cumulative damage effects than Sa(T=0.3 s). PGV and Sa(T=0.5 s) cover higher exceeding 458 

probabilities of post-DS3 from pre-DS0-1 than Sa(T=0.3 s) in Figure 11(b) and (c), respectively. All logarithmic 459 

standard deviations for different IMs in Table 3 are increased from pre-DS0 to pre-DS2, and the standard deviations 460 

of aftershock fragility curves of Sa(T=0.3 s) and Sa(T=0.5 s) are higher than 0.8. This might suggest that stronger 461 

records of aftershocks are needed to include more points in the fragility curve development for Sa(T=0.3 s) and 462 
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Sa(T=0.5 s) in the range from 2 g to 3 g. Large standard deviations (e.g., 0.79) of state-dependent fragility curves were 463 

also observed from the back-to-back approach with IDA [50]. On the other hand, PGV shows a better performance 464 

for the development of aftershock fragility curves with standard deviations lower than 0.6. Overall, PGV is the most 465 

suitable IM for the cumulative damage aftershock fragility curves of the wood-frame houses. 466 

 467 

 468 
Figure 11. Plots of aftershock fragility curves for the post-DS3 given pre-DS0-2 with (a) Sa(T=0.3 s), (b) Sa(T=0.5 469 

s), and (c) PGV based on pre-ResISDR and post-MaxISDR for House 4 and the lognormal distribution. The 470 

number of points exceeding post-DS3 given pre-DS0, pre-DS1, and pre-DS2 for House 4 is 160, 280, and 260, 471 

respectively. 472 

 473 

Table 3. Median values (θIM) of mainshock-aftershock fragility curves for House 4 (standard deviations (βIM) 474 

are shown in the parentheses) from the lognormal distribution. 475 

 post-DS1 post-DS2 post-DS3 

House 4 (Sa(T=0.3 s)) 

pre-DS0 (MS) 0.51 (0.51) 1.24 (0.57) 1.83 (0.70) 

pre-DS0 (AS) 0.66 (0.62) 2.37 (0.80) 5.49 (0.92) 

pre-DS1 (AS)  1.26 (0.94) 4.71 (1.25) 

pre-DS2 (AS)   3.13 (1.47) 

House 4 (Sa(T=0.5 s)) 

pre-DS0 (MS) 0.35 (0.30) 0.92 (0.32) 1.32 (0.46) 

pre-DS0 (AS) 0.33 (0.44) 1.04 (0.49) 2.26 (0.65) 

pre-DS1 (AS)  0.65 (0.65) 1.83 (0.79) 

pre-DS2 (AS)   1.43 (0.97) 

House 4 (PGV) 

pre-DS0 (MS) 17.84 (0.36) 44.73 (0.32) 63.35 (0.29) 

pre-DS0 (AS) 16.67 (0.47) 46.29 (0.45) 82.55 (0.43) 

pre-DS1 (AS)  28.93 (0.58) 67.80 (0.44) 

pre-DS2 (AS)   38.96 (0.60) 

 476 

4.4 Comparison of aftershock fragility curves using the lognormal and multinomial distributions 477 

In this subsection, the fragility curves using the multinomial distribution of House 4 of post-DS3 given pre-DS0 to pre-478 

DS2 with Sa(T=0.3 s), Sa(T=0.5 s), and PGV are shown in Figure 12(a), (b), and (c), respectively. All estimated 479 

parameters of the multinomial distribution are summarised in Table 4. Similar performances can be observed from 480 

the fixed IM bin counts of the lognormal distribution and multinomial distribution. Considering the inputs of the 481 

multinomial distribution fitting are IMs and post-DSs rather than the IM bins with certain exceeding probabilities from 482 

the lognormal distribution, the empirical distributions are counted such that the same number of data points of each 483 

bin is available. The number of data points in each bin is 5% of the total points given the same pre-DS but is constrained 484 

in the range of 50-200 in Figure 12. Although both fragility functions show good performances, the multinomial 485 

fitting is a better option. This is because the fixed IM bin counts from the lognormal distribution require a careful 486 

assessment of the histogram count of IMs given pre-DSs, and less than 10 IM bin counts are included to avoid the 487 

intersection of the same post-DSi given pre-DSs. On the other hand, the multinomial distribution only requires IM and 488 
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post-DSs given each pre-DSi to fit the curves progressively. Based on these considerations, the multinomial 489 

distribution is used to develop the aftershock fragility curves for the rest of the house models in the next subsection. 490 

