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Abstract
Wehave explained and comprehensively illustrated in Part I (Schilling et al 2019 arXiv:1908.10938)
that the generalized Pauli constraints suggest a natural extension of the concept of active spaces. In the
present Part I (Schilling et al 2019 arXiv:1908.10938)I, we provide rigorous derivations of the theorems
involved therein. This will offer in particular deeper insights into the underlyingmathematical
structure andwill explainwhy the saturation of generalized Pauli constraints implies a specific
simplified structure of the correspondingmany-fermion quantum state.Moreover, we extend the
results of Part I (Schilling et al 2019 arXiv:1908.10938) to non-fermionicmultipartite quantum
systems, revealing that extremal single-body information has always strong implications for the
multipartite quantum state. In that sense, ourwork also confirms that pinned quantum systems define
newphysical entities and the presence of pinnings reflect the existence of (possibly hidden) ground
state symmetries.

1. Introduction and brief recap of the notation

Weconsider theN-fermionHilbert space [ ] N
1 , where1 is the underlying d-dimensional one-particle

Hilbert space. If not stated otherwise, all states in this paper are not necessarily normalised. To each quantum
state ∣ [ ]Yñ Î  N

1 we can assign its one particle reduced density operator r1which is obtained by tracing out
all except one fermion

[∣ ∣] ∣ ∣ ( )år º YñáY º ñá-
=

N n j jTr . 1N
j

d

j1 1
1

Equation (1) gives rise to the natural occupation numbers (NONs) nj and the natural orbitals (NOs) ∣ ñj , the
corresponding eigenstates [1, 2]. This terminology alsomotivates the normalization

[ ]r = +¼+ =n n NTr d1 1 1 which allows us to interpret the eigenvalues of r1 as occupation numbers, the
occupancies of the natural orbitals. TheNOs form an orthonormal basis 1 for1which is unique as long as the
NONs are non-degenerate.

Including the physically relevant case of degenerateNONs, any suchNObasis 1 induces an orthonormal

basis for [ ] N
1 given by the family of ⎜ ⎟⎛

⎝
⎞
⎠

d

N
configuration states ∣ ∣† †¼ ñ º ¼ ñi i f f, , 0N i i1

N1
, with
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< <¼< i i i d1 N1 2 . Here, ∣ ñ0 denotes the vacuum state and †f
j
is the creation operator of a fermion in

theNO ∣ ñj . Since N is a basis for [ ] N
1 we can expand every quantum state in [ ] N

1 uniquely with respect to
N , in particular also ∣Yñ ( ( )º ¼i i i, , N1 )

∣ ∣ ( )åYñ = ñic . 2
i

i

The expansion (2) is self-consistent in the sense that the coefficients ci are such that the corresponding one-
particle reduced density operator is diagonal in its ownnatural orbital basis. Actually, in the natural expansion
(2) some of the coefficientsmight be zero. In the following, wewill often distinguish this set from those
configurations i which contribute to the expansion of ∣Yñalso called ∣Yñʼs natural support, (∣ )YñSupp

1
, of ∣Yñ

(∣ ) ≔ { ∣ ∣ } ( )Yñ ñ Î áY ñ ¹ i i iSupp : and 0 . 3N1

Clearly, in case of degenerateNONs, the support of ∣Yñmay depend on the specific choice 1of natural orbitals.
One particular instance of a reduction of natural support is based on the presence of pinning. To recall those

mainfindings of Part I [3], let usfirst recall that the set of one-particle densitymatrices r1 corresponding to some
∣ [ ]Yñ Î  N

1 is described by the generalized Pauli constraints, i.e.afinite set of affine conditions

( ) · ( )( ) ( ) ( )åkk k kº + º + = ¼ < ¥
=

n nD n i r0, 1, 2, , , 4i i i i
j

d

i
j

j N d
0 0

1
,

on the vector ( )º =n nj j
d

1of decreasingly orderedNONs. The crucial result (as illustrated in Part I [3])whichwe
will rigorously derive in the following is that the saturation of aGPC D 0 implies structural simplifications on
the corresponding ∣Yñ. As described by theorem6 in Part I [3], one has

( ) ˆ ∣ ( )=  Yñ =nD D0 0, 51

where ˆ ( ˆ ˆ )º ¼D D n n, , d11
is theNO induced operator of theGPCD. In the case of degenerateNONs one

expects (see Conjecture 9, theorem10 and corollary 11 in Part I [3]) this to be truewith respect to at least one
specific choice 1ofNOs. The structural implications of pinning are particularly well-pronounced in theNO
expansion (2): Since the configuration states ∣ ñi are the eigenstates of ˆ

D
1
, equation (5) implies a selection rule on

the contributing configurations

( ) (∣ ) ( )" =  Î Yñi n iD: 0 Supp , 6i 1

where ni is ∣ ñi ʼs vector of unordered occupation numbers,

⎧⎨⎩( [∣ ⟩⟨ ∣]) ( ) ( )º =
Î
Ï-n i i n

i

i
N

j

j
spec Tr , i.e.

1 if

0 if
. 7i iN j1

2. Proofs of themain results

In the followingwe formalize our approach to deriving the consequences of pinning by generalized Pauli
constraints, i.e.to proving ourmain results (presented as theorems 6, 10, 12 in Part I [3]). In particular, this will
allowus to treat all possible scenarios in a systematic way and generalise our findings tomultiparticle systems
that also consist of particles different than fermions.

Several of our key results will rely on a close investigation of local symmetries of quantum states. Theword
‘local’ in this context does not refer to spatial locality but rather to a formof locality in underlyingmathematical
space [ ] N

1 : infirst quantisationwhich is based on the embedding [ ] Ä N
1 1

N
, an operatorU is called

local if it can be expressed as º ÄU u
N
, where u acts on the underlying one-particle Hilbert space1. In second

quantization using fermionic creation ( †f
i ) and annihilation ( fj) operators referring to some orthonormal

reference basis for1, we can express such a local and unitary operator as

( )
†

= =å =U H He , with . 8H f f
jl lj

i
j l

d
jl j l, 1 *

A local unitary operatorU represents by definition a local symmetry of ∣Yñ if

∣ ∣ [ ) ( )f pYñ = Yñ ÎfU e for some 0, 2 . 9i

The group ∣YñS of local symmetries of ∣Yñcan be identified as a subgroup of the group of unitary operators on1

≔ { ∣ ∣ ∣ [ )} ( )∣ f p Yñ = Yñ Îf
Yñ

Ä S u u: unitary e for some 0, 2 . 101 1
iN

In analogy to the local symmetry group of ∣Yñ, we introduce for a one-particle reduced density operators r1 its
symmetry group as

2
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≔ { ∣ } ( )†r r =r  S u u u: unitary . 111 1 1 11

Since any local transformations ∣ ∣Yñ YñÄu
N

act by conjugation on r1,
†r ru u1 1 , any local symmetry of ∣Yñ

represents also a symmetry of r1. In otherwords, wefind the important inclusion relation

( )∣ Ì rYñS S . 12
1

Both groups ∣YñS and rS
1
are actually Lie groups. Their corresponding Lie algebras sr1

and ∣s Yñ, respectively, arise
as the tangent spaces at the ‘point’  ∣Î Ì rYñS S

1
andwill play a crucial role in ourwork. sr1

is given as the
algebra of all anti-hermitian operators hi on the one-particleHilbert space1which commutewith r1

{ ( ) [ ] } ( )s u r= Î =r h d hi : , 0 . 1311

The Lie algebra ∣s Yñof ∣YñS forms then a subalgebra of sr1
, given by

{ ( ) ∣ ∣ } ( )∣
†s u så l l= Î Yñ = Yñ Î Ì rYñ

=

h d h f fi : , for some . 14
j l

d

jl j l
, 1

1

Here, ( )u d denotes the Lie algebra of the Lie group of unitary operators on1, i.e. ( )u d is the algebra of anti-
hermitian operators on1 and ∣ ∣º á ñh j h ljl . To verify (13), recall that any unitary operator u on1 can be
expressed as =u e hi for some hermitian operator h and that the generators of a Lie group follow as the
derivatives ( )=t 0u

t

d

d
of any one-parametric curve ( ) ºu t e thi .

