

Costa, T. D. S. O., Nogueira-Filho, S. L., De Vleeschouwer, K., Oliveira, L., de Sousa, M. B., Mendl, M. T., Catenacci, L., & Nogueira, S. (2020). Individual Behavioral differences and health of goldenheaded lion tamarins, Leontopithecus chrysomelas. *American Journal of Primatology*. https://doi.org/10.1002/ajp.23118

Peer reviewed version

Link to published version (if available): 10.1002/ajp.23118

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at https://onlinelibrary.wiley.com/doi/abs/10.1002/ajp.23118. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

American Journal of Primatology

Individual Behavioral differences and health of goldenheaded lion tamarins (Leontopithecus chrysomelas)

Journal:	American Journal of Primatology
Manuscript ID	AJP-19-0057
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	17-Mar-2019
Complete List of Authors:	Costa, Thaise; Universidade Estadual de Santa Cruz, Ciências Biológicas Nogueira-Filho, Sérgio; DCAA/UESC, Ciências Agrárias De Vleeschouwer, Kristel; Royal Zoological Society of Antwerp, Center for Research and Conservation Oliveira, Leonardo; Faculdade de Formação de Professores-Universidade do Estado do Rio de Janeiro (DCIEN-FFP/UERJ), Departamento de Ciências; Bicho do Mato Instituto de Pesquisa, de Sousa, Maria Bernardete; Universidade Federal do Rio Grande do Norte, Departamento de Fisiologia Mendl, Michael; University of Bristol, School of Veterinary Science Catenacci, Lilian; Universidade Federal do Piauí Nogueira, Selene; Universidade Estadual de Santa Cruz, Ciências Biológicas;
Indicate which taxonomic group was the subject of your study (select all that apply or type another option)::	New World monkeys
Keywords:	conservation medicine, coping styles, parasites, temperament, primates

SCHOLARONE[™] Manuscripts

1 2	Individual Behavioral differences and health of golden-headed lion tamarins (Leontopithecus chrysomelas)
3	Running title: Behavior and health of L. chrysomelas
4	Thaise S. O. Costa ¹ ; Sérgio L. G. Nogueira-Filho ¹ ; Kristel M. De Vleeschouwer ² ;
6	Leonardo C. Oliveira ³ : Maria Bernardete C. de Sousa ⁴ : Michael Mendl ⁵ . Lilian S.
7	Catenacci ⁶ ; Selene S. C. Nogueira ¹
8	
9	¹ Applied Ethology Laboratory, Universidade Estadual de Santa Cruz, Brazil; ² Center for
10	Research and Conservation, Royal Zoological Society of Antwerp, Belgium; ³ Faculdade
11	de Formação de Professores- Universidade do Estado do Rio de Janeiro, Brazil; ⁴ Brain
12	Institute, Universidade Federal do Rio Grande do Norte, Brazil; ⁵ Center for Behavioral
13	Biology, School of Veterinary Science, University of Bristol, UK. 6Universidade
14	Federal do Piauí, Brazil.
15	
16	ABSTRACT
17	Individual behavioral differences may influence how animals cope with altered
18	environments and hence how these impact on their health status. We investigated the
19	relationship between individual behavior of free-living golden-headed lion tamarins in
20	one context (responding to a novel object) and their habitat use and health status
21	(endoparasitism, clinical condition, fecal glucocorticoid metabolites). Four groups lived
22	in landscapes with different levels of human disturbance: two in degraded forest
23	fragments in agricultural matrix (DFAM), and two in cocoa agroforestry system
24	(cabruca) in Atlantic Forest of South Bahia, Brazil. Using a subjective ratings
25	approach, tamarins' responses to a novel object were classified according to a single

26	derived variable, 'confidence', with some individuals being 'high confident' ('bold',
27	'calm', low 'stressfulness' and 'fearfulness') and others 'low confident. Both response
28	types occurred in both environments. 'High confident' individuals in DFAM landscapes
29	spent less time foraging for animal prey than those in <i>cabruca</i> . Only DFAM individuals
30	showed intestinal parasite infections, and their parasite loads were correlated with the
31	number of grooming partners they had, suggesting an association between grooming
32	and infection transfer. Glucocorticoid concentrations did not differ between animals
33	from different landscapes. Individual Behavioral responses to novelty may thus be
34	associated with tamarins foraging Behavior in human modified habitats, and social
35	Behavior may be linked to the likelihood of parasitic infection. Individual Behavior in a
36	test situation may thus have some predictive value for Behavior in a free-living context,
37	and for its knock-on health consequences, but the causal direction of any links remains
38	to be determined.
39	
40	Keywords: conservation medicine, coping styles, parasites, primates, temperament.
41	
42	

1. INTRODUCTION

46	The Brazilian Atlantic Forest is ranked among the top biodiversity hotspots in
47	the world, because of its species richness and extremely high levels of endemism
48	(Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). This biome, however, is
49	also one of the most threatened on our planet due to habitat destruction and
50	fragmentation (Colombo & Joly, 2010). There is relatively little information on how
51	wild animals cope in fragmented habitats such as those of the Atlantic Forest, and how
52	this impacts individual health and welfare (Acevedo-Whitehouse & Duffus, 2009;
53	Delarue, Kerr, & Rymer, 2015; Zinsstag, Schelling, Waltner-Toews, & Tanner, 2011).
54	Human-induced rapid environmental change (Sih, 2013) has imperilled many animal
55	populations due to its effects on habitat fragmentation, climate change and
56	environmental contamination (Deem, Karesh, & Weisman, 2001), which may lead to
57	reduced food availability and impaired nutritional status (Amato et al., 2013). Animals
58	that live in fragmented and degraded habitats usually face increased threats and
59	challenges and may show higher faecal glucocorticoid metabolite levels than those
60	living in more preserved areas (Balestri et al., 2014; Martinez-Mota, Valdespino,
61	Sanchez-Ramos, & Serio-Silva, 2007). Prolonged elevation of glucocorticoid levels
62	may negatively affect an animal's health (Acevedo-Whitehouse & Duffus, 2009;
63	Breuner, Patterson, & Hahn, 2008; Cavigelli, 2005; Kumaresan, Palanisamy,
64	Pasupuleti, & Arockiaraj, 2017). Whether individual Behavioral characteristics are
65	associated with health (Capitanio, 2011) and survival in these changed environmental
66	conditions has not been studied.

The relationship between individual personality/temperament and survival and fitness has been debated (Réale & Festa-Bianchet, 2003; Sih, Bell, & Johnson, 2004). Correlations between boldness and reproductive success have been found (Smith & Blumstein, 2008). Individuals who are more exploratory and take more risks may host higher parasite loads compared to ones with a lower propensity to explore and take risks (Barber, Mora, Payne, Weinersmith, & Sih, 2017; Bohn et al. 2017; Garcia-Longoria, Garamszegi, & Møller, 2014; Horváth et al., 2016; Patterson & Schulte-Hostedde, 2011). In contrast, shyer individuals expose themselves less to risky situations, by limiting their foraging activity in comparison with bolder ones (Réale, Reader, Sol, McDougall, & Dingemanse, 2007), and this may adversely affect their nutritional status (Barber et al., 2017). The sociality of individuals can influence primates' general health (Capitanio, 2011). Non-human primates involved in more social interactions seem to have more health benefits than less social individuals do (baboons: Silk, Alberts, & Altmann, 2003; golden snub-nosed monkeys: Jin, Su, Tao, Guo, & Yu., 2013; rhesus macaques: Robinson et al., 2018). However, parasite flow due to variation in social interactions may also influence primates' health negatively (Rushmore, Bisanzio, & Gillespie, 2017). For instance, a study on parasite transmission in Japanese macaques (Macaca fuscata yakui) showed a clear bias in nematode prevalence toward highranking individuals, which occupy more central positions in both the outward and inward directed grooming networks (MacIntosh et al., 2012). Therefore, highly social individuals may be more susceptible to acquire parasites from other group-members (Barber & Dingemanse 2010; Godfrey, Bull, James, & Murray, 2009). Additionally, animals can vary in their neuroendocrine and Behavioral responses to acute stressors (Baugh et al., 2012; Koolhaas, Boer, Coppens, & Buwalda, 2010), which in turn may

91	influence their health, reproductive success, and survival (Breuner et al. 2008; Cavigelli,
92	2005). Consequently, individual Behavioral differences may be associated with health
93	and wild population survival, which may have implications for conservation
94	(McDougall, Réale, Sol, Reader, 2006; Smith & Blumstein 2008).
95	Studies of links between individual Behavior differences and health are of
96	particular importance in endemic and threatened species such as the golden-headed lion
97	tamarin (Leontopithecus chrysomelas) that are ecologically important but have a limited
98	distribution range. The golden-headed lion tamarin is a small primate species of
99	southern Bahia State in the Brazilian Atlantic forest (Pinto & Rylands, 1997). The
100	species is classified as endangered (Kierulff, Rylands, Mendes, & Oliveira, 2008), due
101	to forest loss resulting in degradation and fragmentation of its habitat (Kierulff et al.
102	2008). It interacts with up to 242 species of plants (Catenacci, De Vleeschouwer,
103	Pessoa, & Nogueira-Filho, 2016a; Oliveira, Hankerson, Dietz, & Raboy, 2010) and
104	plays an important role in Atlantic forest regeneration (Catenacci, De Vleeschouwer, &
105	Nogueira-Filho, 2009). The animals live in social groups ranging from three to fifteen
106	individuals (Oliveira, Neves, Raboy, & Dietz, 2011), usually composed of one
107	dominant breeding pair, and a diverse number of offspring of various ages: adults,
108	subadults, juveniles and infants (Rylands, 1993). Groups defend their territory against
109	other lion tamarin groups using aggressive vocalizations such as long-calls, staccato of
110	short whistles and chatter that can be also followed by agonistic interactions (Peres,
111	1989).
112	Most populations of tamarin live in unprotected areas altered by human
113	activities, such as degraded forest fragments embedded in an agricultural matrix and
114	<i>cabruca</i> – a shaded cocoa (<i>Theobroma cacao</i>) agroforestry system (Oliveira et al.,

2011; Raboy, Christman, & Dietz, 2004). Both of these environments (agricultural *matrix* and *cabruca*) present specific challenges to groups of tamarins, such as lower resource availability, higher exposure to predators, and higher hunting levels and human contact in comparison with groups living in more preserved areas (De Vleeschouwer & Oliveira, 2017; Oliveira & Dietz 2011; Raboy et al., 2004). These challenges may result in increased stress levels and affect the animals' health. Agricultural matrix composition and lack of connectivity may influence dispersal and persistence of primates (Anderson, Rowcliffe, & Cowlishaw, 2007). This environment, in general, seems to result in higher levels of disturbance and risks to animals, because non-forested patches of cultivated land, interspersed with roads, dirt paths and with frequent human presence typically characterize the agricultural matrix area (Anderson et al., 2007). In turn, cabruca is considered a valuable landscape because it connects forest patches, making populations less vulnerable to negative genetic effects of habitat fragmentation (Estrada, Raboy, & Oliveira, 2012). Furthermore, in contrast to other degraded landscapes, *cabruca* seems to provide important resources such as sleeping sites and bromeliads for foraging tamarins (Oliveira et al., 2011; Raboy et al., 2004). However, as far we know, no data concerning the links between tamarin individual Behavioral characteristics and health are available from either landscape.