 491 

 492 
Figure 12. Plots of aftershock fragility curves for the post-DS3 given pre-DS0-2 with (a) Sa(T=0.3 s), (b) Sa(T=0.5 493 

s), and (c)PGV based on pre-ResISDR and post-MaxISDR for House 4 and the multinomial distribution. The 494 

number of points exceeding post-DS3 given pre-DS0, pre-DS1, and pre-DS2 for House 4 is 160, 280, and 260, 495 

respectively. 496 

 497 

Table 4. Estimated parameters of mainshock-aftershock fragility curves of House 4 from the multinomial 498 

distribution. 499 

 post-DS1 post-DS2 post-DS3 

House 4 (Sa(T=0.3 s)) 

pre-DS0 (MS) -2.48, -3.71  0.42, -2.75  -0.10, -1.34  

pre-DS0 (AS) -1.42, -3.04  1.35, -1.87  1.25, -0.94 

pre-DS1 (AS)  0.31, -2.16  0.96, -0.76  

pre-DS2 (AS)   1.43, -1.46  

House 4 (Sa(T=0.5 s)) 

pre-DS0 (MS) -6.98, -6.75  -0.51, -5.66  0.15, -2.54  

pre-DS0 (AS) -5.21, -4.70  -0.003, -3.58  1.18, -1.84  

pre-DS1 (AS)  -1.33, -2.93  0.77, -1.72  

pre-DS2 (AS)   0.59, -2.10  

House 4 (PGV) 

pre-DS0 (MS) 14.94, -5.18  21.76, -5.74  22.55, -5.54  

pre-DS0 (AS) 13.41, -4.82  18.15, -4.88  18.72, -4.47  

pre-DS1 (AS)  15.1806, -4.5396  17.63, -4.33  

pre-DS2 (AS)   16.91, -4.42  

 500 

4.5 Aftershock fragility curves of Houses 1-3 with PGV 501 

The plots of state-dependent fragility curves for Houses 1-3 are provided in Figure 13. By considering PGV as IM 502 

with the multinomial distribution, the fragility curves of Houses 1-4 (Figure 12(c) and Figure 13) show a good 503 

agreement with the description of seismic resistance in Section 2.3. For example, by looking at the PGV values with 504 

50% exceeding probability of collapse state given intact conditions in Figure 12(c) and Figure 13, House 1 has the 505 

highest PGV value (110 cm/s), whereas the median value of PGV for House 4 is 65 cm/s. This indicates the better 506 

performance of the engineered OSB sheathing in comparison with horizontal board sheathing [34].  507 

 508 
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 509 
Figure 13. Plots of aftershock fragility curves for the post-DS3 given pre-DS0-2 with PGV based on pre-ResISDR 510 

and post-MaxISDR for (a) House 1, (b) House 2, and (c) House 3 with the multinomial distribution.  511 

 512 

Table 5. Parameters θ1 and θ2 from the multinomial distribution for Houses 1-3. 513 

 post-DS1 post-DS2 post-DS3 

House 1 (PGV) 
pre-DS0 (MS) 15.49, -4.29 25.40, -5.78 28.85, -6.17 

pre-DS0 (AS) 14.25, -4.28 17.70, -4.07 24.64, -5.30 

pre-DS1 (AS)  16.99, -4.80 23.57, -5.50 

pre-DS2 (AS)   26.06, -6.41 

House 2 (PGV) 

pre-DS0 (MS) 16.92, -5.16 24.23, -5.94 27.95, -6.33 

pre-DS0 (AS) 15.74, -5.10 19.94, -5.00 24.44, -5.54 

pre-DS1 (AS)  19.92, -6.18 17.46, -4.22 

pre-DS2 (AS)   18.30, -4.80 

House 3 (PGV) 

pre-DS0 (MS) 16.33, -5.15 23.48, -5.78 26.17, -5.98 

pre-DS0 (AS) 15.21, -5.08 19.14, -4.82 22.00, -5.04 

pre-DS1 (AS)  14.33, -4.04 19.19, -4.54 

pre-DS2 (AS)   17.44, -4.43 

 514 

4.6 Application for state-dependent fragility curves to the Cascadia subduction zone 515 

To demonstrate an application of the state-dependent fragility curves, an example of a Mw 9.0 mainshock followed by 516 

a Mw 6.0 crustal aftershock [51] in the CSZ is considered. PGVs for the Mw 9.0 mainshock scenario (rupture distance 517 

of 70 km) and the Mw 6.0 crustal aftershock scenario (Joyner and Boore distance of 8 km) are calculated for the City 518 

of Victoria, Canada with Vs30=450 m/s using GMPEs [42,52].  519 

Using the simulation-based seismic hazard and risk approach [53], the PGV from a Mw 9.0 event can be 520 

applied to the MS fragility curves to estimate the post-DSi,1 (post-DSi after the 1st event which is the same notation as 521 

in Figure 1). The post-DSi,1 due to the first event is equivalent as pre-DSi,2 (pre-DSi before the second event). 522 

Following that, pre-DSi,2 and the PGV of the aftershock would be the input information to select the state-dependent 523 

fragility curves of aftershocks to estimate the post-DSi,2. Subsequently, more aftershocks can be considered to estimate 524 

the DS of the house model after each subsequent aftershock. The state-dependent fragility curves allow to estimate 525 

the DS of the house model after each event sustaining the same DS or reaching a higher level of DS given IM.  526 