Furthermore, let us denote byμ themapwhich assigns to a state ∣ [ ]Yñ Î  N
1 its one-particle reduced

density operator

∣ ( )m rYñ: . 151

Formally,μ can be viewed as amap acting between two vector spaces where the target space is the space of
hermitian ´d d matrices.We identify the target spacewith the Lie algebra of the group ( )U d . In other
words, [ ] ( )um i  d: N

1 . Note that in fact the image ofμ is not all of ( )ui d , but it consists of positive-
semidefinitematrices whose trace is equal toN. In this section, wewill focus on regularity properties ofmapμ.
Let us next explain whatwemean by regularity. Consider a one-parameter family of states (a curve)
∣ ( ) [ ]Y ñ Î -t t, ,1

2

1

2
. This family gives rise to a one-parameter family of one-particle reduced density operators

given by (∣ ( ) )m Y ñt . Consider next the velocity vector associatedwith curve ∣ ( )Y ñt given by the derivative

∣ ( ) ≔ ∣ ( ) ( )Y ñ Y ñ
=t

t0
d

d
. 16

t 0

By considering all possible curves that go through a common point ∣Y ñ0 and their velocities at =t 0, we obtain a
vector spacewhich is the same as [ ] N

1 . Consequently, we consider the time-derivative of the corresponding
curve in the space of one-particle reduced density operators, i.e

( ) ≔ (∣ ( ) ) ( )r m Y ñ
=t

t0
d

d
. 17

t
1

0

By the chain rule, the result ( )r 01 depends linearly on ∣ ( )Y ñ0 and thematrix that transforms one vector to
another depends only on ∣Y ñ0 and is called the derivativematrix, ∣m Y ñd

0
. In otherwords

( ) ≔ ∣ ( ) ( )∣ r m Y ñY ñ0 d 0 . 181 0

The rank of the linear operator ∣m Y ñd
0
tells us howmany directions we can cover within ( )ui d by taking all curves

that go through ∣Y ñ0 . Intuitively, if we are in a generic situationwhere theNONs of ∣Y ñ0 do not saturate any of the
GPCs, the rank of ∣m Y ñd

0
ismaximal and thus equal to -d 12 . However, to properly justify this assertion, one has

to invoke the principal orbit type theorem, a fact which is covered by theorem8.
The importance of the operator md becomes evident when one considers pinned states, i.e. states whose

NONs saturate at least one of theGPCs. From the sole fact thatGPCs cannot be broken by a pure state, we have
that the operator md cannot be ofmaximal rankwhen evaluated at such pinned states. In particular, the
derivative vector ( )r 01 cannot point out of the region of admissible one-particle reduced density operators given
by theGPCs. Importantly, this phenomenon imposes tremendous restrictions on the structure of pinned
quantum states as already discussed and illustrated in Part I [3]. The following lemmawill be the point of
departure for the results presented in this section. This is a variant of awell-known result which is valid in a
muchmore general setting [4] (see also [5, 6]where it wasfirst used to study the structure of qubit states that
saturateGPCs). Nevertheless, we reprove it here usingmore elementary arguments.

Lemma1. Let [ ] ( )um   d: iN
1 be themap that assigns to a pure quantum state its one-particle reduced density

operator and let [ ] ( )∣ um  Yñ  dd : iN
1 be the derivative of μ.We have

( ) ( )∣ ∣sm =Yñ Yñ
^iIm d , 19

3
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where

( ) { ( ) ( ) } ( )∣ ∣s u s= Î ¢ = ¢ ÎYñ
^

Yñh d hh hi : tr 0for all i . 20

Proof.Recall the definition of the derivative. Any element of the domain of md can be represented as a
differentiable curve ∣ ( )Y ñt such that ∣ ( ) ∣Y ñ = Yñ0 . For such a curve, ∣ ( ) [ ]Y ñ Î  0 N

1 . Themap ∣m Yñd acts on

∣ ( )Y ñ0 in the followingway:

(∣ ( ) ) (∣ ( ) ) ( )∣
m mY ñ = Y ñYñ

=t
td 0

d

d
. 21

t 0

Notefirst, that becauseμ does not change along the complex line through ∣Yñ, the image of ∣m Yñd is invariant
under complex scaling, i.e

{ }∣ ∣m m= Î -Yñ Yñ cIm d Im d for all 0 .c

Moreover, vectors proportional to ∣Yñbelong to the kernel of ∣m Yñd . Hence, in order tofind ∣m YñIm d , it is

enough to consider only tangent vectors corresponding to curves of the form ∣YñetA for ( [ ])uÎ  A N
1 (note,

that this is the global unitary algebra).
Our goal is to prove equation (19), which is equivalent to the fact that ( ( ∣ ) )∣m Yñ =Yñ A Xtr d 0 for all

( )uÎ A if and only if ∣sÎ YñX , i.e. [ ∣ ∣]YñáY =X , 0.Wefirst use the definition of md (formula (21))

( (∣ ( ) ) ) ( (∣ ( ) ) ) ( (∣ ( ) ) ) ( )∣
m i m i r iY ñ = Y ñ = Y ñYñ

= =
X

t
t X

t
t Xtr d 0

d

d
tr

d

d
tr . 22

t t0 0
1

By choosing ∣ ( ) ∣Y ñ = Yñt etA , we get, that

( ( ∣ ) ) ( ( ∣ ) ) ( (∣ ∣) ) ( )∣m i r i iYñ = Yñ = YñáYYñ
= =

-A X
t

X
t

Xtr d
d

d
tr e

d

d
tr e e . 23

t

At

t

At At

0
1

0

In the last step, we used the fact that ( (∣ ) ) (∣ ∣ )r Yñ = YñáYX Xtr tr1 for anyX that acts locally. By computing the
derivative and doing a cyclic permutation ofmatrices under the trace, wefinally obtain

( ( ∣ ) ) (∣ ∣[ ]) ( ) ( ) ( )∣ u um iYñ = YñáY Î ÎYñ A X A X X Atr d tr , , d , . 24

Let usfirst show that ( )∣ ∣sm ÌYñ Yñ
^Im d . To this end, assume that ∣sÎ YñX , i.e. [ ∣ ∣]YñáY =X , 0. Then for

any ( )uÎ A ,

(∣ ∣[ ]) (∣ ∣ ) (∣ ∣ ) ( )YñáY = YñáY - YñáY =A X AX XAtr , tr tr 0. 25

By doing a cyclic permutation under the first trace and commutingXwith ∣ ∣YñáY under the second trace, we get
that the above expression vanishes.