In this study, we evaluated the relationship between individual Behavioral responses of tamarins in one context – exploration/avoidance of a novel object (Réale et al., 2007) – and individual health status in two different landscapes. We compared individuals from groups living in degraded forest fragments in an agricultural matrix, and in *cabruca* systems to determine whether the tamarins' Behavioral responses varied according to their environments (Wolf & Weissing, 2012). Furthermore, if exploratory

3		
4 5	139	Behaviors and social interactions among individuals influence parasite flow (Barber &
6 7 8	140	Dingemanse, 2010; Wren, Remis, Camp, & Gillespie, 2016), we predicted that more
9 10	141	exploratory and more sociable individuals will show higher parasite loads compared to
11 12	142	less exploratory and less sociable ones. Finally, as the agricultural matrix landscape
13 14	143	poses a higher level of human disturbance compared to <i>cabruca</i> , and this is likely to be
15 16 17	144	associated with greater stress and welfare challenges to tamarins, we also predicted
18 19	145	lower levels of health and a higher incidence of raised fecal glucocorticoid metabolites
20 21	146	concentrations, as an indicator of physiological stress, in the groups living in
22 23 24	147	agricultural matrix.
24 25 26	148	
27 28	149	2. METHODS
29 30	150	2.1. Ethical note
31 32 33	151	
34 35	152	The research adhered to the American Society of Primatologists (ASP)
36 37	153	Principles for the Ethical Treatment of Non Human Primates and the Brazilian laws,
38 39 40	154	where the present research was conducted. This work was approved by the Committee
41 42	155	on Animal Research and Ethics of the Universidade Estadual de Santa Cruz, under
43 44	156	protocol # 018/2015. The permission to capture, mark animals and collect biological
45 46 47	157	materials was approved by the Brazilian Environmental Agency (ICMBio/SISBIO),
47 48 49	158	under # 23457-6 and # 471783.
50 51	159	
52 53	160	2.2. Animals and study areas
54 55 56	161	
57 58		
59 60		

From August 2016 to April 2017 we studied 27 individuals (25 adults and 2 sub-adults (120DF and 121DF) (Table 1) belonging to four groups of golden-headed lion tamarins. Group composition changed over the study period, mainly due to births, predation, natural deaths or disappearances, and migration. Therefore, it was not possible to collect all types of data (novel object test, direct observation, sociality assessment, fecal sampling for glucocorticoid metabolites analysis, and parasite load) for all individuals. The information we collected for each individual in the four social groups is indicated in Table 1. The tamarin groups lived in two landscapes of the Brazilian Atlantic forest in South-Bahia state. Two of these groups (RIB and MRO) lived in the rural area of the Municipality of Una (15°15'52"S, 39°8'46"W). This landscape is characterized by disturbed secondary forest patches in an agricultural matrix of pastures, rubber-trees, cassava, and cocoa crops, unpaved roads and intense human presence. We classified this area as 'degraded forest patches in agricultural matrix' – DFAM. The other two groups (ALM and BOM) lived at Almada and Bomfim private farms in the rural zone of Ilhéus, Bahia (14°39'S, 39°11'W), in a landscape characterized by the cocoa (*Theobroma* cacao) agroforestry system - cabruca. Cabruca is a system of shade cropping in which the middle and understory trees of intact forests are removed and replaced with cocoa trees but with preservation of the tall trees (Raboy et al., 2004). The two studied landscapes are part of the Atlantic Forest biome, characterized by high temperature and high relative humidity. In this region, temperature ranges from 19°C to 28°C, with an annual rainfall of over 2,100 mm (Coimbra-Filho & Mittermeier, 1973; Mori, Boom, Carvalho, & Santos, 1983).

60

185	The golden-headed lion tamarin groups from both landscapes, DFAM and
186	cabruca, have been monitored and habituated to the presence of researchers since 2007
187	and 2014, respectively. Groups are monitored in the forest by using radio-telemetry and
188	twice per year individuals are captured using banana bait and tomahawk traps (48.3 cm
189	length \times 15.2 cm width \times 15.2 cm height), following procedures described in (Dietz, De
190	Sousa, & Billerbeck, 1996). In the present study, after capture, we took the animals to a
191	field laboratory (about 500m from the capture site), where they waited approximately
192	four hours before being anesthetized (intramuscular 10 mg/kg ketamine and 0.3 mg/kg
193	midazolam, following (Catenacci et al., 2016a). Anesthesia was applied by the first
194	author, a veterinarian who checked the individuals' general clinical condition [heart rate
195	(bpm), respiratory frequency (mpm) and temperature (°C)] during sedation, determined
196	the tamarins' sex and biometric measures [body mass (kg) and total length (mm)], and
197	estimated their age. These procedures took around 20 minutes after sedation.
198	The individuals received a unique tattoo number and dye mark (Nyanzol Dye®)
199	on the tail and arm, for identification during observations in the field. One or two
200	individuals in each group were equipped with a radio collar (model RI-2D, Holohil Ltd.,
201	Ontario, Canada) to facilitate later monitoring and observation in the field using radio
202	telemetry. In general, for this purpose, we chose the heaviest animals and always
203	excluded pregnant females. We kept the subjects in the laboratory overnight to ensure
204	full recovery from anesthesia and released them early in the morning of the next day at
205	the site where they were captured. This procedure has been used and adapted to ensure
206	animal safety over the course of the past 25 years, resulting in a very safe process with
207	no detrimental effects on the animals if performed adequately (Catenacci et al., in
208	press).
	 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

2		
3 4 5	209	
6 7	210	2.3. Behavioral data collection
8 9 10	211	
11 12	212	For eight months (Aug 2016 - Jan 2017; Mar - Apr 2017), we followed each
13 14	213	group for two days per month, resulting in a total of 506 hours of data collection. We
15 16 17	214	used signals from the radio transmitter collars to locate each group before the animals
18 19	215	woke up and observed them from the moment they left the sleeping site (tree hollow) in
20 21	216	the morning until they entered the same or a different sleeping site in the evening. Each
22 23 24	217	group was followed for about 22 hours a month. Individual marks disappeared in early
25 26	218	January 2017 and forced us to suspend observations until the animals were captured
27 28	219	again in March 2017, after which observations were resumed.
29 30 31	220	The golden-headed lion tamarins were observed using continuous focal animal
32 33	221	sampling (Altmann, 1974); each focal observation lasted 10 min/animal. We
34 35	222	randomized the order in which animals were observed, and when the last animal was
36 37	223	observed, we restarted a new random order. When the animal disappeared from sight,
38 39 40	224	the observation was interrupted and resumed when the animal was visible again. The
41 42	225	observations were voice-recorded (digital voice recorder RR-US450 Panasonic, Ontario
43 44	226	Canada). Then, weekly in the lab, we calculated the proportions of observation time that
45 46 47	227	each individual spent in social grooming and in the Behavioral categories related to
47 48 49	228	exploration (eating, foraging for fruits and flowers or animal prey, and travelling).
50 51	229	Behavioral states descriptions are provided in Table 2.
52 53	230	
54 55 56	231	2.4. Individual Behavioral differences
57 58	232	

Page 11 of 56

Differences in the individual Behavior of tamarins were assessed using a test of exploration/avoidance of a novel object (Réale et al., 2007). Because gaining access to the individuals for testing was difficult, and hence it was not possible to measure individual Behavioral consistency over time in response to different types of challenge (Gosling, 2001; Sih et al., 2004), we evaluated individual tamarin Behavior in this context alone (Réale et al., 2007).

One week before the start of Behavioral data collection, we presented animals with a homemade flag (0.60 m length x 0.45 m height) of white fabric with five black dots (ø: 5.0 cm) on both sides of the flag. We set up the flag the day before the test and after animals had entered a tree hollow to sleep. The flag was set up in front of the entrance to the hollow, at a distance of 2.0m on average from the sleeping site.

During the novel object test, we video-recorded individual's response to the novel object when each one left the sleeping site and saw the flag for the first time, using a camcorder (DCR-SR45 Sony, Tokyo, Japan) for later video analysis. On most occasions, each individual left the tree hollow separately, but on two occasions (one in group ALM and another in group RIB) the next animal to leave put its head out of the tree hollow and watched the reaction of the previous one. Individual Behavior in the test analysis was assessed using a subjective rating approach validated for other species (cats: Feaver, Mendl, & Bateson, 1986; cattle: Sant'Anna & Paranhos da Costa, 2013; peccary: Nogueira, Macedo, Sant'Anna, Nogueira-Filho, & Paranhos da Costa, 2015) and adapted for golden-headed lion tamarins. The video clips (30 seconds) with each lion tamarin's reaction to the novel object were shown to three experts with experience in animal Behavior observations who had not participated in data collection (SSCN, SLGNF, and ASF). The judges were instructed to evaluate the animal's Behavior during

the flag test in terms of 14 adjectives providing descriptors of tamarin Behavioral style: 'relaxed', 'apathetic', 'calm', 'agitated', 'fearful', 'curious', 'stressed', 'alert', 'tense', 'active', 'shy', 'smart', 'bold', and 'cautious'. For each adjective (which was accompanied by a written definition (see Rouff, Sussman, & Strube, 2005), each judge placed a mark on a visual analogue scale represented by a line of 125 mm with a minimum value (0) at the left end of the line representing absence of the Behavioral characteristic and the maximum value (125) representing the most intense manifestation. The scores were obtained by measuring the distance in millimeters from the left end of the line to the judges' marks. The adjectives were previously chosen by primatologists' researchers (BR and DSF- who had not participated in data collection) based on studies of personality in nonhuman primates (Macaca silenus: Rouff et al., 2005; Macaca nigra, Macaca sylvanus, Saimiri sciureus: Baker, Lea, & Melfi, 2015), and on tamarin Behavioral repertoire.

2.5.

Faecal samples collection and parasite analysis

While following groups for Behavioral data collection, we gathered fresh feces non-invasively from identified individuals immediately after defecation to determine both parasite load and fecal glucocorticoid metabolite concentrations. Feces were collected only during the morning until midday to minimize confounding effects of circadian rhythms on hormone levels. After collection, part of each sample was weighed and immediately preserved in 4% buffered formalin solution for later parasitological analysis (Monteiro et al. 2007). Sample weights ranged from approximately 0.5 to 1.5 g of feces. Parasite identification and parasite load (EPG:

number of eggs/g feces) were determined following a modified Ritchie's technique adopted by (Monteiro, Jansen, & Pinto, 2003; Monteiro et al. 2007) for golden lion tamarins (Leontopithecus rosalia). Nevertheless, due to the small amount of feces collected per individual, we could not test for fecal flotation (Willis method) (Gillespie, 2006). Part of this material was sent to Universidade Federal de Minas Gerais, Brazil for parasitological identification. Faecal glucocorticoid metabolites concentration (FGCM) analysis 2.6. Part of each fecal sample, mentioned before, was used to assess the individual's glucocorticoid metabolite concentration. These samples were individually stored in Eppendorf plastic tubes labelled with individual identity, date and hour and kept inside Styrofoam at a mean temperature of 7°C until return to the field station in the evening after Behavioral data collection. Fecal samples were subsequently refrigerated (-20°C) at the field laboratory. On the following day, we took the fecal samples to Universidade Estadual de Santa Cruz where they were thawed to prepare for freeze-drying (FreeZone® Plus 4.5 l Cascade Benchtop, LABCONCO) following (Wasser et al., 2000). The freeze-dried samples were sent to the Laboratory of Hormonal Measurements at the Federal University of Rio Grande do Norte, Brazil. In this laboratory an ELISA immunoassay for glucocorticoid metabolites, in which cortisol is the main hormone (around 60%), was performed in line with methods described by (Sousa & Ziegler, 1998). Accordingly, 0.1 g of feces was weighed, and steroids were extracted into 5 ml of ethanol at 50%. A 500 µl aliquot was reserved for solvolysis

(Ziegler et al., 1996) and after this procedure samples were resuspended in 500 µl of ethanol and stored at 5°C until assay quantification.

The polyclonal anticortisol R4866 was used at dilution of 1:16.000 and the enzyme horseradish peroxidase conjugated to the antigen used at dilutions of 1:75.000. Both were obtained from University of California (Davis, CA, USA). The standard curves ranged from 3.16 to 1000 pg/ml. For assay precision assessment, intra- and inter-assay coefficients of variation (CV) were calculated. For intra-assay CV, the measured concentrations were used from samples run in duplicates in each assay, while inter-assay CV was estimated from concentrations of a high (30 % of binding) and low control (70 % of binding) run in each assay. Intra- and inter-assay CVs were 2.5 ± 1.3 % and 8.7 ± 3.0 %, respectively. For subsequent analysis, we used the individuals' glucocorticoid metabolites concentration mean obtained from each animal for which we had at least three samples collected in three different months over the study period. Analysis of individuals' sociality

2.7.