In total 10,000 simulations are carried out. Each simulation has PGVs of the Mw 9.0 mainshock followed by 527 

the Mw 6.0 crustal aftershock. Following that, the PGV of mainshock and aftershocks are randomly sampled from the 528 

fragility curves to calculate the DS after the mainshocks and aftershocks. The damage probabilities of Houses 1-4 by 529 

the Mw 9.0 mainshock and the MSAS sequences based on 10,000 simulations are shown in Figure 14a and b, 530 

respectively. By including the crustal aftershocks, the probabilities that Houses 1-4 are changed from DS0 (no damage) 531 

to DS1 (Green tag) are 18.1%, 18.6%, 18.6%, and 14.0%. Compared with the damage probability of the mainshock, 532 

additional 6.4%, 12.3%, 9.3%, and 12.3% of Houses 1-4 could change to DS2 (Yellow tag) by the crustal aftershock, 533 



 

17 

 

whereas the probabilities that the crustal aftershock causes additional damage of DS3 (Red tag) are 1.1%, 3.3%, 2.5%, 534 

and 4.8% in comparison with the mainshock for Houses 1-4.  535 

 536 

 537 
Figure 14. Damage probability of Houses 1-4 by (a) Mw 9.0 mainshock with 70km rupture distance and (b) Mw 538 

9.0 mainshock and Mw 6.0 crustal aftershock with Joyner-Boore distance=8 km and Vs30=450 m/s. 539 

 540 

5 CONCLUSIONS 541 

 542 

This study developed a new approach to produce the state-dependent fragility curves. To capture the real 543 

characteristics of aftershocks in the cumulative damage assessments of mainshock and aftershock sequences, the pre-544 

EDP combining with IM and post-EDP as a 3D dataset was introduced for developing the state-dependent aftershock 545 

fragility curves. The UBC-SAWS model was used to demonstrate the new approach for the state-dependent fragility 546 

curves of the wood-frame houses using 596 real MSAS records with cloud analysis. The selection of IMs (Sa, AI, 547 

CAV, PGV, and SI) and EDPs (ResISDR, MaxISDR, and MaxIISDR) for wood-frame houses was discussed in this 548 

study. To account for the cumulative damage after eventn, the pre-ResISDR and post-MaxISDR are considered to be 549 

the most suitable EDPs to represent the pre-EDP and post-EDP, respectively. To evaluate different IMs, the efficiency, 550 

sufficiency, and relative sufficiency were evaluated for each IM. Sa(T=0.3-0.5 s) and PGV show better performances 551 

than other IMs. 552 

The MSAS fragility curves were developed with pre-ResISDR and post-MaxISDR by considering IMs 553 

(Sa(T=0.3 s), Sa(T=0.5 s), and PGV). PGV showed a better performance to capture the cumulative damage effects of 554 

aftershocks for the wood-frame structure using real MSAS sequences than other IMs. Different fragility functions (the 555 

lognormal and multinomial distributions) were also compared. The multinomial distribution was considered as more 556 

suitable to fit the fragility curves than the lognormal distribution, because the former does not require careful bin 557 

counts to avoid the intersections of aftershock fragility curves for post-DS conditioned on different pre-DSs. 558 

Combining the building-tagging-based DS definitions with the multinomial distribution lead to the development of 559 

robust aftershock fragility curves.  560 

The limitations of the aftershock fragility curves include that (1) more destructive aftershock records should 561 

be included to have a better fitting of fragility models with a smaller logarithmic standard deviation for Sa(T=0.3 s) 562 

and Sa(T=0.5 s), (2) when more destructive aftershock records are included, ground motion records could be further 563 

classified by earthquake types, so aftershock fragility curves can be developed by crustal and subduction-zone records 564 

which represent the different spectra shapes between the crustal and subduction-zone earthquakes, and (3) the SAWS 565 

model does not incorporate in-cycle degradation. A further investigation of the impact of in-cycle degradation on the 566 

development of fragility curves is necessary in the future study. 567 

The developed aftershock fragility curves of Houses 1-4 can be employed to estimate the DSs implementing 568 

a spatiotemporal risk assessment for a Mw 9.0 mainshock triggering both crustal and subduction-zone aftershocks (e.g., 569 

[54]) in British Colombia, Canada. The evaluated PGV and real MSAS sequences facilitate the estimation of 570 

cumulative damage of wood-frame houses. The outputs of the risk assessment provide not only the likelihood of the 571 

DSs on the day of the inspection for building tagging [55] but also daily forecasts of the DSs in a short-time period 572 

after the inspection day. This can be part of inspection combing with the conventional building tagging (e.g., residual 573 
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displacement check of the structure components) and providing additional information for the structural inspector. In 574 

addition, a future direction of the development of state-dependent fragility curves could be to develop an approach to 575 

construct 'realistic MS-AS sequences' either using real records with careful record selection or simulating records as 576 

mainshock-aftershock sequence for the Cascadia subduction zone (e.g., [24]). 577 
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