Finally, we show that ( )∣ ∣sm ÉYñ Yñ
^Im d . To this end, we assume that there exists ( )uiÎX d such, that for

all ( )uÎ A , (∣ ∣[ ])YñáY =A Xtr , 0. By doing a cyclic permutation ofmatrices under the trace, we get

(∣ ∣[ ]) ([ ∣ ∣] ) ( )YñáY = YñáYA X X Atr , tr , . 26

The above trace is a non-degenerate scalar product on ( )u  . Hence by considering [ ∣ ∣]i YñáYX , as an element
of ( )u  , we get, that expression (26) vanishes for all ( )uÎ A if and only if [ ∣ ∣]YñáY =X , 0. ,

2.1. Non-degenerate occupation numbers
Let usfirst cover the simpler case where theNONs are assumed to be non-degenerate, i.e. > > >n n n... d1 2 .
This case is straightforward to analyse due to the fact that a statewith non-degenerateNONs has a unique basis
of natural orbitals.Moreover, all local symmetry operators, ∣YñS , are diagonal in the basis ofNOs of ∣Yñ. To see
this, note first that if NONs are non-degenerate, then the symmetry group of the corresponding diagonal one-
particle reduced densitymatrices consists only of diagonalmatrices, i.e.

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

∣ ∣ [ ] ( )f p= ñá Î
å f
=S j je : 0, 2 . 27n j

i
j

d

j
1

Finally, recall equation (12)which asserts that ∣YñS is necessarily contained in Sn. Recall that if a hermitianmatrix

∣ ∣= å ñá=h H k lk l
d

k l, 1 , is a generator of local symmetry of ∣Yñ then
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ( )†å l lYñ = Yñ Î

=

H f f for some . 28
k l

d

k l k l
, 1

,

Moreover any generator of a symmetry of ∣Yñwhich is diagonal inNO-basis 1 can bewritten as ˆ
L

1
for some

linear functional = å =L l ni
d

i i1 . Such an operator ˆ
L

1
acts on ∣Yñexpanded in itsNO-basis in the followingway,

4

New J. Phys. 22 (2020) 023002 TMaciążek et al



aswe have already stated in equation (13) in Part I [3].

ˆ ∣ ˆ ∣ ( · )∣ ( )å åYñ = ñ = ñy i l n iL c L c . 29
i

i
i

i i1

There, we introduced (recall also section 2.3 of Part I [3]) for each configuration state ∣ ñi the respective vector ni

of unordered occupation numbers

⎧⎨⎩( [∣ ⟩⟨ ∣]) ( ) ( )º =
Î
Ï-n i i n

i

i
N

j

j
spec Tr , i.e.

1 if

0 if
, 30i iN j1

Hence, we obtain that ˆ ˆ= å =L l ni
d

i i11
is a generator of local symmetries of ∣Yñ, i.e. ˆ ∣sÎ YñL

1 if and only if there
exists l Î  such that for all i that belong to (∣ )YñSupp

1
we have

· ( )l=l n . 31i

In order tofindλ, wemultiply both sides of (31) by ∣ ∣ci
2 and take the sumover i. Using equation (12) fromPart I

[3] and the fact that ∣ ∣ci
2 sumup to one, we obtain that ·l = l n. Hence, the condition (31) can be conveniently

rephrased as

· ( ) (∣ ) ( )- = Î Yñl n n i0 for all Supp . 32i 1

Summing up

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∣ ∣ · ( ) (∣ ) ( )∣s å= ñá - = Î YñYñ
=

l n n ii l j j : 0for all Supp . 33i
j

d

i
1

1

Fromnowon, wewill use the shorthand notation

ˆ ≔ ∣ ∣ ( )å ñá
=

l i l j j . 34
j

d

j
1

1

So far, we have not assumed that theNONvector is pinned to aGPC. The above results apply for any state whose
NONs are non-degenerate. In particular, the support of a generic state consists of all configurations from N ,
hence the conditions (32) leave very little freedom for choosing the vector l . In fact, generically there is only one
solution, namely ( )= ¼l 1, 1, , 1 which corresponds to the total particle number operator. However, as we
shall see in the remaining part of this subsection, if NONs saturate aGPC, the corresponding state is necessarily
not generic and hasmore symmetries.

Theorem 1 connects the above considerations with the selection rule. On the one hand, if ∣Yñ saturates a
GPC, i.e. ( ) ·( ) kk= + =n nD 0k k k

0 , then ∣m YñIm d cannot contain directions that have a component

perpendicular to the corresponding face of polytope  (in the sense of the trace product). In other words, we
have that

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟∣ ∣ ( )∣

( )åm kÎ ñá =Yñ
=

h h j jIf Im d , then tr 0. 35
j

d

k
j

1

On the other hand, theorem1 and formula (33) for the generators of local symmetries of ∣Yñ tell us that ∣m YñIm d
is an orthogonal sumof two spaces. One is the space of all hermitian purely off-diagonalmatrices whichwe
denote by d^

≔ { } ( )†d = = = ¼^ h h h h i d: and 0 for 1, , . 36ii

The other space is the space of diagonalmatrices which are perpendicular to ∣s Yñi . In other words,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

(( ) )∣ ∣ (∣ ) ( )∣ d åm = Å - ñá Î YñYñ
^

=
n in j jIm d Span : Supp . 37i

j

d

j j
1

1

By comparing formula (37) and (35), we obtain that if (∣ )Î Yñi Supp
1

, then

⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟(( ) )∣ ∣ ∣ ∣ ( )( )å å k- ñá ¢ñá ¢ =

= ¢=

¢n n j j j jtr 0. 38i
j

d

j j
j

d

k
j

1 1

Expanding the above formula, we have the following geometric condition for vectors ni andkk

( ) · ( )k- =n n 0. 39i k

Noting that · ( )k k= -n k k
0 , the above result can be reformulated as follows.
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Theorem2. If ∣ [ ]Yñ Î  N
1 is such that its NONs are non-degenerate and saturate a fixedGPCDk, then

(∣ ) { ∣ ( ) } ( )Yñ Ì ñ Î = i i nDSupp : and 0 . 40N k i1

The above theorem2 is an instance of amore general phenomenonwhich relates to themomentummap being
singular on the regular boundary of themomentumpolytope (see e.g. [4, 7], lemma 2.13 in [8], section 8 in [9]).
The new input of this section is however to reprove this result usingmore elementarymethods and formulate it
in terms of notions that are familiar to the broader community.

2.2. Possibly degenerate occupation numbers
As a preliminary point to this subsectionwe start with an important result which can be viewed as a converse
selection rule. Namely, for afixedGPC,Dk, we start from an ansatz spacek which is spanned by configurations
of some one-particle orthonormal basis that saturateDk:

≔ {∣ ( ) } ( )ñ = i nDSpan : 0 . 41ik k

Note that the one-particle reduced density operator of a generic ∣Yñ Î k is not necessarily diagonal and it is
a priori not obvious that itsNONs can saturateDk aswell. The following theorem asserts thatNONs of a generic
state actually do saturateDk. However, in order to achieve that, one has to relax their ordering constraints.

Theorem3 (Converse selection rule). Let us fix aGPC,Dk, and its corresponding ansatz spacek as defined in
(41). For any ∣Yñ Î k there exists ¢1 , an orthonormal basis of natural orbitals {∣ }ñ =j j

d
1, such that

{∣ (∣ )}ñ Î Yñ Ì¢ i i: Supp k
1

, i.e. the corresponding vector of NONs saturatesDk.Moreover, theNONs can be

ordered so that n ni j whenever
( ) ( )k k=k
i

k
j for >i j.