We used grooming interactions to assess the sociality of each individual in the tamarin groups. Through the observations, we identified the givers and receivers of grooming interactions and, using the software package SOCPROG 2.8 (Whitehead, 2009) we obtained the eigenvector centrality of each tamarin in the grooming interactions. The eigenvector centrality measures the importance of a node (that is, an individual) in a network. Individuals with high eigenvector centralities are connected to many other individuals that are, in turn, connected to many individuals (Whitehead, 2009). Following, we also used the software package SOCPROG 2.8 (Whitehead, 2009)

1	
2	
3	
1	
5	
0	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
31	
24	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

329	to obtain the network diagrams of social grooming for each group. From such network
330	diagrams, we obtained the number of grooming partners of each individual allowing to
331	test the correlation of this parameter with the parasite load following Wren et al. (2016).
332	
333	2.8. Data analyses and statistics
334	
335	To assess individual Behavioral characteristics during the novel object test
336	(flag), we followed (Feaver et al., 1986) method. This method is based on non-
337	parametric analysis, which is more appropriate method for small sample sizes ($N < 40$)
338	(Feaver et al., 1986). In this analysis, seven golden-headed lion tamarins listed in Table
339	1 (13CF, 21CM, 23CM, 12CM, 120DF, 121DF, and 126DM) were not included
340	because they were not present in the groups at the time of the test or we were unable to
341	identify them during the novel object test. From the 14 adjectives used during subjective
342	ratings (cited above), we used only those with Kendall's coefficients of concordance
343	(W) > 0.70 among the three judges, as recommended by (Feaver et al., 1986). Six out of
344	14 adjectives (calm, agitated, fearful, stressed, shy, and bold, Table 3) showed $W > 0.70$
345	inter-judge concordance and were used to assess responses in the novel object test.
346	For each one of these most reliable six adjectives we calculated the mean value
347	of the observers' ratings for each individual. Thereafter, to reduce the influence of
348	distributional effects, the ratings of the three judges were converted to a z-score
349	[(individual score - mean)/SD]. These mean z-scores were then checked for between-
350	adjective correlations using Spearman rank correlation tests. Following that, highly
351	correlated adjective descriptors were combined to produce z-score ratings, providing an
352	indication of dimensions of Behavioral distinctiveness in exploration/avoidance of

 golden-headed lion tamarins. One derived variable ('confidence') was selected tocharacterize responses in the novel object test.

To test our prediction of relationships between Behavioral characteristics with the landscape in which the animals live, we compared the proportion of time each tamarin was observed in the Behavioral categories related to exploration (eating, foraging for fruits and flowers or animal prey, and travelling) using mixed factorial ANOVA, considering landscape (*cabruca* x DFAM) and individual Behavior in the novel object test (high confident or low confident) as independent variables, followed by Tukey *post-hoc* tests when appropriate.

We used the same statistical model to compare the proportion of time each tamarin was observed in social grooming. As endoparasites were only recorded in fecal samples from golden-headed tamarins living in DFAM, we compared how parasite load of tamarins (EPG: eggs/g) varied according to individual's Behavioral characteristics using the *t*-test. Thereafter, we used Pearson correlation to test for a relationship between the number of grooming partners an individual had and its parasite load (EPG), followed by a linear regression analysis.

Subsequently, to test our prediction that the agricultural matrix landscape poses a higher level of human disturbance in contrast with *cabruca*, we compared the biometrical measures [body mass (kg) and total length (mm)], general health parameters recorded during sedation [heart rate (bpm); respiratory frequency (mpm), body temperature (°C)], and faecal glucocorticoid metabolites concentration (FGCM - ng/g dry faeces) between landscapes (cabruca x DFAM) using t-tests. Before the analyses, we evaluated if all data fulfilled the parametric requirements of normality of residuals and homogeneity of variance, and data were log transformed when necessary. Due to

2		
4 5	377	lack of normality, we analyzed how the number of grooming partners were affected by
6 7	378	sex (females vs. males) and landscapes (cabruca vs. DFAM) using non-parametric
8 9 10	379	Mann-Whitney tests. The software Statistica 7.0 (StatSoft, Inc. 1984-2004) was used for
11 12	380	all analyses, considering a $P < 0.05$ significance level.
13 14	381	
15 16 17	382	3.0. RESULTS
18 19 20	383	3.1. Individual Behavioral differences in the novel object test
21	384	
22	385	
23	386	The six most reliable adjective descriptors of the Behavior of tamarins resulted
24 25		
25 26	387	in two groups of highly correlated ($r_s > 0.70$ or $r_s < -0.70$) variables (Table 4), which
27 28	388	were combined in three Behavior categories named 'Explorer', 'Unperturbed', and
29 30	389	'Equable' in the following way:
31 32 33	390	(1) Explorer = $(bold + not-fearful)/2$
34 35	391	(2) Equable = $(calm + bold)/2$
36 37	392	(3) Unperturbed = $(calm + not-stressed)/2$
38 39 40	393	
41 42	394	It should be mentioned that to properly combine the z-scores for each tamarin
43 44	395	we determined the opposite z-scores of the following adjective descriptors: z-scores of
45 46 47	396	not-fearful = (-1) * z-scores of fearful; z-scores of not-stressed = (-1) * z-scores of
48 49	397	stressed. Moreover, there were correlations between explorer and equable rating z-
50 51	398	scores (r_s = -0.92; $P < 0.0001$) and between explorer and unperturbed rating z-scores
52 53 54	399	($r_s = 0.69$; $P < 0.001$), and there was a correlation between equable and unperturbed
55 56	400	rating z-scores ($r_s = 0.81$; $P < 0.0001$), meaning that these three adjective groups were
57 58 59 60	401	all highly correlated and likely corresponded to just one Behavioral dimension, named

402 'confidence', which was used in further analyses. The four correlated ratings were403 combined in the following way:

(4) Confidence = (bold + calm + not-fearful + not-stressed)/4There were no differences in the mean (±standard deviation-SD) z-scores of the confidence Behavioral category for tamarins living in DFAM and *cabruca* (DFAM: 0.13 ± 0.99 , N = 9, *cabruca*: -0.11 ± 0.73 , N = 11, *t*-value = -0.63, P = 0.54). The mean (±SD) z-scores of the confidence Behavioral category also did not differ between female and male tamarins (Female: 0.01 ± 0.80 , N = 11; Male: -0.01 ± 0.94 , N = 9, t-value = -0.06, P = 0.95). Eight individuals showed derived confidence scores which were above zero and hence were categorized as being 'high confident'. Of these animals, five lived in DFAM (92DF, 93DF, 82DM, 115DM, and 1DF) (Figure 1A) and three lived in *cabruca* (7CF, 14CM, and 9CF) (Figure 1B). Twelve individuals showed Behavior scores below zero and were categorized as being 'low confident'. Of these individuals, four lived in DFAM (125DF, 119DF, 118DM, and 102DM) (Figure 1A) and eight lived in cabruca (15CF, 5CM, 17CM, 18CF, 19CF, 20CF, 8CM, and 6CF) (Figure 1B). 3.2. Effects of landscapes and/or Behavioral category on time spent in Behavioral states, body parameters and parasite load An interaction effect was detected between landscape type and Behavioral category ($F_{1,13} = 7.76$, P = 0.02) on the proportion of time the tamarins spent on foraging for animal prey. The *post-hoc* test showed that high confident tamarins living

3		
4 5	426	in cabruca landscapes spent a higher proportion of time on foraging for animal prey
6 7 0	427	than the ones scored as high confident living in DFAM (Figure 2).
8 9 10	428	There were no effects of the landscape, Behavioral characteristics, or their
11 12	429	interaction on the proportion of time that tamarins spent on travelling, foraging for fruits
13 14	430	and flowers, and eating (Table 5). There were also no differences in biometrical
15 16 17	431	measures, general health parameters, and glucorticoid metabolites concentration
18 19	432	between tamarins living in cabruca and DFAM (Table 6). The complete information on
20 21	433	each individual is presented in supplementary data (S1).
22 23 24	434	There were no parasite eggs in feces samples collected from golden-headed
24 25 26	435	tamarins living in cabruca. In contrast, tamarins living in the DFAM were infected
27 28	436	with four types of parasites: Prosthenorchis sp., Trypanoxyuris sp., Primasubulura sp.,
29 30	437	and Spiruridae. All parasites detected except Prosthenorchis sp., are nematodes.
31 32 33	438	Prosthenorchis sp. is an Acanthocephala. In DFAM the parasite load (EPG: eggs/g)
34 35	439	ranged from zero to 70.4 eggs/g of feces (S1), with a mean of 29.8 (SD = 19.6) eggs/g.
36 37	440	There was no relationship between tamarins' Behavioral characteristics and parasite
38 39 40	441	load (mean (\pm standard deviation) EPG high confident: 31.6 \pm 24.7 eggs/g, $N = 5$; EPG
40 41 42	442	low confident: $27.0 \pm 31.8 \text{ eggs/g N} = 4$; t-value = 0.25, $P = 0.81$). The complete
43 44	443	information on each individual is presented in supplementary data (S1).
45 46	444	
47 48 49	445	3.3. Sociality and parasite load
50 51	446	
52 53 54	447	There were no effects of Behavioral characteristics ($F_{1, 13} = 0.03$, $P = 0.87$),
. .		

landscape ($F_{1,13} = 0.94$, P = 0.35) or the interaction between Behavioral characteristics and landscape ($F_{1,13} = 0.80$, P = 0.40) on the proportion of time tamarins spent in social

450	grooming. Social grooming was distributed unevenly among golden-headed tamarins. In
451	general, male and female breeding individuals were involved in a higher grooming
452	interaction rates (Figure 3) and showed higher eigenvector centrality indexes
453	(supplementary data S1). For MRO group, the breeding female 1DF (eigenvector
454	centrality: 0.68) was more involved in social grooming with the breeding male 102DM
455	(eigenvector centrality: 0.63) (Figure 3A) than with other individuals of the group,
456	whose eigenvector centrality ranged from 0.02 to 0.34 (Table 6). For RIB group, we
457	identified two breeding females (92DF and 93DF). Female 92DF (eigenvector
458	centrality: 0.65) was more involved in social grooming with the breeding male 82DM
459	(eigenvector centrality: 0.65) than with the female 93DF (eigenvector centrality: 0.37)
460	(Figure 3B) or other individuals of the group, whose eigenvector centrality ranged from
461	0.02 to 0.09 (supplementary data S1). For ALM group, we also identified two breeding
462	females (18CF and 13CF). Female 18CF (eigenvector centrality: 0.52) was more
463	involved in social grooming with the breeding male 23CM (eigenvector centrality: 0.62)
464	than with the female 13CF (eigenvector centrality: 0.48) (Figure 3C) or other
465	individuals of the group, whose eigenvector centrality ranged from 0.01 to 0.28
466	(supplementary data S1). In the BOM group (Figure 3D), the breeding female 20CF
467	(eigenvector centrality: 0.70) was most involved in grooming interactions with the
468	female 7CF (eigenvector centrality: 0.57) and with the male 8CM (eigenvector
469	centrality: 0.25) (Figure 3D). It was not possible to confirm if male 8CM was the
470	breeding male in this group because we did not record sexual interactions with the
471	breeding female. The other two males of this group, however, showed lower
472	eigenvector centrality in grooming interactions than the male 8CM (5CM and 12CM,