Proof.Wefirst show that for any ∣Yñ Î k the one-particle reduced operator has a block-diagonal form.
Namely, for ( ) ·( ) kk= + =n nD 0k k k

0 wehave that

( ) ( )( ) ( )r k k= ¹ >i j i j0 if , are such that , , 0. 42ij k
i

k
j

1

This in particularmeans that if all coefficients of vector kk are distinct, then r1 is automatically diagonal. To see

this, recall that operator ˆ ∣ ∣( )k= å ñád j jk j k
j is a generator local symmetry of ∣Yñ for any ∣Yñ Î k. By relation

(12), this automatically implies that [ (∣ ) ˆr Yñ =d, 0k1 . Because d̂k is diagonal, (∣ )r Yñ1 must be block diagonal as
in (42).

Furthermore, in order tofindNOs of ∣Yñ Î k it is enough to diagonalise r1within each of its blocks. These

blocks concern only such i j, -entries of r1 that
( ) ( )k k=k
i

k
j . Thismeans that any d×d block-diagonal unitary,U,

which transforms the one-particle orthonormal basis to a basis ofNOswhile preserving the block-diagonal form
of r1 is of the form

∣ ∣ ( )
( ) ( )
å= ñá
k k=

u U i j . 43
i j

ij
, : k

i
k

j

Hence, by the preceding discussion, Äu N also preserves spacek, which implies that (∣ )Yñ Ì Supp k1
.

Moreover, using such block-diagonal unitaries, one can permuteNOs so that the obtainedNONs of ∣Yñare
ordered as in the statement of the theorem. ,

Let us nextmove to the general selection rule, in the case where theNONs can be degenerate.We start with a
generalisation of formula (33).

Lemma4. Let 1 be anNO-basis for ∣Yñ.Moreover, denote by d the set of one-particle hermitian operators that are
diagonal in the basis 1. Then

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∣ ∣ · ( ) (∣ ) ( )∣s d åÇ = ñá - = Î YñYñ
=

l n n ii i l j j : 0for all Supp . 44i
j

d

i
1

1

Conversely

(∣ ) {∣ · ( ) ˆ } ( )∣s dYñ Ì ñ Î - = Î ÇYñ i l n n lSupp : 0for all . 45iN1 1

Proof.The proof, in essence, relies on repeating the reasoning from equations (29)–(33). In particular, for any
ˆ
L

1
we have
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ˆ ∣ ( · )∣åYñ = ñ l n iL c .
i

i i1

Thismeans that ˆ ˆ= åL l ni i i1
generates a symmetry of ∣Yñ if and only if for all (∣ )Î Yñi Supp

1
we have

· l=l ni for some l Î . Furthermore, because 1 is anNO-basis for ∣Yñ, we have ·l = l n with n being the
NON-vector of ∣Yñ. Hence, we have that

( ) ( )∣ ∣s d dÇ =Yñ Yñ
^i i , 46

where

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

(( ) )∣ ∣ (∣ ) ( )∣d å= - ñá Î YñYñ
=

n in j jSpan : Supp . 47i
j

d

j j
1

1

This yields assertion (44). Conversely, if (∣ )Î Yñi Supp
1

, then (( ) )∣ ∣ ∣då - ñá Î= Yñn n j jij
d

j j1 . By relation (46),
we have that ( )∣ ∣d s d= ÇYñ Yñ

^i which yields (45). ,

Recall that states with degenerateNONs havemanyNOs. In the remaining part of this sectionwewillmake
the choice ofNOs less ambiguous by requiring them to have a certain additional property. To explain this
property, let usfirst take a closer look at the structure of the local symmetries of a given ∣ [ ]Yñ Î  N

1 . Among
all generators of local symmetries of ∣Yñ, one can choose amaximal set of operators that commutewith each
other. Such a set will be denoted by ∣

( )s Yñ
c . Because all operators from ∣

( )s Yñ
c commutewith each other, one canfind

a basis ofNOs inwhich all of them are diagonal. SuchNOswill be called adapted.

Definition 5 (AdaptedNOs). Let ∣
( )s Yñ
c be amaximal subset of the set of generators of local symmetries of ∣Yñ that

has the property that all operators from ∣
( )s Yñ
c commutewith each other (in group theory this set is called the Lie

algebra of amaximal torus of ∣YñS ). NOs {∣ }= ñ = i i
d

1 1 are called adapted if all operators from ∣
( )s Yñ
c are diagonal

in 1. In otherwords, if ∣ ∣ ∣
( )s= å ñá Î Yñh i H i ji i j ij
c then =H 0ij whenever ¹i j.

Remark 6. In the adapted basis ofNOswe have the orthogonal decomposition

( ) ( )∣ ∣
( )

∣
( )s s s= ÅYñ Yñ Yñ

^. 48c c

In otherwords, if ∣sÎ Yñhi , then the diagonal of ih belongs to ∣s Yñ aswell.

To see this, recall that ∣s Yñ is a compact Lie algebra, hence it decomposes as ∣ ∣ ∣s s z= ¢ ÅYñ Yñ Yñ, where ∣s¢Yñ is
the semisimple part and ∣z Yñ is the center. Furthermore, the semisimple part has the following orthogonal
decomposition:

⨁ ( ) ( )∣ ∣
( )

∣
( )

∣
( )s h a b¢ = Å Å

a

a a a
Yñ

Î
Yñ Yñ Yñ

+

, 49
R

where +R is the set of positive roots of the complexified algebra ∣ ∣s s¢ Å ¢Yñ Yñi , ([ ])∣
( )h =a

a aYñ - e e, ,

( )∣
( )a = -a

a aYñ - e e , ( )∣
( )b = +a

a aYñ -i e e , and eα is a root operator associated to rootα. The subalgebra

≔ ⨁ ( )∣ ∣ ∣
( )t z hÅ

a

a
Yñ Yñ

Î
Yñ

+

, 50
R

is amaximal commutative subalgebra of ∣s Yñ. Denote by {∣ }ñ =j j
d

1 a basis that diagonalises the abovemaximal

commutative subalgebra.Wewill next show that operators from ∣
( )a a
Yñ and ∣

( )b a
Yñ are purely off-diagonal in this

basis. Notefirst that the commutator of a diagonalmatrix with any othermatrix necessarily has zero on the
diagonal, i.e. ∣[ ]∣á ñ =j H X j, 0 for all { }Î ¼j d1, , , ∣tÎ YñH and ∣sÎ YñX . Furthermore, for any a Î +R we

have [ ] ( )a=a aH e H e, and [ ] ( )a= -a a- -H e H e, . Hence, for any ∣
( )aÎ a
YñX wefind that for all ∣tÎ YñH

∣[ ]∣ ∣[ ]∣ ( ) ∣ ∣ ( )a= á ñ µ á - ñ = á + ña a a a- -j H X j j H e e j H j e e j0 , , . 51

Similarly, for any ∣
( )bÎ a
YñX wefind that for all ∣tÎ YñH

∣[ ]∣ ∣[ ]∣ ( ) ∣ ∣ ( )a= á ñ µ á + ñ = á - ña a a a- -j H X j i j H e e j i H j e e j0 , , . 52

It is now straightforward to check that because ( )a ¹H 0, the above two equations imply that ∣ ∣á ñ =j X j 0 for
all ∣

( )
∣
( )a bÎ Åa a

Yñ YñX .

The above notion of adaptedNOs allows us tomake a connection between the image of md and the structure
of a given state ∣Yñvia lemma 1. The precise formof this connection is the subject of the following lemma.

7

New J. Phys. 22 (2020) 023002 TMaciążek et al



Lemma7. Let {∣ }= ñ = i i
d

1 1 be a basis of NOswhich is adapted for ∣ [ ]Yñ Î  N
1 and let n be the vector of NONs

of ∣Yñ.Moreover, denote by d the set of one-particle hermitian operators that are diagonal in basis 1. Then,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

(( ) )∣ ∣ (∣ ) ( )∣ d åm Ç = - ñá Î YñYñ
=

n in j jIm d Span : Supp . 53i
j

d

j j
1

1

Proof.By lemma 1, for any state ∣ [ ]Yñ Î  N
1 , we have

( ) ( ) ( )∣ ⟩ ∣ ⟩ ∣ ⟩s s dm iÇ = Ç = ÇY Y
^

Y
^d i d i prImd , 54d

where by dipr wedenote the orthogonal projection on the space of anti-hermitian diagonalmatrices. In other
words, for any anti-hermitianA, ( )dipr A is the diagonalmatrix whose non-zero entries are identical to those ofA.
In the second step of equation (54)wehave used the fact that the scalar product ( )ABtr depends only on the
diagonal part ofA ifB is diagonal. Indeed, anymatrix ∣sÎ YñA can be uniquely decomposed as a sum

d d= + ^A A A , where ≔ ( )d diA pr A . Thematrix dÎB is orthogonal toA iff ( ) )d d+ =^A A Btr 0. This
happens iff ( )d =A Btr 0. In other words, ( )∣s dÎ ÇYñ

^B iff ( )∣s ddÎ ÇYñ
^B pr . Next, we use the fact that the

NO-basis inwhich the above operators are diagonal, is adapted for ∣Yñ. This implies that

( )∣ ∣s s dd = ÇYñ Yñpr , 55

i.e. in an adapted basis onNOswe have that if ∣sÎ YñA , then automatically ∣sd Î YñA . To see this, recall that

∣s dÇYñ is precisely ∣
( )s Yñ
c fromdefinition 5written in a basis of adaptedNOs. Aswe explained in remark 6, in an

adapted basis we have the orthogonal decomposition

( ) ( )∣ ∣
( )

∣
( )s s s= ÅYñ Yñ Yñ

^. 56c c

The space ( )∣
( )s Yñ

^c is the space ofmatrices with zeros on their diagonals. Hence, taking the diagonal of thematrix

∣sÎ YñA is the same as projectingA to ∣
( )s Yñ
c .

Equation (55) applied to (54)means that ∣ ⟩ dm ÇYImd is determined by the diagonalmatrices that generate

local symmetries of ∣Yñ. Finally, by lemma 4we have that the diagonal component of the orthogonal
complement of ∣s dÇYñ is precisely the right hand side of formula (53). ,

In order to deduce the support of ∣Yñ from lemma 7 and the knowledge of itsNONs, we have to take a closer
look at the subtle structure of local symmetries of states withfixedNONs. In the remaining part of this
subsection, for simplicity wefix a vector of ordered occupation numbers n and a one-particle orthonormal base

{∣ }= ñ = i i
d

1 1. Let us distinguish the set of quantum states for which 1 is aNO-basis and n is the vector of
NONs

≔ {∣ [ ] ∣ ∣ } ( )† dYñ Î  áY Yñ =  f f n: . 57n
N

i j i ij1

In otherwords, all states fromn have their one-particle reduced density operators equal to

∣ ∣ ( )( ) år = ñá
=

n j j . 58n

j

d

j1
1

The stabiliser of ( )r n
1 will be denoted by Sn. Importantly, by its definition setn is Sn-invariant, i.e. if

∣Yñ În, then for any one-particle u such that
( ) † ( )r r=u un n
1 1 , we have ∣Yñ ÎÄ u n

N . Finally, note thatfixing
a one-particle basis does not restrict the generality of the results that will follow, as any state whose ordered
NONs are equal to n can be brought ton by a change of its one-particle basis.

The structure of symmetries of states fromn that we are about to reviewwill give us a hierarchy of states
fromn andwillmake precise the notion of a generic state.Mathematically, wewill explore the stricture ofn

as a stratified symplectic space [10]. This in particularmeans that spacen can be decomposed into disjoint
subsets { }s sÎSN called strata, for which

⨆ ( )= s sÎS N . 59n

In the above expressions, the enumeration is in terms of the discrete setΣ, which is the set of conjugacy classes of
local symmetry groups of states fromn. In other words, two states ∣Yñand ∣Y¢ñbelong to the same stratum if
and only if ∣ ∣

†=Yñ Y¢ñS uS u for some Îu Sn. Let us nextmotivate this construction. If two states can be
transformed into each other by amatrix Îu Sn, their local symmetry groups are conjugate, i.e

( )∣ ∣
†=Yñ YñÄS uS u . 60u N

In otherwords, ∣YñÄSu N and ∣YñS are in the same conjugacy classσ. However, the converse is not true—two states
may have local symmetry groups from the same conjugacy class without being unitarily equivalent.Nevertheless,
they are arranged to form a single stratum. The stratification (59) has three important properties.
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Theorem8. Let { }s sÎSN be the symplectic stratification ofn. The following properties hold [10].

(i) If Ç ¹ Æs s¢N N , then És s¢N N . This means that strata can be partially ordered with respect to the relation of
inclusion, i.e. we say thatNσ is bigger than s¢N if and only if És s¢N N .

(ii) If ∣Yñ Î sN and ∣Y¢ñ Î s¢N with És s¢N N , their stabilisers are related by

( )∣
†

∣ÌYñ Y¢ñuS u S 61

for some Îu Sn.

(iii) There exists a uniquemaximal stratum,Nmax, which is ofmaximal dimension and is open and dense inn.

By calling a state genericwemean that it belongs to stratumNmax. Aswewill shownext, the uniqueness of the
stratumNmax together with lemma 7 implies the existence of a selection rulewhich is universal for all states
fromn.

Definition 9 (σ-ansatz). Let ∣Yñ Î Ìs N n be such that 1 is an adapted basis ofNOs. Aσ-ansatz space for

n,
( )sn is defined as the set of all configurationswhose (shifted)NON-vectors are perpendicular to all

diagonal operators from ∣s Yñ.

≔ {∣ · ( ) ˆ } ( )( )
∣s diñ Î - = Î Çs
Yñ  i l n n l: 0for all . 62n iN 1

Note that for differentσʼs theσ-anzatz ( )sn can change as ∣s diÇYñ is determined byσ.

Remark 10. Importantly, as the local symmetry groups of all states from sN are conjugate to each other,σ-
ansatzes for different ∣Yñ Î Ìs N n are the same up to permutation of elements of the chosen adapted basis
ofNOs.