3		
4 5	473	eigenvector centrality of 0.11 and 0.09, respectively). These results suggested that the
6 7	474	male 8CM was the breeding male of the BOM group.
8 9 10	475	Overall, golden-headed tamarins had an average of 2.6 ± 1.3 grooming partners
11 12	476	(supplementary data S1). Females had similar numbers (mean ± standard deviation) of
13 14	477	grooming partners (2.6 ± 1.4 , $N = 15$) as males (2.6 ± 1.0 , $N = 13$, $Z = 0.14$, $P = 0.89$).
15 16 17	478	Moreover, tamarins living in <i>cabruca</i> had similar numbers of grooming partners (2.4
18 19	479	\pm 1.1, N = 16) as the ones living in DFAM (2.8 \pm 1.4, N = 12, Z = -0.66, P = 0.54). In
20 21	480	DFAM, there was a correlation between the number of grooming partners that an
22 23 24	481	individual had and its parasite load ($r_{Pearson} = 0.75$, $P = 0.01$, $N = 11$). This relationship
24 25 26	482	followed the linear regression equation: $EPG = 12.80$ (number of grooming partners) -
27 28	483	10.50 ($R^2 = 0.57$, $F_{1,9} = 11.83$, $P = 0.007$, $N = 11$, Figure 4).
29 30	484	
31 32 33	485	4. DISCUSSION
34 35 36	486	As expected, free-living golden-headed lion tamarins showed individual
37 38	487	differences in their reaction to a novel object test. Furthermore, 'high confident'
39 40	488	individuals in this test who lived in the degraded forest fragments in agricultural matrix
41 42 43	489	(DFAM) spent less time on substrate manipulation, foraging for animal prey, in
44 45	490	comparison with 'high confident' ones living in cabruca. As we also expected, more
46 47	491	sociable individuals showed higher parasite loads. In addition, we verified higher levels
48 49 50	492	of parasite load for animals living in DFAM in comparison with those living in <i>cabruca</i> .
50 51 52	493	Contrary to our predictions, however, there was no difference between fecal
53 54	494	glucocorticoid metabolite concentrations in animals from these landscapes.
55 56	495	Responses to novelty in tests may indicate an individuals' propensity to explore
57 58 59 60	496	or avoid a potential threat (Liebl & Martin 2012, Réale et al., 2007) and it was

interesting that high confident (more 'bold' and 'calm', whilst less 'fearful' and 'stressful') tamarins in DFAM spent less time on foraging for prey than high confident ones living in cabruca. Tamarins routinely show substrate manipulation searching for animal prey (Catenacci et al., 2016a, Raboy & Dietz, 2004), and we can only speculate as to the reason for this difference. One possible explanation is that DFAM animals had parasitic infections not observed in *cabruca* animals. The main infection symptoms of *Prosthenorchis* sp., the main parasite species found in DFAM, are loss of appetite, diarrhoea, and progressive weakness before death in the case of severe infections (Catenacci et al., 2016a). Thus, the *Prosthenorchis* sp. infection in DFAM animals may explain the relatively low amount of time spent foraging for animal prey recorded for high confident individuals in this landscape. In addition, the most infected animals in DFAM were the breeding individuals, who performed more grooming as well. It has been suggested that high levels of sociality are usually associated with good animal health (Capitanio, 2011; Jin et al., 2013; Robinson et al., 2018). Social grooming, for instance, is important for removal of ectoparasites, maintenance of social bonds and/or to reduce social tension in groups of non-human primates (Dunbar, 1991; Lehmann, Korstjens, & Dunbar, 2007). Indeed, in our study we observed that breeding female and male of the groups showed more grooming interactions with each other, probably to reinforce their pair bond. In addition, our data suggests that the individual's eigenvector centrality may be used to identify the putative breeding male in goldenheaded tamarin groups when there is no record of sexual interactions, although this needs to be confirmed in further studies. Social grooming, however, can increase the risk of transmission of parasites due

520 to direct contact with infected individuals and ingestion of ecto- and endoparasites

(Drew, 2010; Gillespie, 2006; MacIntosh et al., 2012). In agreement with this, we found a positive association between the number of grooming partners and parasite load for animals from DFAM. We speculate that fecal contamination of fur and skin may occur in golden-headed tamarins. If so, the groomer may ingest some larvae during grooming, as suggested for wild vervet monkeys (Chlorocebus aethiops), a species in which a positive correlation between the number of grooming partners and intestinal parasites infection was also observed (Wren et al., 2016). The same was recorded for Japanese macaques, with individuals who occupied more central positions in grooming networks exhibiting more infection by nematodes (MacIntosh et al., 2012). Our study, together with other findings (MacIntosh et al., 2012; Wren et al., 2016) shows the importance of investigating social bonds among individuals to provide information about the direction of endoparasite transmission. Parasite contamination of tamarin group members might also occur during sharing of the sleeping site (tree hollow). However, we might have then expected a more even distribution of parasites, but we observed more social animals to have a greater parasite infection. Thus, although it is possible that parasite contamination occurred during sleep time, grooming Behavior may have been an important contamination mechanism. Our prediction that tamarins in DFAM have poorer health was supported by the

observation of higher parasite load in the DFAM compared to the *cabruca*. In our study,
the principal parasite that infested animals from DFAM was *Prosthenorchis* sp., an
acanthocephalan helminthic. This parasite has a complex life cycle, having
invertebrates as intermediate hosts, and vertebrates as final hosts (Machado-Filho,
1950). The transmission between tamarins possibly occurred by sharing contaminated
food (invertebrates), a typical Behavior observed for this species (Moura, Nunes, &

Langguth, 2010), or sites of food found in bromeliads, increasing chances of infection among more sociable individuals. *Prosthenorchis* sp. infection is associated with apathy, inappetence and gastrointestinal symptoms; and may cause high mortality in primates (Catenacci et al. 2016b, Pissinatti, Pissinatti, Burity, Mattos Jr, & Tortelly, 2007). This information raises questions on how tamarins are coping with altered environments and how this high level of infection affects individual health, reproduction, and ultimately individual and species survival. Moreover, we do not know how different levels of disturbance may affect tamarin health and welfare. Therefore, more investigation is needed to understand the causes of the abundant presence of Prosthenorchis sp. and its relationship with tamarins in DFAM. In turn, the absence of Prosthenorchis sp. in cabruca may be explained by the use of pesticides in this plantation system which may disturb insect populations (Delabie, 1990), which are the intermediate hosts of Prosthenorchis sp. (e.g. Blattodea and Coleoptera; (Stunkard, 1965), and part of the tamarins' diet (Catenacci et al. 2016a). Thus, the decreased density of insects in *cabruca* probably avoids and/or reduces the chances of tamarin contamination.

Other factors, such as stress and inferior nutritional condition in fragmented environments can affect host susceptibility to parasites (Santicchia et al., 2015). However, the basal faecal glucocorticoid metabolites concentration (FGCM) did not differ between the studied landscapes. Moreover, the FGCM levels were within normal ranges shown for the genus Leontopithecus sp. (Wark et al. 2016). This result is unexpected, because DFAM landscape supposedly presents a more challenging environment for the animals due to anthropogenic impacts such as deforestation for agricultural proposes and opening of roads, compared to *cabruca*. On the other hand,

3		
4 5	569	tamarins are exposed to high levels of natural predation risk in cabruca (Oliveira &
6 7	570	Dietz, 2011), which represent another ecological challenge.
8 9 10	571	Usually, animals facing environmental stressors such as high levels of predation, food
10 11 12	572	scarcity or anthropogenic disturbance as we observed in both landscapes have higher
13 14	573	glucocorticoid levels (Busch & Hayward, 2009; Rangel-Negrín, Alfaro, Valdez,
15 16 17	574	Romano, & Serio-Silva, 2009). In a study with howler monkeys (Alouatta pigra) living
17 18 19	575	in fragmented forest, for instance, glucocorticoid levels were higher compared to
20 21	576	animals living in continuous forest (Martinez-Mota et al., 2007). In general, food
22 23	577	scarcity is an important factor responsible for poor welfare and increase of
24 25 26	578	glucocorticoids in the wild (sifakas (Propithecus diadema), Irwin, 2007; wild black
27 28	579	capuchins (Sapajus nigritus), Moreira, Santos, Sousa, & Izar, 2016). However, food
29 30	580	availability seems not to be a great challenge for tamarins as the proportion of time
31 32 33	581	spent in foraging and eating fruits were similar in both landscapes. This might be
34 35	582	because this species can eat several fruit species available in fragmented forest
36 37	583	(Catenacci et al., 2016a). Stress hormone levels may reflect current levels of disturbance
38 39 40	584	(Beehner & Bergman, 2017) but their links with long-term fitness are much less clear
40 41 42	585	(Busch & Hayward, 2009). Glucocorticoid metabolite data should thus be interpreted
43 44	586	carefully (Dawkins, Edmond, Lord, Solomon, & Bain, 2004; Nogueira, Calazans,
45 46	587	Costa, Peregrino, & Nogueira-Filho, 2011) and alongside other indicators of animal
47 48 49	588	welfare such as the Behavioral and health indicators measured here.
50 51	589	There is little information on health parameters of tamarins and because of this,
52 53	590	the health and physiological data collected here were compared with reports for the
54 55 56	591	genus Leontopithecus. Comparisons indicated that the respiratory frequency, heart rate,
57 58 59	592	and body temperature of tamarins recorded under anaesthesia in both landscapes were
60		

within normal range for the genus (Verona & Pissinatti, 2014). Overall, the clinical examination and health parameters evaluated in our study suggest that tamarins were within acceptable health parameters despite the parasite infections and the environmental challenges found in DFAM. Overall our results point to associations between individual differences in Behavior in test situations, and Behavior under free-living conditions, and between social structure and parasite transmission. Whilst the precise reasons for these associations, and their causal direction, cannot be determined from the current data, further research may indicate whether they support the notion that social Behavior plays an important role in ecological and evolutionary processes (Smith & Blumstein, 2008; Wolf & Weissing, 2012). If so, a better understanding of individual differences may have implications for conservation strategies of the golden-headed lion tamarin, such as forest restoration aiming to regain ecological integrity and enhance tamarin's welfare in a challenging environment – the Brazilian Atlantic forest. Lich ACKNOWLEDGEMENTS We are grateful to Jiomario Souza, Zaqueu da Silva Santos, Edinilson dos Santos and Diego Correia for help with data collection. We also thank Uillians Volkart de Oliveira, Prof. Allan L. Melo and Prof. Alexandre Munhoz for parasitological analysis. We thank Raíssa Nóbrega for help with FGCM analysis. TSOC was supported by FAPESB (#2723/2015) and CAPES (#019/2016). This work was supported by the

- 615 Coordination for the Improvement of Higher Education Personnel (CAPES/ PNPD),
- 616 UESC and the National Council for Scientific and Technological Development (CNPq)

3	
4 5	6
6	6
7 8	0
9	6
10	6
12 13	0
14	6
15 16	6
17 18	C
19	0
20 21	6
22	
24	6
25 26	6
27 29	
28 29	6
30 31	6
32	6
34	0
35 36	6
37	6
38 39	
40 41	6
42	6
43 44	6
45 46	0
47	6
48 49	6
50 51	6
52	6
53 54	6
55 56	6
57	0
58 59	6
60	

617	(Processes #300587/2009-0 and #306154/2010-2). This study was also financed in part
618	by Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES)
619	- Finance Code 001. SSCN and SLGNF received grant from CAPES (Processes
620	#88881.119854/2016-01 and #88881.119838/2016-01, respectively). This study was
621	supported by FAPESB (#011/2015), University of Santa Cruz-UESC and Project
622	BioBrasil/Royal Zoological Society of Antwerp (Belgium). We declare no conflict of
623	interest.
624	
625	REFERENCES
626	
627	Acevedo-Whitehouse, K., & Duffus, A.L.J. (2009). Effects of environmental change on
628	wildlife health. Philosophical Transactions of the Royal Society of Londondon B
629	Biological Sciences, 364 (1534), 3429–3438. DOI: 10.1098/rstb.2009.0128
630	Altmann, J. (1974). Observational study of behavior: sampling methods. Behavior, 49
631	(3-4), 227–267. DOI: 10.1163/156853974X00534
632	Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A.,
633	Torralba, M. (2013). Habitat degradation impacts black howler monkey (Alouatta
634	pigra) gastrointestinal microbiomes. The ISME Journal, 7(7), 1344–1353. DOI:
635	10.1038/ismej.2013.16.
636	Anderson, J., Rowcliffe, J.M., & Cowlishaw, G. (2007). Does the matrix matter? A
637	forest primate in a complex agricultural landscape. Biological Conservation, 135
638	(2), 212 –222. DOI: 10.1016/j.biocon.2006.10.022
639	Baker, K.R., Lea, S.E.G., & Melfi, V.A. (2015). Comparative personality assessment of

640 three captive primate species: *Macaca nigra*, *Macaca sylvanus*, and *Saimiri*

sciureus. International Journal of Primatology, 36(3), 625–646. DOI: 10.1007/s10764-015-9843-3 Balestri, M., Barresi, M., Campera, M., Serra, V., Ramanamanjato, J.B., Heistermann, M., & Donati, G. (2014). Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral Forest Fragments. PloS One, 9(9), 1-11. DOI: 10.1371/journal.pone.0107698 Barber, I. & Dingemanse, N.J. (2010). Parasitism and the evolutionary ecology of animal personality. Philosophical Transactions of the Royal Society of London B *Biological Sciences*, 365 (1560), 4077–4088. DOI: 10.1098/rstb.2010.0182 Barber, I., Mora, A.B., Payne, E.M., Weinersmith, K.L., & Sih, A. (2017). Parasitism, personality and cognition in fish. Behavioral Processes, 141, 205-219. DOI: 10.1016/j.beproc.2016.11.012 Baugh, A.T., Schaper, S.V., Hau, M., Cockrem, J.F., Goede, P., & VanOers, K. (2012). Corticosterone responses differ between lines of great tits (Parus major) selected for divergent personalities. General and Comparative Endocrinolology, 175(3), 488-494. DOI: 10.1016/j.ygcen.2011.12.012 Beehner, J.C., & Bergman, T.J. (2017). The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Hormones and Behavior, 91, 68-83. DOI: 10.1016/j.yhbeh.2017.03.003 Bohn, S.J., Webber, Q.M.R., Florko, K.R.N., Paslawski, K.R., Peterson, A.M., Piche, J.E., ... Willis, C.K.R. (2017). Personality predicts ectoparasite abundance in an asocial sciurid. Ethology, 123(10), 761-771. DOI: 10.1111/eth.12651

John Wiley & Sons

1 2		
3 4 5	664	Breuner, C.W., Patterson, S.H., & Hahn, T.P. (2008). In search of relationships between
6 7	665	the acute adrenocortical response and fitness. General and Comparative
8 9	666	Endocrinology, 157 (3), 288–295. DOI: 10.1016/j.ygcen.2008.05.017
10 11 12	667	Busch, D.S. & Hayward, L.S. (2009). Stress in a conservation context: A discussion of
13 14	668	glucocorticoid actions and how levels change with conservation-relevant variables.
15 16	669	Biological Conservation, 142(12), 2844–2853. DOI: 10.1016/j.biocon.2009.08.013
17 18 19	670	Capitanio, J. P. (2011). Individual differences in emotionality: social temperament and
20 21	671	health. American Journal of Primatology, 73(6), 507-515. DOI: 10.1002/ajp.20870
22 23	672	Catenacci, L.S., De Vleeschouwer, K.M., & Nogueira-Filho, S.L.G. (2009). Seed
24 25 26	673	dispersal by golden-headed lion tamarins Leontopithecus chrysomelas in Southern
27 28	674	Bahian Atlantic Forest, Brazil. Biotropica, 41(6), 744–750. DOI: 10.1111/j.1744-
29 30	675	7429.2009.00530.x
31 32 22	676	Catenacci, L.S., De Vleeschouwer, K.M., Pessoa, M., Nogueira-Filho, S.L.G. (2016a).
33 34 35	677	Diet and feeding behavior of Leontopithecus chrysomelas (Callitrichidae) in
36 37	678	degraded areas of the Atlantic Forest of South-Bahia, Brazil. International Journal
38 39	679	of Primatolology, 37(2), 136–157. DOI: 10.1007/s10764-016-9889-x
40 41 42	680	Catenacci, L.S., Colosio, A.C., Oliveira, L.C., De Vleeschouwer, K.M., Munhoz, A.D.,
43 44	681	Deem, S.L., & Pinto, J.M. (2016b). Occurrence of Prosthenorchis elegans in free-
45 46	682	living primates from the Atlantic Forest of Southern Bahia, Brazil. Journal of
47 48 49	683	Wildlife Diseases, 52 (2), 364-368. DOI: 10.7589/2015-06-163
50 51	684	Catenacci, L.S., Raboy, B.E., Oliveira, L.C., Neves, L.G., Gouveia, P.S., Deem, S., De
52 53	685	Vleeschouwer, K.M. (in press). Leontopithecus chrysomelas: 25 years of experience
54 55 56	686	in methods to capture and to collect biological material. Boletim da Sociedade
57 58	687	Brasileira de Mastozoologia.
59 60		

688	Cavigelli, S.A. (2005). Animal personality and health. Behavior, 142 (9), 1223-1244.
689	Coimbra-Filho, A.F., & Mittermeier, R.A. (1973). Distribution and Ecology of the
690	Genus Leontopithecus Lesson, 1840 in Brazil. Primates, 14 (1), 47-66. DOI:
691	10.1007/BF01730515
692	Colombo, A. F., & Joly, C.A. (2010). Brazilian Atlantic Forest lato sensu: the most
693	ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate
694	change. Brazilian Journal of Biology, 70 (3), 697-708. DOI: 10.1590/S1519-
695	69842010000400002
696	Dawkins, M. S., Edmond, A., Lord, A., Solomon, S., & Bain, M. (2004). Time course
697	of changes in egg-shell quality, faecal corticosteroids and Behavior as welfare
698	measure in laying hens. Animal Welfere, 13, 321–327.
699	De Vleeschouwer, K. M., & Oliveira, L.C. (2017). Report on the presence of a group of
700	golden-headed lion tamarins (Leontopithecus chrysomelas), an endangered primate
701	species in a rubber plantation in southern Bahia, Brazil. Primate Biology, 4, 61–67.
702	DOI: 10.5194/pb-4-61-2017
703	Deem, S.L., Karesh, W.B., & Weisman, W. (2001). Putting theory into practice:
704	Wildlife health in conservation. Conservation Biology, 15 (5), 1224-1233. DOI:
705	10.1111/j.1523-1739.2001.00336.x
706	Delabie, J.H.C. (1990). The ant problems of cocoa farms in Brazil. Applied
707	myrmecology: A world perspective. 555–569.
708	Delarue, E.M.P., Kerr, S.E., & Rymer, T.L. (2015). Habitat complexity, environmental
709	change and personality: a tropical perspective. Behavioral Processes. 120, 101-110.
710	DOI: 10.1016/j.beproc.2015.09.006

1 2 2		
5 4 5	711	DeVries, A. G., Glasper, E.R., & Detillion, C.E. (2003). Social modulation of stress
6 7	712	responses. Physiology & Behavior, 79 (3), 399-407. DOI: 10.1016/S0031-
8 9 10	713	9384(03)00152-5
10 11 12	714	Dietz, J., De Sousa, S., & Billerbeck, R. (1996). Population dynamics of golden-headed
13 14	715	lion tamarins in Una Reserve, Brazil. The Dodo: Journal of the Jersey Wildlife
15 16	716	Preservation Trusts. 32, 115–122.
17 18 19	717	Drewe, J.A. (2010). Who infects whom? Social networks and tuberculosis transmission
20 21	718	in wild meerkats. Proceedings of the Royal Society of London B: Biological
22 23	719	Sciences, 277 (1681), 633-642. DOI: 10.1098/rspb.2009.1775
24 25 26	720	Dunbar, R.I.M. (1991). Functional significance of social grooming in primates. Folia
20 27 28	721	Primatologica, 57 (3), 121-131. DOI: 10.1159/000156574
29 30	722	Estrada, A., Raboy, B., & Oliveira, L.C. (2012). Agroecosystems and primate
31 32	723	conservation in the tropics: a review. American Journal of Primatolology, 74(8),
33 34 35	724	696–711. DOI: 10.1002/ajp.22033
36 37	725	Feaver, J., Mendl, M., & Bateson, P. (1986). A method for rating the individual
38 39	726	distinctiveness of domestic cats. Animal Behavior, 34 (4), 1016-1025. DOI:
40 41 42	727	10.1016/S0003-3472(86)80160-9
43 44	728	Galvão-Coelho, N.L, Silva, H.P.A., & Sousa, M.B.C. (2012). The influence of sex and
45 46	729	relatedness on stress response in common marmosets Callithhrix jacchus. American
47 48 40	730	Journal of Primatology, 74(9), 819-827. DOI: 10.1002/ajp.22032
49 50 51	731	Garcia-Longoria, L., Garamszegi, L.Z., & Møller, A.P. (2014). Host escape behavior
52 53	732	and blood parasite infections in birds. Behavioral Ecology, 25(4), 890-900. DOI:
54 55	733	10.1093/beheco/aru066
50 57 58		

2 3		
4 5	734	Gillespie, T.R. (2006). Noninvasive assessment of gastrointestinal parasite infections in
6 7	735	free-ranging primates. International Journal of Primatology, 27(4), 1129-1143.
8 9 10	736	DOI: 10.1007/s10764-006-9064-x
10 11 12	737	Godfrey, S.S., Bull, C.M., James, R., & Murray, K. (2009). Network structure and
13 14	738	parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii.
15 16	739	Behavioral Ecology and Sociobiology, 63 (7), 1045-1056. DOI: 10.1007/s00265-
17 18 19	740	009-0730-9
20 21	741	Gosling, S.D. (2001). From mice to men: what can we learn about personality from
22 23	742	animal research? Psychological Bulletim, 127 (1), 45-86. DOI: 10.1037/0033-
24 25	743	2909.127.1.45
26 27 28	744	Horváth, G., Martin, J., Lopez, P., Garamszegi, L.Z., Bertok, P., & Herczeg, G. (2016).
29 30	745	Blood parasite infection intensity covaries with risk-taking personality in male
31 32	746	carpetan rock lizards (Iberolacerta cyreni). Ethology, 122 (5), 355-363. DOI:
33 34 35	747	10.1111/eth.12475
36 37	748	Irwin, M. T. (2007). Living in forest fragments reduces group cohesion in diademed
38 39	749	sifakas (Propithecus diadema) in Eastern Madagascar by reducing food patch size.
40 41	750	American Journal of Primatology, 69 (4), 434–447. DOI: 10.1002/ajp.20360
42 43 44	751	Jin, J., Su, Y., Tao, Y., Guo, S., & Yu, Z. (2013). Personality as a predictor of general
45 46	752	health in captive golden snub-nosed monkeys (Rhinopithecus roxellana). American
47 48	753	Journal of Primatology, 75(6), 524-533. DOI: 10.1002/ajp.22127
49 50 51	754	Kierulff, M.C.M., Rylands, A.B., Mendes, S.L., & Oliveira, M.M. (2008).
52 53	755	Leontopithecus chrysomelas. The IUCN Red List of Threatened Species. Version
54 55	756	2014.3. <www.iucnredlist.org>. Downloaded on 09 May 2015.</www.iucnredlist.org>
56 57 58		

33

1 2		
3 4 5	757	Koolhaas, J. M., Boer, S.F., Coppens, C.M., & Buwalda, B. (2010).
5 6 7	758	Neuroendocrinology of coping styles: Towards understanding the biology of
7 8	, 30	rearbendoermenegy of coping styles. Towards andersanding the energy of
9 10	759	individual variation. Frontiers in Neuroendocrinology, 31 (3), 307-321.
11 12	760	DOI:10.1016/j.yfrne.2010.04.001
13 14	761	Kumaresan, V., Palanisamy, R., Pasupuleti, M., & Arockiaraj, J. (2017). Impacts of
15 16	762	environmental and biological stressors on immune system of Macrobrachium
17 18 10	763	rosenbergii. Reviews in Aquaculture, 9 (3), 283–307. DOI: 10.1111/raq.12139
20 21	764	Lehmann, J., Korstjens, A., & Dunbar, R. (2007). Group size, grooming and social
22 23	765	cohesion in primates. Animal Behavior, 74 (6), 1617–1629. DOI:
24 25 26	766	10.1016/j.anbehav.2006.10.025
20 27 28	767	Liebl, A.L., & Martin, L.B. (2012). Exploratory Behavior and stressor hyper-
29 30	768	responsiveness facilitate range expansion of an introduced songbird. Proceeding of
31 32 33	769	the Royal Society London B - Biological Sciences, 279 (1746), 4375–4381. DOI:
34 35	770	10.1098/rspb.2012.1606
36 37	771	Machado-Filho, D.A. (1950). Revisão do gênero Prostenorchis Travassos 1915
38 39	772	(Acantocephala). Memorial do Instituto Oswaldo Cruz, 48, 495-544.
40 41 42	773	MacIntosh, A. J., Jacobs, A., Garcia, C., Shimizu, K., Mouri, K., Huffman, M. A., &
43 44	774	Hernandez, A. D. (2012). Monkeys in the middle: parasite transmission through the
45 46	775	social network of a wild primate. PLoS One, 7 (12), e51144. DOI:
47 48 49	776	10.1371/journal.pone.0051144
50 51	777	Martinez-Mota, R., Valdespino, C., Sanchez-Ramos, M.A., & Serio-Silva, J.C. (2007).
52 53	778	Effects of forest fragmentation on the physiological stress response of black howler
54 55 56	779	monkeys. Animal Conservation, 10 (3), 374-379. DOI: 10.1111/j.1469-
57 58	780	1795.2007.00122.x
59		

McDougall, P.T., Réale, D., Sol, D., & Reader, S.M. (2006). Wildlife conservation and
animal temperament: causes and consequences of evolutionary change for captive,
reintroduced, and wild populations. *Animal Conservation*, 9 (1), 39–48.
DOI:10.1111/j.1469-1795.2005.00004.x

Molesti, S., & Majolo, B. (2013). Grooming increases self-directed Behavior in wild Barbary macaques, *Macaca sylvanus. Animal Behavior*, 86 (1), 169- 175. DOI:10.1016/j.anbehav.2013.05.008

Monteiro, R.V., Dietz, J. M., Beck, B. B., Baker, A. J., Martins, A., & Jansen, A. M. (2007). Prevalence and intensity of intestinal helminths found in free-ranging golden lion tamarins (Leontopithecus rosalia, Primates, Callitrichidae) from Brazilian Atlantic forest. Veterinary Parasitology, (1-2),77-85. DOI:10.1016/j.vetpar.2006.12.004

Monteiro, R.V., Jansen, A.M., & Pinto, R.M. (2003). Coprological helminth screening
in Brazilian free ranging golden lion tamarins, Leontopithecus rosalia (L. 1766)
(primates, Callithrichidae). *Brazilian Journal of Biology*, 63 (4), 727-729. DOI:
10.1590/S1519-69842003000400022

Moreira, C.M., Santos, L.P., Sousa, M.B.C., & Izar, P. (2016). Variation in
glucocorticoid levels: survival and reproductive demands in wild black capuchins
(*Sapajus nigritus*). *International Journal Psychological Research*, 9 (2), 20-29. DOI:
10.21500/20112084.2303

Mori, S.A., Boom, B.M., Carvalho, A.M., & Santos, T.S. (1983). Southern Bahian
moist forests. *The Botanical Review*, 49 (2), 155-232.