Remark 11. Lemma 4 applied to the case of an adapted basis of NOs implies that if ∣Yñ Î Ìs N n and 1 is an
adapted basis ofNOs for ∣Yñ, then

{∣ (∣ )} ( )( )ñ Î Yñ Ì si i: Supp . 63n1

Theorem12 (Maximal ansatz is universal). For any ∣Yñ În there exists an operator Îu Sn such that

{∣ ( ∣ )} ( )( )ñ Î Yñ ÌÄ i i u: Supp , 64n
N max

1

where ( )n
max is anyσ-ansatz corresponding to themaximal stratum Ì N nmax .

Proof. Let ∣Yñ Î Nmax and ∣Y¢ñ Î sN for some stratumσ.Moreover, assume that 1 is an adapted basis of NOs
for ∣Y¢ñ (this can be always satisfied by transforming ∣ ∣Y¢ñ  Y¢ñw for proper Îw Sn). By point (ii) of theorem
8,we have that there exists Îu Sn for which

( )∣
†

∣ÌYñ Y¢ñuS u S . 65

Equation (65) on the level of generators reads as

( )∣ ∣s sÌYñ Y¢ñÄ . 66u N

In particular, we have that ∣ ∣s d s di iÇ Ì ÇYñ Y¢ñÄu N . Hence, by lemma 4

{∣ · ( ) ˆ }

{∣ · ( ) ˆ }
∣

∣

s d

s d

i

i

ñ Î - = Î Ç É

É ñ Î - = Î Ç

Yñ

Y¢ñ

Ä







i l n n

i l n n

l

l

: 0for all

: 0for all .

i

i

N u

N

N
1

1

Note that relation (65) implies that 1must also be an adapted basis ofNOs for ∣YñÄu N , hence by remark 10 for
everymaximal ansatz ( )n

max there exists a permutationmatrix Îv Sn such that

{∣ · ( ) ˆ }∣
( )s diñ Î - = Î Ç =YñÄ i l n n l v: 0for all .i nN u
max

N
1

Hence

{∣ · ( ) ˆ }∣
( )s diñ Î - = Î Ç ÌY¢ñÄ i l n n l: 0for all .i nN v
max

N
1

Finally, assertion (64) follows fromdirectly lemma 4 applied to state ∣Y¢ñÄv N . ,

In the light of theorem12,finding the selection rule in the general case of possibly degenerate occupation
numbers boils down to determining themaximal ansatz. Aswewill next show, this is possible under some

9
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additional technical assumptions that concern the distribution of vertices of the Pauli hypercube relatively to the
GPCs that are saturated by the given vector n.

Let us start with the case when occupation vector n saturates exactly oneGPC,Dk. Pick a state
∣Yñ Î Ç n k (see definition 41) such that 1 is an adapted basis ofNOs for ∣Yñ.We necessarily also have that
∣Yñbelongs to some stratum Ìs N n. Because ∣Yñ Î k, ∣Yñ is stabilised by operator

ˆ ˆ( )å k=
=

K n .
j

d

k
j

j
1

1

Moreover, because 1 is an adapted basis ofNOs for ∣Yñ, by remark 11we have

(∣ ) ( )( )Yñ Ì Ìs Supp . 67n k1

Using arguments analogous to the ones used in the proof of theorem12 one can show that any generic state
∣Y¢ñ Î Ì N nmax can be transformed via Îu Sn to a state ∣Ỹñ for which 1 is an adapted basis ofNOs and

∣ ˜ ∣ÌYñ YñS S . In particular, because 1 is an adapted basis ofNOs for both ∣Yñand ∣Ỹñ, all operators from the
maximal commutative subalgebra of ∣Ỹñs which is diagonal in 1belong to the correspondingmaximal
commutative subalgebra of ∣Yñs . Note that by remark 10wehave a freedomof acting on ∣Ỹñwith any permutation
matrix Îv Sn. Two followingmutually exclusive cases are possible.

(i) There exists a permutation matrix Îv Sn such that ˆ ∣ ∣( )
∣ ˜ †k= å ñá Î= Yñk j j vs vj

d
k

j
11

. Then we have that

ansatzk leads to the universal selection rule, i.e.
( ) Ì n k
max .

(ii) For all permutation matrices Îv Sn we have ˆ ∣ ˜ †Ï Yñk vs v
1

. Then the maximal commutative subalgebra of

∣Yñs contains ˆ
k

1
and another operator ̂l 1

which is linearly independent from ˆ
k

1
and is not proportional to

ˆ †
vk v

1
for all permutationmatrices Îv Sn. Thismeans that vector l may define universal ansatz which is

different fromk, i.e.

{∣ · ( ) } ( )( ) Ì ñ Î - = ¹  i l n nSpan : 0 . 68n iN k
max

The following technical assumption 13 allows us to exclude the above case (ii).More specifically, wewant to
exclude the possibility of the existence of hyperplanes spanned by vertices of the Pauli hypercubewhich are
different thanDk and all its relevant reflections. This can be achieved by incorporating the following
combinatorial procedure. Let usfirst introduce the group Pn of permutationπwhich leaves n invariant

{ ∣ ( ) } ( )p pP º =n npermutations . 69n

For instance, if n has only a twofold degeneracy = +n nj j 1 the group Pn consists of only two elements,
{ }pP = +,n j j, 1 . In the general case group Pn is generated by transpositions p +j j, 1 for all j such that = +n nj j 1

( )pP = á = ñ+ +n n: . 70n j j j j, 1 1

Let us denote by ◦p +Dk j j, 1 the reflection ofGPCDkwith respect to permutation p +j j, 1. Then, halfspace
{ ◦ ( ) }p + n nD: 0k j j, 1 is the reflection of halfspace { ( ) }n nD: 0k with respect to hyperplane given by
equation = +n nj j 1.

Assumption 13. For everyGPC,Dk, let n be a generic point that saturatesDk and has degeneracy = +n nj j 1. It is
not possible tofind vector l with the following properties (see figure 1). For ≔ { · }¢ ¢ =n l nV : 0l :

(i) { ∣ · ( ) }= ñ Î - =n i l n nV Span : and 0l i iN ,

(ii) l is not proportional to ( )kp +j j k, 1 orkk.

(iii)
Set { ∣ · ( ) }ñ Î - =n i l n nConv : and 0i iN is contained in the region of admissible one-particle spectra in
the vicinity of point n.

The validity of this assumption has been confirmed by us numerically in all cases where theGPCs are known,
i.e. for N 5 and d 11.More specifically, for all GPCswe verified that generic n from the intersection of a
givenGPCwith a number of hyperplanes = +n nj j 1 satisfies assumption 13. Therefore, we have hardly any
doubts that this holds in general. However, proving this fact in a straightforwardway is a challenging
combinatorial problem. Finally, let us point out that proving the validity of assumption 13 for everyGPC and
every possible degeneracy would allow us to strengthen the universal ansatz theorem.

10
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Corollary 14. Let n saturatemultiple GPCs. Under assumption 13, theorem 12 implies that there exists one of the
saturatedGPCs, Dk, such that for every state ∣Yñ În there exists a transformation Îu Sn such
that ∣Yñ ÎÄ u N

k.

3.Global implications of extremal local quantum information

In this sectionwewill briefly discuss non-fermionic settings. The single-body quantummarginal problem
appears naturally in quantum information theory, where systems of distinguishable particles are considered.
Themapμ assigns to a state ∣Yñ its 1-particle reduced densitymatrices. The solution of one-body quantum
marginal problem is obtainedmutatismutandis to the case of fermions as all the essentialmathematical
structures are also present for distinguishable particles, i.e. ( ) is a Kählermanifold andμ arises as the
momentummap of the local unitary action on the space of states (see [5, 6, 11–23] formore examples of the
usage of geometric techniques in quantum information). A similar observation applies to bosons. In the
followingwe fully characterise selection rules for the systemof qubits and bosons.

We consider amultipartite quantum system consisting of r distinguishable subsystems ¼S S, , r1 .Moreover,
we denote the reduced density operators by rSj

and assume that all respective localHilbert spacesSj
have the

same dimension d. The latter could always be achieved by embedding the possibly smaller dimensionalSj
into

larger spaces of the dimension ( ( )º d max dimj Sj
. The quantummarginal constraints

·( ) ( )( ) å kk¼ º +
=

n n nD , , 0, 71k S S k
j

r

k S
0

1
r j1

represent the necessary and sufficient conditions for the compatibility of given non-increasingly ordered local
spectra ( ) ( )rº º=

n n specS S i i
d

S, 1j j j
to a pure total state. In complete analogy to the case of identical fermions (as

discussed in the previous sections), the saturation of a quantummarginal constraint (71) implies a selection rule.
To bemore specific, whenever ( )¼ =n nD , , 0S Sr1

for some constraint D 0, there exist at least one family of
local bases {∣ }º ñ = iS i

d
1j j
of eigenstates of rSj

, = ¼j r1, 2, , , such that the correspondingmultipartite state

∣Yñ fulfills

ˆ ∣ [( ˆ ) ( ˆ ) ] ∣ ( )( ) ( )Yñ º ¼ Yñ == = D D n n, , 0. 72i
i
d i

i
d

1 1N1

Here,  ˆ ∣ ∣( ) º ñ á Ä Ä¼Ä    n i ii
N1 1 1 2
( ˆ ( )
n i

j
is defined analogously for >j 1), we suppressed the dependence of

D̂ on the local bases Sj
of (possibly non-unique) eigenstates ∣ ñi

1
of rSj

andwe recall that those local bases are
unique as long as each of the local spectra nSj

is non-degenerate. Towork out the consequences of (72), we
express ∣Yñwith respect to the tensor product states built from the local bases ¼ , ,S Sr1

Figure 1. Schematic supplementary figure for assumption 13. Solid line segment depicts convex hull of vertices of the Pauli hypercube
that span space Vl . Light grey color shows regionwhere the spectral polytope and the reflected spectral polytope are contained.
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∣ ∣ ∣ ( )åYñ = ñ Ä¼Ä ñ
¼ =

¼  c i i . 73
i i

d

i i r
, , 1

, , 1

r

r r

1

1 1

The expansion (73) is the analogue of the natural orbital expansion of fermionic quantum states (recall
equation (8) in Part I [3]). Since the states ∣ ∣ñ Ä¼Ä ñ i ir1 r1

are the eigenstates of D̂ with (integer) eigenvalues
( ) ( ) ( )k k¼ = + å =n nD , ,i iS S j

r i
, ,

0
1r

j
1

, (72) implies that only those configurations ( )º ¼i i i, , r1 may contribute
to the self-consistent expansion (73)whose unordered spectra ( )¼n n, ,i iS S, ,r1

( ) ( )d=n , 74iS k i k, ,j j

lie on the hyperplane defined by ºD 0. In complete analogy to the case of fermions (recall Corollaries 7, 11 in
Part I [3]), a stronger selection rulemay apply in case of degenerate spectra. In the following, we illustrate those
structural implications of pinning for non-fermionic single-body quantummarginal problems.

3.1. Examples
3.1.1. r qubits
One prominent example for a non-fermionic single-body quantummarginal problem is the one of r qubits.
Their reduced density operators r r¼, ,S Sr1

are compatible to a common r-qubit pure state ∣Yñ if and only if
their spectra ¼n n, ,S Sr1

fulfill the following polygonal inequalities [24]

( ) ( )( ) ( )å¼ º - +
¹

n nD n n, , 0, 75i S S S
j i

S
2 2

r i j1

for all i. Here, ( )nS
2
i
denotes the smaller eigenvalue of rSi

which fixes the spectrumof

∣ ∣ ∣ ∣( ) ( )r º ñ á + ñ á   n n1 1 2 2S S S
1 2

i i i i i i i
via the normalization [ ] ( ) ( )r = + =n nTr 1S S S

1 2
i i i

.
In case a quantummarginal constraint (75) is saturated, e.g. ( ) =nD 01 , there exist local bases Sj

such that

the corresponding r-qubit state ∣Yñ lies according to (72) in the zero-eigenspace of the respective D̂1-operator

ˆ ∣ ( )Yñ =D 0. 761

By expressing ∣Yñ in the self-consistent expansion (73), we conclude that only the configurations ( )¼1, , 1 and
( )¼2, 2, 1, 1, , ( )¼2, 1, 2, 1, 1, ,K, ( )¼2, 1, , 1, 2 may contribute to ∣Yñ. Hence, pinning by one quantum
marginal constraint (75)would reduce the number of contributing configurations from 2r to just r. It is also
interesting that for qubits all the difficulties described in section 2.2 are not present. The rest of this section
explains this phenomenon.

Lemma15. If for everyGPCDk and its reflection ¢Dk all the vertices ni of the Pauli hypercube satisfy ( ) nD 0k i and
( )¢ nD 0k i then the selection rule is given byk.

Wewill shownext that conditions of lemma 15 are satisfied for r-qubit system.

Lemma16.Assume that ( ) =nS
2 1

2l
. Then for ¹k l all the inequalities ( ) ( )å -¹ n n 0j k S S

2 2
j k

are automatically

satisfied. The only nontrivial inequality is ( )å ¹ nj l S
2 1

2j
and its saturation defines a codimension 2 edge of  .

Using lemma 16, for our further calculations, it is enough to consider one of the inequalities (75), for
example the onewith =i 1. The reflection of the hyperplane ( ) ( )å - == n n 0j

L
S S2

2 2
j 1

along ( ) =nS
2 1

21
gives

( ) ( )å + == n n 1j
L

S S2
2 2
j 1

. Using lemma 15we know that vertices of Pauli hypercube that can lead to non-standard

selection rules are those that satisfy:

( )( ) ( )å - <
=

n n 0, or, 77
j

L

S S
2

2 2
j 1

( )( ) ( )å + <
=

n n 1. 78
j

L

S S
2

2 2
j 1

Lemma17.The only vertex of the Pauli hypercube that satisfies (77) is ( )¼1, 0, , 0 and the only vertex of the Pauli
hypercube that satisfies (78) is ( )¼0, , 0 .

Proof. It is easy to verify that both vertices indeed satisfy desired conditions. To show that these are complete
assume that a vertexw has k zeros. There are two cases to consider for each inequality, i.e. ( ) =n 0S

2
1

or ( ) =n 1S
2
1

.
We start with inequality (77)
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( )( ) = - <n L k0, 0, 79S
2
1

( )( ) = - <n L k1, 2, 80S
2
1

One can easily see that (79) is never satisfied (for k 0) and the only >k 0 that satisfies (80) is = -k L 1 .
Similarly for inequality (78)we get:

( )( ) = - <n L k0, 1, 81S
2
1

( )( ) = - <n L k1, 1, 82S
2
1

One can easily see that (82) is never satisfied (for <k L) and (81) is satisfied onlywhen =k L. ,

Note that the vertex ( )¼1, 0, , 0 is reflection of the vertex ( )¼0, , 0 along ( ) =nS
2 1

21
. The conclusion from

lemma 17 is:

Theorem18. For a system of r qubits all selection rules are given byk.