Moura, A.C.A., Nunes, H.G., & Langguth, A. (2010). Food sharing in lion tamarins
(*Leontopithecus chrysomelas*): Does foraging difficulty affect investment in young

1 2		
3		
5	805	by
6 7	806	10
8 9 10	807	Mur
10 11 12	808	(/
13 14	809	Mye
15 16	810	(2
17 18	811	8:
19 20 21	812	Nog
22 23	813	(2
24 25	814	pe
26 27 28	815	19
28 29 30	816	Nog
31 32	817	da
33 34	818	De
35 36 27	819	er
37 38 30	820	hí
40 41	020	
42 43	021	UIIV
44 45	822	tv
46 47	823	P_{i}
48 49	824	Oliv
50 51	825	g
52 53 54	826	SC
55 56	827	ht
57 58		
50 59		

60

B05 by breeders and helpers? Internation Journal of Primatology, 31 (5), 848–862. DOI: B06 10.1007/s10764-010-9432-4

- 807 Muroyama, Y. (1991). Mutual reciprocity of grooming in female japanese macaques
 808 (*Macaca Fuscata*). *Behavior*, 119 (3-4), 161–170.
- 809 Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J.
- 810 (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403 (6772), 853 811 858.
- 812 Nogueira, S.S.C., Calazans, S.G., Costa, T.S.O., Peregrino, H., Nogueira-Filho, S.
- 813 (2011). Effects of varying feed provision on behavioral patterns of farmed collared
- 814 peccary (Mammalia, Tayassuidae). Applied Animal Behavior Science, 132 (3-4),
- 815 193–199. DOI: 10.1016/j.applanim.2011.04.002
- Nogueira, S.S.C., Macedo, J.F., Sant'Anna, A.C., Nogueira-Filho, S.L.G., & Paranhos
 da Costa, M.J.R. (2015). Assessment of temperament traits of white-lipped (*Tayassu pecari*) and collared peccaries (*Pecari tajacu*) during handling in a farmed
 environment. *Animal Welfare*, 24 (3), 291-298.
- 820 https://doi.org/10.7120/09627286.24.3.291
- 821 Oliveira, L. C., & Dietz, J. (2011). Predation risk and the interspecific association of
 822 two Brazilian Atlantic Forest primates in cabruca agroforest. *American Journal of*823 *Primatolplogy*, 73 (9), 852–860. https://doi.org/10.1002/ajp.20952
- Oliveira, L. C., Hankerson, S. J., Dietz, J., & Raboy, B. (2010). Key tree species for the
 golden-headed lion tamarin and implications for shade-cocoa management in
 southern Bahia, Brazil. *Animal Conservation*, 13 (1), 60–70.
 https://doi.org/10.1111/j.1469-1795.2009.00296.x

Oliveira, L. C., Neves, L.G., Raboy, B.E., & Dietz, J.M. (2011). Abundance of jackfruit
(*Artocarpus heterophyllus*) affects group characteristics and use of space by goldenheaded lion tamarins (*Leontopithecus chrysomelas*) in cabruca agroforest. *Environmental Management*, 48 (2), 248–262. https://doi.org/10.1007/s00267-0109582-3
Patterson, L.D., & Schulte-Hostedde, A.I. (2011). Behavioral correlates of parasitism

and reproductive success in male eastern chipmunks *Tamias striatus*. *Behavior*, 81
(6), 1129-1137. https://doi.org/10.1016/j.anbehav.2011.02.016

Peres, C. A. (1989). Costs and benefits of territorial defense in wild golden lion
tamarins, *Leontopithecus rosalia*. *Behavioral Ecology and Sociobiology*, 25 (3), 227233.

Pinto, L.P.S., & Rylands, A.B. (1997). Geographic distribution of the golden-headed
lion tamarin, *Leontophitecus chrysomelas*: Implications for its management and
conservation. *Folia Primatologica*, 68 (3-5),161-168.
https://doi.org/10.1159/000157244

Pissinatti, L., Pissinatti, A., Burity, C.H.F., Mattos Jr., D.G., & Tortelly, R. (2007).
Ocorrência de Acantocephala em *Leontopithecus* (Lesson, 1840) cativos: Aspectos
clínico-patológicos. Callitrichidae—Primates. *Arquivo Brasileiro de Medicina Veterinária e Zootecnia*, 59 (6), 1473–1477. https://doi.org/10.1590/S010209352007000600019

Raboy, B.E., & Dietz, J.M. (2004). Diet, foraging, and use of space in wild goldenheaded lion tamarins. *American Journal of Primatology*, 63 (1), 1-15.
https://doi.org/10.1002/ajp.20032

3		
4 5	851	Raboy, B.E., Christman, M.C., & Dietz, J.M. (2004). The use of degraded and shade
6 7	852	cocoa forests by endangered golden-headed lion tamarins Leontopithecus
8 9 10	853	chrysomelas. Oryx, 38 (1), 75-83. https://doi.org/10.1017/S0030605304000122
10 11 12	854	Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C., & Serio-Silva, J. C.
13 14	855	(2009). Stress in Yucatan spider monkeys: effects of environmental conditions on
15 16 17	856	fecal cortisol levels in wild and captive populations. Animal Conservation, 12 (5),
18 19	857	496-502. https://doi.org/10.1111/j.1469-1795.2009.00280.x
20 21 22	858	Réale, D., & Festa-Bianchet, M. (2003). Predator-induced natural selection on
23 24	859	temperament in bighorn ewes. Animal Behavior, 65 (3), 463-470.
25 26 27	860	https://doi.org/10.1006/anbe.2003.2100
28 29	861	Réale, D., Reader, S.M., Sol, D., McDougall, P.T., & Dingemanse, N.J. (2007).
30 31 22	862	Integrating animal temperament within ecology and evolution. Biological Reviews,
32 33 34	863	82 (2), 291–318. https://doi.org/10.1111/j.1469-185X.2007.00010.x
35 36	864	Rouff, J.H., Sussman, R.W., & Strube, M.J. (2005). Personality traits in captive lion-
37 38	865	tailed macaques (Macaca silenus). American Journal of Primatology, 67(2),177-
39 40 41	866	198. https://doi.org/10.1002/ajp.20176
42 43 44	867	Robinson, L. M., Coleman, K., Capitanio, J. P., Gottlieb, D. H., Handel, I. G., Adams,
45 46	868	M. J., & Weiss, A. (2018). Rhesus macaque personality, dominance, behavior, and
47 48	869	health. American Journal of Primatology, 80(2), 1-8.
49 50 51	870	https://doi.org/10.1002/ajp.22739
52 53	871	Rushmore, J., Bisanzio, D., & Gillespie, T. R. (2017). Making new connections:
54 55	872	insights from primate-parasite networks. Trends in Parasitology, 33(7), 547-560.
56 57 58 59	873	https://doi.org/10.1016/j.pt.2017.01.013
60		

John Wiley & Sons

Rylands. A.B. (1993). The ecology of the lions tamarins, Leontopithecus: some intrageneric differences and comparisions with other callitrichids. In Rylands, A.B. (Ed.), Marmosets and Tamarins: Systematics, Behavior and Ecology (pp. 296-313), Oxford: Oxford University Press. Sant'Anna, A.C., & Paranhos da Costa, M.J.R. (2013). Validity and feasibility of qualitative behavior assessment for the evaluation of Nellore cattle temperament. Livestock Science, 157(1), 254–262. https://doi.org/10.1016/j.livsci.2013.08.004 Santicchia, F., Romeo, C., Martinoli, A., Lanfranchi, P., Wauters, L.A., & Ferrari, N. (2015). Effects of habitat quality on parasite abundance: do forest fragmentation and food availability affect helminth infection in the Eurasian red squirrel? Journal of Zoology, 296(1), 38-44. https://doi.org/10.1111/jzo.12215 Sih, A. (2013). Understanding variation in Behavioral responses to human-induced rapid environmental change: a conceptual overview. Animal Behavior, 85(5),1077-1088. https://doi.org/10.1016/j.anbehav.2013.02.017 Sih, A., Bell, A., & Johnson, C. (2004). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology &. Evolution, 19(7), 372-378. https://doi.org/10.1016/j.tree.2004.04.009 Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance infant survival. Science, 302(5648), 1231-1234. https://doi.org/10.1126/science.1088580 Smith, B.R., & Blumstein, D.T. (2008) Fitness consequences of personality: a meta-analysis. Behavioral Ecology, 19(2), 448-455. https://doi.org/10.1093/beheco/arm144

3		
4 5	897	Sousa, M.B.C., & Ziegler, T.E. (1998). Diurnal variation on the excretion patterns of
6 7	898	fecal steroids in common marmoset (Callithrix jacchus) females. American Journal
8 9 10	899	of Primatology, 46 (2), 105-117. https://doi.org/10.1002/(SICI)1098-
10 11 12	900	2345(1998)46:2<105::AID-AJP1>3.3.CO;2-J
13 14	901	Stunkard, H.W. (1965). New intermediate hosts in the life cycle of Prostenorchis
15 16	902	elegans (Diesing, 1851), an acanthocephalan parasite of primates. The Journal of
17 18 19	903	Parasitology, 51, 645-649. https://doi.org/10.2307/3276251
20 21	904	Verona, C.E., & Pissinati, A. (2014). Primates - Primatas do Novo Mundo. In Cubas.
22 23	905	Z.S., Silva. J.C.R., & Catão-Dias, J.L. (Eds.), Tratado de animais selvagens:
24 25 26	906	Medicina Veterinária (pp. 358-377). São Paulo: Roca Ltda.
20 27 28	907	Wark, J.D., Amendolagine, L., Lukas, K. E., Kuhar, C. W., Dennis, P. M., Snowdon, C.
29 30	908	T., Schoffner, T., & Schook, M. W. (2016). Fecal glucocorticoid metabolite
31 32	909	responses to management stressors and social change in four species of callitrichine
33 34 35	910	monkeys. Primates, 57(2), 267–277. https://doi.org/10.1007/s10329-016-0514-6
36 37	911	Wasser, S.K., Hunt, K.E., Brown, J.L., Cooper, K., Crockett, C.M., & Bechert, U.
38 39	912	(2000). A generalized fecal glucocorticoid assay for use in a diverse array of
40 41	913	nondomestic mammalian and avian species. General and Comparative
42 43	914	Endocrinology, 120 (3), 260–275. https://doi.org/10.1006/gcen.2000.7557
45 46	915	Whitehead, H. (2009). SOCPROG programs: Analyzing animal social structures.
47 48	916	Behavioral Ecology and Sociobiology, 63(5), 765–778.
49 50	917	https://doi.org/10.1007/s00265-008-0697-y
51 52	918	Wittig R M Crockford C Lehmann I Whitten P L Sevfarth R M & Cheney
53 54 55	910	D.L. (2008) Focused grooming networks and stress alleviation in wild female
	515	D.E. (2000). Founda Brooming networks and substantion in which follate

170–177.