Proof.By lemma 17, the light grey andwhite regions infigure 2 do not contain any vertices of the Pauli
hypercube. Thus all the vertices satisfy conditions of lemma 15 (are in the dark grey region) and the result
follows. ,

3.1.2. N bosons
In contrast toN identical fermions, the single-body quantummarginal problem is trivial forN identical bosons.
Indeed, for any vector ( )º =n nj j

d
1ofNONs respecting the trivial constraints n 0j and normalization

+¼+ =n n Nd1 , one can find a correspondingN-boson quantum state ∣ [ ]( )Yñ Î º SymN
b N

1 , e.g

∣ ∣ ∣ ( )åYñ = ñ Ä¼Ä ñ
=N

n j j
1

. 83
j

d

j
1

Here, {∣ }ñj are some orthonormal states. Nonetheless, the selection rule based on (72) applies also to the
saturation of the trivial constraints n 0j , just implying that the respective natural orbital ∣ ñj does not
contribute at all to the self-consistent expansion of ∣Yñ in bosonic configurational states ∣ ¼ ñi i, , N b1 built up from
the respective natural orbitals. If even all except one constraint are saturated, we have =n N1 and thus the
presence of a complete Bose–Einstein condensate, ∣ ∣ ∣Yñ = ¼ ñ º ñÄ1, , 1 1b

N
.

Figure 2. Location of vertices of the Pauli hypercube for qubits. Dark grey region corresponds to ( ) nD 0k i and ( )¢ nD 0k i .
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3.1.3. N hard-core bosons
The bosonic single-body quantummarginal problem gets highly non-trivial if we restrict theN-bosonHilbert
space ( )N

b to the one ofN hard-core bosons. To bemore specific, after introducing the orthonormal basis

{∣ }c ñ =j j
d

1of hard-core/lattice site states,
( )N
b is restricted to ( )N

hcb by skipping all configurationsmultiply

occupying any of those lattice sites. This gives rise to awell-defined quantummarginal problem. It seeks the one-
particle reduced density operators r1 that are representing a quantum state in ( )N

hcb . Its complete solution
would allow one to efficiently determine the ground state energies of all quantum systems of identical bosons
which interact only by hard-core interaction (including all possible one-particle terms in theHamiltonian).
Unfortunately, the space ( ) ( ) N

hcb
N
b is not invariant under rotations of the one-particle Hilbert space1 and

the formalismbyKlyachko and its solution do not apply. In particular, the solution set ofN-representable one-
particle reduced density operators r1 is described by conditions involving the natural orbitals as well [25].
Although this set takes a less preferable form, one could try tofind outer approximations to it in analogy to the
fundamentally important two-bodyN-representability problem for fermions (see, e.g. [26–29]). One prominent
outer approximation is given by the exclusion principle analogue: the largest possible occupation number that
can be found in a systemofN hard-core bosons on d lattice sites is given by [30]

( ) ( )º - +n N
N

d
d N 1 . 841 max

Saturation of this universal upper bound on the degree of condensation of hard-core bosons implies that there is
one natural orbital, ∣ ñ1 , of r1which ismaximally unbiasedwith respect to the lattice site basis {∣ }c ñj ,

∣cá ñ = d1 1j for all j, and the corresponding quantum state is given by (up to some phases which could be

transformed away) ismaximally delocalized, ∣ ∣c cYñ µ å ¼ ñ< <¼< , ,i i i i i bN N1 2 1
(see [30] formore details).

4. Summary

Extension of our results to general non-fermionicmultipartite quantum systems reveals that extremal single-
body information has always strong implications for themultipartite quantum state. In that sense, we confirm
that pinned quantum systems define new physical entities since their response to adiabatic external
perturbations has to be restricted to the corresponding polytope facet. Our approach also establishes a beautiful
link between representation theory, geometry and the extremal single-body information. In ourworkwe
distinguish two scenarios. Thefirst one concerns nondegenrateNONs and themain result is theorem2. The
proof of this theorem is based on the fundamental property of themomentummapwhich relates the image

∣m YñIm d with the Lie algebra of the stabiliser of ∣Yñ, i.e. ∣s Yñ (see lemma 1). The relative simplicity of this case is

due to the fact that (∣ )sm Yñ is diagonal and hence ∣s Yñ is diagonal too. For degenerateNONs lemma 1 is just the
first step and the procedure ismuchmore complicated. In order to deal with degenerateNONswe first
introduce the notion of adaptedNOs (see definition 5). This allows us to formulate lemma 7which charaterizes

∣ ⟩ dm ÇYImd . In contrast to nondegenerate case we cannot, however, use this lemma to immediately formulate a

selection rule. In order to deduce the support of ∣Yñ from lemma 7 and the knowledge of itsNONs, we have to
take a closer look at the subtle structure of local symmetries of states withfixedNONs. Themain tool we use is
the idea that fibres of themomentummap are stratified symplectic spaces. This lead us to additional technical
Assumption 13which, as we prove in section 3.1 is always satisfied formany qubit systems, as well as, for all
fermionic systemswith N 5 and d 11. Under this additional assumptionwe formulate a selection rules for
degenerateNONs in theorem12. Finally, we conjecture that Assumption 13 is satisfied for anymultipartite
system. Proving this is a challenging combinatorial problemwhichwe leave open.

It is worth tomention that the approach taken in this paper cannot be easily extended to the overlapping
quantummarginal problem. This is due to the fact that the corresponding symmetry groups that give rise to the
momentummap and thus to the reduced densitymatrices do not commute.
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AppendixA. Checking the validity of assumption 13

In this sectionwe shall describe an efficient combinatorial procedure for checking the validity of assumption 13.
The naive approachwould amount to realising a loop going through all subsets of vertices of the Pauli hypercube
that span a hyperplane and checkingwhether the convex hull of all vertices contained in such a hyperplane
contains vector n. However, in practice, it turns out that amuch stronger condition is satisfied.Wewill explain it
by exploring the geometry of the spectral polytope around point n. To this end, for each saturatedGPC and each
generator of group Pn wedefine the following region (see figure A1)

≔ { ( ) ◦ ( ) }
{ ( ) ◦ ( ) } ( )

( )

È
p
p

¢ ¢ > ¢ < È

¢ ¢ < ¢ >
+

+

n n n

n n n

R D D

D D

: 0 and 0

: 0 and 0 . A.1
n

k j
k k j j

k k j j

,
, 1

, 1

Hyperplane ≔ { · ( ) }¢ ¢ - =n l n nH : 0l (see figure A1) that would lead to an ansatz which is different
than ansatzes { }Ak coming from the saturatedGPCs, necessarily has to be contained in region

≔ ⋃ ⋃ ( )
( )

( )

p= ÎP+

R R . A.2n
n

n
k D j

k j

: 0 :

,

nk j j, 1

To check validity of assumption 13, for each ( )Rn
k j, we check numerically that point n is not contained in the

convex hull of vertices of the Pauli hypercube that are contained in chosen ( )Rn
k j, . This implies that it is not

possible tofind a hyperplanewhich is contained in region Rn and is spanned by vertices of the Pauli hypercube.
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