452-461.

168-179.

156.

baboons. Hormones Behavior, (1), and https://doi.org/10.1016/j.yhbeh.2008.02.009 Wolf, M., & Weissing, F.J. (2012). Animal personalities: consequences for ecology and Ecology evolution. Trends in k Evololution, (8), https://doi.org/10.1016/j.tree.2012.05.001 Wren, B. T., Remis, M. J., Camp, J. W., & Gillespie, T. R. (2016). Number of grooming partners is associated with hookworm infection in wild vervet monkeys (Chlorocebus aethiops). Folia Primatologica, 87(3), https://doi.org/10.1159/000448709 Ziegler, T.E., Scheffler, G., Wittwer, D.J., Schultz-Darken, N.J., Snowdon, C.T., & Abbott, D.H. (1996). Metabolism of reproductive steroids during the ovarian cycle in two species of callitrichids, Saguinus oedipus and Callithrix jacchus, and estimation of the ovulatory period from fecal steroids. *Biology of Reproduction*, 54(1), 91–99. https://doi.org/10.1095/biolreprod54.1.91 Zinsstag, J., Schelling, E., Waltner-Toews, D., & Tanner, M. (2011). From "one medicine" to "one health" and systemic approaches to health and well-being. 101(3-4),Preventive Veterinarv Medicine, 148 -

https://doi.org/10.1016/j.prevetmed.2010.07.003

John Wiley & Sons

939 Tables and Tables legends

Table 1. Characterization of golden-headed lion tamarins' individuals of each

942 group and description of data collected.

Individual	Group	Landscape	Sex	Weight (kg)	Length (mm)	Evaluation ‡	Obs.
14CM	ALM	CAB	М	0.69	633	1,2,3, 4,5	
15CF	ALM	CAB	F	0.60	640	1,2,3,4,5	
17CM	ALM	CAB	М	0.68	621	1,2,3,4,5	
18CF	ALM	CAB	F	0.53	652	1,2,3,4,5	Breed. Fem.
19CF	ALM	CAB	F	0.69	623	1,2,3,4,5	
13CF	ALM	CAB	F	0.64	625	3	Breed. Fem.
21CM	ALM	CAB	М	0.57	615	3	
23CM	ALM	CAB	М	0.68	629	3	Breed. Male
5CM	BOM	CAB	М	0.63	645	1,2,3,4,5	
6CF	BOM	CAB	F	0.73	663	1,2,3,4,5	
7 CF	BOM	CAB	F	0.68	663	1,2,3,4,5	
8CM	BOM	CAB	М	0.57	623	1,2,3, 4,5	
9CF	BOM	CAB	F	0.64	605	1,2,3,4,5	
12CM	BOM	CAB	М	0.51	624	3	
20CF	BOM	CAB	F	0.62	580	1,2,3,4,5	Breed. Fem.
82DM	RIB	DFAM	М	0.65	610	1,2,3,4,5	Breed. Male
92DF	RIB	DFAM	F	0.69	590	1,2,3,4,5	Breed. Fem.
93DF	RIB	DFAM	F	0.65	605	1,2,3,4,5	Breed. Fem.
118DM	RIB	DFAM	М	0.61	607	1,2,3,4,5	
119DF	RIB	DFAM	F	+	†	1,2,3,4,5	
126DM	RIB	DFAM	М	0.58	615	3	
102DM	MRO	DFAM	М	0.58	690	1,2,3,4,5	Breed. Male
115DM	MRO	DFAM	М	0.63	636	1,2,3,4,5	

12001 MRO DFAM F 0.46 503 3 Sub-adult 121DF MRO DFAM F 0.43 586 3 Sub-adult 125DF MRO DFAM F 0.61 630 1,2,3,4,5 1DF MRO DFAM F † 1,2,3,4,5 Breed. Fem 943 Symbols code: Individual: number followed by landscape (C: <i>cabruca</i> and D: DFAM 944 and sex (F: female and M: male); Group: ALM: Almada; BOM: Bomfim; RIB: Ribei 945 MRO: Manoel Rosa; Landscapes: CAB: <i>cabruca</i> ; DFAM: degraded forest fragments 946 agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: 947 Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: 948 faccal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed 949 Male: breeding male. 950 *Data not available; ‡ Evaluation: indicates the test or measure in which each individu 951 *Data not available; ‡ Evaluation: indicates the test or measure in which each individu 952 953		12005	MDO	DEAM	Б	0.48	565	2	Sub adult
125DF MRO DFAM F 0.61 630 1,2,3,4,5 1DF MRO DFAM F † 1,2,3,4,5 Breed. Fem 943 Symbols code: Individual: number followed by landscape (C: <i>cabruca</i> and D: DFAM 944 and sex (F: female and M: male); Group: ALM: Almada; BOM: Bomfim; RIB: Ribei 945 MRO: Manoel Rosa; Landscapes: CAB: <i>cabruca</i> ; DFAM: degraded forest fragments 946 agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: 947 Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: 948 faccal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed 949 Male: breeding male. 950 *Data not available; ‡ Evaluation: indicates the test or measure in which each individu . 952 953 . . .		120DF	MRO	DFAM	г F	0.48	586	3	Sub-adult
1DF MRO DFAM F † 1,2,3,4,5 Breed. Fem 943 Symbols code: Individual: number followed by landscape (C: cabruca and D: DFAM 944 and sex (F: female and M: male); Group: ALM: Almada; BOM: Bomfim; RIB: Ribei 945 MRO: Manoel Rosa; Landscapes: CAB: cabruca; DFAM: degraded forest fragments 946 agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: 947 Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: 948 faccal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed 949 Male: breeding male. 940 tData not available; ‡ Evaluation: indicates the test or measure in which each individu 951 953		121DF	MRO	DFAM	F	0.45	630	1.2.3.4.5	Sub ddun
 Symbols code: Individual: number followed by landscape (C: <i>cabruca</i> and D: DFAM and sex (F: female and M: male); Group: ALM: Almada; BOM: Bomfim; RIB: Ribei MRO: Manoel Rosa; Landscapes: CAB: <i>cabruca</i>; DFAM: degraded forest fragments agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. 'Data not available; ‡ Evaluation: indicates the test or measure in which each individu participated. 		1DF	MRO	DFAM	F	†	†	1,2,3,4,5	Breed. Fem.
 and sex (F: female and M: male); Group: ALM: Almada; BOM: Bomfim; RIB: Ribei MRO: Manoel Rosa; Landscapes: CAB: <i>cabruca</i>; DFAM: degraded forest fragments agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. 'Data not available; ‡ Evaluation: indicates the test or measure in which each individu participated. 	943	Symbols c	ode: Indivi	dual: numbe	r follov	ved by lar	ndscape (C: cabruca a	nd D: DFAM)
 MRO: Manoel Rosa; Landscapes: CAB: <i>cabruca</i>; DFAM: degraded forest fragments agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. *Data not available; # Evaluation: indicates the test or measure in which each individu participated. 	944	and sex (F	: female an	d M: male);	Group:	ALM: A	lmada; B	OM: Bomfir	n; RIB: Ribeir
 agricultural matrix; Sex: M: male; F: female. Evaluations: 1 = novel object test; 2: Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. [†]Data not available; [‡] Evaluation: indicates the test or measure in which each individu participated. 	945	MRO: Mai	noel Rosa;	Landscapes:	CAB:	cabruca;	DFAM:	degraded for	est fragments i
 Behavioral direct observation; 3: sociality assessment; 4: parasitological analysis; 5: faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. ¹Data not available; [‡] Evaluation: indicates the test or measure in which each individu participated. 	946	agricultura	ıl matrix; S	ex: M: male	; F: fen	nale. Eval	uations:	l = novel obj	ect test; 2:
 faecal glucocorticoid metabolite concentrations. Breed. Fem.: breeding female; Breed Male: breeding male. *Data not available; * Evaluation: indicates the test or measure in which each individu participated. 	947	Behavioral	l direct obs	ervation; 3:	socialit	y assessm	ent; 4: pa	arasitologica	l analysis; 5:
 Male: breeding male. Data not available; [‡] Evaluation: indicates the test or measure in which each individue participated. 	948	faecal gluc	cocorticoid	metabolite c	oncent	rations. B	reed. Fer	n.: breeding	female; Breed.
 ¹Data not available; [‡] Evaluation: indicates the test or measure in which each individue participated. 	949	Male: bree	ding male.						
 participated. 953 	950	†Data not a	available; ‡	Evaluation:	indicat	es the test	or meas	ure in which	each individua
952 953	951	participate	d.						
953	952								
	953								

Table 2. Behavioral states recorded by direct observation of golden-headed lion

956 tamarins.

	Behavior	Definition
	[†] Social grooming	The individual gives or receives grooming Behavior – manipulation of the fur of another conspecific with hands or mouth.
	[‡] Eating	The individual manipulates or puts inside its mouth fruits, flowers, nectar, gum or animal prey.
	[‡] Foraging for fruits and flowers	The individual appears to be visually searching for fruits and flowers.
	[‡] Foraging for animal prey	The individual uses manipulative foraging to locate animal prey concealed in sites such as dried leaves and tree bark.
	*Travelling	The individual is moving from one place to another, covering a certain distance.
957 958	[†] Adapted from (Muroyama,	, 1991). ‡Adapted from (Raboy & Dietz, 2004).
959		

Р

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

<0.05 <0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

review

W

0.55

0.84

0.63

0.54

0.80

0.92

0.61

0.64

0.80

0.60

0.81

0.40

0.76

0.66

Table 3. Inter-observer Kendall's concordance coefficients (*W*) of ratings of free-living

Adjective

Active

Alert

Bold

Calm

Agitated

Apathetic

Cautious

Curious

Fearful

Relaxed

Shy

Smart

Tense

Stressed

Items in **bold** type are those in which the inter-observer Kendall's concordance

coefficients (W) were greater than 0.70 and thereby qualified for use in further analysis.

962 golden-headed lion tamarins' Behaviors.

4
-
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
קו 20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
24
54 25
35
36
37
38
39
40
л о //1
40
42
43
44
45
46
47
48
10
47 50
50
51
52
53
54
55
56
50
57

964

965

966

967

1 2 3

963

Calm-Agitated 0.36 -Fearful -0.58 -0.13 -Stressed -0.71 -0.22 0.51 -Alert -0.45 -0.57 0.41 0.11 -30ld 0.71 -0.01 -0.72 -0.56 -0.19 -iold values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the BehavTable 5. F (and P values) of mixed factorial ANOVA performed to conf time tamarins spent on travelling, foraging, and eating Behavioral caonsidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the set (high confident and low confident) as independent variables.ehavioralLandscapeBehavioralInteraction†ravelling 1.21 ($P = 0.29$) 0.30 ($P = 0.59$) 0.19 ($P = 0.67$)oraging‡ 1.43 ($P = 0.25$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
gitated 0.36 -earful -0.58 -0.13 -ressed -0.71 -0.22 0.51 -lert -0.45 -0.57 0.41 0.11 -old 0.71 -0.01 -0.72 -0.56 -0.19 -old values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behavble 5. F (and P values) of mixed factorial ANOVA performed to contime tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in thet (high confident and low confident) as independent variables.havioralLandscapeBehavioralInteraction†tegories $0.30 (P = 0.59)$ $0.19 (P = 0.67)$ raging‡ $1.43 (P = 0.25)$ $0.15 (P = 0.70)$ $0.05 (P = 0.83)$
arful -0.58 -0.13 $-$ ressed -0.71 -0.22 0.51 $-$ lert -0.45 -0.57 0.41 0.11 $-$ old 0.71 -0.01 -0.72 -0.56 -0.19 $-$ ld values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behavble 5. F (and P values) of mixed factorial ANOVA performed to contine tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the third (high confident and low confident) as independent variables.havioralLandscapeBehavioral characteristicsInteraction†avelling 1.21 ($P = 0.29$) 0.30 ($P = 0.59$) 0.19 ($P = 0.67$)raging‡ 1.43 ($P = 0.25$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
ressed -0.71 -0.22 0.51 - lert -0.45 -0.57 0.41 0.11 - old 0.71 -0.01 - 0.72 -0.56 -0.19 - ld values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behav ble 5. <i>F</i> (and <i>P</i> values) of mixed factorial ANOVA performed to con- time tamarins spent on travelling, foraging, and eating Behavioral ca- nsidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the t (high confident and low confident) as independent variables. havioral Landscape Behavioral Interaction [†] egories 1.21 (<i>P</i> = 0.29) 0.30 (<i>P</i> = 0.59) 0.19 (<i>P</i> = 0.67) raging [‡] 1.43 (<i>P</i> = 0.25) 0.15 (<i>P</i> = 0.70) 0.05 (<i>P</i> = 0.83)
lert -0.45 -0.57 0.41 0.11 $-$ old 0.71 -0.01 -0.72 -0.56 -0.19 $-$ Id values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behavble 5. F (and P values) of mixed factorial ANOVA performed to continue tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the t (high confident and low confident) as independent variables.havioralLandscapeBehavioral characteristicsInteraction ⁺ avelling 1.21 ($P = 0.29$) 0.30 ($P = 0.59$) 0.19 ($P = 0.67$)raging [‡] 1.43 ($P = 0.25$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
old 0.71 -0.01 -0.72 -0.56 -0.19 $-$ Id values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behavble 5. F (and P values) of mixed factorial ANOVA performed to contine tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the t (high confident and low confident) as independent variables.thavioral travellingLandscapeBehavioral characteristicsavelling $1.21 (P = 0.29)$ $0.30 (P = 0.59)$ $0.19 (P = 0.67)$ raging‡ $1.43 (P = 0.25)$ $0.15 (P = 0.70)$ $0.05 (P = 0.83)$
Id values represent $r_s > 0.70$ or $r_s < -0.70$ used to combine the Behavble 5. F (and P values) of mixed factorial ANOVA performed to contime tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in thet (high confident and low confident) as independent variables.havioralLandscapeegoriesBehavioralinteraction†characteristicsavelling $1.21 (P = 0.29)$ $0.30 (P = 0.59)$ $0.19 (P = 0.67)$ raging‡ $1.43 (P = 0.25)$ $0.15 (P = 0.70)$ $0.05 (P = 0.83)$
ble 5. <i>F</i> (and <i>P</i> values) of mixed factorial ANOVA performed to continue tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in that (high confident and low confident) as independent variables. Thavioral Landscape Behavioral Interaction [†] tegories 1.21 (<i>P</i> = 0.29) 0.30 (<i>P</i> = 0.59) 0.19 (<i>P</i> = 0.67) raging [‡] 1.43 (<i>P</i> = 0.25) 0.15 (<i>P</i> = 0.70) 0.05 (<i>P</i> = 0.83)
ble 5. <i>P</i> (and <i>P</i> values) of mixed factorial ANOVA performed to con- time tamarins spent on travelling, foraging, and eating Behavioral can asidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the chigh confident and low confident) as independent variables. The travelling Landscape Behavioral Interaction [†] characteristics 1.21 ($P = 0.29$) 0.30 ($P = 0.59$) 0.19 ($P = 0.67$) welling 1.21 ($P = 0.29$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
time tamarins spent on travelling, foraging, and eating Behavioral cansidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in that (high confident and low confident) as independent variables. havioral Landscape Behavioral Interaction [†] egories 1.21 ($P = 0.29$) 0.30 ($P = 0.59$) 0.19 ($P = 0.67$) raging [‡] 1.43 ($P = 0.25$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
nsidering landscape (cabruca x DFAM) and individual Behavior in the st (high confident and low confident) as independent variables.tensionLandscapeBehavioral characteristicsInteraction†eavelling $1.21 (P = 0.29)$ $0.30 (P = 0.59)$ $0.19 (P = 0.67)$ oraging‡ $1.43 (P = 0.25)$ $0.15 (P = 0.70)$ $0.05 (P = 0.83)$
onsidering landscape (<i>cabruca</i> x DFAM) and individual Behavior in the st (high confident and low confident) as independent variables.ehavioral tegoriesLandscape characteristicsBehavioral characteristicsInteraction [†] ravelling $1.21 (P = 0.29)$ $0.30 (P = 0.59)$ $0.19 (P = 0.67)$ oraging [‡] $1.43 (P = 0.25)$ $0.15 (P = 0.70)$ $0.05 (P = 0.83)$
colspan="3">colspan="3">colspan="3">colspan="3">colspan="3">colspan="3">colspan="3">colspan="3">colspan="3"colspan
st (high confident and low confident) as independent variables.ehavioral tegoriesLandscape characteristicsBehavioral characteristicsInteraction ⁺ ravelling $1.21 \ (P = 0.29)$ $0.30 \ (P = 0.59)$ $0.19 \ (P = 0.67)$ oraging [‡] $1.43 \ (P = 0.25)$ $0.15 \ (P = 0.70)$ $0.05 \ (P = 0.83)$
ehavioral ttegoriesLandscapeBehavioral characteristicsInteraction†ravelling $1.21 \ (P = 0.29)$ $0.30 \ (P = 0.59)$ $0.19 \ (P = 0.67)$ oraging‡ $1.43 \ (P = 0.25)$ $0.15 \ (P = 0.70)$ $0.05 \ (P = 0.83)$
ravelling $1.21 \ (P = 0.29)$ $0.30 \ (P = 0.59)$ $0.19 \ (P = 0.67)$ oraging [‡] $1.43 \ (P = 0.25)$ $0.15 \ (P = 0.70)$ $0.05 \ (P = 0.83)$
braging [‡] 1.43 ($P = 0.25$) 0.15 ($P = 0.70$) 0.05 ($P = 0.83$)
ating $2.63 (P = 0.13) 0.47 (P = 0.50) 0.12 (P = 0.73)$
nteraction between landscape and Behavioral characteristics.
Foraging for fruits and flowers.

Table 6. Means and standard deviation (SD) of biometrical measures, general health
parameters during sedation, and faecal glucocorticoid metabolite concentrations (FGCM
- ng/g dry faeces) of golden-headed lion tamarins (*Leontopithecus chrysomelas*) living
in *cabruca* (cocoa agro-forestry) and degraded forest patches in agricultural matrix
(DFAM) landscapes.

	Cabruca			DFAM						
Item	(X)	SD	N	Mean	SD	N	t-test	Р		
Morphological										
measures										
Body mass (g)	644	72	9	637	34	8	-0.28	0.78		
Total length (mm)	629	27	9	622	31	8	-0.50	0.62		
General health										
parameters										
Heart rate (bpm)	244	14	9	240	47	8	-0.24	0.81		
Respiratory										
frequency (mpm)	38	9	9	44	12	8	1.01	0.33		
Body temperature										
(°C)	37	0.6	9	37	0.5	8	1.15	0.27		
FGCM (ng/g dry										
faeces)	947	442	9	1141	240	8	1.10	0.29		

987 S1. Overview of results from parasitological analysis, parasite load (EPG eggs/g), physiological parameters and fecal glucocorticoid metabolites

988 concentration mean (FGCM ng/g) and eigenvector centrality in grooming interactions of golden-headed lion tamarins (*Leontopithecus*

chrysomelas) living in *cabruca* (CAB) and degraded forest patches in agricultural matrix (DFAM) landscapes.

Animal	Group	Landscape	Sav	Parasite	EPG	Heart rate	Respiratory	Т(°С)	FGCM	Eigenvector
Ammai		Lanuscape	502	Identification	mean	(bpm)	(mpm)	I(C)	mean	contrainty
14CM	ALM	CAB	М	not present	0.00	240	32	36.4	1522.78	0.17
15CF	ALM	CAB	F	not present	0.00	180	20	34.8	1383.67	0.01
17CM	ALM	CAB	М	not present	0.00	240	60	36.8	118.86	0.28
18CF	ALM	CAB	F	not present	0.00	264	28	36.4	1022.85	0.52
19CF	ALM	CAB	F	not present	0.00	260	40	37.5	1155.71	0.04
5CM	BOM	CAB	М	not present	0.00	228	36	35.3	†	0.11
6CF	BOM	CAB	F	not present	0.00	248	44	37.0	776.67	0.32
7 CF	BOM	CAB	F	not present	0.00	248	44	38.0	1382.88	0.57
8CM	BOM	CAB	М	not present	0.00	240	36	37.0	631.46	0.25
9CF	BOM	CAB	F	not present	0.00	240	32	37.5	654.42	0.08
20CF	BOM	CAB	F	not present	0.00	216	32	35.8	8 1258.13	0.70

	82DM	RIB	DFAM	М	Prosthenorchis sp.	8.59	240	32	36.3	926.38	0.65
	92DF	RIB	DFAM	F	Prosthenorchis sp.	10.59	252	44	37.1	1331.1	0.65
	93DF	RIB	DFAM	F	Prosthenorchis sp. and Trypanoxyuris sp.	63.89	292	60	37.4	1129.28	0.37
	118DM	RIB	DFAM	М	Prosthenorchis sp., Primasubulura sp. and Spiruridae	70.42	304	60	37.8	1500.09	0.09
	119DF	MRO	DFAM	F	Prosthenorchis sp.	31.14	+	†	†	589.757	0.04
	102DM	MRO	DFAM	М	Prosthenorchis sp.	3.27	160	44	37.1	1205.52	0.63
	115DM	MRO	DFAM	М	Prosthenorchis sp.	24.05	200	48	37.0	858.727	0.11
	125DF	MRO	DFAM	F	Prosthenorchis sp.	6.68	218	23	38.0	861.13	0.34
	1SF	MRO	DFAM	F	Prosthenorchis sp.	51.02	*	*	*	1321.18	0.68
990	†D	ata not av	ailable. ALM	: Almada,	BOM: Bomfim, RIB: Ribeir	o, MRO: N	Aanoel Rosa,	EPG = pai	asite load	d (eggs/g); F	GCM=Fecal
991	glucocorticoid metabolites concentration; T(°C) = body temperature										
992											
993											

John Wiley & Sons

Research Highlights

- Individual Behavioral responses to novelty were correlated with foraging for animal prey.
- Only individuals from degraded area showed intestinal parasite infections.
- The parasite loads were correlated with the number of grooming partners.

Graphical abstract. Only DFAM individuals showed intestinal parasite infections, and their parasite loads were correlated with the number of grooming partners they had, suggesting an association between grooming and infection transfer. High confident' individuals in DFAM landscapes spent less time foraging for animal prey than those inbruca

Figure 1. Behavioral ratings of tamarins from DFAM (A) and cabruca (B) on the confidence Behavioral dimension. The ratings for confidence dimension were obtained from the z-scores (bold + calm+ not-fearful + not-stressed)/4. The numbers identify the individual tamarin, the letters D and C the landscapes (D: DFAM, C: cabruca) and M and F correspond to animal's sex (M: male, F: female).

199x247mm (96 x 96 DPI)

Figure 2. Means proportion of time golden-headed lion tamarins spent in foraging for animal prey according their behavioural category (high confident and low confident) and area (DFAM: degraded forest patches in agricultural matrix; *cabruca*: cocoa agro-forestry). Error bars show standard errors and columns with different letters are significantly different (P < 0.05, Tukey *post-hoc* tests).

Figure 3. Network diagrams of the grooming interactions among golden-headed lion tamarins' groups (A: Manoel Rosa, B: Ribeiro, C: Almada, D: Bomfim). The alphanumeric code inside the boxes identified the individuals: their number, landscape (C: cabruca or D: DFAM), and sex (M: male or F: female). The arrows point the provider/recipient of the interaction and its thickness indicates the strength of the interaction rate between individuals.

176x158mm (96 x 96 DPI)

Figure 4. Relation between number of grooming partners and EPG (number of eggs/g faces) in golden-headed tamarins in agricultural matrix (DFAM) landscape following the linear equation EPG = 12.80 (number of grooming partners) - 10.50 (R^2 =0.57, $F_{1,9}$ = 11.83, P = 0.007, N = 11).

S1. Overview of results from parasitological analysis, parasite load (EPG eggs/g), physiological parameters and fecal glucocorticoid metabolites concentration mean (FGCM ng/g) and eigenvector centrality in grooming interactions of golden-headed lion tamarins (*Leontopithecus chrysomelas*) living in *cabruca* (CAB) and degraded forest patches in agricultural matrix (DFAM) landscapes.

for per perie